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Abstract

In this thesis, we prove a classification of isometric pluriharmonic
immersions of a Kahler manifold into a semi-Euclidean space, which es-
tablishes a generalization of Calabi-Lawson’s theory concerning minimal
surfaces in Euclidean spaces. Then we study these immersions for com-
plete Kahler manifolds with low codimensions, and prove, in particular,
a cylinder theorem and a Bernstein property. Moreover, we construct

new examples of isometric pluriharmonic immersions.
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1. INTRODUCTION

It has been a fundamental problem in the theory of minimal surfaces
to determine the moduli spaces of those surfaces isometric to a given
one. An answer to this problem was given in 1968 by E. Calabi [6] (See
also H. B. Lawson [22]), who proved that the moduli space of isometric
minimal immersions of a simply connected Riemann surface into a Eu-
clidean space can be explicitly constructed as a set of certain complex

matrices.

To be more precise, let M be a simply connected Riemann surface
with a local complex coordinate z, and f : M — R? an isometric mini-
mal immersion, that is, an isometric immersion of vanishing mean curva-
ture of M into Euclidean 3-space R3. Since f gives rise to an isometric
harmonic immersion, f is represented as f = vV2Re®, where ® is a
holomorphic map from M into complex Euclidean 3-space C? that sat-
isfies the isotropic condition : (0®/0z,0®/0z) = 0. We remark that
® : M — C3 is an isometric immersion as well, and can be obtained by
the well-known Weierstrass representation formula (See H. B. Lawson
[22] or M. Spivak [26]). It is then proved by E. Calabi [5] that such iso-
metric holomorphic immersions have rigidity, which means that for any
two isometric holomorphic immersions ® and ®, there exists a unitary
transformation U of C? such that ® = U®,. Hence, if we fix an isomet-
ric holomorphic immersion ®, then each isometric minimal immersion
f = V2Re ® above is described in terms of the unitary transformation
U. As a consequence, the conditions for two isometric minimal immer-

sions f1 = V2ReU; Py and fo = V2Re Uy Py to be congruent, that is,



they differ only by an isometry of R?, are also determined in terms of Uj.
In summary, through this procedure we can obtain a parametrization of
the congruence classes of minimal surfaces in R® which are isometric to

a given one, by a set of certain complex matrices.

In connection with the theory of relativity in physics, it has been an
important subject to study spacelike surfaces of vanishing mean curva-
ture in Minkowski 3-space R3. A surface in Minkowski 3-space R? is
said to be spacelike if the induced metric on it is positive definite. In
this thesis, spacelike surfaces of vanishing mean curvature are referred
to as spacelike minimal surfaces in R3, although they are usually called
maximal surfaces in the literature. We note that each spacelike minimal
surface in R3 is regarded as an isometric minimal immersion of a Rie-
mann surface with positive definite Kihler metric into R3. Moreover, it
should be remarked that such a Riemann surface has non-negative curva-
ture, which contrasts with the fact that a Riemann surface isometrically

and minimally immersed in R? has non-positive curvature.

As in the case of minimal surfaces in R?, an isometric minimal immer-
sion of a Riemann surface into R3 gives rise to a harmonic immersion.
Moreover, a Weierstrass-type representation formula has been recently
proved by O. Kobayashi [21] for such immersions. Based on these facts,
it seems very plausible that fundamental methods for studying minimal

surfaces in R3 can also work effectively for spacelike minimal surfaces in

R?.

In this regard, we also recall that complex analysis has been a most es-

sential ingredient in the research on minimal surfaces in Euclidean space



R3, as well as in Minkowski space R3. Therefore, when generalizing the
theory of these surfaces to higher dimensions, it is natural to assume
that a source domain has a Kahler structure. In the present thesis, we
will in fact prove that the theory can be generalized to isometric pluri-
harmonic immersions of higher dimensional Kahler manifolds into real
semi-Euclidean spaces. Here, following M. Dajczer and D. Gromoll [10],
we say that an isometric immersion of a Kéahler manifold is plurihar-
monic if the (1,1)-component of the complexified second fundamental
form of the immersion vanishes identically (Definition 2.3.1). It should
be remarked that pluriharmonicity coincides with minimality of immer-
sions provided the source Kahler manifold is complex one-dimensional.
Moreover, it is immediate from the definition that any isometric pluri-
harmonic immersion is minimal. Conversely, we can prove that an iso-
metric minimal immersion of a complex m-dimensional Ké&hler manifold
into semi-Euclidean space R%’LP is pluriharmonic whenever N = 0 or

P = 2m (Proposition 2.3.4).

It has been shown by M. Dajczer and D. Gromoll, and the author that
the geometry of isometric pluriharmonic immersions of Kéhler manifolds
into Euclidean spaces has many properties in common with that of min-

imal surfaces.

For instance, M. Dajczer and D. Gromoll [10] proved that for an
isometric pluriharmonic immersion f : M — RY of a simply connected
Kahler manifold M into Euclidean space R, there exists an isometric
holomorphic immersion ¢ : M — CP such that f= V2Re ®. This result

is further generalized by the author [19] to the case of semi-Euclidean



ambient spaces (Proposition 2.3.7).

On the other hand, the author [18, 19] generalizes Calabi’s classifica-
tion theorem mentioned above. Namely, he has constructed a
parametrization of the moduli space of full isometric pluriharmonic im-
mersions of a simply connected Kéhler manifold into a semi-Euclidean
space, which is described in terms of certain complex matrices deter-
mined by a full isometric holomorphic immersion of the Kéhler manifold

into a complex semi-Euclidean space. More precisely, we have

Theorem 3.1.5. Let M be a simply connected Kahler manifold and
®: M — CI'P a full isometric holomorphic immersion of M into C'*P,
the complex semi-Euclidean space of dimension n+p with indexn. Then
the set of congruence classes of full isometric pluriharmonic immersions
of M into R%’LP , the real semi-FEuclidean space of dimension N + P with
index N, has a bijective correspondence with the set of (n+p) X (n+p)-

complex matrices satisfying the following conditions (P1) — (P4):

to® _ 0P

P1 —P—=0 =1,...
( ) 6za azﬁ (a7 ﬂ Y 7m)7
(P2) ‘P=P,
(P3) *r_(1,p — "Plp,P)r_ <0

forz_ ="(zy,...,2,,0,...,0),

——
P

(P3) *r4(1yp — "PlpyP)ry >0

forxy ="0,...,0,Zpi1, s Tnip),

—_——

(P4) sign(1py — 'P1,,P) = (N —n, P — p),
where (2%,...,2™) is a local complex coordinate of M, and (P4) means
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that the Hermitian matrix 1,, — tPlon has N —n negative eigenvalues

and P — p positive eigenvalues.

The global geometry of isometric pluriharmonic immersions has been
studied by K. Abe, M. Dajczer and L. Rodriguez, and others in the case

when real codimensions are one or two.

For instance, K. Abe [2] proved that an isometric pluriharmonic im-
mersion of a complete Kahler manifold into a Euclidean space with real
codimension one is a cylinder (Proposition 4.1.11). This asserts that the
study of isometric pluriharmonic immersions of a complete Kéahler man-
ifold into a Euclidean space with real codimension one can be reduced
to that of minimal surfaces in R3.

On the other hand, when the ambient space is an indefinite Euclidean
space of real codimension one, S. -Y. Cheng and S. -T. Yau [8] proved
that an isometric minimal immersion of a d-dimensional complete Rie-
mannian manifold into Rilﬂ is totally geodesic. It then follows from
these two results that, in the case of real codimension one, isomet-
ric pluriharmonic immersions of complete Kéhler manifolds into semi-

Fuclidean spaces are simple.

In their paper [14], M. Dajczer and L. Rodriguez classified isometric
pluriharmonic immersions with real codimension two of complete Kéahler
manifolds into Euclidean spaces in terms of the index of relative nullity,
that is, the dimension of the kernel of the shape operator (Definition
4.1.1 and Proposition 4.1.14). However, it was left as an open prob-
lem to find nontrivial examples of these immersions, that is, whether

there exists a non-holomorphic pluriharmonic immersion of a complete



Kahler manifold into a Euclidean space which is not a cylinder. The
first affirmative answer to this problem is given by the author [18] by
constructing explicitly such an immersion. As far as the author knows,
examples of such immersions had not been previously obtained even lo-
cally. Subsequently, M. Dajczer and D. Gromoll [12] have also obtained
many examples. In this thesis, we will also construct several examples

of pluriharmonic immersions into indefinite Euclidean spaces (See 3.2).

In the case that the ambient spaces are indefinite Euclidean spaces
with real codimensions greater than one, the following results are ob-
tained.

Generalizing the result due to S. -Y. Cheng and S. -T. Yau mentioned
above, T. Ishihara [20] proved that an isometric minimal immersion of
a d-dimensional complete Riemannian manifold into R?VJFN is totally
geodesic (Proposition 4.2.1).

On the other hand, we prove that an isometric pluriharmonic immer-
sion of a Ké&hler manifold into an indefinite Euclidean space of index
one is totally geodesic if its tangent vectors are apart from the orthogo-
nal complement of some timelike vector, under the assumption that the
Kéhler manifold is biholomorphic to C™ (Proposition 4.2.3).

We also prove the following cylinder theorem based on the result of

M. Dajczer and L. Rodriguez [14].

Theorem 4.1.9. Let M be a complete Kahler manifold of real dimen-
sion 2m and f : M — R%JFP an isometric pluriharmonic immersion of
M into R%J“P. If the index of relative nullity v is not less than 2m — 2,

then f is (2m — 2)-cylindrical.



This thesis is organized as follows: In Chapter 2, we first review
relevant basic properties of general isometric immersions, to fix our ter-
minology and notation. Then we study pluriharmonic immersions and
holomorphic immersions. We prove the existence of an isometric holo-
morphic immersion for a given pluriharmonic immersion, and the rigid-
ity of isometric holomorphic immersions. We also obtain a criterion to
count the substantial codimension of isometric holomorphic immersions.
In Chapter 3, we study isometric pluriharmonic immersions in a local
setting. In particular, we prove a classification theorem and illustrate
some examples of such immersions. Chapter 4 is devoted to the study
of these immersions in a global setting, assuming the completeness of
source Kéahler manifolds. Particular studies are made for the cases when

these immersions reduce to being cylindrical or totally geodesic.
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2. PRELIMINARIES

2.1. Semi-Euclidean spaces

Let R%+P denote a real vector space of dimension N + P endowed

with the standard metric

<'a '>R%+P

= () == (V) (A e (A2

of index N, and C%’LP a complex vector space of dimension N + P

endowed with the standard metric

(',7>C%+p

= —dldet — - — dszzW—i— dzN TN o NP NP
of index N, respectively. Let [, t and s be integers such that
0<!<min(N,P), 0<t<N-] and 0<s<P—I.

For each (I,t, s) we denote by H(l,t,s) an (I+t+s)-dimensional subspace

of R%+P consisting of the elements

(\Xlw" aXlaXl+1a"' 7Xl+taON7(l+t)J ;;lew" aXlaXl+t+17"' aXl+t+SaOP7(l+SL)a

v~ ~~
N P

where X7 € R for 1 < j <I1+t+s. Also, by HS(I,t,s) we denote an

(I +t + s)-dimensional subspace of CX ™" consisting of the elements

(Z',.... 282" L2 O gy 520, 2 2 L 2 0 146)) =102,

v~ N~
N P

11



where Z9 € C for 1 < j <[+t + s. For each element Z € HC(l,t,s),
we set
Zy:=(Z',...,7Y,
Z_ = (Z",. .., 7Y, Z .= (Z Lz
which are called the 0-component, the —-component and the

+-component of Z, respectively. We often write Z = (Zy, Z_,Z,) for

convenience.

Let M(n+pyx(n+p)(F) denote the set of (N + P) x (N + P)-matrices
with entries in F(= R or C). Let O(N, P) and U(N, P) be the groups
of isometries of R%*’P and C%“LP , respectively, that is,

O(N, P) :=={0 € Mn+p)x(n+pP)(R);'O1lNpO = 1np},
U(N,P):={U € M(n+pyx(n+p)(C); "UlypU = 1np},
where
1y
1 =
NP { 1p

Note that each linear subspace of RN can be written as O(H(I,t, s))

} € M(n+pyx(n+p)(R) and U ="U.

for some (I,t,s) and some O € O(N, P). As a result, when we discuss
O(N, P)-congruence classes of maps into R T, we only have to consider
H(l,t,s) as subspaces of R%JFP . We remark that the induced metric
on H(0,t,5)(= RIT®) ¢ RYNTY is nondegenerate, while for I > 0 the

induced metric on H(l,t,s) C RNT" is degenerate.

We close this section by introducing some terminologies. A vector

v E R%JFP is called

spacelike if <U,U>R%+P >0 or wv=0,
lightlike or null if (v, U)R%—O—P =0 and v #0,
timelike if (v,v)gny+r <0.
N

12



For a subspace W of R%JFP , we define
W= {ve R¥, (v7w>R%+p =0 forall we W}

It is immediate that dim W + dimW+ = N + P, and (W)t = W.
Also, a subspace W of RY ™" is nondegenerate, that is, (-, '>R%+P|W is

nondegenerate, if and only if R%JFP is the direct sum of W and W+,

13



2.2. Fundamental theory of isometric immersions

In this section, we fix our notations and review relevant basic prop-
erties of isometric immersions. Let M be a connected d-dimensional
Riemannian manifold with metric g, and f : M — R%*’P an isometric
immersion. We remark that each vector f.v is spacelike for v € T, M,

where f, denotes the differential of f.

Let V:I'(TM) — I'(TM ® T*M) denote the Levi-Civita connection
of M and D : T(f*TRNTF) — T(fF*TRYTY @ T*M) the connection
induced by f from the Levi-Civita connection of R%JFP .

Let a« € I'(Nor f @ T*M @ T* M) be the second fundamental form of
f defined by

a(X,Y):=Dxf.Y — f,VxY  for X,Y e T(TM),

where Nor f is the normal bundle of f. We denote by A € TI'((Nor f)* ®
T*M ® T M) the Weingarten operator of «, or the shape operator of f,
which is defined by

g(AeX,Y) = <O‘(X’Y)’€>R%+P for X, Y e (T M), £ € T'(Nor f).
An isometric immersion f is called minimal if the mean curvature vector
d
> aleje))
j=1

vanishes identically, where {e;} is an orthonormal basis for 7, M.

H(z) :=

Ul

Let V* : T'(Nor f) — T'(Nor f ® T*M) be the normal connection of
f, which is defined by

V€= Dx&+ fuAe X for X € T(TM), £ € T'(Nor f).

14



We define the curvature tensor of V by
RY(X,Y)Z :=VxVyZ —-VyVxZ—VixvZ,

L ) o
and the curvature tensor RV of V= in a similar way.

The following three propositions are often called the fundamental the-

orems of submanifolds.

Proposition 2.2.1. Let f : M — R%JFP be an isometric immersion of
a Riemannian manifold into a semi-FEuclidean space. Then we have the

Gauss, Codazzi and Ricci equations:

g(RY (X, Y)Z,W)

=X, W), (Y, Z))grr = (a(X, Z),a(Y,W))grer,
(VxA)(Y,€) = (V¥ A)(X,9),
(R (X, V)& mpyee = g([Ae, 4,))X,Y),

for X, Y, Z,W € I'(TM), &,n € I'(Nor f),

where by definition (VxA)(Y,€) = Vx(A¢Y) — Ae(VxY) — AgLcY.

Concerning the converse to this proposition, we have the following

existence theorem.

Proposition 2.2.2. Let M be a simply connected d-dimensional Rie-
mannian manifold and w : E — M a vector bundle over M of rank
N + P — d with a metric (-,-). Let V : T'(E) — I'(E ® T*M) be a

connection on E compatible with (-,-). Let s be a symmetric section of

15



E®T*M ® T*M. Suppose that V and s satisfy

g(RY(X,Y)Z,W) =(s(X,W),s(Y, Z)) — (5(X, Z),s(Y,W)),
(VxB)(Y,¢) =(VyB)(X, %),
(RY(X,Y)¢, 1) =g([Be, By)X,Y)

for X,Y,Z,W € T(TM), £,n € T(E),

where B € I'(E* @ T*M @ T'M) is defined by g(B:X,Y) = (s(X,Y),§).
Then there exists an isometric immersion f : M — R%’LP and a bundle

isomorphism ¢ : E — Nor f covering f such that

(0(6), () ryy+r = (&),
¢(s(X,Y)) = a(X,Y),

PV x& = Vxd(§),

where o and V+ are the second fundamental form and the normal con-

nection of f, respectively.
The uniqueness of isometric immersions is treated by the following

Proposition 2.2.3. Let f,f: M — R%J“P be isometric immersions
with second fundamental forms o, & and normal connections V=, %\I,
respectively. Suppose that there is a bundle isomorphism ¢ : Nor f —
Nor ]? such that

(9(8), ¢(77)>R%+P = (& n)R%+P7
¢(a(Xa Y)) = &(X7 Y)a
OVE = VEx0(6),

16



for XY €e I'(TM), £&,n € I'(Nor f).

Then there exists a Euclidean motion T such that f: Tof and Ty|p,, =

o.

We now introduce two basic terminologies for the subsequent discus-

sion.

Definition 2.2.4. An isometric immersion f : M — R%JFP is said to
be full in H(l,t,s) if the image f(M) of f is contained in H(l,t,s) and
if the coordinate functions f1, ..., f, fiFL, ..., fift, fiAttl o flitts

of f are linearly independent over R.

Definition 2.2.5. An isometric immersion f : M — R%JFP is said to be
m-cylindrical if there exist a (d — m)-dimensional Riemannian manifold

N and an isometric immersion f’: N — RN~ such that

M = N x R™,
fo= f x idgm.

The following splitting theorem for isometric immersions of product

Riemannian manifolds into Euclidean spaces is due to J. D. Moore [23].

Proposition 2.2.6. Let f : My x My — R” be an isometric immersion

of a product Riemannian manifold. Suppose that
a(X,Y)=0 for X e I'(TMy), Y € I'(TM,).

Then there exist vector subspaces E; and isometric immersions f; :

M; — E; (j = 1,2) such that

f=Ffixfa E, @ E, c RY.

17



Proof. Take a point (m1,mg) € My x My. We may assume, without loss

of generality, f(m1,m2) =0 € RF. We claim that the two subspaces

Ey :=span{ fu X (22) ; X(22) € T(m,,2,) (M1 x {22}), x2 € Ms},

By i=span{f.Y (z1) ; Y(z1) € T(:cl,mz)({xl} x Ms), x1 € M}

intersect orthogonally each other.

To see this, let o, be a curve on My such that

o0 =ma, 01 =12, 0 C My (0<t<1),
Y(m]_) = (m1 X Ut)-

4
dt|,_,

Then, by our assumption, we have

D%(ml th)f*X(Ut)

d
:f*v%(m1XUt)X(o-t) + « (%(ml X O't),X(O't))

=0+0=0,
which, together with (f. X (m2), f.Y (m1))rer = 0, implies that
(fe X (z2), fuY (m1))grr =0 for x9 € Ms.
The same argument implies also that
(f« X (x2), f+Y (z1))gr =0 for x1 € My, xo € Mo,

which means that E; and F5 are orthogonal.
Now we construct isometric immersions f; : M; — E; (j =1,2). Let
Ey be a subspace complementary to Fy @ Ey and let p; : R — E;

denote the orthogonal projections. We then define

fi(z1) = p1(f(z1,m2)),

18



and see that f; is independent of the choice of ms, since

d d

—(p1(f(z1,0¢))) = p1(5; f(z1,01)) = p1(f«(0,

d
di di 7)) =0

dt

Similarly, fo(z2) = p2(f(m1,x2)) is independent of the choice of myq,
and fo := pgo f is constant. Therefore, we have f; : M; — E; such that

f(@1,22) = (constant, fi(z1), f2(z2)) € Eo® E1 @ Ep. U

In a similar fashion, we also obtain the following cylinder theorem for
isometric immersions of the product of a Riemannian manifold and a

Fuclidean space into semi-FEuclidean spaces.

Proposition 2.2.7. Let f : N x R™ — RN"" be an isometric im-
mersion of the product of a Riemannian manifold and R™ into a semi-

Euclidean space. Suppose that
a(X,Y)=0 for X e T(T(N xR™)), Y e T(TR™).

Then f is m-cylindrical.

Proof. As in Proposition 2.2.6, we put
Ey :=span{f.Y (z) ; Y(z) € Tz ({7} xR™), 2z € N}.

We claim that Fy = H(0,0,m)(= R™).

Let Y(z) € Tz py({z} xR™) (x € N) and X = X1+ X5 € T ) (N x
R™) (X1 € TuN, X2 € T,R™). It then follows from the flatness of R™
that

VxY =Vx,Y+Vx,Y =0+0=0,
which implies

Dxf*Y = f*VXY—l—Oé(X,Y) =0+0=0.

19



Therefore, f,.Y (z) is independent of (z,p), and Es is an m-dimensional
vector subspace.
Since F5 is a nondegenerate subspace, we can mimic the argument in

Proposition 2.2.6 to complete the proof. [

Now we deal with the problem of reducing the codimension of isomet-

ric immersions.

Definition 2.2.8. Let f: M — R%+P be an isometric immersion of

a Riemannian manifold into a semi-Euclidean space. The subspace of

f*TR%+P (z) spanned by

f*Xl(x)a DX2f*X1(x)7 DXk ’ “DX2f*X1(£U),

for Xq,..., X e I(TM)

is called the k-th osculating space of f at x € M, and is denoted by
Osck f(x).

We remark that, by definition, Osc* f(z) is a subset of OscF! f(x).

Definition 2.2.9. Let f: M — R%+P be an isometric immersion with

second fundamental form «. The subspace of Nor f(z) defined by
Nor! f(x) := span{a(X,Y) ; X,Y € T, M}
is called the first normal space of f at x € M.
Note that the first normal space Nor!f(x) is the orthogonal comple-

ment of Osc! f(z) in Osc? f(x).

An isometric immersion f is called nicely curved if the dimension of

the osculating space Osck f(x) is constant for all #+ € M and for each

20



k. Under this assumption, we have a subbundle Oscf of f*TR%JFP
for each k. Furthermore, it can be verified that Dx¢ € OscFt!f(z) for
¢ € T(Osckf) and X € T, M, and that if Osclf = Osc'T!f, then the
subbundle Osc! f is parallel with respect to D and Oscf = Osc! Tl f =

Osc2f = ... c f*TRYTT.

Proposition 2.2.10. Let f : M — R%HD be an isometric immersion
of a d-dimensional Riemannian manifold into a semi-Euclidean space,
and L a nondegenerate subbundle of Nor f of rankq. Suppose that
L is parallel with respect to V+ and Nor'f C L. Then the substantial
codimension of f is q, that is, there exists a (d+ q)-dimensional subspace
H of RN such that f(M) C H.

In particular, if f is nicely curved and if Osc!f is nondegenerate and
satisfies Oscl f = Osc!t!f, then the substantial codimension of f coin-

cides with rank Osc' f — d.

Proof. 1t suffices to prove the first assertion, since the second one follows

immediately from this. To prove the first assertion, we show that
f(M) C Ty M & L(x)

for some fixed point o € M. Note that the subbundle L' consisting
of the orthogonal complement L*(x) of L(x) in Nor f(x) is also parallel
with respect to V4. Let n € L (z¢), and let v be a curve on M through
xo. Since the parallel transport 7; of n along v belongs to L*(y(t)) and

L is nondegenerate, A,, = 0. Therefore,

Dy = — feAny + Vi,
=0+0=0,

21



which implies that n, = 7 is a constant vector in R%JFP . Since

d

%(f(/Y(t)) - f(x0)777>R%+P - <f*’7(t),77>R%+P = 0,

we see that (f(y(t)) — f(:co),mR%er = 0. Since 7 and 7 are arbitrary,

it follows that f(M) is contained in the vector subspace (L*(zg))+. O
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2.3. Pluriharmonic immersions
Let M be a connected Kahler manifold of real dimension 2m with
Riemannian metric g and complex structure J € T'(T'M ® T* M) satis-

fying

J;E = _ideMa
g(JX,JY)=9g(X,Y),

Vx(JY)=JVxY for X, Y e I(TM).

Let T, M€ be the complexification of the tangent space of M at x. Then

we have a decomposition
TxMc — Ta(gLO) D T£0,1)7

where T’ gﬁl’o) and T, 550’1) denote the eigenspaces of J, corresponding to the
eigenvalues v/—1 and —+/—1, respectively. This induces a decomposition
of a symmetric tensor o, € Nor f(z) T M QT M into the (2,0), (0,2)
and (1,1) components by restricting its complex bilinear extension to
70 o ngl,O), TOD o 7O 1 710 g PO o 0D o ngm), and

these components are denoted by a(®9, a(%2) and a1 respectively.

It should be remarked that semi-Kéhler manifolds can be defined sim-
ilarly as in the positive definite case. The simplest example of semi-
Kahler manifolds is provided by complex semi-Euclidean space C%*’P ,

Y . . 2N+2P /. . .
namely, a semi-Riemannian manifold (R3y"", (;, >R2%+ p) with the
standard complex structure Jy, defined by Jy(8/02%%~1) := §/02%" and

Jo(0/0z%%) := —0/0x%F 1,
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Let f: M — C%H} be an isometric immersion of a Kahler manifold
into a complex semi-Euclidean space. f is called holomorphic if f,oJ =

Jo o f«. If f is holomorphic, then the second fundamental form satisfies
a(X,JY)=a(JX,Y) = Joa(X,Y).

We are now in a position to define isometric pluriharmonic immersions

as follows.

Definition 2.3.1. Let f: M — R%J“P be an isometric immersion of a
Kaéahler manifold into a semi-Euclidean space. f is said to be plurihar-
monic if

a(X,JY)=a(JX,Y) for X, Y e I'(T'M).

Remark 2.3.2. Let f : M — R%+P be an isometric immersion of a
Kahler manifold into a semi-FEuclidean space. Then the following condi-

tions are equivalent :

(i) f is pluriharmonic,
(it) ot =0,
(iii) Aed = —JAs  for & € I'(Nor f),
2
(1) 8318];5 e
where (z%) := (z!,...,2™) is a local complex coordinate system on M.

A pluriharmonic immersion is often called a (1, 1)-geodesic immersion,
whose name comes from the condition (ii) as above. On the other hand,
the term pluriharmonic refers the condition (iv). Our definition above
is based on M. Dajczer and D. Gromoll [10], although they themselves

called such immersions circular.

24



Example 2.3.3. An isometric holomorphic immersion f : M — C%JFP
of a Kahler manifold into a complex semi-Euclidean space is plurihar-

monic, when regarded as an immersion into real semi-Euclidean space

2N42P
RN

It should be remarked that any pluriharmonic immersion is minimal.
In fact, for an orthonormal basis {ey, ey, ..., e, Jey} for T, M, we

obtain

H(z) :% Z{a(ej,ej) +a(Jej, Jej)}
j=1
:% Z{a(ej, 6]‘) + Oé(Jgejv ej)}
:% Z{Oz(ej, ej) - Oé(ejv ej)}

=0.

Conversely, we can prove the following result concerning plurihar-

monicity of minimal immersions.

Proposition 2.3.4. Let f : M — R%J“P be an isometric immersion
of a Kahler manifold into a semi-Fuclidean space. Suppose that N =
0 or P = 2m, the real dimension of M. If f is minimal, then f is

pluriharmonic.

Proof. We choose an orthonormal basis {eq,... ,en, Jer,...,Je,} for
T, M and define \/§Ej =e;+v—1Je; € TN where J is the complex

structure of M. It follows from the Gauss equation of f and the Kahler
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condition of M that for k,r =1,... ,m

0 =g(R(Ew, E,)E,, Ey)

:<&<Ek7E_k)7a(ET7ET)>C%+P - <a(Ek7E_T‘)7a(ET7E_k)>C%+P-

Taking sums with respect to k and r then yields

— m2 I _ L) S (1,1)
O m <H, H>C%+P <a , >C%+P.
Since H and (™Y are not lightlike, this implies that H = 0 if and only

if oL =0. O

In the case N = 0, Proposition 2.3.4 has been proved by M. Dajczer
and L. Rodriguez [13], S. Udagawa [27] and M. J. Ferreira and R. Tribuzy
[17]. In their paper, M. Dajczer and L. Rodriguez [13] claimed that the
result is quite surprising.

Moreover, M. Dajczer [9] and S. Udagawa [27] proved the following

result concerning holomorphicity of minimal immersions.

Proposition 2.3.5. Let M be a Kahler manifold of real dimension 2m.
Let f : M — R?*™*2 be an isometric minimal immersion into a Euclidean
space of real codimension two. If either of the following (D) or (U) holds,

then f is holomorphic with respect to some orthogonal complex structure
of R¥m+2,
(D) The index of relative nullity v is less than 2m — 4 on M.
(U) (i) M is complete.  (ii) M is parabolic, that is, M admits no
positive non-constant superharmonic functions. (i) |RY|? >

scalz on M. (iv) f is stable.
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It is well-known that a simply connected minimal surface in R has
the so-called associated family, which is represented as the real part
of a holomorphic immersion into C3. We show that a pluriharmonic

immersion also has this property.

Proposition 2.3.6. Let M be a simply connected Kahler manifold,
and f: M — R%+P an isometric pluriharmonic immersion. Then there
exists a I-parameter family fo : M — RN'Y 0 € [0,7) of isometric

pluriharmonic immersions such that fo = f.

The family fy is called the associated family of f, and in particular,

Jx/2 is called the conjugate immersion of f.
Proof. Define an endomorphism Jy, of T, M by
Jop = cosOidr, pr +sin0J,.
Then Jy satisfies
Jo o J_g = idr, M,

9(Jo X, JpY) = g(X,Y),

Vx(JpY) = JpVxY,
which imply that

RY(X,Y)oJy=Jgo RV (X,Y),

RY(JpX,JyY) =RV (X,Y).

Also, using the second fundamental form « of f, we define the symmetric

section ag € I'(Nor f @ T*M @ T* M) by

ag(X,Y) = a(Jp2 X, Jg2Y) for X, Y e T(TM).
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Let A? be the Weingarten operator of vy, that is, the section of (Nor f)*

®RT*M ® T M defined by
g(ALX)Y) = (ap(X, Y),Egyer  for XY € (TM), € € T(Nor f).
Then the shape operator A of f and A? satisfy
Al = Agdy = J_gAe.
In fact, by the definition of pluriharmonic immersions, we have

g(Ang Y) :<04(J9/2X7 J9/2Y)7§>R%+P
:<Oz(J9X, Y), £>R%+P = g(A&JgX, Y)
:<a(X7 JOY)7€>R%+P

=g(Ae X, JpY) = g(J_gAc X,Y).

Now we construct isometric immersions fy by using Proposition 2.2.2.
In Proposition 2.2.2, we take Nor f as E, the normal connection V+ of
f as V, and ay as s, respectively. Then we see that they satisfy the
Gauss, Codazzi and Ricci equations.

In fact, since the second fundamental form a of f satisfies the Gauss

equation,
<Oé,9 (X7 W)7 Qg (Y7 Z)>R%+P - <a9 (X7 Z)7 Qg (Y7 W)>R%+P
:<a(J9X, W), Oz(JgY, Z)>R%+P - <O¢(J9X, Z), Oz(JgY, W)>R%+P
=g(RY (Jo X, JoY)Z,W)

:g(RV(X,Y)Z, W),

which means that ay satisfies the Gauss equation.
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Since the shape operator A of f satisfies the Codazzi equation,

(VxAD)(Y.€) =(VxT-04)(Y:¢)
=J_o(Vx A)(Y,€)
=J_o(Vy A)(X,€)
=(Vy A%)(X,€),

which means that A? satisfies the Codazzi equation.
For the Ricci equation, we have
(A2, A7) =A249 — 49 A7
=(A¢Jo)(J-p A7) — (A7 Jo)(J-p A7)

=[A¢, Ay,

from which the Ricci equation for A implies that for A°.

Consequently, we obtain a family of isometric immersions fy with
second fundamental form ag and normal connection V+. Clearly fo = f.
It remains to show that fy is pluriharmonic. Since J and Jy commute,

ag(JX,Y) =a(Jp/2J X, Jg/2Y)
=a(JJy/2 X, Jg2Y)
=a(Jg/2 X, JJg2Y)
=a(Jy/2 X, Jg2JY)

=ap(X,JY),
which completes the proof. [

As a corollary of this result, we have the following proposition, which

will play a key role in Chapter 3.
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Proposition 2.3.7. Let M be a simply connected Kahler manifold,
and f: M — R%+P an isometric pluriharmonic immersion. Then there

exists an isometric holomorphic immersion ® : M — C%HD such that

f=+v2Re®.

Proof. Let fr,o be the conjugate immersion of f, whose existence is
assured by Proposition 2.3.6. Then we can show without difficulty that
a map from M to C%’LP defined by
& 1 f 7 1 f
Ve e

is an isometric holomorphic immersion. [J
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2.4. Holomorphic immersions

In this section we will prove a rigidity theorem concerning isomet-
ric holomorphic immersions of a Ké&hler manifold into complex semi-
Euclidean spaces. A criterion for their substantial codimensions is also
given.

K. Abe and M. A. Magid [4] and M. Umehara [28] generalize Calabi’s

rigidity theorem [5] in the following way.
Proposition 2.4.1. Let HS(I,t,s) and HS(I',t',s') be linear subspaces
of CNTF as above. Let ® = (¢, ®_,®,): M — HC(I,t,s) and ¥ =
(U, U_, ¥ ): M — HE(I',t',s") be isometric holomorphic immersions,
respectively. If ® is full in HC(I,t,s), then

(1) s<s" andt <t and

(2) there exists a unitary transformation U € U(t',s’) such that

o
o O —¢
{‘I’J_U ®+
Os’—s

To prove this proposition in the indefinite case, we only have to apply
Calabi’s rigidity theorem, proved in the positive definite case, to the new
isometric holomorphic immersions (V_;®,,0s_5) and (P_,0p_¢; ¥, ) -
M — C'+s" constructed from ® and .

It should be remarked that we have no relation between ®y3 and V¥

in this case.

Definition 2.4.2. Let M be a Kéahler manifold. A full isometric holo-
morphic immersion of M into HC(I,t,s) C C%JFP is called the shape of
M if | = 0. The dimension t + s of the ambient space is denoted by

sp(M), and the index ¢ by sp_ (M), respectively.

31



Note that, by Proposition 2.4.1, the shape of M is unique up to unitary
transformations and that sp x sp_ : {Kéhler manifolds} — (NU{oo}) x
(N U{0}) is well-defined.

Let M be a Kéhler manifold with sp(M) < oo and sp_ (M) = 0. Note
that, in this case, M has non-positive Ricci curvature. We now give a
method of computing sp(M), which is essentially due to E. Calabi [5].

Let (U; 2%, ... ,2™) be a local complex coordinate of M, and ® : M —
C? an isometric holomorphic immersion which is nicely curved on U.

On account of Proposition 2.2.10, we calculate the integer [ such that

Oscd=1® C Oscd® = Osclt1 .

Preparing the index sets

A=A,
i>1

we describe the [-th osculating space of ¢ as

. oll®
Osc'® = span{% pa € U A},
1<i<l
where we use multi-indices and |a| := i if a € A;. For two elements

a:= (a1,...,a5) € Ay T A, b= (01,...,0) € Ay C A, we define a

function on U by

k4+1-—2 _
0 9o1 B

Using this notation, we write an m x m-Hermitian matrix G := (g,3)

as

g{(), M} - g{(1),(m)}
G = : : where (i) € Ay,

g{(m), M)} - g{(m),(m)}
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and for each index a € A, we define an (m + 1) x (m + 1)-Hermitian

matrix G[a] by

9{(1),a}

Gla] := :
g{(m),a}
g{a, (1)} - gl{a,(m)}  g{a,a}

It then follows that det G[a] = 0 if and only if

ob od olald
0zl 9zm’ 9o

are linearly dependent over C*°(U).

In fact, for a := (aq,... ,ax), b:=(61,...,0;) € A, we have

oleld  olblp
D20 " 9z 'C"
gkti=2 ob 0D
)cr

:8202 . 820%82;6_2. .. 8zﬁ_l 0z ’ 82’/31

:g{a, b}7

which implies that

a_(I)/\.../\a_q)/\a|a|q)|2
0z1 oz™ 024
0d 0B ob 0B 0d flald
<ﬁaﬁ>cl’ <ﬁ7az—m>cl’ <ﬁ’W (ol
=|  ® 9D oD 0D od 0ladd
<az—mvg>CP <8z—””“6z—m>CP &Z—W’W Ccr
ol 9 oo "9d olele olald
9z 0 921'C" 020 0 9zm’CT VN gpat gpa /T
=det Gla.
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Similarly, det Glam+1,--. ,@mik,a] = 0 if and only if

0P o0 QJlom+ld olam+kld  glalp
0217777 7 92m7 Qzomtr 77T pamik T Qg0
are linearly dependent over C*°(U), where Glamt1,- .- , Gmtk,a] is de-

fined as follows :

When an (m + k) x (m + k)-Hermitian matrix Glam+1, ... ,Gmyk] IS
already defined for given indices a1, .. ,amir € A, an (m+k+1) x
(m + k + 1)-Hermitian matrix G[am,41,.-. , Gm+k, a is defined for a € A
by

Glam+1s- -+ Qmatk,al
=Glam+1,-- -, am+k][a]

9{(1),a}

— Glam+1, .- 5 Qmik) :
g{am—Hma}
g{a, (1)} T g{a, am+k} g{a7 a}

We remark that A; has a natural order, and so does A. Recall that
each A; is a finite set, and if det Glam41,-.. ,0m+k,a] = 0 for each
a € A;, then it also holds for any @ € A; (j > i). Consequently, the

following proposition gives an algorithm to calculate sp(U).

Proposition 2.4.3. Choose indices inductively by

A+ = min{a € A;det Glam+41, .- s Gmti-1,a] >0} forl > 1.
If det Glam+1, -+ y@myk,al = 0 on U for any a > G4k, then sp(U) =
m+ k.
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Proof. This follows immediately from Proposition 2.2.10 and that

Osc|anl+k’|¢
0 90 Jennle  planild
_span{azlv"' "9z Pramt1 T Pyamik
=Osclom+rlT1p, -
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3. MODULI SPACE OF ISOMETRIC

PLURIHARMONIC IMMERSIONS (LOCAL THEORY)

3.1. Classification theorem

Let M be a connected and simply connected Kéhler manifold of com-
plex dimension m. We denote by M/ (M; R%HD ) the moduli space of
full isometric pluriharmonic immersions, that is, the set of O(N, P)-
congruence classes of full isometric pluriharmonic immersions of M into
RYTE.

Our aim of this section is to parametrize M (M; RNT) by the set
P(®; N, P) defined in the manner below.

We assume, throughout this section, that M/ (M; R%JFP ) is not
empty. Then it follows from Propositions 2.3.7 and 2.4.1 that there
exists the shape ® : M — CI'*P of M. For ® and integers N and P, we
define P(®; N, P) to be the set of (n + p) x (n + p)-complex matrices

satisfying the following conditions (P1) — (P4):

(P1) ;87(3 %:O (a, 6=1,...,m),

(P2) tp=P,

(P3) *2_(1pp —'Pl,,P)z_ <0 for z_ € HS(0,n,0),

(P3) *24(1pp — 'P1,,P)zy >0 for z, € HS(0,0,p),

(P4) sign(1,, — "Pl,,P) = (N —n, P — p),

where (21,...,2™) is a local complex coordinate on M, and (P4) means

that the Hermitian matrix 1,,, — tPlon has N —n negative eigenvalues

and P — p positive eigenvalues as well.
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First, we give another description of P(®; N, P) for later use.

Lemma 3.1.1. An (n + p) x (n + p)-complex matrix P belongs to
P(®; N, P) if and only if P satisfies (P1) and there exist a complex

matrix

UeU(n)xU(p):z{[g g]eU(n,p) : AGU(n),BeU(p)},

and real numbers Ai,... , Ay, f1, ... , [t satisfying

(P2) P ="'Udiag(—=A1,--+ , = Anj i1, ip)U,

(P3) — 1< A< <A <08 <<y <11,
(P4’) —1l=-A==-Xp-n~N < —A2n-N+1,

(P4") Mop—pi1 < pop—p =+ = 1 = L.

Proof. In order to see that P € P(®; N, P) is diagonalized as in (P2’),
we inductively define subsets S2"~(2=1) (j = 1,...,n) of HS(0,n,0)
and vectors x; € S~ (211 as follows.

(Step 1) We set

S*li={x=(z_;0,) € CI''P;*x1,,x = —1},

-\ = inf 1Re(ta:P:B).

13682"_

Then there exists z; € S?*~! such that —\; = ‘21 Pz, < 0. In fact,
since S?2"~! is compact, we have a vector z; € S?"~! such that —\; =
Re(*z1Px;) < 0. Note that if x € §?"~! and 0 := 1/2(7 — arg'zPx),
then the vector eV~ 12 belongs to S?* ! and 2V~ (*zPx) < Re(*zPx).

Hence, Re(*z1 Pz1) = tx1 Px;.
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(Step j) We set

S§=2i=D = {p = (2_;0,) € S~ F=3). %41, 2, | = *zPx;_; = 0},

—Aj = inf Re(*zPx).

reS2n—(2j—1)
Then the same argument as in Step 1 assures that there exists x; €
S§=(2i=1) guch that —\; = tx; Pz; < 0.

Consequently, we obtain vectors z1,... ,x, € HS(0,n,0) such that
*:lenpxk = —(Sjk,
thP:L‘k = _/\j(;jky —/\1 S S _/\n S 0.

In a similar fashion we also obtain vectors @, 11, ... ,Znsp, € HS(0,0,p)

such that

*
Tn+j 1np'rn+k = 5jk7

YngjPnyr = 10k, g1 > > pp > 0.
It is immediate from these that P is diagonalized as in (P2’):

U™l = (21, s 20 Tosty - Toap) € U(N) x U(p),
FUTTPU Y = diag(— A1y -y —Ans f1y - s fhp),

M < <A <0< <<

Now we note that
l’np - tplnpﬁ = *Udlag<_(1 - )‘%)7 cee _(1 - )‘i)v 1 _:ui R 1 _M;%)U

Then (P3) means that —(1—A3) < 0 and 1—y5 > 0, which implies (P3’).
(P4) means that sign(1,, — 'P1,,P) = (n—(2n—N),p—(2p—P)), which
is equivalent to (P4').
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Conversely, it is easy to see that matrices satisfying (P1) and (P2') —
(P4’) belong to P(®; N, P). O

In order to construct a bijection from M/ (M;RYTY) to P(®; N, P),

we prepare the following lemmas.

Lemma 3.1.2. Let M be a simply connected Kéahler manifold with
shape ® : M — C"*P. If f: M — R%+P is a full isometric plurihar-

monic immersion, then there exists an (N + P) x (n+p)-complex matrix

S such that
(S0) f=+V2Re S,
tod 0P
1 —t 1 _— = = 1 P
(S ) Oz S NPSazB 0 (avﬁ ) 7m)7
(S2) *SlnpS = 1,p,
(S3) rank(S,S) = N + P,

where (S, S) denotes the (N + P) x 2(n + p)-matrix consisting of S and

its complex conjugate S.

Proof. Recall that by Proposition 2.3.7, there exists an isometric holo-
morphic immersion ¥ : M — C%J“P such that f = V2Re V. Tt also
follows from Proposition 2.4.1 that for ® and ¥ there exists U = (uyy) €

U(N,P)(I,J =1,...,N+ P) such that

o
w_ _ ON—n
[‘I’J U e,
0p_,

Let S be the (N + P) x (n + p)-matrix defined by
n P
A~
S = [ S Sy ] NP,
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where

Sy 1= [uI(NJra)} (a=1,...,p).

Then we have

(i) fzﬁRe\P:ﬁReS@:%(syg) {%],
1 1
ii Of = —=0¥ = —S09.
(ii) f 7 7%
Since f and ® are isometric,
0_90f  Of ,rof  Of _ 0%, 0%
~ 90 N 92 9z NP 9B T 9z PR

which together with (ii) implies (S1) and (S2). By (i), the fullness of f

in Ry is equivalent to (S3). O

Conversely, by reversing the above process it is easy to see the follow-
ing :
Lemma 3.1.3.

(1) Let S be an (N + P) x (n + p)-complex matrix satisfying (S1),
(S2) and (S3). If we define f as in (S0), then the congruence
class [f] of f belongs to M/ (M;RNTP).

(2) Let fi = V2ReS1® and fo = V2ReS,® : M?" — RYTY be
isometric pluriharmonic immersions. Then [f,] = [f2] if and only

if 'S11npS1 ="'Ss1npSs.
We also have the following lemma.

Lemma 3.1.4. Ifan (N + P) x (n+ p)-matrix S satisfies (S1),(S2) and
(S3), then 'S1xpS belongs to P(®; N, P).

Proof. (Step 1) By (S1), “S1ypS satisfies (P1).
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(Step 2) By the same argument as in the proof of Lemma 3.1.1, we

obtain U € U(n) x U(p) such that

'SinpS ='Udiag(—A1,. .., —Ani i1, ip)U,

M <A <0y < <,

It follows from (S2) that —1 < —XA\; < 0 < g < 1. In fact, let V €

U(N, P) be a matrix such that
VS(8> 1) c{y € HS(0,N,0) c Cy i *ylnpy = —1}.
Then we have

. ot _ . t
)\ = we}gggil Re(*z*S1nypSx) = yesgngnil)Re( ylnpy)

= inf Re(*(V~" M) 1np(VH
Jevard, o) (V7 y)lnp(V™y))

> inf  *(V ') lyp(V ly) = —1.
_erS%(I}S'Q”*U ( Y)Inp( y)

Also, a similar argument applied to p; implies 1 < 1. Consequently,

tS1npS satisfies (P2') and (P3’).

We proceed to prove that (S3) is equivalent to (P4').
(Step 3A) Since —1 < —X; < 0 < p; < 1, we can choose complex
numbers a;, b;, ¢; and d; so that

Ni=a? +b2, 1= a)? +|bl?,
(3.1.4 )
p=ci+di, 1=l +dy)*
In particular, if A\; = 1 (resp. p; = 1), we take a; = 1, b; = 0 (resp.
Cj = 1, dj = O)
Note that a;, b; (resp. ¢j, d;) are linearly dependent over R if and

only if A; =1 (resp. p; =1).
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(Step 3B) For these complex numbers a;, b;, ¢j, d; and the matrix

n+p
—~N=

S N
S = [S;} }]:P € M(N+P)><(n+p)(c)a

we consider (2n + 2p) x (n + p)-matrices T and S defined by

Fay
by

n—+p

T := 1y jn = On
T2 }217 C1

and

S
5. | O2p—n
S = S,
02p—P

By definition, we have

HTU )L onap(TU) = tS19p2,5,

“(TU)1opap(TU) = *S1opapS = Loy,

which implies that there exists O € O(2n,2p) = U(2n,2p)NO(2n, 2p; C)
such that OS = TU.
(Step 3C)  (S3) holds if and only if rank(T7, T1) = N and rank(Ts, Tz) =
P.

In fact, rank(S,S) = N + P if and only if we can choose N timelike

vectors and P spacelike vectors from the image of (S,S). By Step 3B,
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this is equivalent to being able to choose these vectors from the image

of (i?), which means that rank(ﬁ,f) = N and rank(ﬁ,ﬁ) =P.

(Step 3D) rank(ﬁ,f) =Nifandonlyif 1l =Xy =+ = X\ypy_ny >
A2n—N+1, and rank(ﬂ,ﬁ) =Pifandonlyifl =p =+ = pop—p >
H2p—P+1-

In fact, by the definition of 77, rank(ﬁ,f) = N if and only if there
exist 2n — N pairs of R-linearly dependent vectors (a;, ;) and (b;, b;).
Step 3A then implies that this is equivalent to 1 = Ay = -+ = Aopu_n >
Aon—nN+1. The proof for T\; is similar.

Step 3C combined with Step 3D now implies that (S3) and (P4’) are

equivalent, which completes the proof of the lemma. [J

We are now in a position to define a natural map F from
M (M;RYTE) to P(®; N, P).

Let [f] be an element of M/ (M;RYTY). By Lemma 3.1.2, for each
full isometric pluriharmonic immersion f € [f], we can choose an (N +
P) x (n+ p)-matrix S satisfying (S0) — (S3). By Lemma 3.1.4, 'S1xpS
belongs to P(®; N, P). We then define the map F by

./T([f]) = tSleS,

which is well-defined by Lemma 3.1.3 (2).
With these preparations, we obtain a parametrization of the moduli

space of full isometric pluriharmonic immersions [18, 19].

Theorem 3.1.5. Let M be a connected and simply connected Kahler
manifold with shape ® : M — CI'*P. Then the map F : Mf (M;RNTT)
— P(®; N, P) is bijective.
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Proof. 1t follows from Lemma 3.1.3 (2) that F is injective. To show
that F is surjective, we claim that for each P € P(®; N, P) there exists
an (N + P) x (n + p)-matrix S satisfying (S1), (S2) and (S3). First,
by Lemma 3.1.1, there exist U € U(n,p) and A;, u; € R such that P =

tUdiag(—l,... 7_17_)\2n—N+17--- ,—)\n;l,... 717M2p—P+17--- ,Mp)U.
———— ———
2n—N 2p—P

Choose complex numbers a;, b;, ¢; and d; such that (3.1.4 %) holds for

these \; and p1;. Then we define an (N + P) x (n + p)-matrix S by

_12n—N
A2p—N+1
ban—N+1

Cp

dp |

It can be verified without difficulty that S satisfies (S1), (S2) and (S3),

which together with Lemma 3.1.3 (1) implies that F is surjective. [

Before closing this section, we now consider the moduli space without
assuming the fullness of immersions. Let M(M;RY ') denote the set
of O(N, P)-congruence classes of isometric pluriharmonic immersions of

a Kéahler manifold M into R%“LP . Then we have

MMRYT) = [ MI(M;H(LL ).
0<I<min(N,P),
0<t<N—I,
0<s<P-—I
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When N is zero, we have a natural bijection from M(M;RF) to the
set of complex matrices satisfying conditions (P1) — (P3), by gathering
F: MI(M;RF") — P(®;0,P') for P < P. In particular, the moduli
space is finite dimensional in the positive definite case.

When N is not zero, since

MOGRYT) 2 [ MIOMGRT),

0<t<N,
0<s<P

the moduli space M (M;RY7) is not finite dimensional in general. In
fact, it is not true that M7 (M; H(I,t,s)) is of finite dimension when

[>1.
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3.2. Examples

In this section we give some explicit examples of isometric plurihar-
monic immersions [18, 19].

First, we construct nontrivial isometric minimal immersions of K&hler
manifolds of real dimension 4 into Euclidean space RS. It should be
recalled that in this case minimal immersions are pluriharmonic (Propo-
sition 2.3.4).

We choose a metric on C? which admits a full isometric minimal
immersion into RS in the following way.

For this purpose we first choose a 6 x 6-matrix P as

- 1-

which satisfies (P2), (P3) and (P4).
We next choose a full holomorphic immersion ® of C? into C% sat-

isfying (P1). If we put 09/9z =: ¢ = “((1,...,(s), O0P/Ow = w =

f(wi, ... ,wg), then ¢;,w; must satisfy the following equations :
0C  Ow;
ow 0z’

C1G6 + C2C5 + (3C4 = 0,
<1w6 + CQ(UE) + ng4 + C4(4)3 + C5CU2 + C6w1 = O,

wiwg + wows + wawyg = 0.

It is easy to check that

2 2
CZ: t<Z7Zw7%707_17w)a W= t(07%7o’_1’072)
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satisfy these equations. Hence,

22 2211) 23

q)(Z?w) = t(?v Ta ) —Z,ZU))

gives a full holomorphic immersion satisfying (P1). We now obtain the

Kahler metric

1 1
Z(\Z|2+2)2+(’Z|2+1)|w|2 §(|Z|2+2)w2

- 1 1
5(\Z|2+2)WZ Z(|Z|2+2)2

on C? induced by ®, for which M/ (C?; R®) is not empty.
Now, take a 6 x 6-matrix S such that {SS = P as in Theorem 3.1.5,
and determine a minimal immersion f by Lemma 3.1.3 (1). With P

chosen as above, we take S to be
-1 1 -

g_ L 1 1

~ 2 VT VI |
s s

Wai VAL

from which f is determined to be

— 1 -
§(a72—y2)+xu—yv
1
5(372 — 1y )u — x(yv + 1)
1
—(2* = 3y*)x —u
fle+vV-1ly,u++v—1v) := 615 : C? - RS,
—6(3152 )y —v
1
—5 (@ =y —ylru+1)
| —zy +xv+yu |

To sum up, we have a Kihler manifold biholomorphic to C? and an
isometric minimal immersion f : C? — RS, which have the following
properties :

e Kahler manifo ,g) 1s complete.
1) The Kahl ifold (C? i 1
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(2) f is not holomorphic with respect to any orthogonal complex
structure on RP.
(3) f is not cylindrical.

(4) f is completely complex ruled (cf. Definition 4.1.12).

Property (2) can be proved as follows: Assume that f is holomorphic.
Then f is congruent to ® in R'? by Calabi’s rigidity theorem (Proposi-
tion 2.4.1), and hence the image of ® lies in a real 6-dimensional affine
subspace. This contradicts the fullness of ®.

By a direct calculation, the second fundamental form « of f is given

by
[—(l2* = 2)(|2° +2) — 4(zu + yv) |
2x(]2]* + 2) + 4u
1 22(|2* + 2) — 2{(2* — v*)u + 2zyv}
:m —2y(|z]? + 2) — 2{(z* — y*)v — 2zyu} ’
—2y(|2|? +2) — 4v
i —4(zv — yu) i
o(gg)
i A(av — yu) 7
2y(|2* +2) — 4v
) —=2y(|2* + 2) + 2{(2? — y*)v — 2zyu}
IEEPE —2a (|22 + 2) — 2{ (2% — y)u + 2wy} |
22(]22 + 2) — 4u
(127 = 2) (|2 +2) — 4(zu + yv) ]
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9 g)_ (12 +2)* a(g 2)
oz’ du (|22 +2)2 + 4|w|?2 0z’ Oz’
o 0 (|z* + 2)? g 0

af

O‘(%a %) - (|Z|2 +2)2 +4|w|2a(%7 a_y)a
o 0 o 0 0 0 0 0
a(@?%)_a(%va)v a(@?%)__a(a_m7%)7
0 0 o 0
a(a—y,a—y) = —a(a—w,a—m),
o 0 o 0 0 0
a(%, %) = 04(%7 %) = a(%, %) = U,

where z = 2 + v/—1y,w = u + v/—1v. Since the relative nullity space of

f is vanishing, f is not cylindrical. Moreover, f is completely complex

ruled, since the distribution spanned by {0/0u, d/0v} is totally geodesic.
We can calculate the moduli space in this case. In fact, we have

( B 17

P(®;0,6) = { eV~ 10 . 0 € [0,2m)

Now, we illustrate a method of constructing pluriharmonic immersions
into indefinite Euclidean spaces.
Let f = v/2Re® be an isometric minimal immersion of a simply

connected Kihler manifold M into RN+ (= RY™P), where ® : M —

CN*P is an isometric holomorphic immersion such that

9 00 _
022 928

(%)
For @ = (®',... &N &N+l . ®N*P) we consider a new immersion

é:zt(\/—_lfbl,... V=10V N+ 7<I)N+P):]f\\4/—> CchNtr,
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where M is a Kihler manifold defined by
{ze M: ¢*<‘,T>C%+P > 0}, ®*<',T>C%+P).

Then the map fdeﬁned by f:: V2Red : M — R%’LP gives rise to a
pluriharmonic immersion, since
e 0P
9aaNPo 5 = 0.
To sum up, in order to obtain (locally defined) pluriharmonic immer-

sions into R%+P , we only have to construct holomorphic immersions

into CN*F satisfying the condition ().

As an example, we shall construct pluriharmonic immersions of sub-
sets of C? into R}, which are defined as cone immersions.

As remarked above, it suffices to define holomorphic immersions into
C!*t* gatisfying the condition (). Let C' and D be simply connected
domains of C. Suppose that ¢ : C' — C is a holomorphic function and

¢ : D — C'*t* is a holomorphic immersion such that

00 _ 0000 _

(%) ‘66 = o5 = S22 =0,

where z is a coordinate of D. Then the holomorphic immersion
O(w,z) = P(w)p(z) : C x D — C* satisfies (), from which we
obtain a pluriharmonic immersion of a subset of C' x D into RS.

We can construct ¢ as follows. For any holomorphic function h on D

we set

-/ 41— RO, VI + A(Q)%), 2h(0))dC.
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Then

¢(z) :=="(1—"g(2)g9(2), V=1(1 + 'g(2)g(2)), 29" (2), 2¢°(2), 2¢° (2))

gives rise to a holomorphic immersion satisfying the condition ().
If we choose 1(w) := w and h(z) := z, the corresponding plurihar-

monic immersion is

f(w, 2) =v2Re &)(w, 2)

=v2Re(w 2(2’—1,23) ):C2>CxD— R,

It should be pointed out that we may use a class of complex ruled
immersions obtained by M. Dajczer and D. Gromoll [12] as the above @,

which provides us with a larger class containing cone immersions.
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4. ISOMETRIC PLURIHARMONIC IMMERSIONS OF

COMPLETE KAHLER MANIFOLDS (GLOBAL THEORY)

4.1. Cylinder theorem

In this section, we classify isometric pluriharmonic immersions of com-
plete Kéhler manifolds into semi-Euclidean spaces with low codimen-
sions. In particular, we will prove a cylinder theorem concerning them.

In the beginning, we consider Riemannian manifolds in general.

Definition 4.1.1. Let f: M — R%+P be an isometric immersion with
second fundamental form «. For each x € M, the subspace of T, M

defined by
ANz) ={XeT,M; o(X,Y)=0, YeT,M}

is called the relative nullity space of f at x, and its dimension v(x) is

called the index of relative nullity of f at x.
The following proposition is proved by K. Abe and M. Magid [3].

Proposition 4.1.2. Let f: M — R%JFP be an isometric immersion of
a Riemannian manifold into a semi-FEuclidean space with relative nullity

space A(z). Then the following hold.

(1) The distribution x — A(x) is smooth on any open subset U
where the index of relative nullity is constant.

(2) The relative nullity distribution A on U is integrable, and the
leaves are totally geodesic in M and R%HD .

(3) The set G := {x € M ; v(z) = vy} is open, where vy =

min{v(z); x € M}.
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In what follows, we consider the relative nullity foliation A on G. Let
A~ be the distribution on G given by the orthogonal complement A~ (x)

of A(z) with respect to the Riemannian metric of M.

The following completeness result for the relative nullity foliations
is proved by K. Abe [1], K. Abe and M. Magid [3], and is basic and

well-known.

Proposition 4.1.3. For an isometric immersion of a complete Rie-
mannian manifold into a semi-Fuclidean space, the relative nullity foli-

ation is complete.

In order to prove our cylinder theorem, we first define the splitting
tensor field for an isometric immersion, more precisely, for its relative

nullity distribution.

Definition 4.1.4. Let f: M — R%JFP be an isometric immersion of
a Riemannian manifold into a semi-Euclidean space. Let /A denote its
relative nullity distribution on G C M. For T € I'(A) and X € At(x),
we define

CrX = —-Pr(VxT),

where Pr : T,G — A~(x) is the orthogonal projection. The tensor
field C € T'(A* ® End A1) is called the splitting tensor or the conullity

operator of f.

To see C' € T'(A* @ End A1), it suffices to check that Cyr X = ¢Cr X

for any function ¢. In fact, it can be verified that

CorX = —Pr(Vx(¢T))
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—  Pr{(X6)T + 6V T)
=—oPr(VxT)
=¢pCrX.
Proposition 4.1.5. Let f: M — R%JFP be an isometric immersion of
a d-dimensional Riemannian manifold into a semi-FEuclidean space. Let

A\ be its relative nullity distribution on G, where the index of relative

nullity is constant vy. Then the following hold.

(1) The distribution A+ is integrable if and only if
g(CrX,Y)=g(X,CrY)  for X,Y e (A1), T € T(A).

(2) The splitting tensor C' of f vanishes identically on G if and only if

each point of G has a neighborhood on which f is vy-cylindrical.

Proof. (1) Since T € T'(A) and Y € I'(A1) are orthogonal each other,
we have
g<CTX7 Y) = _g<vXT7 Y) = g(T, VXY)?

which implies

:g(Ta [X7 Y])

Therefore, [X,Y] € T(A*) for X, Y € T(A4) if and only if g(Cr X,Y) =
9(X,CrY).

(2) By Proposition 4.1.2 (2), C = 0 if and only if VxT and VgT
belong to I'(A) for S, T € T'(A) and X € T'(A+). It follows from this
that A is parallel, and therefore so is A*. The rest of the proof follows

from Propositions 2.2.7 and 4.1.3. O
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We now prepare some basic identities concerning splitting tensors and

second fundamental forms.

Lemma 4.1.6. Let f : M — R%JFP be an isometric immersion of a

Riemannian manifold into a semi-Euclidean space with splitting tensor
C. IfS, T €T(A), X,Y € T(A+) and € € I'(Nor f), then the following

identities hold.

(1) (VsoT)X =CrCsX + CVSTX-
(ii) (VxCOr)Y — (VyCr)X = Cpyvxn)Y — Cprvym) X,
(iii) VT(AgX) — AgvTX = AgCTX + Av%gX-

(iv) a(CrX,Y) =a(X,CrY),

where (VzCp)X :=Pr(Vz(CrX)) — CrPr(VzX) for Z e T'(TM).

Proof. Since the relative nullity distribution A is totally geodesic,
VsT € T(A) and VgX € I'(A+). Hence, using the Gauss equation, we

compute

(VsCr)X
=—Pr(VsPr(VxT)) — CrVsX
=—Pr(VsVxT) — CrVsX
=—Pr(RY(S,X)T +VxVsT + Vs xT) — CrVsX
=—Pr(RY(S, X)T) + CysrX — Pr(Vivsx_vysT) — CrVsX
= —Pr(RY(S,X)T) 4+ Cy.rX + CrVsX — CrPr(VxS) — CrVsX
=—Pr(RY(S,X)T) + CysrX + CrCs X
= 0+ CvsrX +CrCsX,
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which verifies (i).

Let Q : T,U — A(x) be the orthogonal projection. Then we have

(VxCr)Y
= Pr(Vx(CrY)) — Cr Pr(VyY)

= — Pr(Vx Pr(VyT)) — Cp Pr(VyY)

= — {Pr(VxVyT) - Pr(VxQ(VyT))} + Pr(Veywyn)T)

= — PI‘(VXVyT) — CQ(VyT)X + Pr(vPr(vxy)T),
which, together with the Gauss equation, implies that

(VxCr)Y — (VyCr)X
=~ Pr(VxVyT — Vy VT) — (Corwyry X — CowyrY)
+ Pr(Vipr(vyv)—prvy xnT)
=—Pr(RV(X,Y)T + VixyiT) — (Corvym X — CorvxmY)
+ Pr(Ve(x v T)
= —Pr(RY(X,Y)T) = Pr(VoxynT) — (CorynX — Comxn)Y)

- 0 + 0 + (CQ(VXT)Y - CQ(VYT)X),

verifying (ii).

To prove (iii) we compute, using the Codazzi equation, to get

Vi(AeX) — AV X
=Vx(AeT) — AVXT — Agy T + Ay X
=0~ AeVxT — 0+ Agy X
=A¢CrX + Ay X.
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We proceed to prove (iv). It follows from (iii) that
Pr(A¢Cr) = Pr(VrA¢) — Pr(AgLe).
Hence Pr(A:Cr) is symmetric, that is,
9(AeCrX,Y) =g(A:CrY, X).
Therefore, we obtain

a(CrX,Y) =a(X,CrY). 0

When the relative nullity foliation is complete, we obtain the following

property for splitting tensors.

Lemma 4.1.7. Let f : M — R%J“P be an isometric immersion of a
d-dimensional Riemannian manifold with splitting tensor C. Suppose
that the relative nullity foliation /\ is complete. Then the only possible

real eigenvalue of Cr, : A (x0) — A+ (x0) (To € AN(w0)) is zero.

Proof. Let L be the leaf of A through zy, and = the geodesic in L
such that v(0) = zo and 4(0) = Tp. We take a parallel frame field
{ei(t),... ,eq_n(t)} of AL along . Then, by Lemma 4.1.6 (i) and the

completeness of L, C satisfies the following ordinary differential equation

forte R : / )
i) =G5y
Cs0) =Cry-
Now suppose that C'z, has nonzero real eigenvalues Ay,... , A\, and

set 7 := (max |\;|)71(> 0). Then we may define the operator C; by

Cy == Cr,(idpL(zy) —tCr,) "' for -7 <t <7,
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since [tA;] < 1 and the operator ida 1 (,,) —tCr, is invertible for —7 <
t < 7. It is then verified that C; satisfies the same differential equation

for —T<t<T:
C'ngf,

Co =Cr,,

and has an eigenvalue (7 —t)~!. In fact, it is easy to see

Ct =Cr,{—(d A (zg) —tCr)) (1AL (2) —tC1,) (Id AL (g) —tC,) "}

2
_C’757

and

1
T—1

:|CT0 (idAJ-(xo) _tCTo)_l - -

|Ct — idAJ-(mo) |

I
— ldAJ_(mO) |

:|CT0 - - t(idﬁj‘(mo) —tCTO)H idAJ-(:ro) —tCTO|_1
T 1. . _
p— thTo - idA L (20) 1AL (zg) —tC |

=0.

Then, by virtue of the uniqueness theorem of solutions for ordinary
differential equations, we have Cs ;) = C; and hence C; can be defined
for all t € R. However, this is impossible, since the eigenvalue (7 —¢)~!

of Cy blowsup ast — 7. [

We now prove that the splitting tensor of an isometric pluriharmonic

immersion is complex linear.

Lemma 4.1.8. Let f : M — R%+P be an isometric pluriharmonic

immersion of a Kahler manifold with complex structure J. Then the
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splitting tensor C' of f satisties

(i) CyrX =JCrX,

(ii) CrJX =JOrX  for X e T(AF), T e T(A).

Proof. Since J is parallel and A is J-invariant by definition, we have

(1) CJTX = — PI‘(VXJT) = — PI‘(JVXT) =—-J PI‘(VXT)

=JCrX.
It then follows from Lemma 4.1.6 (iv) and (i) that for Y € T'(A1),

a(CrJX,Y) =a(JX,CrY)
—a(X, JCrY)
=a(X,CyrY)
=a(CyrX,Y)

:OC(JCTX, Y),

which implies CpJX — JCpX € I'(A), and hence (ii) follows. O

We are now going to prove the following cylinder theorem for isometric
pluriharmonic immersions, under appropriate assumptions on the index
of relative nullity and the completeness of Kéahler manifolds. In the
positive definite case, this theorem has been obtained by M. Dajczer

and L. Rodriguez [14].

Theorem 4.1.9. Let M be a complete Kiahler manifold of real dimen-

sion 2m, and f : M — R%JFP an isometric pluriharmonic immersion. If
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the index of relative nullity v is not less than 2m — 2, then f is (2m — 2)-

cylindrical.

Proof. Let G be an open set on which the index of relative nullity v of

fis equal to 2m — 2. We fix z € G and T € A(x) arbitrarily.
Claim. The splitting tensor C'r is nilpotent.

To see the claim, we assume that a + /—1b € C is an eigenvalue of
C'r, that is,

CrY = (a+V-1b)Y =aY +bJY.

If we put S :=aT — bJT € A(x), then by Lemma 4.1.8 (i) we get

CsY :CLCTY — bJCTY
=a(aY +bJY) —bJ(aY +bJY)

—(a® + b?)Y,

and hence Cg has a real eigenvalue a? 4 b%. Then it follows from Lemma

4.1.7 that a? 4+ b? = 0, which implies that the eigenvalue of C7 is zero.

Since dim A+(z) = 2, we have C2 = 0. Consequently, Cr = 0. To

see this, using a basis such that
0 1
Jat(@) = [_1 O} ;

we write Cr as [CCL Z} . Then it is immediate from Lemma 4.1.8 (ii)

that

B R | R
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which implies a =b=c=d = 0.

To sum up, we conclude that C' = 0 on GG. Hence, by Proposition 4.1.5
(2) and the analyticity of f, the isometric pluriharmonic immersion f is

(2m — 2)-cylindrical. O

For isometric minimal immersions of complete Kéahler manifolds of
codimension one, we can prove a stronger cylinder theorem. To prove
this, we first show the following proposition, which has been proved by

K. Abe [2] in the positive definite case.

Proposition 4.1.10. Let M be a Kahler manifold of real dimension
2m. If f + M — R?V"H'l is an isometric immersion of real codimension

one, then the index of relative nullity v of f is not less than 2m — 2.

Proof. We take a normal vector field £ of f, and denote the shape oper-
ator A¢ by A for simplicity. Let Aq,..., A2y, be the principal curvatures
of f, that is, the eigenvalues of A, and let {eq,... ,ea,} be the corre-
sponding principal frame, that is, the frame consisting of eigenvectors of

A. Then, by the Gauss equation, we get

g(RY (ei,e5) Jei er)
:(a(ek,ei),oz(Jei,ej»R?va - (oz(ek,ej),a(Jei,ei»R?\]mH
=g(Ae;, ex)g(Aej, Jei) — g(Aej, er)g(Aes, Je;)

=XidirAjg(ej, Jei),

which implies
Rv(ei, ej)Jei == /\Z-)\jg(ej, Jei)ei.
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In a similar fashion, for ¢ # j, we also get

g(Rv(ei,ej)ei, Jeg)
=g(Ae;, Jer)g(Aej, €;) — g(Ae;, Jep)g(Aei, e;)

=—NiAjg(ej, Jew),

which implies

JRV(GZ', €j)6i = —)\i)\jJej.

Since RV (X,Y)J = JRY(X,Y), we then obtain
AiXj(g(e;, Je;)e; + Jej) =0 for i # j.

If A is not zero, then for j # 1, we have either \; = 0 or g(e;, Jeq)er +
Jej = 0. The latter can be true for at most one j, say j = 2, and then

A; =0 for j > 3. Therefore, we conclude that rank A <2. [

Combining Propositions 2.3.4, 4.1.9 and 4.1.10, we obtain

Proposition 4.1.11. Let M be a complete Kahler manifold of real
dimension 2m. If f: M — R?\,erl is an isometric minimal immersion of

real codimension one, then f is (2m — 2)-cylindrical.

Before proceeding to the case of codimension two, the following defi-

nition is in order.

Definition 4.1.12. Let f : M — R%JFP be an isometric immersion
of a Kahler manifold M of real dimension 2m into R%+P . f is called

completely complex ruled if M has a real codimension two foliation such
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that each leaf is a Kéhler submanifold of M and its image under f is an

affine subspace of real dimension 2m — 2.

The following proposition has been proved by M. Dajczer and L. Ro-

driguez [14] in the positive definite case.

Proposition 4.1.13. Let M be a complete Kahler manifold of real
dimension 2m > 4, and f : M — R%JFP an isometric pluriharmonic
immersion. Suppose that the index of relative nullity v is not less than

2m—4. Then f is either completely complex ruled or (2m—4)-cylindrical.

Sketch of proof. 1t follows from Theorem 4.1.9 and its proof that if v >
2m — 2 everywhere, then f is (2m — 2)-cylindrical, and that if M has a
non-empty open subset on which v = 2m — 4 and the splitting tensor
C =0, then f is (2m — 4)-cylindrical.

Let U be a connected component of the open set on which v = 2m —4
and where there exists a vector T' € A such that C'r # 0. Given any point
x € U and any vector T' € A(x) such that Cp # 0, it can be verified that
dimker Cr = 2, by Lemma 4.1.8 (2) together with the claim in the proof
of Theorem 4.1.9. It also holds that a(X,Y) = 0 for X,Y € ker Cr by
Lemma 4.1.6 (iv). For any other vector S € A(z) such that Cg # 0, we
can prove ker Cp = ker C's. Since the (2m — 2)-dimensional distribution
A @ ker Cr is integrable and totally geodesic, it then follows that f is

completely complex ruled. [J

We remark that, combining Proposition 2.3.5 with Proposition 4.1.13,
M. Dajczer and L. Rodriguez [14] prove the following theorem, which
classifies isometric minimal immersions of complete Kéhler manifolds

into Euclidean spaces of real codimension two.
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Proposition 4.1.14. Let M be a complete Kahler manifold of real
dimension 2m > 4, and f : M — R?™*2 an isometric minimal immersion

of real codimension two with the index of relative nullity v.

(1) If there exists a point x € M such that v(x) < 2m — 4, then f is
holomorphic with respect to some orthogonal complex structure
of R?m+2,

(2) If v > 2m — 4 everywhere, then f is either completely complex

ruled or (2m — 4)-cylindrical.
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4.2. Bernstein property

It has been proved by E. Calabi [7] that the only complete spacelike
minimal surface in R? is a plane (See also O. Kobayashi [21]). This
proves that the classical Bernstein theorem for minimal surfaces in R?
is also true when the ambient space is replaced by Minkowski 3-space
R3. In this section, we are concerned with some generalizations of this
Bernstein property.

In his paper [20], T. Ishihara proves the following proposition by a
standard technique which has been used in S. -Y. Cheng and S. -T. Yau

[8], and S. Nishikawa [24], for instance.

Proposition 4.2.1. Let M be a d-dimensional Riemannian manifold,
and f: M — R?V‘LN an isometric minimal immersion. If M is complete,

then f is totally geodesic.

This result can not be extended further when the index of the ambient
space is less than the codimension N. In fact, F. J. M. Estudillo and

A. Romero [16] give the following example.

Example 4.2.2. We put
1
o(2) ::it(ez —2e % e +2e %, -3v—-1,-1)

for z=ax+4++/—1y € C.

Then, we have

f(a.9)i=Re [ oz
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1
it((ex +e *)cosy, (¥ —2e Y)cosy, 3y, —x),

which gives rise to a nontrivial minimal immersion of a complete Kahler

manifold biholomorphic to C into Rj.

In fact, it is verified that (¢(z),¢(2))cs = 0 and (¢(2), ¢(2))cs =

1

10/4 + 2 cos 2y.

Roughly speaking, the following proposition means that an isometric
pluriharmonic immersion is totally geodesic if its tangent vectors are

apart from the orthogonal complement of some timelike vector.

Proposition 4.2.3. Let M be a Kahler manifold biholomorphic to C™
with a global complex coordinate system (z',...,2z™) on M. Let f :
M — R?Vmﬂ) be an isometric pluriharmonic immersion, where N = 0
or 1. Suppose that there exist a constant unit vector e € R?\,"H'p and a

positive constant € such that

e is timelike when N =1,

0
|<€, i>02m+p|2 > 0,

0z "%

of of of .
|<e,@>03m+13|2 ZE|<@,$>C?m+p| fOT]ZI,... , .

Then f is totally geodesic.

Proof. We may consider, without loss of generality, that the constant
vector e is £(1,0,...,0). Then, from f = (f%, ..., f?™*P), we can
define functions @ZJ;? on M by

of*
w(z)

o

wf(z): forj=1,... ,mand k=1,...,2m + p,
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of! of
a ; — |<€,@>C§m+p| > 0

Since f is pluriharmonic, wé.“ are holomorphic. Moreover, it is observed

because M has global coordinates and |=—

that 1/};? are bounded by the assumption. In fact, we see that when

N =0, L
ft of of
D2 <8z3 823>C2m+p < 1
ort| ,6f1| T e
077 079
and when N =1,
off o, 0f Of af o
D27 <8zﬂ 0zJ >Cgm+p i | | 1
< <14 -.
oft |a_fl|2 €
077 079

Therefore, Qﬁ;? are constant functions, and hence there exist constants

cé? € C such that

of*
027

1
(z):cf%(z) forj=1,... mand k=1,... ,2m+p.

Hence we have

1
z m z m CQ- o 1 )
2R/ dzﬂ_zRe/ LR,
0 =1 : 327
C§m+P
1
m C?
=2Re) | . | F2),
= o

%
where F} is a holomorphic function. This implies that f is totally geo-

desic. O
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