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Preface

This work is based on my thesis at Tohoku University in 1996. Though the present work is

mostly concerned with preliminaries to define some class of prehomogeneous vector spaces

over an arbitrary commutative ring, the initial problem which motivates me is a number-

theoretic one to study some quotient sets and associated zeta functions. Therefore, it will

be appropriate to mention on the place from which this work arises.

Let k be a commutative ring. Consider a triple (G, θ,M) consisting of a k-group G

and its linear representation θ : G→ GL(M) in a finitely generated projective k-module

M . In the case where k is a field and G is reductive, there is a notion of prehomogeneous

vector spaces introduced by M. Sato. Recall that such a triple (G, θ,M) is said to be

prehomogeneous if we have, after tensoring with an algebraic closure k̄ of k, a Zariski

open G(k̄)-orbit in M ⊗k k̄. A classification is given by M. Sato and Kimura in [S-K], for

the irreducible ones over the field of complex numbers. One of the motivations to consider

prehomogeneous vector spaces can be seen in a number-theoretic situation, where k is the

ring of rational integers and the triple in question becomes a prehomogeneous vector

space at the geometric fiber over the infinite prime. Then, one seeks a systematic way

of constructing Drichlet series with nice properties such as functional equations, and is

lead to considering certain generating functions called zeta functions. On zeta functions

associated with prehomogeneous vector spaces, there are basic researches of Sato-Shintani

[S-S] and F. Sato [Sf]. In general, however, it is a difficult problem to determine the

principal part of the zeta function. Together with precise estimates for the convergences

of integrals, we need to know the orbit structures. In fact, it sometimes turns out that the

open orbit counts interesting arithmetic objects such as field extensions and ideal classes,

and that their asymptotic properties are derived from information on the zeta function.

Examples of such a successful case can be seen in works of Shintani, where he considered

the spaces of binary cubic forms in [Sh 1] and of binary quadratic forms in [Sh 2], to

improve the results of Davenport [Dav] and of Siegel [Siegel], respectively. On the other

hand, many of the number-theoretic problems can also be formulated in the language of

adeles, where k is taken to be a global field. The adelic versions of Shintani’s works are

given by D. J. Wright [W] and Yukie [Y 1]. Yukie also handled in [Y 2] the zeta function

associated to the more complicated case, namely the space of pairs of ternary quadratic

forms.

Inspired by these works, I tried to investigate some other prehomogeneous vector

spaces in the number-theoretic setting, which covers not only the adelic ones but also the

ones over the rational integers. The examples which are chosen in my work are related

to the Jordan algebras of degree three, and the “cubic forms ”in the title means the so

called generic norms of such algebras. The materials go back to the work of Freudenthal
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[Freu] on the geometries of some exceptional Lie groups, and many investigations have

been done by many authors from various points of view. Among them, I would like to

mention on the Baily’s one, which treats an arithmetic quotient of the bounded symmetric

domain of type VI. In fact, the attempt to understand [Baily] motivates me to work over

an arbitrary commutative ring.

I wish to thank many individuals who have stimulated and encouraged me during this

work. Especially, my deep appreciation goes to Professor Yasuo Morita without whose

constant support and encouragement this work would probably not have been done.

H. Ikai
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Introduction

1. Let k be a field. Consider a triple (G, θ,M) consisting of a reductive k-group G and

its finite-dimensional linear representation θ : G → GL(M) such that we have, after

tensoring with an algebraic closure k̄ of k, the following condition (�): Denote by G̃ the

simply connected covering group of G⊗k k̄ and fix a pair (T̃ , B̃) of a split maximal torus

T̃ of G̃ and a Borel group B̃ containing T̃ . Denote also by L(χ) the invertible sheaf on

G̃/B̃ associated to a character χ of T̃ , and by w0 the symmetry with respect to B̃, which

is an element of the Weyl group of (G̃, T̃ ). Then:

(�) The Dynkin diagram Γ of (G̃, T̃ , B̃) is C3, A5, D6, or E7, and we have an isomor-

phism

M ⊗k k̄ ∼→ H0(G̃/B̃,L(w0(λ)))

of G̃-modules, where λ is the weight defined by the table:

Γ C3 A5 D6 E7

λ �3 �3 �6 �7

(notation is of [Bou, Lie, VI, §4]).

2. It is known that those (G, θ,M) as in 1 are related to Jordan algebras J = H3(C)
of 3× 3 Hermitian matrices with coefficients in various composition algebras C (cf. [Freu,

VIII]). Also we call attention to the fact that such a triple gives rise to a prehomogeneous

vector space, which admits a certain quartic form as a relative invariant (cf. [S-K]). More

precisely, if k̄ is taken to be the field of the complex numbers, the pair (Gmk̄× G̃,M ⊗k k̄)
is the prehomogeneous vector space referred to, in the table in [S-K, §7, I)], as

(14) = (GL(1)× Sp(3), V (1)⊗ V (14)) if Γ = C3,

(5) = (GL(6), V (20)) if Γ = A5,

(23) = (GL(1)× Spin(12), V (1)⊗ V (32)) if Γ = D6, and

(29) = (GL(1)× E7, V (1)⊗ V (56)) if Γ = E7.

(Here we omit the symbol of the representation. For example, (5) is the third exterior

power of the six-dimensional standard representation of GL(6), and (14) is obtained from

(5) via the inclusion Sp(3)→ GL(6).)

To apply the theory of prehomogeneous vector spaces to number theory, we assume

k to be a global field. Then one of the main problems is to determine the quotient set
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(k∗ × G(k))\M and the corresponding stabilizers in Gmk × G (cf. [W-Y]). This article

arouses out of an attempt to solve this problem along the following line:

a) Since k is a field, we have the canonical bijection

(k∗ ×G(k))\(M − {0}) ∼→ G(k)\P(M)(k)

of sets and, for each m ∈M−{0}, the canonical isomorphism Centµk×G(m)
∼→ CentG(k ·

m) of stabilizers. Therefore, considering the projective representation G → Aut(P(M))

associated to θ, it suffices to determine the quotient set G(k)\P(M)(k) together with the

corresponding stabilizers in G.

b) Choose points

u0, u1, ... ∈ P(M)(k)

so that, if possible, the set P(M)(k̄) becomes the union of the OG(ui)(k̄)’s, where OG(ui)

denotes the orbit-sheaf (with respect to the fppf topology, cf. [D-G, III, §3, 1.6]) of ui

under G.

c) For each ui in b), determine the stabilizer

CentG(ui)

and the set Ker [H1(k,CentG(ui))→ H1(k,G)], which is identified with the quotient set

G(k)\OG(ui)(k) (cf. [D-G, III, §4, 4.7]).

3. Among many works concerned with such (G, θ,M) as in 1, [Igusa 1] and [Baily] are

closely related our research. For (G, θ,M) of type C3, D6, or E7 in 1, Igusa determined

the quotient set G(k)\M and the corresponding stabilizers in G, under the assumption

that k is an algebraically closed field of characteristic different from two and three (cf.

[Igusa 1, §7]). On the other hand, using a Z-form of the real octonion division algebra,

Baily treated a triple (G, θ,M) over the ring of rational integers such that the associated

analytic group G(R) is a Lie group of type E7, whose identity component modulo center is

the automorphism group of a bounded symmetric domain in C27 (cf. [Baily]). In general,

the property stated in 1 does not determine one triple (G, θ,M), and hence such a problem

as in 2 depends on the choice of one triple. Such a triple may be called a form. Instead

of considering all the forms of a special representation, we are trying to define a triple

(G, θ,M) over an arbitrary commutative ring such that some (or all, if possible,) of the

fibers have the property stated in 1. The construction of (G, θ,M) and almost all of the

calculations work over an arbitrary commutative ring. Also our construction contains

Baily’s case, which is not of split type and causes special difficulties in characteristic two.

In fact, the desire to handle such a case leads us to considering schemes over Z, and

hence we are obliged to construct everything without assumption on the base ring. In

particular, we need to include the case of characteristic two and three, which are avoided
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in [Igusa 1]. In this article, we give an axiomatic construction of (G, θ,M) and determine

two stabilizers and one orbit-sheaf. More precise description is as follows:

4. Let k be an arbitrary commutative ring. Consider a quadruple (J ;N, �, T ) as the

data, where J is a finitely generated projective k-module, N a cubic form on J , i.e., N is

a homogeneous element of degree three of the symmetric algebra S(tJ) of the k-module
tJ dual to J , � a quadratic map in J , which is a certain endomorphism of the k-scheme

SpecS(tJ), and T a symmetric bilinear form on J , satisfying some conditions (cf. §1).

Then:

a) We define a k-group sheaf G with respect to the fppf topology and its linear repre-

sentation θ : G→ G(M) in the k-module M := k ⊕ J ⊕ k ⊕ J .

b) We choose two k-valued points u0 and u1 of the projective space P(M) :=

ProjS(tM), and determine their stabilizers CentG(ui) (i = 0, 1) in G and the orbit-sheaf

OG(u1) of u1 under G (cf. §3).

c) We choose a quartic form f ∈ S4(tM) and prove that G stabilizes f (cf. §4). Then

the action of G is induced on the open subscheme D+(f) of P(M). The point u0 in b)

belongs to D+(f)(k).

d) Under some additional condition on (J ;N, �, T ), we prove that, for any k-algebra

k → K with an algebraically closed field K, the action of G(K) on D+(f)(K) is transitive.

5. Main tools of our construction are the notion of Jordan pairs (cf. [LJP]) and the

general theory of associated algebraic groups (cf. [LAG]), both due to Loos. Nowaday,

the theory of Jordan algebras is generalized as follows:

a) If k is a field of characteristic different from two, the category LJAk of linear Jordan

algebras over k is defined, whose objects are classical Jordan algebras (cf. [Jac 3]).

b) For an arbitrary commutative ring k, the category QJAk of quadratic Jordan alge-

bras over k is defined (McCrimmon, cf. [Jac 1]). If k is a field of characteristic different

from two, the equivalence LJAk
≈−→ QJAk is defined.

c) For an arbitrary commutative ring k, the category JPk of Jordan pairs over k and

a functor QJAk → JPk is defined (cf. [LJP]). Under this functor, two objects in QJAk

are identified in JPk modulo isotopism, which is weaker than isomorphism.

The restriction on the base k in [Igusa 1, 2] comes from the fact that he uses the theory

of linear Jordan algebras. However there is an axiomatic construction of Jordan algebras of

3×3 Hermitian matrices from the viewpoint of quadratic Jordan algebras by McCrimmon

(cf. [Mc]). This allows us to handle the object J = H3(C) over an arbitrary commutative

ring. On the other hand, the theory of algebraic groups associated to Jordan pairs is

developed by Loos over an arbitrary commutative ring (cf. [LAG]). Hence the classical

construction as in [Igusa 1] can be generalized to arbitrary base ring. Though k suffices

to be a field in many problems concerned with prehomogeneous vector spaces, so far as
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this article, we thus generalize k to be an arbitrary commutative ring.

6. Here is a short description of this article. We take an arbitrary commutative ring

as a base, and consider in the category of sheaves over k with respect to the fppf topology.

Following [Roby], we use the term “polynomial laws”instead of “polynomial functions”.

They are certain k-scheme morphisms and cubic form, quartic form,...etc. are all special

polynomial laws (cf. 0.4).

In §1, a quadruple (J ;N, �, T ) is introduced. Under the condition (∗) in 1.3, which

is always assumed after 1.6, this quadruple defines a Jordan pair denoted by (J, J), and

basic identities are proved. The quadruple (J ;N, �, T ) is modeled on the Jordan algebra

J = H3(C) of 3 × 3 Hermitian matrices with coefficients in a composition algebra C, for

which there is an axiomatic construction by McCrimmon (cf. [Mc]). Since we use the

theory of Jordan pairs instead of Jordan algebras, we slightly modified McCrimmon’s

construction. His starting data may be considered as a couple ((J ;N, �, T ), c) of our

quadruple (J ;N, �, T ) and a special element c of J (cf. Appendix A).

In §2, the k-group sheaf G and the linear representation θ : G → GL(M) is con-

structed. The machinery being based on [LAG], our task are to set up materials and

to prove necessary identities. Namely, to construct G, it suffice to construct a “Jordan

system ”, which is given in 2.1–2.3. To construct θ, we must prove some fundamental

relations through complicated calculation (cf. 2.5–2.8). G turns out to be the following

k-sheaf: G contains the k-group scheme H, whose points H(R) with value in a k-algebra

R is the group of all h = (χ(h), h+, h−) ∈ R∗ ×GL(J ⊗k R)×GL(J ⊗k R) satisfying

(H1) T (h+x, h−y) = T (x, y),

(H2) (h+x)
� = χ(h)−1h−x�, (h−x)� = χ(h)h+x

�,

(H3) N(h−1
+ x) = N(h−x) = χ(h)N(x),

for all scalar extensions. G also contains two subgroups U+, U− isomorphic to the vector

group associated to J . They are normalized by H and the morphism U−×U+×U−×H →
G induced by the multiplication is an epimorphism of k-sheaves. M is the direct sum

k ⊕ J ⊕ k ⊕ J whose elements are written in the form

 α a

b β




with α, β ∈ k, and a, b ∈ J . M is imbedded into a k-module consisting of pairs of

polynomial laws on J (cf. 2.7). In general, there are functors associating to any k-Jordan

pair V an adjoint k-group PG(V ) (cf. [LAG, 5.14, 5.15]) and a smooth quasi-projective

6



k-scheme X(V ) (cf. [LHA, 2.1, 2.2]), whose automorphism group coincides with PG(V )

if V is separable (cf. [LHA, 4.6]). In some special situation where k = C and V carries

a “positive Hermitian involution ”, V determines a bounded symmetric domain whose

compact dual isX(V )an (cf. [LBSD]). In our situation, we have a morphismG→ PG(J, J)

whose kernel is the group of square roots of the unit (cf. 2.3, [LAG, 5.15]).

In §3, two points u0 and u1 in P(M)(k) are chosen to be the ones corresponding to

the elements 
 1 0

0 1


 and


 1 0

0 0




in M , respectively. Then their stabilizers CentG(ui) and the orbit-sheaf OG(u1) of u1 are

determined. CentG(u0) is complicated and the result is stated in 3.3 after introducing

notation in 3.2. On the other hand, CentG(u1) is the semi-direct product of H and U−

(cf. 3.9) and OG(u1) is isomorphic to X(J, J), the quasi-projective scheme associated to

the Jordan pair (J, J) (cf. 3.10).

In §4, a quartic form f and an alternating form {, } on M , which are taken from

[Freu, I], are introduced. They are stabilized by G. Following [Igusa 1], we also call f the

Freudenthal quartic. Once f and {, } are given, the fact that they are stabilized by G can

be verified by calculation, which is simplified by the notion of scheme-theoretical density

(cf. [EGA, I, 5.4]). After §4, G acts on the principal open subscheme D+(f) of P(M).

In §5, under some additional assumption on the quadruple (J ;N, �, T ) (cf. 5.4 (∗∗)),
the transitivity of the action of G(K) on D+(f)(K) is proved for any k-algebra k → K

with an algebraically closed field K. The proof is precisely the same as that in [Igusa 1,

pp.427-428].

These are the contents of the main part §§1–5. Each section is ended with NOTE

which mentions on some remarks and open questions. Also there are two appendices.

In Appendix A, the relation between our construction in §1 and that of McCrimmon is

discussed. In Appendix B, a class of examples of the quadruple (J ;N, �, T ) as in §1 is

given.
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Terminology

0.1 Throughout this article, k is an arbitrary commutative associative unitary ring. k-alg

stands for the category of commutative associative unitary k-algebras. We denote by k-

alg∧ the category of k-functors, whose objects are set-valued covariant functors on k-alg

and morphisms are natural transformations of functors. We follow the general conventions

of [D-G]. In particular, the category of k-schemes is a full-subcategory of k-alg∧. By a

k-sheaf, we understand an fppf k-sheaf. Ok ∈ k-alg∧ stands for the affine line, i.e., the

forgetful functor. For X ∈ k-alg∧, we define O(X) ∈ k-alg by O(X) := k-alg∧(X,Ok),

the set of morphisms X → Ok with natural k-algebra structure, and call an element of it a

function on X. µk ∈ k-alg∧ stands for the functor R �→ R∗ := {invertible elements of R},
which is an open subfunctor of Ok. For any integer n ≥ 0, we denote by nµk the functor

R �→ {t ∈ R∗ | tn = 1}. The affine k-schemes are, by definition, the representable

functors on k-alg. If Spec A ∈ k-alg∧ is the functor represented by A ∈ k-alg, we have,

for any X ∈ k-alg∧, a canonical morphism ψX : X → Spec O(X) and an equivalence

X affine ⇔ ψX invertible. For example, Ok, µk, and nµk are all affine, and we have

O(Ok) = k[T ] (the polynomial ring in one variable), O(µk) = k[T, T−1] (the localization

of k[T ] at T ), and O(nµk) = k[T ]/(T n − 1).

0.2 Following [LAG, 1.4], we use the notion of dense subfunctors. Namely, for X ∈ k-
alg∧ and a subfunctor U ⊂ X, U is said to be dense in X if the following property holds

for any scalar extensions: any open subfunctor V of X has no closed subfunctor Z ⊂ V

containing U ∩ V other than V . The next lemma is cited from [LAG, 1.5]. It is based on

[EGA IV, 11.10.10] and [SGA3, Exp. XVIII, Prop. 1.2].

Lemma (cf. [LAG, 1.5]): Let X be a smooth separated algebraic k-scheme with non-

empty connected fibers, and U an open subscheme of X. Then the following conditions

are equivalent:

(i) U is dense in X.

(ii) There exist an fppf extension R of k such that U(R) �= ∅.
(iii) U(K) �= ∅ for any algebraically closed field K ∈ k-alg.

0.3 Let M be a k-module. We define k-functors Ma,P(M) and Mm by setting

Ma(R) := MR := M ⊗k R,

P(M)(R) := {L | direct factor of MR and invertible as an R-module},
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Mm(R) := {x ∈MR | λ(x) = 1, ∃λ ∈ t(MR)},
for R ∈ k-alg, where t(MR) stands for the R-module dual to MR. Denote by pM : Mm →
P(M) the morphism of k-functors sending x ∈Mm(R), R ∈ k-alg, to pM(x) := R · x, the

R-submodule of MR spanned by x. We abbreviate O(M) := O(Ma) ∈ k-alg (cf. 0.1, see

also 0.4 below). If M is finitely generated and projective, then:

a) Ma is an affine algebraic k-scheme represented by the symmetric algebra S(tM)

(cf. [D-G, II, §1, 2.1]). In particular, Ma is smooth (cf. [D-G, I, §1, 4.6]) with irreducible

fibers. Also O(M) is canonically identified with S(tM) (cf. 0.1). In the case where M is

an invertible k-module L, the tensor algebra T(tL) coincides with S(tL), and we have an

isomorphism

(1)
⊕
p≥0

t(L⊗p) ∼→ O(L)

of k-algebras.

b) For any m ∈ M = Ma(k), the corresponding morphism m� : Spec k → Ma is

a finitely presented closed immersion. Indeed, since x �→ x − m is an automorphism of

Ma, it suffices to verify for the zero-section Spec k → Ma. Then the corresponding k-

algebra homomorphism is the augmentation S(tM) → k whose kernel I is generated by
tM . However tM is finitely generated by our assumption. Hence so is I.

c) P(M) is a k-scheme represented by the geometric space Proj S(tM) (cf. [EGA, II,

4.2.3]), hence by Proj O(M) (cf. a)). We recall the identification of P(M) and Proj O(M)

after [EGA, II, 4.2.1]. For any L ∈ P(M)(R), R ∈ k-alg, the corresponding morphism

rL : Spec R → Proj O(M) is described as follows: Define a homomorphism of graded

R-algebras

ψL : O(M)⊗k R −→
⊕
p≥0

t(L⊗p)

by the composite of canonical maps O(M) ⊗k R ∼→ O(MR) → O(L)
∼→ ⊕

p≥0
t(L⊗p) (cf.

(1)). Thus we have

(2) ψL(f ⊗ 1)(x⊗ · · · ⊗ x) = f(x),

for f ∈ Op(M), p ≥ 0, and x ∈ L. Since the transpose tMR → tL of the inclusion

is surjective, the morphism rL,ψ associated to the invertible sheaf L := (tL)∼ and the

homomorphism ψ := (ψL)∼ is everywhere defined on Spec R ([EGA, II, 3.7.1, 3.7.4]),

which is rL by definition.

d) Mm is an open subscheme of Ma which admits the structure of µk-torsor over P(M)

(cf. [D-G, III, §4, 1.3]) with the action of µk by the scalar multiplications and with the

structural morphism pM . Note that, if K ∈ k-alg is a field, we have Mm(K) = MK −{0}

9



and the map Mm(K) → P(M)(K) sending x to K · x is surjective. Hence, we have a

bijection

(3) K∗\(MK − {0}) ∼→ P(M)(K).

0.4 LetM,N be k-modules. By a polynomial law on the couple (M,N), we understand

a morphism of k-functors Ma → Na (cf. [Roby, p.219]). Let f : Ma → Na be a polynomial

law and p an integer ≥ 0. We say that f is homogeneous of degree p if f(tx) = tpf(x) for all

t ∈ R, x ∈MR, R ∈ k-alg. Denote by O(M,N) (resp. by Op(M,N)) the k-module of the

polynomial laws (resp. those which are homogeneous of degree p) on (M,N). For N = k,

we write O(M) := O(M,k) and Op(M) := Op(M,k). Denote by NM the k-module of

the maps from the underlying set of M to that of N . We say that a map Q ∈ NM is

quadratic if Q(tx) = t2Q(x) for t ∈ k and x ∈ M , and if the map M ×M → N sending

(x, y) to Q(x+ y)−Q(x)−Q(y) is bilinear. In this case, we write

Q(x, y) := Q(x+ y)−Q(x)−Q(y).

By definition, we have the natural map from Op(M,N) to NM which is not injective in

general. However, this is the case if p ≤ 2. More precisely, O0(M,N) (resp. O1(M,N)

O2(M,N)) is identified with the constant (resp. linear, quadratic) maps from M to N . We

refer to [Roby, Prop. I.5, Cor. of Prop. I.6, Prop. II.1] and [Bou, Alg. IV, §5, Exercices]

for details. For this reason, of O2(M,N) is called also a quadratic map. Similarly, an

element of O2(M) is called a quadratic form. By a cubic (resp. quartic, ...) form on M ,

we understand an element of Op(M) for p = 3 (resp. p = 4, ...).

0.5 Let M,N be k-modules and f a polynomial law on (M,N). (cf. 0.4). For any

x, y ∈MR, R ∈ k-alg, we set

f(x+ εy) =: f(x) + ε∂yf(x) ∈ NR[ε],

where R[ε] is the ring of dual numbers, to obtain a polynomial law ∂yf ∈ O(MR, NR).

This definition may be read as follows: the tangent bundle TMa of the k-functor Ma can

be identified with Ma×Ma by means of TMa(R) := MR[ε] � a+ εb �→ (a, b) ∈MR×MR. f

is a morphism Ma → Na (cf. 0.4), from which the morphism Tf : TMa → TNa is induced.

Then we have

Tf (x, y) = (f(x), ∂yf(x))

for all x, y ∈MR, R ∈ k-alg.
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0.6 LetM be a finitely generated projective k-module. For any p ≥ 0 and f ∈ Op(M),

we define a subfunctor D+(f) of P(M) by setting

D+(f)(R) := {L ∈ P(M)(R) | ψL(f ⊗ 1)(u) = 1, ∃u ∈ L⊗p},

for R ∈ k-alg (cf. 0.3 c)). Then we have the following lemma, in which D+(f) stands

for the open subspace of Proj O(M) whose points are the homogeneous prime ideals of

O(M) not containing f , (Ma)f for the principal open subscheme of Ma defined by the

section f , and pM for the morphism Mm → P(M) defined in 0.3.

Lemma: a) D+(f) is an open subscheme of P(M) with geometric realization D+(f);

in particular, D+(f) is an affine smooth k-scheme.

b) We have p−1
M (D+(f)) = Mm ∩ (Ma)f .

Proof. The last assertion of a) follows from the former and from [EGA, II, 2.3.6, IV,

17.3.9]. To prove the rest, fix R ∈ k-alg arbitrarily.

a): For L ∈ P(M)(R), we have equivalences [rL : Spec R → Proj O(M) factors

through D+(f)] (cf. 0.3 c)) ⇔ [r−1
L (D+(f)) = Spec R] ⇔ [(Spec R)s = Spec R for

s := ψL(f⊗1) ∈ Γ(Spec R, (tL⊗p)∼)] (cf. [EGA, 3.7.3.1])⇔ [the R-linear form ψL(f⊗1) :

L⊗p → R is not zero on all fibers]⇔ [the R-linear form ψL(f ⊗1) : L⊗p → R is surjective]

(cf. [Bou, Alg.Commm. II, §3, no.3, Th.1]) ⇔ [L ∈ D+(f)(R)], from which a) follows.

b): The assertion amounts to saying that {x ∈ Mm(R) | R · x ∈ D+(f)(R)} =

{x ∈ Mm(R) | f(x) ∈ R∗} (cf. 0.3). Let x ∈ Mm(R). If f(x) ∈ R∗, then we have

ψR·x(f ⊗ 1)(u) = 1 for u := f(x)−1x ⊗ · · · ⊗ x ∈ (R · x)⊗p (cf. 0.3 (2)), and hence

R · x ∈ D+(f)(R). Conversely if R · x ∈ D+(f)(R), then we have ψR·x(f ⊗ 1)(u) = 1

for some u ∈ (R · x)⊗p, which must be of the form λx ⊗ · · · ⊗ x with λ ∈ R, and hence

1 = ψR.x(f ⊗ 1)(u) = λf(x) (cf. 0.3 (2)), i.e., f(x) ∈ R∗. This completes the proof.

In particular, for a field K ∈ k-alg, the map x �→ K · x induces a bijection

(1) {x ∈MK |f(x) ∈ K∗}/K∗ ∼→ D+(f)(K),

as is seen from part b) of the lemma and 0.3 (3).

Finally, we look at the relation to group actions. Let G be a k-group functor acting

on M by a linear representation θ : G → GL(M). Then we have the right action θ̃ of G

on O(M) such that

(2) (θ̃(g) · ϕ)(m) := ϕ(θ(g) ·m),

for g ∈ G(R), ϕ ∈ O(M) ⊗k R � O(MR), R ∈ k-alg, and m ∈ MS, S ∈ R-alg

(cf. [D-G, II, §2, 1.2 c)]). On the other hand, G acts on P(M) by setting g · L :=

11



the image of L under the automorphism θ(g) ∈ GL(MR). Note that the diagram

O(M)⊗k R ψL−−−−−−−−−−−−→ ⊕
p≥0

t(L⊗p)�θ̃(g)

�⊕p≥0
t(θ(g)⊗p)

O(M)⊗k R ψg·L−−−−−−−−−−−−→ ⊕
p≥0

t((g · L)⊗p)

is commutative. Indeed, it suffices to show the formula

(3) ψL(θ̃(g) · ϕ)(u) = ψg·L(ϕ)(θ(g)⊗p · u),

for all p ≥ 0, ϕ ∈ Op(M)⊗kR and u ∈ L⊗p, which may be verified after any fppf extension

of R. Hence we may assume u to be of the form λx⊗· · ·⊗x with λ ∈ R, x ∈ L. Then the

assertion becomes a consequence of (2) and 0.3 (2). Note also that, if f ∈ Op(M), p ≥ 0,

and if G stabilizes f , then the subscheme D+(f) of P(M) is stable under G. This follows

from the definition and (3).
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1 Basic Jordan identities

1.1 Consider a quadruple (J ;N, �, T ), where J is a k-module, N a cubic form (cf. 0.4) on

J , ?� : x �→ x� a quadratic map (cf. 0.4) from J to J , and T a symmetric k-bilinear form

on J , satisfying the following two identities (CJ1) and (CJ2): for all x, y ∈ JR, R ∈ k-alg
(cf. 0.3), we have

(CJ1) x�� = N(x)x,

(CJ2) ∂yN(x) = T (x�, y).

The identities (CJ1) and (CJ2) should be read as commutative diagrams

(CJ1bis)

Ja
�−−−−−−−−−−−−→ Ja��

�ϕ
Ja

(N,Id)−−−−−−−−−−−−→ Ok × Ja
and

(CJ2bis)

TJa

TN−−−−−−−−−−−−→ TOk�can.�
��can.

Ja × Ja (N◦pr1,ψ)−−−−−−−−−−−−→ Ok ×Ok

of k-functors, where ϕ : Ok × Ja → Ja is the scalar multiplication and ψ : Ja × Ja → Ok

is the morphism sending (x, y) to T (x�, y) (cf. 0.5).

In the following, we fix such a quadruple (J ;N, �, T ) and set

(1) x× y := (x+ y)� − x� − y�,

(2) Q(x)y := T (x, y)x− x� × y,

(3) N(x, y) := 1− T (x, y) + T (x�, y�)−N(x)N(y),

(4) P (x, y) := x− x� × y +N(x)y�,

for all x, y ∈ JR, R ∈ k-alg, to obtain a bilinear product × in J and polynomial laws

Q ∈ O2(J,End(J)), N(, ) ∈ O(J × J), P (, ) ∈ O(J × J, J) (cf. 0.4). By definition,

(x, y, z) �→ Q(x, z)y (cf. 0.4) is a trilinear product in J . Denote any scalar extension of it

by { } and let D(x, y)z := {xyz}. Hence we have

(5) D(x, y)z := {xyz} := Q(x, z)y = T (x, y)z + T (y, z)x− (z × x)× y,
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for all x, y, z ∈ JR. Finally we set

(6) B(x, y)z := z − {xyz}+Q(x)Q(y)z,

to obtain a polynomial law B ∈ O(J × J,End(J)).

1.2 Let R ∈ k-alg, and x, y, z, u, v ∈ JR. Since N is a cubic form, there exists an

R-linear form Ñ on the degree 3 component Γ3(JR) of the Γ-algebra Γ(JR) of JR such

that N(x) = 〈γ3(x), Ñ〉 (cf. [Bou, IV, §5, exerc.10)]). γp : JR → Γ(JR) (p ≥ 0) satisfy

γ3(x+ y) = γ3(x) + γ2(x)γ1(y) + γ1(x)γ2(y) + γ3(y),

γ2(x+ y)γ1(z) = γ2(x)γ1(z) + γ2(y)γ1(z) + γ1(x)γ1(y)γ1(z),

γ2(x)γ1(x) = 3γ3(x),

(cf. [Bou, IV, §5, exerc.2)]), and T (u�, v) = ∂vN(u) = 〈γ2(u)γ1(v), Ñ〉 by (CJ2). Hence,

applying 〈?, Ñ〉 to the above identities, we get

(CJ3) N(x+ y) = N(x) + T (x�, y) + T (x, y�) +N(y),

(CJ4) T (x× y, z) = N(x, y, z) = T (x, y × z),

(CJ5) T (x�, x) = 3N(x),

where N(x, y, z) := 〈γ1(x)γ1(y)γ1(z), Ñ〉 = N(x+ y + z)−N(x+ y)−N(y + z)−N(z +

x) + N(x) + N(y) + N(z). Since N(x, y, z) is symmetric, the latter equality of (CJ4)

follows from the former. Next, taking the scalar extension R → R[t] to the polynomial

ring in one variable t, replacing x by x+ ty in (CJ1), expanding the result by using 1.1(1)

and (CJ3), and comparing the terms in t, t2, we get

(CJ6) x� × (x× y) = N(x)y + T (x�, y)x,

(CJ7) x� × y� + (x× y)� = T (x�, y)y + T (x, y�)x.

Linearization of (CJ7) with respect to y yields

(CJ8) x� × (y × z) + (x× y)× (x× z) = T (x�, y)z + T (x�, z)y + T (x, y × z)x.

Applying T (?, z) to (CJ6) with (CJ4) in mind, we get

(CJ9) N(x�, x× y, z) = N(x)T (y, z) + T (x�, y)T (x, z).

14



If we interchange y and z in (CJ9), and calculate the left-hand side using (CJ4) and the

symmetry of N( , , ), then the result is

(CJ10) N(x, x� × y, z) = N(x)T (y, z) + T (x�, z)T (x, y).

Applying T (x�, ?) to (CJ7) with (CJ4), (CJ5) and (CJ1) in mind, we get

(CJ11) T (x�, (x× y)�) = T (x�, y)2 +N(x)T (x, y�).

On the other hand, we have

(1) T (Q(x)u, v) = T (x, u)T (x, v)− T (x�, u× v),

by 1.1(2) and (CJ4), which gives T (Q(x)u, v) = T (Q(x)v, u), since the right-hand side of

(1) is symmetric in u and v. However, T is also symmetric by assumption. This gives

(2) T (Q(x)u, v) = T (u,Q(x)v).

Similarly, we have T (D(x, y)u, v) = T (x, y)T (u, v) + T (y, u)T (x, v) − T (u × x, v × y) by

1.1(5) and (CJ4), which gives

(3) T (D(x, y)u, v) = T (u,D(y, x)v).

Finally, using (2), (3) and 1.1 (6), we get

(4) T (B(x, y)u, v) = T (u,B(y, x)v).

1.3 Consider the following condition on a quadruple (J ;N, �, T ) in 1.1:

(∗) J is a finitely generated projective k-module and there exist c1, c2 ∈ J and a linear

form λ on J such that N(c1) ∈ k∗, λ(c�2) = 1.

Assume that (∗) is satisfied. Then we have:

a) The k-functor Ja : R �→ JR becomes a smooth separated algebraic k-scheme with

non-empty connected fibers.

b) The inverse image of Jm ⊂ Ja under the morphism ?� : Ja → Ja and the principal

open subscheme defined by the section N ∈ O(J) are both dense in Ja.

c) The morphism ?� : Ja → Ja is scheme-theoretically dominant (cf. [EGA I, 5.4.2]).

Indeed, a) (resp. b)) follows from 0.3 (resp. 0.2), and c) amounts to saying that the

corresponding ring homomorphism O(J)→ O(J), say ϕ, is injective (cf. [EGA I, 5.4.1]).
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This can be verified as follows: since ?� is quadratic, we have ϕ(Op(J)) ⊂ O2p(J) for all

p ≥ 0. This implies that kerϕ is a homogeneous ideal. Thus it suffices to show that any

homogeneous element f of kerϕ is zero. Indeed, choosing p ≥ 0 so that f ∈ Op(J), we

have 0 = ϕ(f)(x�) = f(x��) = f(N(x)x) (by (CJ1)) = N(x)pf(x). Hence f : Ja → Ok

vanishes on the principal open subscheme of Ja defined by the section N ∈ O(J). This

implies f = 0, in view of b).

Using b), we get

(CJ12) N(x�) = N(x)2,

(CJ13) x× (x� × y) = N(x)y + T (x, y)x�,

for all x, y ∈ JR, R ∈ k-alg. Indeed, we have N(x�)x� = x��� = N(x)2x� by (CJ1). Hence

the morphismsN◦� : Ja → Ok andN2 : Ja → Ok coincide on the inverse image of Jm ⊂ Ja

under the morphism ?� : Ja → Ja. In view of b), this implies N ◦ � = N2, namely (CJ12).

As for (CJ13), we fix y and consider the morphisms f : Ja ⊗k R→ Ja ⊗k R sending x to

x× (x�× y) and g : Ja⊗kR→ Ja⊗kR sending x to N(x)y+T (x, y)x�. Replacing x by x�

in (CJ6) and using (CJ1) and (CJ12), we get N(x)x× (x�×y) = N(x)2y+N(x)T (x, y)x�,

namely N(x)f(x) = N(x)g(x). Hence the morphisms f and g coincide on the ⊗kR of

the principal open subscheme of Ja defined by the section N ∈ O(J). In view of b), this

implies f = g, namely (CJ13).

1.4 Theorem (a modification of McCrimmon [Mc, Th. 1]): Under the assumption

(∗), the data (V ±, Q±) with V + = V − := J,Q+ = Q− := Q is a Jordan pair over k, which

has an invertible element.

1.5 The proof of the theorem requires long calculations. Here we indicate its outlines

with some additional identities for later use. We first recall that (cf. [LJP, 1.2]) a Jordan

pair over k is a pair of k-modules (V +, V −) together with a pair (Q+, Q−) of quadratic

maps Qσ : V σ → Hom(V −σ, V σ), σ = ±, satisfying

(JP1) Dσ(x, y)Qσ(x) = Qσ(x)D−σ(y, x),

(JP2) Dσ(Qσ(x)y, y) = Dσ(x,Q−σ(y)x),

(JP3) Qσ(Qσ(x)y) = Qσ(x)Q−σ(y)Qσ(x),
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for all σ = ±, x ∈ V σ
R , y ∈ V −σ

R , R ∈ k-alg. Here we set Dσ(x, y)z := Qσ(x, z)y. An

element x in V σ is said to be invertible if the linear map Qσ(x) : V −σ → V σ is invertible

(cf. [LJP, 1.10]). Returning to the situation in 1.1 and assume the condition (∗) in 1.3.

Let R ∈ k-alg, and x, y, z ∈ JR. By direct calculations using 1.2, we have Q(x)Q(x�) =

N(x)2Id and Q(x�)Q(x) = N(x�)Id which become

(CJ14) Q(x)Q(x�) = Q(x�)Q(x) = N(x)2Id

by (CJ12). Hence Q(c1) ∈ End(J) is invertible for c1 in 1.3 (∗). Thus it remains to check

the defining identities of Jordan pairs. Start with taking the scalar extension R → R[t]

to the polynomial ring in one variable t, replace x by x+ tz in (CJ13), expand the result

by using 1.1 (1), (CJ3), and compare the terms in t. Then we get

(CJ15) x× ((x× z)× y) + z × (x� × y) = T (x�, z)y + T (x, y)x× z + T (y, z)x�.

Moreover, by direct calculations using 1.1 (1), (2) and (CJ13, 1, 7), we have

(CJ16) (Q(x)y)� = Q(x�)y�.

We can now verify (JP1), (JP2) and (JP3) by straightforward calculations using (CJ6, 3),

(CJ15, 8, 4) and (CJ16, 6, 15, 10), respectively. Thus the proof of theorem is complete.

Let us introduce some more identities. Add 2N(x)y to (CJ6) (resp. (CJ13)), use

(CJ5), and subtract x� × (x× y), (resp. x× (x� × y)). Then we get

2N(x)y = T (x�, x)y + T (x�, y)x− x� × (x× y)

(resp. 2N(x)y = T (x�, x)y + T (x, y)x� − x× (x� × y)),
which in operator forms become

(CJ17) D(x, x�) = D(x�, x) = 2N(x)Id,

whose linearization yields

(CJ18) D(x, x× y) +D(y, x�) = D(x× y, x) +D(x�, y) = 2T (x�, y)Id.

1.6 From now on, we apply the notion of Jordan pair (cf, [LJP]) to (V ±, Q±) with

V + = V − := J,Q+ = Q− := Q. Recall that an element x of J is said to be invertible

if Q(x) ∈ End(J) is invertible (cf. [LJP, 1.10]). In this case, x−1 := Q(x)−1x is the

inverse of x (cf. [LJP, 1.10]). If N(x) ∈ k∗, then x is invertible by (CJ14), and we have

x−1 = N(x)−2Q(x�)x = N(x)−1x� by 1.1 (1), (2), and (CJ1, 5).
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Proposition: An element x of J is invertible if and only if the scalar N(x) is

invertible; if that is the case, we have

(1) x−1 = N(x)−1x�,

and, for any y ∈ J ,

(2) N(x, y) = N(x)N(x−1 − y).

Indeed, we have N(x� − N(x)y) = N(x)2N(x, y) by (CJ3, 12, 1). Hence (2) follows

from (1). It remains to prove the implication: x invertible ⇒ N(x) ∈ k∗; this is a

consequence of (CJ20) in the following lemma, since there exist c1, y ∈ J such that

Q(x)y = c1, N(c1) ∈ k∗ (cf. 1.3(∗)).

1.7 Lemma: For all R ∈ k-alg, and x, y, z ∈ JR, we have

(CJ19) N(x× y) = T (x�, y)T (x, y�)−N(x)N(y),

(CJ20) N(Q(x)y) = N(x)2N(y),

(CJ21) N(B(x, y)z) = N(x, y)2N(z).

Proof. Taking the scalar extension R → R[t] to the polynomial ring in one variable

t, replacing x by x + ty in (CJ12), expanding the result, and comparing the terms in

t3, we get N(x × y) + N(x�, x × y, y�) = 2N(x)N(y) + T (x�, y)T (x, y�), which becomes

(CJ19) by (CJ9) and (CJ5). (CJ20) follows from the expansion of the left-hand side using

1.1 (2), (CJ3), and (CJ19). For (CJ21) we may assume N(x) to be invertible, since the

principal open subscheme defined by the section (x, y) �→ N(x) is dense in Ja × Ja (cf.

0.2). Then x is invertible by the remark at the beginning of 1.6 (which is independent of

the proposition) and we have B(x, y) = Q(x)Q(x−1−y) by [LJP, 2.12]. Thus the assertion

follows from (CJ20) and 1.6 (2).

1.8 Recall that a pair (x, y) of elements of J is said to be quasi-invertible if B(x, y) ∈
End(J) is invertible (cf. [LJP, 3.2]). In this case, xy := B(x, y)−1(x − Q(x)y) is the

quasi-inverse of (x, y) (cf. [LJP, 3.2]).
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Corollary: A pair (x, y) of elements of J is quasi-invertible if and only if the scalar

N(x, y) is invertible; if that is the case, we have

(CJ22) xy = N(x, y)−1P (x, y),

(CJ23) (xy)� = N(x, y)−1(x� −N(x)y),

(CJ24) N(xy) = N(x, y)−1N(x),

and, for any z, w ∈ J ,

(CJ25) (B(x, y)z)� = N(x, y)2B(y, x)−1z�,

(CJ26) (B(x, y)z)× (B(x, y)w) = N(x, y)2B(y, x)−1(z × w).

The quasi-invertibility of (x, y) implies the invertibility of N(x, y) by (CJ21), since

there exist c1, z ∈ J such that B(x, y)z = c1, N(c1) ∈ k∗. Conversely if N(x, y) is

invertible, then we have B(x, y)z = x − Q(x)y and B(x, y)Q(z)y = Q(x)y for z :=

N(x, y)−1P (x, y) by the following 1.9 (3), (4). This implies the quasi-invertibility of

(x, y) together with (CJ22) by [LJP, 3.2 (ii)]. We have

(CJ23bis) P (x, y)� = N(x, y)(x� −N(x)y),

by direct calculation using (CJ1, 6, 7, 13). Hence (CJ23) follows from (CJ22). Since

(CJ26) is a linearization of (CJ25), it remains to verify (CJ24) and (CJ25). We may

assume x to be invertible, since the principal open subscheme defined by the section

(x, y) �→ N(x) is dense in Ja × Ja (cf. 0.2). Then, we have xy = (x−1 − y)−1, B(x, y) =

Q(x)Q(x−1 − y), and B(y, x) = Q(x−1 − y)Q(x) (cf. [LJP, 2.12, 3.13]). Hence (CJ24)

follows from 1.6 (2), and (CJ25) can be verified as follows:

(B(x, y)z)� = (Q(x)Q(x−1 − y)z)�
= Q(x�)Q((x−1 − y)�)z� (by (CJ16))

= N(x)2N(x−1 − y)2Q(x)−1Q(x−1 − y)−1z� (by (CJ14))

= N(x, y)2B(y, x)−1z� (by 1.6 (2)).

1.9 Lemma: For any x, y, z ∈ JR, R ∈ k-alg, we have

(1) B(x, y)y� = y� −N(y)x−N(y)(x−Q(x)y),
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(2) B(x, y)(z × y) = z × P (y, x) + T (z, x)(y� −N(y)x)− T (z, y�)(x−Q(x)y),

(3) B(x, y)P (x, y) = x−Q(x)y,

(4) B(x, y)Q(P (x, y)) = N(x, y)2Q(x)y,

(5) B(x, y)(z − (z × x)× y + T (z, x�)y�) = N(x, y)z − T (z, P (y, x))(x−Q(x)y).

This lemma was used in the proof of 1.8 (also will be used in 2.7). All the formulas

can be proved independently of 1.8 by direct calculation.

1.10 Lemma: For any x, y, z ∈ JR, t ∈ R, R ∈ k-alg such that (x, y) is quasi-

invertible, we have

(1) N(tx, z) = N(x, tz),

(2) P (tx, z) = P (x, tz),

(3) N(x, y)N(xy, z) = N(x, y + z),

(4) N(x, y)P (xy, z) = P (x, y + z).

Proof. (1), (2): Direct consequences of the definitions 1.1 (3), (4).

(3): We may assume x to be invertible, since the principal open subscheme de-

fined by the section (x, y, z) �→ N(x) is dense in Ja × Ja × Ja. Then, by 1.6 (2) and

(CJ24), we have N(xy, z) = N(xy)N((xy)−1 − z) = N(x, y)−1N(x)N((x−1 − y) − z) =

N(x, y)−1N(x)N(x−1 − (y + z)) = N(x, y)−1N(x, y + z).

(4): We may assume (x, y + z) to be quasi-invertible, since the principal open sub-

scheme defined by the section (x, y, z) �→ N(x, y + z) is dense in Ja × Ja × Ja. Then, by

(CJ22), (3), and [LJP, 3.7 (a)], we have P (x, y + z) = N(x, y + z)xy+z =

N(x, y)N(xy, z)(xy)z = N(x, y)P (xy, z).
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NOTE

Using the density arguments, we may replace (CJ25) and (CJ26) by B(y, x)·(B(x, y)z)� =

N(x, y)2z� and B(y, x) · (B(x, y)z)× (B(x, y)w) = N(x, y)2z × w, respectively, which are

valid for arbitrary (x, y). Our quadruple (J ;N, �, T ) is modeled on the McCrimmon’s

axiomatic construction of the Jordan algebra H3(C) of 3 × 3 Hermitian matrices with

coefficients in a composition algebra C (cf. [Mc]). We refer to Appendices A and B for

details.

21



2 Representation

2.0 In this section, let (J ;N, �, T ) be a quadruple as in 1.1 satisfying the condition (∗)
in 1.3, and we use the following notation:

(J, J): the associated Jordan pair (cf. 1.4), i.e., the Jordan pair V = (V ±, Q±) with

V + = V − := J, Q+ = Q− := Q, Q(x)y := T (x, y)x− x� × y (cf. 1.1 (2)).

W: the scheme of quasi-invertible pairs in (J, J). This is precisely the principal open

subscheme of Ja × Ja defined by the section (x, y) �→ N(x, y) (cf. 1.8), which is dense in

Ja × Ja.
Recall that the automorphism group Aut(V ) of a Jordan pair V = (V ±, Q±) is the

group of all (h+, h−) ∈ GL(V +) × GL(V −) such that hσQσ(x) = Q(hσ(x))h−σ for σ =

±, x ∈ V σ
R , R ∈ k-alg (cf. [LJP, 1.3]). The k-group functor R �→ Aut(VR) is denoted by

Aut(V ), which is an affine algebraic k-group scheme (cf. [LAG, 2.3]).

2.1 Consider the k-group scheme µk×GL(J)2 and denote any R-valued point h of it

in the form

(1) h =: (χ(h), h+, h−),

where χ(h) ∈ R∗ and h+, h− ∈ GL(JR). Denote byH the subgroup scheme of µk×GL(J)2

whose R-valued points is the group of h’s satisfying

(H1) T (h+x, h−y) = T (x, y),

(H2) (h+x)
� = χ(h)−1h−x�, (h−x)� = χ(h)h+x

�,

(H3) N(h−1
+ x) = N(h−x) = χ(h)N(x),

for all x, y ∈ JS, S ∈ R-alg. Note that we have

(H2bis)




(h+x)
� = χ(h)−1h−x�, (h+x)× (h+y) = χ(h)−1h−(x× y),

(h−x)� = χ(h)h+x
�, (h−x)× (h−y) = χ(h)h+(x× y),

which is the linearization of (H2). Note also that the inclusion H → µk ×GL(J)2 is a

finitely presented closed immersion. Indeed, our definition amounts to saying that the

diagram

H
incl.−−−−−−−−−−−−→ µk ×GL(J)2

�
�d

Spec k
s−−−−−−−−−−−−→ Ea
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is Cartesian, where E := t(J ⊗ J)×O2(J, J)2 ×O3(J)2, s := the section corresponding

to (T, �, �, N,N) ∈ E = Ea(k), and d(λ, h+, h−) := (T ◦ (h+⊗h−), λh−1
− ◦ � ◦h+, λ

−1h−1
+ ◦

� ◦ h−, λ−1N ◦ h−1
+ , λ−1N ◦ h−) for λ ∈ R∗, h+, h− ∈ GL(JR), R ∈ k-alg. However the

section s is a finitely presented closed immersion, since E is a finitely generated projective

k-module (cf. 0.3 b)).

In particular, H is an affine algebraic k-group scheme. If h ∈ H(R), then

(2) h∨ := (χ(h)−1, h−, h+)

also belongs to H(R) and h �→ h∨ becomes an automorphism of H of period two. If

t ∈ R∗, then

(3) z(t) := (t−3, tId, t−1Id)

belongs to H(R) and, varying R, we get an inclusion z : µk → H, which factors through

the center of H. Define −1 ∈ H(k) to be z(−1) and set

(4) −h := z(−1)h ∈ H(R)

for h ∈ H(R), R ∈ k-alg. Then h �→ −h becomes an automorphism of H of period two.

Since we have χ(z(t)) = t−3 by (3), the character χ : H → µk is an epimorphism of

k-sheaves. By 1.2 (2), (CJ4), (CJ16), and 1.6 (1),

(5) b(x) := (N(x), N(x)−1Q(x), N(x)Q(x−1))

belongs to H(R) for invertible x ∈ JR.

2.2 We see from (H2bis) and 2.0 that pr2 : H → GL(J)2 factors through Aut(J, J).

Since there exists x ∈ J such that N(x) ∈ k∗ (cf. 1.3 (∗)), we see from (H3) that the

morphism H → Aut(J, J) sending h to (h+, h−) is a monomorphism. If h ∈ H(R) and

(x, y) ∈ W(R), then

(1) ρ(h) = (ρ+(h), ρ−(h)) := (χ(h)h+, χ(h)−1h−)

as well as (h+, h−) belongs to Aut(J, J)(R), while

(2) b(x, y) := (N(x, y), N(x, y)−1B(x, y), N(x, y)B(y, x)−1)

belongs to H(R) by 1.2 (4), (CJ25), and (CJ21). Varying R, we get a homomorphism

ρ : H → Aut(J, J) of k-groups and a morphism b : W → H of k-schemes. Note that we

have

(3) ρ+(h∨) = ρ−(h), ρ−(h∨) = ρ+(h),
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(4) b(x, y)∨ = b(y, x)−1,

by definition and 2.1 (2).

2.3 Lemma: ((J, J), H, ρ, b) is a Jordan system and the kernel of ρ : H → Aut(J, J)

is the functor-image of 2µk ⊂ µk under z : µk → H.

Proof. We first recall that (cf. [LAG, 5.1]) a Jordan system over k is a quadruple

(V,H, ρ, b) where 1) V = (V ±, Q±) is a Jordan pair with V ± finitely generated projective

k-modules, 2) H is a separated k-group sheaf, 3) ρ = (ρ+, ρ−) is a homomorphism

H → Aut(V ) of k-groups, 4) b is a morphism W → H, with W the scheme of quasi-

invertible pairs of V , satisfying

(JS1) ρ(b(x, y)) = (B+(x, y), B−(y, x)−1),

(JS2) hb(x, y)h−1 = b(ρ+(h)x, ρ−(h)y),

(JS3) b(tx, t−1y) = b(x, y),

(JS4) b(x, y)b(xy, w) = b(x, y + w),

(JS5) b(z, yx)b(x, y) = b(z + x, y),

for all R ∈ k-alg, t ∈ R∗, h ∈ H(R), and x, z ∈ V +
R , y, w ∈ V −

R such that (x, y), (x, y +

w), (x + z, y) ∈ W(R). Here we set, in the notation of 1.5, Bσ(u, v) := Id −Dσ(u, v) +

Qσ(u)Q−σ(v). In our situation, (JS1) follows from the definitions (1) and (2) in 2.2, and

(JS2–5) from [LJP, 3.9] and 1.10. As for the last assertion, we have ρ(z(t)) = (t−2Id, t2Id)

by 2.1 (3) and 2.2 (1). Hence ρz is trivial on 2µk (cf. 0.1). Conversely if ρ(h) = 1, then

we have h+ = t−1Id and h− = tId with t := χ(h), from which we get t2 = 1 by (H3). This

shows h = z(t) by 2.1 (3).

2.4 Denote by (G,ψ) the elementary system associated to the Jordan system

((J, J), H, ρ, b) in 2.2 (cf. [LAG, 5.2]). By definition, G is a separated k-group sheaf, ψ is

an action µk ×G→ G of µk on G, and we have a diagram

Ja
exp+,exp−

=⇒ G←− H
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of k-group sheaves whose arrows are all monomorphic ([LAG, 3.1, 3.3]). Hence, H can

be identified with its image, which coincides with the subgroup sheaf Gψ, the set of

fixed points of G under ψ (cf. [LAG, 4.9]). Denote by Uσ(σ = ±) the functor-image of

expσ. Then, H normalizes Uσ and the multiplication U+ × U− × H × U+ → G is an

epimorphism of k-sheaves (cf. [LAG, 3.6, 3.8]). The multiplication U− ×H × U+ → G is

an open immersion (cf. [LAG, 3.4]) whose functor-image Ω is dense in G (cf. [LAG, 3.8]).

We have

exp+(x) exp−(y) = exp−(yx)b(x, y) exp+(xy)

for (x, y) ∈ W(R), R ∈ k-alg, andW ⊂ Ja×Ja coincides with the inverse image of Ω ⊂ G

under the morphism Ja × Ja → G sending (x, y) to exp+(x) exp−(y) (cf. [LAG, 4.1]).

2.5 Consider the k-module

(1) M := k ⊕ J ⊕ k ⊕ J =:





 α a

b β




∣∣∣∣∣∣ α, β ∈ k, a, b ∈ J

 ,

and set

(2) θ0(h) ·

 α a

b β


 :=


 χ(h)−1α h+a

h−b χ(h)β


 ,

(3) θ+(x) ·

 α a

b β


 :=


 α a+ αx

b+ a× x+ αx� β + T (b, x) + T (a, x�) + αN(x)


 ,

(4) θ−(y) ·

 α a

b β


 :=


 α− T (a, y) + T (b, y�)− βN(y) a− b× y + βy�

b− βy β


 ,

(5) φ(t) ·

 α a

b β


 :=


 t−1α a

tb t2β


 ,

(6) ε ·

 α a

b β


 :=


 β −b
a −α


 ,

for all R ∈ k-alg, h ∈ H(R), t ∈ R∗, x, y, a, b ∈ JR, and α, β ∈ R. Thus we have

(7) ε2 = −Id,

(8) εθ+(x)ε−1 = θ−(x),
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(9) εθ0(h)ε
−1 = θ0(h

∨).

By (2), the endomorphisms θ0(h) of the R-module MR are invertible and h �→ θ0(h) is

a homomorphism. Since θ+(0) = Id and θ+(x)θ+(y) = θ+(x + y) by (3) and (CJ3,4), it

follows, in view of (7) and (8), that the endmorphisms θσ(x) (σ = ±) are also invertible

and x �→ θσ(x) are homomorphisms. Varying R, we get a diagram

Ja
θ+,θ−
=⇒ GL(M)

θ0←− H

of k-group schemes. Note that we have

(10) (Intφ(t)) · (θ0(h)) = θ0(h),

(11) (Intφ(t)) · (θ+(x)) = θ+(tx),

(12) (Intφ(t)) · (θ−(y)) = θ−(t−1y),

for t ∈ R∗, h ∈ H(R), x, y ∈ JR. In addition, we have

(13) θ0(−h) = −θ0(h),

(14) θ+(x)θ−(x−1)θ+(x) = −θ0(b(x))ε,

for invertible x ∈ JR, by (2), (3), (4), 2.1 (4), (5), and straightforward calculation.

2.6 Theorem: There exists a unique homomorphism θ : G → GL(M) of k-group

sheaves extending θ0, θ+, and θ−; moreover, θ is a monomorphism.

To prove the first assertion, it suffices to verify

(1) (Intθ0(h)) · (θ+(x)) = θ+(ρ+(h).x),

(2) (Intθ0(h)) · (θ−(y)) = θ−(ρ−(h).y),

(3) θ+(x)θ−(y) = θ−(yx)θ0(b(x, y))θ+(xy),

for all R ∈ k-alg, h ∈ H(R), (x, y) ∈ W(R) (cf. [LAG, 4.14]). Direct calculation using

(H1, 2bis, 3) shows (1) and, in view of 2.5 (8), (9) and 2.2 (3), we see that (2) follows
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from (1). We prove (3) in 2.8 after introducing some formulas. We now prove the

last assertion of the theorem on which the following 2.7 and 2.8 do not depend. Let

g ∈ G(R), R ∈ k-alg, such that θ(g) = Id. Then there exist an fppf extension S of R and

x, y, z ∈ JS, h ∈ H(S) such that

gS = exp+(x) exp−(y) exp+(z)h

(cf. 2.4). Hence we have Id = θ(gS) = θ+(x)θ−(y)θ+(z)θ0(h). In particular

θ+(x)θ−(y)θ+(z) ·

 0 0

0 1


 =


 −N(y) y� −N(y)x

−P (y, x) N(y, x)




and

θ0(h)
−1 ·


 0 0

0 1


 =


 0 0

0 χ(h)−1




are equal and we get N(y) = 0, y� − N(y)x = 0, i.e., y� = 0, and P (x, y) = 0 (cf. 1.1

(4)), i.e., y = 0, successively. Hence gS = exp+(x + z)h. Thus we have Id = θ(gS) =

θ+(x+ z)θ0(h). In particular

θ+(x+ z) ·

 1 0

0 1


 =


 1 x+ z

(x+ z)� 1 +N(x+ z)




and

θ0(h)
−1 ·


 1 0

0 1


 =


 χ(h) 0

0 χ(h)−1




are equal and we get x+ z = 0. Hence gS = h. Now Id = θ(gS) = θ0(h) implies h = 1 by

2.5 (2) and, since R→ S is fppf and G is a sheaf, gS = h = 1 implies g = 1. This shows

the last assertion.

2.7 For the proof of 2.6 (3), we introduce some formulas. For any m ∈M with entries

α, β, a, b (cf. 2.5 (1)), we define polynomial laws mδ ∈ O(J), and mν ∈ O(J, J) by setting

(1)


 α a

b β



δ

(w) := α− T (a,w) + T (b, w�)− βN(w),

(2)


 α a

b β



ν

(w) := a− b× w + βw�,

for all w ∈ JR, R ∈ k-alg (cf. 0.4).
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Lemma: The map M → O(J)×O(J, J) sending m to (mδ,mν) is injective k-linear,

and the following formulas hold for all m ∈M,h ∈ H(k), x, y ∈ J, t ∈ k∗ and w ∈ JR, R ∈
k-alg such that (w, x) is quasi-invertible:

(3) (θ−(y) ·m)δ(w) = mδ(y + w),

(4) (θ−(y) ·m)ν(w) = mν(y + w),

(5) (φ(t) ·m)δ(w) = t−1mδ(tw),

(6) (φ(t) ·m)ν(w) = mν(tw),

(7) (θ0(h) ·m)δ(w) = χ(h)−1mδ(ρ−(h)−1w),

(8) (θ0(h) ·m)ν(w) = h+m
ν(ρ−(h)−1w),

(9) (θ+(x) ·m)δ(w) = N(x,w)mδ(wx),

(10) (θ+(x) ·m)ν(w) = (θ+(x) ·m)δ(w)xw +N(x,w)B(x,w)−1mν(wx).

Proof. m �→ (mδ,mν) is k-linear by the definitions (1) and (2). To show the injectivity,

let mδ = 0 and mν = 0 for m ∈ M with entries α, β, a, b. Then we have, by (1) and (2),

α = mδ(0) = 0 and a = mν(0) = 0. Moreover, if t is a variable over k and w ∈ J , then

βN(w) ∈ k is the coefficient of t3 in mδ(tw) ∈ k[t] and there exists w ∈ J such that

N(w) ∈ k∗ (cf. 1.3 (∗)). This shows β = 0. There remain relations T (b, w�) = 0 and

b × w = 0, which yield b = 0, since 0 = (b × w) × w� = N(w)b + T (w�, b)w = N(w)b by

(CJ6). Thus we get m = 0, which shows the injectivity. Let us show the latter half of the

proposition. By the definitions (1), (2) and 2.5 (4), we have

θ−(w) ·m =


 mδ(w) mν

b− βw β




(notation as in (1), (2)). Hence (3) and (4) follow from the fact that θ− is a homomorphism

(cf. 2.5). On the other hand, (5) and (6) follow from

θ−(w)φ(t) ·m = φ(t)θ−(tw) ·m =


 t−1mδ(w) mν(tw)

t(b− βtw) t2β



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(cf. 2.5 (5), (12)). Moreover we have, by (1), (2) and 2.5 (2),

(θ0(h) ·m)δ(w) = χ(h)−1α− T (h+a,w) + T (h−b, w�)− χ(h)βN(w),

(θ0(h) ·m)ν(w) = h+a− (h−b)× w + χ(h)βw�,

from which (7) and (8) follow, in view of 2.1 (H1), (H2bis), (H3). Finally, we have

(9bis) (θ+(x) ·m)δ(w) = αN(x,w)− T (a, P (w, x)) + T (b, w� −N(w)x)− βN(w)

and

(10bis)
(θ+(x) ·m)ν(w)

= αP (x,w) + a− (a× x)× w + T (a, x�)w� − b× w + T (b, x)w� + βw�

by (1), (2), 2.5 (3) and (CJ6). Thus (9) follows from (9bis) and (CJ22, 23, 24). (10)

acted on by B(x,w) becomes

B(x,w)(θ+(x) ·m)ν(w) = (θ+(x) ·m)δ(w)(x−Q(x)w) +N(x,w)mν(wx),

which we prove by acting B(x,w) on (10bis) and by using 1.9 (1), (2), (3), (5), (CJ22,

23, 24) and the above (9bis).

2.8 Verification of 2.6 (3). Now we show the identity θ−(y)θ+(x) =

θ+(xy)θ0(b(x, y)
−1)θ−(yx) which becomes 2.6 (3) when we take inverses and replace (x, y)

by (−x,−y). After taking scalar extension and applying the first part of the lemma in

2.7, we are reduced to verifying the equalities of polynomial laws

(1) (θ−(y)θ+(x) ·m)δ = (θ+(xy)θ0(b(x, y)
−1)θ−(yx) ·m)δ,

(2) (θ−(y)θ+(x) ·m)ν = (θ+(xy)θ0(b(x, y)
−1)θ−(yx) ·m)ν ,

for arbitrary (x, y) ∈ W(k) and m ∈M . For this, it suffices to verify the equalities of the

values at w ∈ JR, R ∈ k-alg such that (w, xy) is quasi-invertible, since such w’s form a

dense subscheme of Ja. Then the following calculations work:

(θ+(xy)θ0(b(x, y)
−1)θ−(yx) ·m)δ(w)

= N(xy, w)(θ0(b(x, y)
−1)θ−(yx) ·m)δ(w(xy)) (by 2.7 (9))

= N(xy, w)N(x, y)(θ−(yx) ·m)δ(B(y, x)−1(w(xy))) (by 2.7 (7))

= N(x, y + w)mδ(yx +B(y, x)−1(w(xy))) (by 2.7 (3), 1.9 (3))

= N(x, y + w)mδ((y + w)x) (by [LJP, 3.7 (2)])

= (θ+(x) ·m)δ(y + w) (by 2.7 (9))

= (θ−(y)θ+(x) ·m)δ(w) (by2.7 (3)),
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from which (1) follows. Moreover

(θ+(xy)θ0(b(x, y)
−1)θ−(yx) ·m)ν(w)

= (θ+(xy)θ0(b(x, y)
−1)θ−(yx) ·m)δ(w)(xy)w

+N(xy, w)B(xy, w)−1(θ0(b(x, y)
−1)θ−(yx) ·m)ν(w(xy)) (by 2.7 (10))

= (θ−(y)θ+(x) ·m)δ(w)xy+w

+N(xy, w)B(xy, w)−1N(x, y)B(x, y)−1(θ−(yx) ·m)ν(B(y, x)−1w(xy))

(by (1) above, 2.7 (8), [LJP, 3.7 (1)])

= (θ+(x) ·m)δ(y + w)xy+w +N(x, y + w)B(x, y + w)−1mν((y + w)x)

(by 2.7 (3), (4), 1.10 (3), [LJP, 3.6 (JP33), 3.7 (2)])

= (θ+(x) ·m)ν(y + w) (by 2.7 (10))

= (θ−(y)θ+(x) ·m)ν(w) (by 2.7 (4)),

from which (2) follows. This completes the verification of 2.6 (3).

NOTE

The matrix notation for an element of the k-module M = k⊕ J ⊕ k⊕ J (cf. 2.5) is taken

from [Fau]. The idea of imbedding M into O(J)×O(J, J) (cf. 2.7) is inspired by [LHA].

To determine the type of the geometric fiber of the representation θ : G → GL(M), it

seems necessary to define some object, say split data, for a quadruple (J ;N, �, T ), so that

the following two conditions are satisfied: a) If k is an algebraically closed field, a split

data exists; b) If a split data exists, G is a “splitable reductive k-group”(cf. [SGA3,

Exp. XXII, 1.13]), and one split data define one “spliting”(cf. [SGA3, Exp. XXII, 1.13])

of G.
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3 Stabilizers

3.0 We keep the notation in §2. The representation θ induces linear and projective

representations

µk ×G→ GL(M).

and

G→ Aut(P(M)),

respectively. Note that, if m ∈ Mm(k) (cf. 0.3), then pr2 : µk × G → G induces an

isomorphism

Centµk×G(m) � CentG(pM(m)),

sinceMm is a µk-torsor with structure morphism pM : Mm → P(M) (cf. 0.3). We consider

the two elements

u0 := pM(m0) and u1 := pM(m1) ∈ P(M)(k),

where

m0 :=


 1 0

0 1


 and m1 :=


 1 0

0 0


 .

The propose of this section is to determine their stabilizers in G and the orbit-sheaf of

u1 under G. The stabilizers are canonically isomorphic to those of m0 and m1 in µk ×G,

respectively.

3.1 We first introduce a notational convention. Recall that θ is a monomorphism (cf.

2.6) and the image of G(k) under θ(k) contains ε ∈ GL(M) (cf. 2.5 (14)). We regard ε

as an element of G(k) via θ. Thus we have

(1) ε2 = −1,

(2) εhε−1 = h∨,

(3) exp+(x) exp−(x−1) exp+(x) = −b(x)ε,

for h ∈ H(R), and invertible x ∈ JR, R ∈ k-alg (cf. 2.5 (7), (9), (13), (14)).

3.2 Let H ′ ⊂ H be the kernel of the character h �→ χ(h)4 of H (cf. 2.1). If h =

(χ(h), h+, h−) ∈ H ′(R), R ∈ k-alg, then

s(h) := (λ, λ2h−, λ2h+) with λ := χ(h)
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belongs to H ′(R). Indeed, since λ4 = 1, we have z(λ2) = (λ2, λ2Id, λ2Id) (cf. 2.1 (3)),

and hence s(h) = z(λ2)h∨ ∈ H(R) (cf. 2.1 (2)). In particular, we have

(1) χ(s(h)) = χ(h),

from which s(h) ∈ H ′(R) follows. Thus we get an automorphism s : h �→ s(h) of the

k-group H ′ of period two. Let the constant k-group (Z/2Z)k act on H ′ via s (cf. [D-G,

II, §1, 3.3 a)]), and construct the semi-direct product H ′ ×s (Z/2Z)k. Hence we have

(2) (h, f) · (h′, f ′) = (hsf (h
′), f ∗ f ′),

for all h, h′ ∈ H ′(R), and f, f ′ ∈ (Z/2Z)k(R), R ∈ k-alg, where we regard (Z/2Z)k(R) as

the group of idempotents in R with operation f ∗f ′ := f+f ′−2ff ′ (cf. [D-G, III, §5, 2.4]),

and sf(h
′) ∈ H ′(R) is the element corresponding to (h′, s(h′)) ∈ H ′(R1−f)×H ′(Rf) under

the decomposition R � R1−f × Rf of R with respect to the idempotent f . Therefore, in

view of (1),

(h, f) �→ χ(h) : H ′ ×s (Z/2Z)k −→ 4µk

is a character. Moreover, since the morphism (Z/2Z)k → 2µk sending f to 1− 2f is also

a character, we can define a character χ′ : H ′ ×s (Z/2Z)k → 2µk by setting

(3) χ′(h, f) := χ(h)2(1− 2f),

for h ∈ H ′(R) and f ∈ (Z/2Z)k(R), R ∈ k-alg. Let H ′′ ⊂ H ′ ×s (Z/2Z)k be the kernel of

χ′. Hence we have

(4) H ′′(R) = {(h, f) ∈ H(R)× R | f2 = f, χ(h)2 = 1− 2f},

for all R ∈ k-alg. For any (h, f) ∈ H ′′(R), R ∈ k-alg, define f(h, f) ∈ G(R) to be

the element with components (h, hε) ∈ G(R1−f) × G(Rf) under the decomposition R �
R1−f ×Rf . Varying R, we get a morphism

f : H ′′ → G

of k-sheaves.

3.3 Theorem: f is a homomorphism of k-group sheaves and factors into the composite

f : H ′′ ∼→ CentG(u0)
incl.−→ G,

whose first arrow is an isomorphism.

32



3.4 First, we show that f is a homomorphism. Consider (h, f), (h′, f ′) ∈ H ′′(R), R ∈
k-alg, and describe any element in G(R) in terms of four components with respect to the

decomposition

(1) R � R(1−f)(1−f ′) ×R(1−f)f ′ ×Rf(1−f ′) ×Rff ′

of R. Then we have

f(h, f) = (h, h, hε, hε) and f(h′, f ′) = (h′, h′ε, h′, h′ε)

by definition, so that we have

(2) f(h, f)f(h′, f ′) = (hh′, hh′ε, h(h′)∨ε,−h(h′)∨)

by 3.1 (1), (2). On the other hand, we have

(3) f((h, f)(h′, f ′)) = (hsf (h
′), hsf (h′)ε, hsf (h′)ε, hsf (h′))

by 3.2 (2). However, by 3.2 (4) and the formula s(h) = z(χ(h)2)h∨, the components

of sf (h
′) ∈ H ′(R) with respect to R � R1−f × Rf is (h′, s(h′)) = (h′, z(1 − 2f ′)h′∨) ∈

H ′(R1−f) ×H ′(Rf ), and that of 1− 2f ′ ∈ R with respect to R � R1−f ′ × R′
f is (1,−1).

Thus we have

(4) sf (h
′) = (h′, h′, (h′)∨,−(h′)∨)

with respect to (1). Hence, by (2), (3), and (4), we get f((h, f)(h′, f ′)) = f(h, f)f(h′, f ′).

3.5 Next, we show that f is a monomorphism. Consider (h, f) ∈ H ′′(R), R ∈ k-alg
such that f(h, f) = 1G(R). Then we have h = 1 in G(R1−f) and hε = 1 in G(Rf). Hence

we have h = −ε in G(Rf) (cf. 3.1 (1)), which yields h = 1 and −ε = 1 in G(Rf),

since H ∩ U+U−U+ is trivial (cf. [LAG, 3.6(c)]). In particular, we have h = 1 in H(R).

Moreover, in view of 2.5 (6), −ε = 1 occurs only when Rf = 0. Thus we have f = 0.

3.6 For any (h, f) ∈ H ′′(R), R ∈ k-alg, we have

θ(f(h, f)) ·

 1 0

0 1


 = χ(h)−1


 1 0

0 1


 .

Indeed, since f(h, f) = (h, hε) and χ(h)2 = 1− 2f = (1,−1) with respect to the decom-

position R � R1−f ×Rf (cf. 3.2 (3) (4)), we have

θ(f(h, f)) ·

 1 0

0 1



R1−f

= θ0(h) ·

 1 0

0 1


 =


 χ(h)−1 0

0 χ(h)


 = χ(h)−1


 1 0

0 1



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and

θ(f(h, f)) ·

 1 0

0 1



Rf

= θ0(hε) ·

 1 0

0 1


 =


 χ(h)−1

0 −χ(h)


 = χ(h)−1


 1 0

0 1


 ,

from which the assertion follows. Thus the morphism f : H ′′ → G factors through

CentG(u0). The resulting morphism f ′ : H ′′ → CentG(u0) is a monomorphism, since

so is f (cf. 3.5). To complete the proof of Theorem 3.3, it remains to show that f ′ is

an epimorphism (cf. [D-G, III, §1, 2.1]). In view of 2.4, the question is reduced to the

following lemma:

3.7 Lemma: Let R ∈ k-alg, ν ∈ R∗, x, y, z ∈ JR and h ∈ H(R) such that

(1) νθ+(x)θ−(y)θ+(z)θ0(h) ·

 1 0

0 1


 =


 1 0

0 1


 .

Then, there exists an idempotent f ∈ R and an element h′ ∈ H(R) with the following

properties:

(i) χ(h′)2 = 1− 2f,

(ii) χ(h′) = ν,

(iii) the components of g := exp+(x) exp−(y) exp+(z)h ∈ G(R) with respect to the

decomposition R � R1−f ×Rf are (h′, h′ε) ∈ G(R1−f )×G(Rf).

Proof. We define α, t ∈ R and a ∈ JR, depending on (ν, x, y, z, h), by

(2) t := χ(h)2,

(3) α := N(z, y)− tN(y),

(4) a := z − z� × y + (N(z) + t)y�.

Then direct calculation shows that (1) is equivalent to the four conditions:

(5) α = χ(h)ν−1,

(6) α3 = t2N(y)(T (z, y)− z)− tN(z, y)(T (z, y)− 1),

(7) y = Q(y)z,
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(8) x = −α−1a.

By (2), (3) and (5), we have

(9) χ(h)−1νN(z, y)− χ(h)νN(y) = 1.

Moreover, by (7), we have

(10) N(z, y)N(y) = 0.

Indeed, the left-hand side equals N(y) − N(y)2N(z) − T (y, z)N(y) + T (y�, z�)N(y) (cf.

1.1 (4)). Acting N(?) and Q(y�) on (7) with (CJ20, 1, 5, 14) in mind, we get N(y) =

N(y)2N(z) and N(y)y� = N(y)2z. Hence we have T (y, z)N(y) = T (y, z)N(y)2N(z) =

T (y,N(y)y�)N(z) = 3N(y)2N(z) = 3N(y), and T (y�, z�)N(y) = T (N(y)2z, z�)

= 3N(y)2N(z) = 3N(y) (cf. (CJ5)). Thus (10) holds. By (9) and (10), the element

f := −χ(h)νN(y)

of R is an idempotent. Since y becomes invertible after the scalar extension R → Rf

(cf. 1.6), we can define h′ ∈ H(R) to be the element with components (h,−b(y−1)h∨) ∈
H(R1−f )×H(Rf) (cf. 2.1) with respect to the decomposition R � R1−f ×Rf . We claim

that (f, h′) is what we want. Namely:

a) After the scalar extension R → R1−f , we have χ(h′)2 = 1 − 2f, χ(h′) = ν, and

g = h′. Indeed, (y, z) becomes quasi-invertible by (9) and 1.7, and we have B(y, z)y =

B(y, z)Q(y)z = Q(y−Q(y)z) = 0 by (7) and [LJP, 2.11 (JP23)], from which we get y = 0.

Then we have 1 = χ(h)ν−1 (by (3), (5)), 1 = χ(h)2 (by (2), (3), (6)), x = −z (by (3), (4),

(8)), and g = exp+(x) exp−(y) exp+(z)h = h. Thus the assertion follows, since we have

h′ = h and 1− 2f = (1− 2f)(1− f)/(1− f) = 1 after our scalar extension.

b) After the scalar extension R → Rf , we have χ(h′)2 = 1 − 2f, χ(h′) = ν, and

g = h′ε. Indeed, y becomes invertible by 1.6, and we have z = y−1 by (7), from which we

get N(z, y) = 0, T (z, y) = 3, z� × y = 2z, and y� = N(z)−1z, in view of 1.6 (2), (CJ5),

and (CJ1). Then we have ν = −N(y)−1χ(h)−1 (by (2), (3), (5)), N(y)2χ(h)2 = −1

(by (2), (3), (6)), x = y−1 (by (2), (3), (4), (8)), and g = exp+(x) exp−(y) exp+(z)h =

exp+(x) exp−(x−1) exp+(x)h = −b(x)εh = −b(y−1)h∨ε (by 3.1 (2), (3)). Thus the as-

sertion follows, since we have h′ = −b(y−1)h∨, 1 − 2f = (1 − 2f)f/f = −1, χ(h′) =

−N(y)−1χ(h)−1 (by 2.1 (1), (4)) after our scalar extension.

3.8 Recall that H normalizes U+ and U− (cf. 2.4). Consider the semi-direct product

U− ×H and the homomorphism

m : U− ×H −→ G
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induced by the multiplication, which is a monomorphism since the multiplication induces

an open immersion U− ×H × U+ → G (cf. 2.4).

Theorem: m factors into the composite

m : U− ×H ∼→ CentG(u1)
incl.−→ G

whose first arrow is an isomorphism.

Indeed, for any y ∈ JR, h ∈ H(R), R ∈ k-alg, we have

θ−(y) ·

 1 0

0 0


 =


 1 0

0 0


 ,

θ0(h) ·

 1 0

0 0


 = χ(h)−1


 1 0

0 0




by 2.5 (2), (4). Hence the morphism m factors through CentG(u1). The resulting

morphism m′ : U− × H → CentG(u1) is a monomorphism, since so is m. To complete

the proof of the theorem, it remains to show that m′ is an epimorphism (cf. [D-G, III, §1,

2.1]). In view of 2.4, the question is reduced to the following lemma:

3.9 Lemma: Let R ∈ k-alg, ν ∈ R∗, x, y, z ∈ JR and h ∈ H(R) such that

νθ−(y)θ+(x)θ−(z)θ0(h).


 1 0

0 0


 =


 1 0

0 0


 .

Then we have x = 0 and ν = χ(h).

Proof. Indeed, we have, by 2.5 (2), (3), (4),

θ−(y)θ+(x)θ−(z)θ0(h).


 1 0

0 0


 = χ(h)−1


 N(x, y) P (x, y)

x� −N(x)y N(x)


 ,

where N(x, y) := 1− T (x, y) + T (x�, y�)−N(x)N(y), and P (x, y) := x− x�× y+N(x)y�

(cf. 1.1 (3), (4)). This shows our assertion.

3.10 Consider the orbit-sheaf (cf. [D-G, III, §3, 1.6]) of u1 (cf. 3.0) under G, which we

denote by OG(u1). Recall that (cf. [LHA, 2.1, 2.2]) the Jordan pair (J, J) (cf. 1.6) defines
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a quasi-projective algebraic k-scheme X(J, J) which is the quotient-sheaf of Ja × Ja by

the equivalence relation:

(1) (x, y) ∼ (x′, y′)⇔ (x, y − y′) is quasi-invertible and x′ = xy−y
′
,

for (x, y) and (x′, y′) in JR × JR, R ∈ k-alg. On the other hand, in view of 2.4 and 3.8,

we have an epimorphism π′ : Ja × Ja → OG(u1) such that

π′(x, y) = pM


 N(x, y) P (x, y)

x� −N(x)y N(x)


 .

This is precisely the composite of the morphism Ja × Ja → G sending (x, y) to

exp−(y)exp+(x) and the orbit-morphism G→ OG(u1) of u1 under G.

Corollary: The morphism π′ factors into the composite

π′ : Ja × Ja can.−→ X(J, J)
∼→ OG(u1),

whose second arrow is an isomorphism.

This follows from 3.8 and the fact (cf. [LHA, 4.3]) that the equivalence relation

(1) coincides with the fibration by the morphism Ja × Ja → G/U−H sending (x, y) to

exp−(y)exp+(x) mod U−H.

NOTE

As for the orbit-sheaf OG(u0) of u0, if k is a field and some condition on the quadru-

ple (J ;N, �, T ) is satisfied, this becomes the principal open subscheme defined by the

Freudenthal quartic. For this, see NOTE in §5.
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4 Freudenthal quartic

4.1 Recall that (J ;N, �, T ) is a quadruple as in 1.1 satisfying the condition (∗) in 1.3,

that G is the k-group sheaf defined in 2.4, and that M is the k-module k⊕ J ⊕ k⊕ J (cf.

2.5) on which G acts via the representation θ defined in 2.6. Consider the quartic form

(cf. 0.4) f ∈ O4(M) and the alternating form {, } ∈ t(∧2M) such that

(1) f


 α a

b β


 := (T (a, b)− αβ)2 + 4N(a)β + 4N(b)α− 4T (a�, b�),

(2)





 α a

b β


 ,


 α′ a′

b′ β′





 := T (a, b′)− T (b, a′) + βα′ − αβ′,

for all α, α′, β, β′ ∈ R, and a, b, a′, b′ ∈ JR, R ∈ k-alg.

Proposition: G stabilizes f and {, }.

Proof. The assertion amounts to saying that f(gm) = f(m) and {gm, gm′} = {m,m′}
for all g ∈ G(R), R ∈ k-alg,m,m′ ∈MS, and S ∈ R-alg, which may be read as identities

of elements in O4(MR) and t(∧2MR). Since the k-functors R �→ O4(MR) and R �→
t(∧2MR) are schemes, in particular sheaves, these identities may be verified after any fppf

extension of R, with which everything is compatible. Thus we may take R to be k and

assume that g is of the form exp+(x)exp−(y)hexp+(z) with x, y, z ∈ J, h ∈ H(k) (cf. 2.4).

Then, in view of 2.5 (8), the problem reduces to the verifications of

(3) f(θ0(h) ·m) = f(m), {θ0(h) ·m, θ0(h).m
′} = {m,m′},

(4) f(ε ·m) = f(m), {ε ·m, ε.m′} = {m,m′},

(5) f(θ+(x) ·m) = f(m), {θ+(x) ·m, θ+(x) ·m′} = {m,m′},

for h ∈ H(k), x ∈ J and m,m′ ∈ MR, R ∈ k-alg. Indeed, (3), (4), and the last part of

(5) are direct consequences of calculation using the definitions in 2.1, 2.5 combined with

(CJ4, 5). To prove the first part of (5), we introduce some formulas:

4.2 Define polynomial laws (cf. 0.4) γ, η ∈ O3(M) and c ∈ O2(M,J) by setting

(1) γ


 α a

b β


 := α2β − αT (a, b) + 2N(a),
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(2) η


 α a

b β


 := N(a)− α2β,

(3) c


 α a

b β


 := αb− a�,

for α, β ∈ R, a, b ∈ JR, R ∈ k-alg.

Lemma: For any x ∈ JR, h ∈ H(R), and any

m =


 α a

b β


 ∈MR,

R ∈ k-alg, the following formulas hold:

(4) γ(θ+(x) ·m) = γ(m),

(5) η(θ+(x) ·m) = η(m)− αT (c(m), x),

(6) c(θ+(x) ·m) = c(m),

(7) γ(θ0(h) ·m) = χ(h)−1γ(m),

(8) η(θ0(h) ·m) = χ(h)−1η(m),

(9) c(θ0(h) ·m) = χ(h)−1h−c(m),

(10) γ(m)2 + 4N(c(m)) = α2f(m).

Proof. (7), (8), (9) are clear from the definitions (1), (2), (3), 2.5 (3), and 2.1 (H1),

(H2), (H3). As for (4), (5), (6), we calculate

γ(θ+(x) ·m) = α2(β + T (b, x) + T (a, x�) + αN(x))

− αT (a + αx, b+ a× x+ αx�)

+ 2N(a+ αx) (by (1) and 2.5 (3))

= α2(β + T (b, x) + T (a, x�) + αN(x))

− α(T (a, b) + αT (x, b) + 2T (a�, x) + 3αT (a, x�) + 3α2N(x))

+ 2(N(a) + αT (a�, x) + α2T (a, x�) + α3N(x))

(by (CJ4, 5, 3))

= α2β − αT (a, b) + 2N(a)

= γ(m) (by (1)),
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η(θ+(x) ·m) = N(a+ αx)− α2(β + T (b, x) + T (a, x�) + αN(x))

(by (2) and 2.5 (3))

= N(a) + αT (a�, x) + α2T (a, x�) + α3N(x))

− α2(β + T (b, x) + T (a, x�) + αN(x)) (by (CJ3))

= N(a) + αT (a�, x)− α2β − α2T (b, x)

= η(m)− αT (c(m), x) (by (2), (3)),

and

c(θ+(x) ·m)

= α(b+ a× x+ αx�)− (a+ αx)� (by (2) and 2.5 (3))

= αb+ αa× x+ α2x�)− (a� + αa× x+ α2x�) (by 1.1 (1))

= αb− a�
= c(m) ((by (3)).

Finally we have

γ(m)2 + 4N(c(m))

= α2(αβ − T (a, b))2 + 4N(a)α(αβ − T (a, b)) + 4N(a)2 +

+ 4(α3N(b)− α2T (b�, a�) + αN(a)T (b, a)−N(a)2)

(by (1), (2) and (CJ3, 1, 12))

= α2(αβ − T (a, b))2 + 4α2N(a)β + 4α3N(b)− 4α2T (b�, a�)

= −α2f(m) (by 4.1 (1)),

which is (10).

4.3 Proof of the first part of 4.1 (5). This may be read as an identity of two polynomial

laws f and f ′ := (m �→ f(θ+(x).m)) in O4(M). Thus we consider the principal open

subscheme M+
m of Ma defined by the section


 α a

b β


 �→ α

(in fact M+
m is contained in Mm). Since M+

m is dense in Ma, we are reduced to showing

that f |M+
m = f ′|M+

m in O(M+
m), which follows from 4.2 (4), (6), (10). This completes the

verification of the first part of 4.1 (5).
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NOTE

f is the (−4)-times of the quartic form defined by Freudenthal in [Freu, I (4.9)], and {, } is

precisely the alternating form in [Freu, I (4.5)]. Since θ : G→ GL(M) is a monomorphism

(cf. 2.6), we may consider G to be a subgroup sheaf of GL(M) via θ. Then, 4.1 amounts

to saying that G ⊂ Cent(f, {}), the stabilizer of the quartic form f and the alternating

form {, } in GL(M). For the present, we do not know whether G = Cent(f, {}) or not. It

is known, however, that this is the case if k is an algebraically closed field of characteristic

different from two and three and if (J ;N, �, T ) is derived from the Jordan algebra H3(C)
with C a composition algebras (cf. [Igusa 1, 2]).
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5 Transitivity

5.1 We keep the notation in §4. Denote by (Ma)f (resp. D+(f)) the open subscheme

of Ma (resp. P(M)) defined by the section f ∈ O(Ma) (cf. 4.1 (1), 0.6), and define

subschemes (Ma)
+
f , (Ma)

++
f of (Ma)f by

(Ma)
+
f (R) :=





 α a

b β


 ∈ (Ma)f (R)

∣∣∣∣∣∣ α ∈ R
∗

 ,

(Ma)
++
f (R) :=





 α 0

0 β




∣∣∣∣∣∣ α, β ∈ R
∗

 ,

for R ∈ k-alg. Since G stabilizes f , the subscheme (Ma)f is stable under G, and so is

D+(f) (cf. 0.6). Recall that we have two vector subgroups Uσ(σ = ±) of G together

with isomorphisms Ja � Uσ (cf. 2.4), and that the composite Ja � Uσ ⊂ G
θ−→ GL(M)

coincides with θσ : Ja → GL(M) described in 2.5 (3), (4).

5.2 Proposition: If K ∈ k-alg is an algebraically closed field, then we have

(Ma)
+
f (K) = U+(K)U−(K) · (Ma)

++
f (K).

Proof. In fact, for any R ∈ k-alg and m ∈ (Ma)f(R), we have

mR(m) ∈ U+(R(m))U−(R(m)).(Ma)
++
f (R(m)),

where R(m) is the quotient of the polynomial ring R[ω] in one variable ω, by the principal

ideal generated by the polynomialN(c(m))ω2+γ(m)ω−1 (cf. 4.2 (1), (2)). Indeed, writing

m =


 α a

b β




with α, β ∈ R, a, b ∈ JR, we have

θ+(−α−1a) ·m = φ(α−1).


 1 0

c(m) γ(m)


 ,

γ(m)2 + 4N(c(m)) = α2f(m),

by 2.5 (3), (5), 4.2 (1), (2), (3). Hence the problem reduces to the following lemma:

5.3 Lemma: Assume c ∈ J and γ ∈ k to be given so that the condition

(1) γ2 + 4N(c) ∈ k∗
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holds. Consider the polynomial

(2) q(ω) := −1 + γω +N(c)ω2 ∈ k[ω]

(ω a variable over k), and let R := k[ω]/(q) ∈ k-alg. Then, there exist x, y ∈ JR such

that

θ−(y)θ+(x) ·

 1 0

c γ



R

∈ (Ma)
++
f (R).

Proof. Consider one more variable ρ over k, and define polynomials η ∈ k[ω], ζ, ε, ξ ∈
k[ω, ρ] by

(3) η(ω) := γ + 3N(c)ω +N(c)2ω3,

(4) ζ(ω, ρ) := 1 +N(c)ω2 − η(ω)ρ,

(5) ε(ω, ρ) := ω − (1 +N(c)ω2)ρ,

(6) ξ(ω, ρ) := 1− 3N(c)ε(ω, ρ)ρ−N(c)η(ω)ρ3,

to obtain

(7) θ−(ρc)θ+(ωc�) ·

 1 0

c γ


 =


 ξ(ω, ρ) (ε(ω, ρ)− ζ(ω, ρ)ρ)c�
ζ(ω, ρ)c η(ω)


 ,

(8) η(ω) = q(ω)(N(c)ω − γ) + (γ2 + 4N(c))ω,

(9) η(ω)ε(ω, ρ) = q(ω) + (1 +N(c)ω2)ζ(ω, ρ).

Let ω0 := ω mod q ∈ R. Then we have q(ω0) = 0 by the definition of R. Also (2) tells us

that ω0 is invertible with inverse γ + N(c)ω0. Therefore so is η(ω0) by (1) and (8). Let

ρ0 := η(ω0)
−1(1 + N(c)ω2

0). Then we have ζ(ω0, ρ0) = ε(ω0, ρ0) = 0 by (4) and (9), and

(7) tells us that x := ω0c
� and y := ρ0c are what we want.

5.4 Consider the following condition on a quadruple (J ;N, �, T ):

(∗∗) For any field K ∈ k-alg of characteristic different from two, the symmetric bilinear

form (x, y) �→ T (x, y) on JK is non-degenerate.
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Proposition: Under the assumption (∗∗), we have

(Ma)f (K) = U−(K) · (Ma)
+
f (K),

for any infinite field K ∈ k-alg.

Proof. In view of 2.5 (3) and 2.7 (1), it suffices to show that for any m ∈ (Ma)f (K)

there exists w ∈ JK such that mδ(w) ∈ K∗. Then we are reduced to showing that the

polynomial law mδ ∈ O(JK) (cf. 0.4) is not zero, since K is an infinite field (cf. [Bou, IV,

§2, no 3, Cor. 2 of Prop. 9]). In general, we have

(1) {m ∈M | mδ = 0} =





 0 a

b 0




∣∣∣∣∣∣ a, b ∈ J, T (a, ?) = T (b, ?) = 0 ∈ O1(J)


 .

Indeed, the left-hand side contains the right-hand side by the definition 2.7 (1). To see the

converse, let mδ = 0 for m ∈ M with entries α, β, a, b. Then, equating the homogeneous

components of the polynomial mδ to zero, we get α = 0, T (a, ?) = 0 ∈ O1(J), T (b, ?�) =

0 ∈ O2(J), and βN = 0 ∈ O3(J). However this also implies T (b, ?) = 0 and β = 0, since

the morphism ?� is scheme-theoretically dominant (cf. 1.3 c)) and there exists c1 ∈ J such

that N(c1) ∈ k∗ (cf. 1.3 (∗)). This shows (1). Now apply (1) after the scalar extension

k → K. If char(K) �= 2, the right-hand side of (1) is {0} by our assumption (∗∗), and

if charK = 2, we have f(m) = 0 for all m in the right-hand side of (1). In all cases, we

have {m ∈ MK | mδ = 0} = {m ∈ MK | f(m) = 0}, i.e., mδ ∈ O(JK) is not zero if

m ∈ (Ma)f (K).

5.5 Let us assume the condition (∗∗) in 5.4.

Corollary 1: For any algebraically closed field K ∈ k-alg, the action of G(K) on

D+(f)(K) is transitive.

In view of the canonical bijection {x ∈ MK |f(x) ∈ K∗}/K∗ ∼→ D+(f)(K) (cf. 0.6

(1)), this follows from:

Corollary 2: For any algebraically closed field K ∈ k-alg, the set (Ma)f (K) is a

single orbit under K∗ ×G(K).

Indeed, if m,m′ ∈ (Ma)f(K), there exists t ∈ K∗ such that t4 = f(m)−1f(m′), since

K is algebraically closed. For such t, we have f(tm) = f(m′), since f is a quartic form

(cf. 0.4). Now the assertion follows from:
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Corollary 3: For any algebraically closed field K ∈ k-alg and i ∈ K∗, the set {m ∈
MK | f(m) = i} is a single orbit under G(K).

Proof. By 5.2 and 5.4, we are reduced to verifying that two elements

m =


 α 0

0 β


 and m′ =


 α′ 0

0 β′




of MK are conjugate under G(K) if (αβ)2 = (α′β′)2, or, in view of the action of ε, if

αβ = α′β′. Since χ : H → µk is an epimorphism of k-sheaves (cf. 2.1), there exists

h ∈ H(K) such that χ(h) = β′−1β. For such h, we have θ0(h) ·m = m′ (cf. 2.5 (1)).

This corollary was proved by Igusa in [Igusa 1, p.428] in the case where char(K) �= 2, 3.

NOTE

We expect that the orbit-sheaf OG(u0) of u0 (cf. 3.0) coincides with the principal open

subscheme D+(f) defined by the Freudenthal quartic f (cf. 4.1). This is the case if the

condition (∗∗) in 5.4 and the following two conditions are satisfied: a) H is flat over

k; b) G is a scheme. Indeed, under these conditions, G becomes algebraic and flat over

k (cf. 2.1, [LAG, 5.11 (b)]) and G(K) is transitive on D+(f)(K) for any algebraically

closed field K ∈ k-alg (cf. 5.5). Also the k-scheme D+(f) is smooth (cf. 0.6). Thus the

assertion follows from [D-G, III, §3, 2.1]. Note that the above conditions a) and b) are

always satisfied if k is a field (cf. [LAG, 5.13 (b)]).
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Appendix

A Relations to McCrimmon’s construction

A.1 Consider a triple (J ;N, �) consisting of a k-module J , a cubic form N ∈ O3(J), and

a quadratic map � ∈ O2(J, J) satisfying (CJ1) in 1.1. Let T be a symmetric bilinear form

on T . We say that an element c of J is a basepoint of (J ;N, �, T ) if the following formulas

hold:

(BP1) N(c) = 1,

(BP2) c� = c,

(BP3) Q(c) = Id,

where Q is the quadratic map J → End(J) defined by the formula (2) in 1.1. On the

other hand, if c ∈ J , we set

Tc(x, y) := ∂xN(c)∂yN(c)− ∂x×yN(c)

(cf. 0.6) to obtain a symmetric bilinear form Tc on J . Now we consider the following two

sets:

T(J ;N, �) := {T | symmetric bilinear form on J satisfying (CJ2)},
Mc(J ;N, �) := {c ∈ J | basepoint of (J ;N, �, T ) and Tc satisfies (CJ2)}

(cf. 1.1). Then our starting data is precisely a quadruple (J ;N, �, T ) consisting of (J ;N, �)

and T ∈ T(J ;N, �). On the other hand, that of McCrimmon is a quadruple (J ;N, �, c)

consisting of (J ;N, �) and c ∈ Mc(J ;N, �) (cf. [Mc]). Using (BP2), (BP3), and 1.2 (1)

for x := c, it can be seen that the map c �→ (Tc, c) induces the injection

Mc(J ;N, �) ↪→ T(J ;N, �)× J,
whose image consists of (T, c)’s such that c becomes a basepoint of (J ;N, �, T ). Therefore,

McCrimmon’s construction may be considered as a couple of our construction and a choice

of a basepoint. However the condition (∗) in 1.3, which has been assumed after 1.6, almost

requires the existence of a basepoint in the following sense:

A.2 Lemma: Let (J ;N, �, T ) be a quadruple as in 1.1 satisfying (CJ1, 2) and 1.3

(∗). Let c be an element of J satisfying N(c) ∈ k∗. Define a quadruple (J ;N ′, �′, T ′) by

setting

(1) N ′(x) := N(c)N(x),
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(2) x�
′
:= N(c)Q(c)−1x�,

(3) T ′(x, y) := T (x,Q(c)y),

for x, y ∈ JR, R ∈ k-alg. Then, (J ;N ′, �′, T ′) satisfies (CJ1, 2) and 1.3 (∗), and admits

c−1 = N(c)−1c� (cf. 1.6 (1)) as a basepoint; moreover, we have

(4) Q′(x) = Q(x)Q(c)

for Q′ : J → End(J) defined by 1.1 (2).

Proof. T is a symmetric bilinear form by 1.2 (2). 1.3 (∗) for (J ;N ′, �′, T ′) is clear from

definitions, and (BP3) for c−1 is a consequence of (4). Thus it remains the verifications

of (CJ1, 2), (BP1, 2) and (4). Take x, y ∈ J arbitrarily. We have Q(c)−1 = N(c)−2Q(c�)

by (CJ14), so that x�
′
= N(c)−1Q(c�)x� = N(c)−1(Q(c)x)� by (CJ16), and hence (x�

′
)� =

N(c)−2N(Q(c)x)Q(c)x (by (CJ1)) = N(x)Q(c)x(by (CJ20)), from which (CJ1) follows.

Also we have T ′(x�
′
, y) = T (N(c)Q(c)−1x�, Q(c)y) (by (2), (3)) = N(c)T (x�, y) (by 1.2 (2))

= N(c)∂yN(x) (by (CJ2)) = ∂yN
′(x) (by (1)), which is (CJ2). As for (BP1, 2), we have

N ′(c−1) = N(C)N(N(c)−1c�) (by (1) and 1.6 (1))= N(c)N(c)−3N(c)2 (by (CJ12))= 1,

and (c−1)�
′
= N(c)Q(C)−1(N(c)−1c�) (by (1) and 1.6 (1)) = N(c)Q(c)−1N(c)−2N(c)c (by

(CJ1)) = Q(c)−1c = c (by the definition of inverse, cf. 1.6), from which the assertion

follows. To prove (4), denote by ×′ the linearization of �′. Then we have

(2lin) x×′ y = N(c)Q(c)−1(x� × y),

so that Q′(x)y = T ′(x, y)x − x�′ ×′ y (by 1.1 (2)) = T (x,Q(c)y)x − N(c)Q(c)−1x� ×′ y

(by (2), (3)) = T (x,Q(c)y)x − N(c)2Q(c)−1((Q(c)−1x�) × y) (by (2lin)). However we

have (Q(c)−1x�)× y = (Q(c)−1x�)× (Q(c)−1Q(c)y) = N(c)−4(Q(c�)x�)× (Q(c�)Q(c)y) (by

(CJ14)) = N(c)−4Q(c��)(x�×Q(c)y) (by the linearized (CJ16)) = N(c)−2Q(c)(x�×Q(c)y),

from which the assertion follows.

A.3 Our modification aims to translate the McCrimmon ’s result into the terminology

of Jordan pairs. This makes it easy to quote theorems from [LAG]. In fact, Jordan pairs

are natural objects to have many advantages; we refer to [LJP] for details.
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B A class of examples

B.1 As is mentioned in Introduction, our quadruple (J ;N, �, T ) is modeled on the Jordan

algebra of 3 × 3 Hermitian matrices with coefficients in a composition algebra. Here we

give a class of examples of (J ;N, �, T ) along this line. We start with a data

(1) (J0, J1; q, ?, T1, ◦, �)

where J0 and J1 are k-modules, q a quadratic form on J0, ? an involutive automorphism

v �→ v̄ of J0 keeping q invariant, T1 a symmetric bilinear form on J1, ◦ a bilinear map

(a, v) �→ a ◦ v from J1 × J0 to J1, and � a quadratic map a �→ a� from J1 to J0.

We linearize �

(2) a× b := (a+ b)� − a� − b�

to obtain a commutative bilinear composition × on J1 with value in J0. We construct a

quadruple (J ;N, �, T ) by setting

(3) J := k ⊕ J1 ⊕ J0 =:





 ξ a

∗ v




∣∣∣∣∣∣ ξ ∈ k, a ∈ J1, v ∈ J0


 ,

and

(4) N


 ξ a

∗ v


 := q(a�, v̄) + ξq(v),

(5)


 ξ a

∗ v



�

:=


 q(v) −a ◦ v̄
∗ a� + ξv̄


 ,

(6) T (


 ξ a

∗ v


 ,


 η b

∗ w


) := ξη + T1(a, b) + q(v, w̄),

for all R ∈ k-alg, ξ, η ∈ R, a, b ∈ J1R, and v, w ∈ J0R. Consider the following condition

on the data (1): we have

(MJ1) q(a�) = 0,

(MJ2) (a ◦ v) ◦ v = q(v)a,

(MJ3) (a ◦ v) ◦ a� = q(a�, v)a,
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(MJ4) (a ◦ v)� + q(v)a� = q(a�, v)v,

(MJ5) q(a× b, v) = −T1(a ◦ v, b),

for all a, b ∈ J1R, v ∈ J0R, R ∈ k-alg, and

(�) J0 and J1 are finitely generated projective k-modules and there exists e0 ∈ J0 such

that q(e0) = 1.

Proposition: If the data (1) satisfies the conditions (MJ1–5) and (�), then the quadru-

ple (J ;N, �, T ) defined by (3–6) satisfies (CJ1), (CJ2), and (∗) in 1.3.

Proof. We calculate

N


 1 0

∗ e0


 = q(e0) = 1

(cf. (4), (�)), and 
 0 0

∗ e0



�

=


 q(e0) 0

∗ 0


 =


 1 0

∗ 0




(cf. (5), (�)) to obtain the condition (∗) in 1.3. To see the conditions (CJ1) and (CJ2),

set

x :=


 ξ a

∗ v


 , y :=


 η b

∗ w


 ,

with ξ, η, a, b, v, w as above, and denote by R[ε] the ring of dual numbers. Then we

have

x�� =


 q(v) −a ◦ v̄
∗ a� + ξv̄



�

(by (5))

=


 q(a� + ξv̄) (a ◦ v̄) ◦ (a� + ξv̄)

∗ (a ◦ v̄)� + q(v)(a� + ξv̄)


 (by (5))

=


 ξq(a�, v̄) + ξ2q(v) q(a�, v̄)a+ ξq(v)a

∗ q(a�, v̄)v + ξq(v)v


 (by (MJ1–4))

= N(x)x (by (4)),

which is (CJ1). Also we have

N(x+ εy) = N


 ξ + εη a+ εb

∗ v + εw




= q((a+ εb)�, v̄ + εw̄) + (ξ + εη)q(v + εw) (by (4))
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= q(a� + εa× b, v̄ + εw̄) + (ξ + εη)(q(v) + εq(v, w))

= q(a�, v̄) + ξq(v) + ε(q(a�, w̄) + q(a× b, v̄) + ξq(v, w) + ηq(v))

= N(x) +

ε(q(a�, w̄)− T1(a ◦ v̄, b) + ξq(v, w) + ηq(v)) (by (4) and (MJ5)),

and

T (x�, y) = T (


 q(v) −a ◦ v̄
∗ a� + ξv̄


 ,


 η b

∗ w


) (by (5))

= ηq(v)− T1(a ◦ v̄, b) + q(a� + ξv̄, w̄) (by (6))

= ηq(v)− T1(a ◦ v̄, b) + q(a�, w̄) + ξq(v, w).

Hence we have N(x+ εy) = N(x) + εT (x�, y), which is (CJ2).

B.2 Consider a data (J0, J1; q, ?, T1, ◦, �) with the properties (MJ1–5) and (�) in

B.1, and set

(1) U(v)w := q(v, w̄)v − q(v)w̄,

(2) Q1(a)b := T1(a, b)a+ b ◦ a�,

(3) B0(a, b)v := (1− T1(a, b))v − (a ◦ v̄)× b+ q(a�, v)b�,

(4) B1(a, b)c := c−Q1(a, c)b+Q1(a)Q1(b)c,

(5) N1(a, b) := 1− T1(a, b) + q(a�, b�),

(6) P1(a, b) := a+ b ◦ a�,

(7) V (v)a := a ◦ v,

to obtain polynomial laws U ∈ O2(J0,End(J0)), Q1 ∈ O2(J1,End(J1)), Bi ∈ O(J1 ×
J1,End(Ji)) for i = 0, 1, N1 ∈ O(J1× J1), P1 ∈ O(J1× J1, J1), and V ∈ O1(J0,End(J1)).

We construct a quadruple (J ;N, �, T ) as in B.1 (3–6), which satisfies the conditions (CJ1),

(CJ2), and (∗) in 1.3. Also we set

(8) e1 :=


 1 0

∗ 0


 and J2 := the submodule of J spanned by e1.
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Note that we have

(9) e�1 = 0 and N(e1) = 0

by B.1 (4) and (5). We use the symbols x × y, Q(x)y, N(x, y), {xyz}, D(x, y), and

B(x, y), for x, y, z ∈ J , introduced in 1.1. In particular, we linearize B.1 (5) to obtain

(10)


 ξ a

∗ v


×


 η b

∗ w


 =


 q(v, w) −a ◦ w̄ − b ◦ v̄

∗ a× b+ ξw̄ + ηv̄


 .

Recall that we have Q(x)y = T (x, y)x − x� × y and that (J, J) together with (Q,Q)

becomes a Jordan pair (cf. 1.4). We often identify J0 (resp. J1) with the image in J .

Note that this identification causes no confusion to the symbol a� (cf. B.1 (5)). In this

notation, we have

(11) v� = q(v)e1,

(12) e1 × v = v̄,

(13) a× v = −a ◦ v̄,

(14) e1 × a = 0,

by (10) and B.1 (5). Also we have

(15) N(a, b) = N1(a, b), P (a, b) = P1(a, b)

by (5), (6), (13), B.1 (6), and 1.1 (3), (4). On the other hand, we have

Q(e1)


 ξ a

∗ v


 =


 ξ 0

∗ 0


 and D(e1, e1)


 ξ a

∗ v


 =


 2ξ a

∗ 0




by straightforward calculations. In particular, we have Q(e1)e1 = e1, im Q(e1) = J2,

ker[1 −D(e1, e1)] = J1, and kerQ(e1) ∩ kerD(e1, e1) = J0. In the terminology of Jordan

pairs, it can be said that (e1, e1) is an idempotent of the Jordan pair (J, J) and that (Ji, Ji)

is the Peirce-i-space with respect to this idempotent (cf. [LJP, §5]). Thus we have the

following Peirce relations (cf. [LJP, 5.4]):

(16) {e1e1e1} = 2e1, {e1e1a} = a, {e1e1v} = 0,

(17) {e1vx} = {xve1} = {ve1x} = 0,
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(18) Q(Ji)Jj ⊂ J2i−j ,

(19) {Ji Jj Jl} ⊂ Ji−j+l,

where a ∈ J1, v ∈ J0, x ∈ J , and Jn := 0 for n �= 0, 1, 2. In particular, each (Ji, Ji) inherits

from (J, J) the structure of Jordan pair. Note that the induced quadratic operators

Ji → End(Ji), for i = 0 and 1, are precisely U and Q1 defined in (1) and (2), respectively.

In fact, using the foregoing definitions and formulas, we have the following formulas for

a, b, c ∈ J1 and v, w ∈ J0:

(20) Q(v)w = U(v)w,

(21) Q(a)b = Q1(a)b,

(22) {abe1} = T1(a, b)e1,

(23) {abv} = T1(a, b)v + (a ◦ v̄)× b,

(24) Q(a)e1 = −a�,

(25) Q(a)v = −q(a�, v)e1,

(26) B(a, b)


 ξ c

∗ w


 =


 N1(a, b)ξ B1(a, b)c

∗ B0(a, b)w


 ,

(27) Q(e1 + v)


 ξ c

∗ w


 =


 ξ c ◦ v
∗ U(v)w


 .

In the following, we consider (J0, J0) and (J1, J1), as well as (J, J), to be Jordan pairs by

means of the compositions U(v)w and Q1(a)b, respectively.

B.3 Let us consider the Jordan pair (J0, J0). Note first that we have

(1) U(v̄)U(v)w = q(v)2w,

(2) q(U(v)w) = q(v)2q(w),
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by B.2 (1). These applied to w = e0 in B.1 (�) tell us that v is invertible, i.e., the

endomorphism U(v) ∈ End(J0) is invertible ([LJP, 1.10]) if and only if v is non-singular,

i.e., the scalar q(v) is invertible. For such v, denote by sv the reflection along v. By

definition, this is the automorphism w �→ w−q(v)−1q(v, w)v of J0, which is also described

as

(3) sv(w) = −q(v)−1U(v)w̄

by B.2 (1). On the other hand, we set A(w) := A(w) to obtain a map A �→ A in End(J0),

which is in fact an involutive automorphism with respect to the k-algebra structure. By

B.2 (1), we have

(4) U(v) = U(v).

Also we see that he orthogonal group O(q) is stable under this involution, and that the

pair (h, h̄), for any h ∈ O(q), is an automorphism of the Jordan pair (J0, J0) (cf. [LJP,

1.3]). Namely, we have U(hv)h̄w = hU(v)w and U(h̄v)hw = h̄U(v)w. In this way, we

obtain a homomorphism

(5) h �→ (h, h̄) : O(q)→ Aut(J0, J0)

of groups. Finally we observe the formula

(6) q(U(v)w,w′) = q(w,U(v̄)w′),

which can be verified by straightforward calculation using the definition B.2 (1).

B.4 As for the Jordan pair (J1, J1), note first that we have

(1) T1(B1(a, b)c, c
′) = T1(c, B1(b, a)c

′)

by B.2 (26), B.1 (6), and 1.2 (4). Also we have

(2) a ◦ a� = 0,

(3) a ◦ b� = −b ◦ (a× b),

since a ◦ a� = −a × (a� × e1) (by B.2 (12), (13)) = N(a)e1 + T (a, e1)a
� (by (CJ13))

= 0 (by B.1 (4), (6)), and −b ◦ (a × b) = b × ((a × b) × e1) (by B.2 (12), (13)) =

T (b�, a)e1 +T (b, e1)b× a+T (a, e1)b
�− (b�× e1)× a (by (CJ15)) = −(b�× e1)× a (by B.1

(6)) = a ◦ b� (by B.2 (12), (13)). We denote byW1 the scheme of quasi-invertible pairs of
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(J1, J1) (cf, [LJP, 3.2]). From the property [LJP, 3.2 (ii)] of quasi-inverses, it follows that

W1 ⊂ W, the scheme of quasi-invertible pairs of (J, J), and that quasi-inverses in (J1, J1)

can be calculated in (J, J). The converse also holds to yield

(4) W1 = (J1a × J1a) ∩W,

since B.2 (26) tells us that B(a, b) ∈ End(JR) is invertible if and only if so are N1(a, b) ∈
R, B1(a, b) ∈ End(J1R), and B0(a, b) ∈ End(J0R). In view of B.2 (15), 1.8, and [LJP, 3.6

(JP33)], we have shown the following lemma except for the last four formulas:

Lemma: A pair (a, b) of elements of J1 is quasi-invertible if and only if the scalar

N1(a, b) is invertible; if that is the case, the endomorphism B0(a, b) ∈ End(J0) is also

invertible, and we have the following formulas for all c ∈ J1 and v ∈ J0:

(5) ab = N1(a, b)
−1P1(a, b),

(6) N1(a, b)N1(a
b, c) = N1(a, b+ c),

(7) B0(a, b)B0(a
b, c) = B0(a, b+ c),

(8) B1(a, b)B1(a
b, c) = B1(a, b+ c),

(9) B0(a, b)v = N1(a, b)B0(b, a)
−1 · v,

(8) q(B0(a, b)v) = N1(a, b)q(v),

(11) (B1(a, b)c) ◦ (B0(a, b)v) = N1(a, b)
2B1(b, a)

−1 · (c ◦ v),

(12) (B1(a, b)c)
� = N1(a, b)

2B0(b, a)
−1 · c�.

As for the formulas (9–12), we apply � to B.2 (26). After expanding the right-hand

side (resp. left-hand side) by means of B.1 (5) (resp. (CJ25), B.1 (5), B.2 (26), (15)),

and comparing the each components with suitable specializations, we get the assertions.

B.5 Basic identities. We deduce some identities. Assume that all the conditions in

B.1 are satisfied, and let a, b ∈ J1R, v, w ∈ J0R, R ∈ k-alg. We linearize (MJ2) to obtain

(MJ6) (a ◦ v̄) ◦ w + (a ◦ w̄) ◦ v = q(v, w)a.
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Then we calculate (a ◦ v̄) ◦ (U(v)w) = q(v, w̄)(a ◦ v̄) ◦ v − q(v)(a ◦ v̄) ◦ w̄ (by B.2 (1))

= q(v)(q(v, w̄)a− (a ◦ v̄) ◦ w̄) (by (MJ2)) = q(v)(a ◦ w) ◦ v (by (MJ6)). Namely

(MJ7) (a ◦ v̄) ◦ (U(v)w) = q(v)(a ◦ w) ◦ v.

Replacing a by a ◦ v in (MJ7) with (MJ2) in mind, we get q(v)a ◦ (U(v)w) = q(v)((a ◦
v) ◦w) ◦ v. However, by 0.2 and B.1 (�), the principal open subscheme of J0a defined by

the section q : J0a → Ok is dense in J0a. Thus we conclude

(MJ8) a ◦ (U(v)w) = ((a ◦ v) ◦ w) ◦ v.

In terms of B.2 (1), the identity (MJ4) can be read as

(MJ4bis) (a ◦ v̄)� = U(v) · a�,

whose linearization yields

(MJ9) (a ◦ v̄)× (b ◦ v̄) = U(v)(a× b).

Now we calculate q(v)2T1(a, b) = T1((a ◦ v) ◦ v̄, (b ◦ v̄) ◦ v)) (by (MJ2)) = −q((a ◦ v) ×
((b ◦ v̄) ◦ v), v̄) (by (MJ5)) = −q(U(v̄)(a× (b ◦ v̄)), v̄) (by (MJ9)) = −q(a× (b ◦ v̄), U(v)v̄)

(by B.3 (6)) = −q(v)q(a× (b ◦ v̄), v) (by B.2 (1)) = q(v)T1(a ◦ v, b ◦ v̄) (by (MJ5)), from

which we get

(MJ10) T1(a ◦ v, b ◦ v̄) = q(v)T1(a, b).

Similarly, we calculate q(v)a× (b◦v) = ((a◦ v̄)◦v)× (b◦v) (by (MJ2)) = U(v̄)((a◦ v̄)× b)
(by (MJ9)) = q((a◦v)×b, v)v−q(v)(a ◦ v)× b (by (MJ5)) = −q(v)(T1(a, b)v+(a ◦ v)× b)
(by (MJ2)), from which we get

(MJ11) a× (b ◦ v) + (a ◦ v)× b = −T1(a, b)v.

Finally we observe the formula

(MJ12) (a− (a ◦ w) ◦ v̄)� = B(v, w̄) · a�.

Indeed, the left-hand side equals a� − a × ((a ◦ w) ◦ v̄) + ((a ◦ w) ◦ v̄)� by B.1 (1),

and we have ((a ◦ w) ◦ v̄)� = U(v)U(w̄) · a� = Q(v)Q(w̄) · a� by (MJ4bis) and B.2

(20). As for a × ((a ◦ w) ◦ v̄), we calculate a × ((a ◦ w) ◦ v̄) = a × ((a × w̄) × v)

(by B.2 (13)) = T (a�, w̄)v + T (a, v)a × w̄ + T (v, w̄)a� − w̄ × (a� × v) (by (CJ15)) =

T (a�, w̄)v+ T (v, w̄)a�− w̄× (a�× v) (by B.1 (6)) = {vw̄a�} (by 1.1 (5)). This shows our

assertion, in view of 1.1 (6).
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B.6 Assume that the following condition (��), which is stronger than (�) in B.1, is

satisfied:

(��) The k-modules J0 and J1 are finitely generated projective and there exists e0 ∈ J0

such that q(e0) = 1, v̄ = q(e0, v)e0 − v, and a ◦ e0 = a, for v ∈ J0, a ∈ J1.

Then, we have

(1) U(e0)v = v,

(2) e�0 = e1, namely


 0 0

∗ e0



�

=


 1 0

∗ 0


 ,

(3)


 ξ a

∗ v


× e0 =


 q(v, e0) −a

∗ ξe0


 ,

(4) Q(e0)


 ξ a

∗ v


 =


 0 0

∗ v


 and D(e0, e0)


 ξ a

∗ v


 =


 0 a

∗ 2v


 ,

(5) {ae0v} = a ◦ v = V (v)a,

by straightforward calculations. In the terminology of Jordan pairs, it can be said that:

a) e0 is an invertible element of the Jordan pair (J0, J0) and the associated Jordan

algebra (cf. [LJP, 1.9]) is precisely the Jordan algebra of the quadratic form q with the

base point e0 (cf. [Jac 1, I-§5]).

b) (e0, e0) is an idempotent of the Jordan pair (J, J) with Peirce-i-space (J2−i, J2−i)

(cf. [LJP, 5.4]), and the Peirce-2-space, considered as a Jordan algebra (cf. [LJP, 5.5]), is

precisely J0 with the structure mentioned in a).

Also, by setting

(6) e := e1 + e0 =


 1 0

∗ e0


 ∈ J,

we have

(7) N(e) = 1,

(8) e� = e,
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(9) Q(e) = Id,

(10) a ◦ v = {aev},
by straightforward calculation. In the terminology of Jordan pairs, it can be said that

e = e1+e0 is an invertible element of the Jordan pair (J, J) and that the associated Jordan

algebra (cf. [LJP, 1.9]) is the J with U -operator Uxy := Q(x)y, with squaring x2 := Q(x)e,

and with unit e. Recall the circle product in a Jordan algebra which is the linearization

x ◦ y := (x+ y)2− x2− y2 of the squaring. In our situation, we have x ◦ y = {xey}. Thus

(10) tells us that our circle product (a, v) �→ a ◦ v : J1 × J0 → J1 coincides with the one

induced by this Jordan algebra structure.

B.7 An example of such a data (J0, J1, ; q, ?, T1, ◦, �) as in B.1 can be constructed

from an alternative Cayley algebra C, in the sense of [Bou, Alg. III, App., no 2], whose

underlying k-module is faithfully projective, in the sense of [Bass, II, §5]. We first recall

some basic facts on such algebras. Recall that a Cayley algebra over k is an unitary k-

algebra equipped with an anti-automorphism x �→ x̃, called the conjugation, such that all

the x+ x̃ and xx̃ belong to the image of k (cf. [Bou, Alg. III, §2, no 4]). Also recall that a

k-algebra is said to be alternative if every subalgebra having two generators is associative

(cf. [Bou, Alg. III, App., no 1]), and that a k-module is said to be faithfully projective if

it is finitely generated projective and faithful (cf. [Bass, II-5.10]).

Let C be an alternative Cayley algebra which is faithfully projective as a k-module.

Since x+x̃ belongs to the center of C, we have xx̃ = x̃x. Also the structural homomorphism

k → C sending λ to λ ·1C is an isomorphism onto a direct factor (cf. [Bass, III-2.17], whose

proof works regardless of associativity). Therefore we obtain two k-valued functions t and

n, called trace and norm, respectively, by writing

(1) x+ x̃ = t(x) · 1C and xx̃ = x̃x = n(x) · 1C.
By constructions, t is a linear form and n a quadratic form. We have

(2) n(x, y) = t(xỹ) = xỹ + yx̃

by (1). Also we have

(3) t(xy) = t(yx)

by the general property of Cayley algebras (cf. [Bou, Alg. III, §2, no 4, (17)]). On the

other hand, x, y and 1C generate an associative subalgebra, since C is alternative (see the

proof of [Bou, Alg. III, App., no 2, Prop. 2]). Hence we have

(4) x̃(xy) = (yx̃)x = n(x)y,
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(5) n(xy) = n(x)n(y).

Also we recall the formula

(6) t(x(yz)) = t((xy)z)

(cf. [Bou, Alg. III, App., Exercice 1]) and the Moufang’s identity

(7) (xy)(zx) = x(yz)x.

The proof of (7) can be seen, for example, in [Jac 3, p.16]. We deduce some formulas for

later use. We linearize (4) to obtain

(8) x̃(zy) + z̃(xy) = (yx̃)z + (yz̃)x = n(x, z)y.

Using (2), (3), and (6), we have

(9) n(x, yz) = n(xz̃, y) = n(ỹx, z).

Finally we have

(10) n(x)yz + (xz̃)(ỹx) = n(x, yz)x,

since n(x)yz + (xz̃)(ỹx) = ((yz)x̃)x+ (x(yz)∼)x (by (4) and (7)) = n(x, yz)x (by (2)).

B.8 Let C be an alternative Cayley algebra which is faithfully projective as a k-

module. We use the symbols x̃, t(x), and n(x) as in B.7. Also we denote by Mp,q(C) the

k-module of p× q matrices with coefficients in C, and by Hp(C) the submodule of Mp,p(C)
consisting of Hermitian matrices with diagonal entries in k. We construct a data

(1) (J0, J1; q, ?, T1, ◦, �)

as in B.1 by setting

(2) J0 := H2(C) =:


v =


 ξ2 x3

x̃3 ξ3




∣∣∣∣∣∣ ξ2, ξ3 ∈ k, x3 ∈ C

 ,

(3) J1 := M1,2(C) =: {a = (x1, x2) | x1, x2 ∈ C},

(4) q


 ξ2 x3

x̃3 ξ3


 := ξ2ξ3 − n(x3),
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(5)


 ξ2 x3

x̃3 ξ3




−

:=


 ξ3 −x3

−x̃3 ξ2


 ,

(6) T1((x1, x2), (y1, y2)) := n(x1, y1) + n(x2, y2),

(7) (x1, x2) ◦

 ξ2 x3

x̃3 ξ3


 := (ξ2x1 + x2x̃3, x1x3 + ξ3x2),

(8) (x1, x2)
� :=


 −n(x2) x̃1x2

x̃2x1 −n(x1)


 .

By definitions, we have

(9) q(


 ξ2 x3

x̃3 ξ3


 ,


 η2 y3

ỹ3 η3




−

) = ξ2η2 + ξ3η3 + n(x3, y3),

(10) (x1, x2)× (y1, y2) =


 −n(x2, y2) x̃1y2 + ỹ1x2

x̃2y1 + ỹ2x1 −n(x1, y1)


 .

Proposition: The data (1) satisfies the conditions (MJ1–5) in B.1 and (��) in B.6;

moreover this satisfies the following condition:

(� � �) The set {a� | a ∈ J1} generates the k-module J0.

Proof. Indeed, the element

(11) e0 :=


 1 0

0 1


 ∈ J0

satisfies the condition (��) in B.6, and (� � �) follows from the formula


 ξ2 x3

x̃3 ξ3


 = −ξ2(0, 1C)� − ξ3(1C, 0)� + (1C, x3)

� − (0, x3)
� − (1C, 0)�,

which is a consequence of the definition (8). To see (MJ1–5), let

v =


 ξ2 x3

x̃3 ξ3


 , a = (x1, x2), b = (y1, y2)
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with ξi ∈ R and xi, yi ∈ CR, R ∈ k-alg. Then we have

q(a�) = q


 −n(x2) x̃1x2

x̃2x1 −n(x1)


 (by (8))

= n(x2)n(x1)− n(x̃1x2) (by (4))

= 0 ((by B.7 (5)),

and

(a ◦ v̄) ◦ v = ((x1, x2) ◦

 ξ3 −x3

−x̃3 ξ2


) ◦


 ξ2 x3

x̃3 ξ3


 (by (5))

= (ξ3x1 − x2x̃3,−x1x3 + ξ2x2) ◦

 ξ2 x3

x̃3 ξ3


 (by (7))

= (ξ2ξ3x1 − n(x3)x1,−n(x3)x2 + ξ2ξ3x2) (by (7) and B.7 (4))

= q(v)a (by (3)),

which are (MJ1) and (MJ2), respectively. To prove (MJ3) and (MJ4), we compute

q(a�, v̄) = q(


 −n(x2) x̃1x2

x̃2x1 −n(x1)


 ,


 ξ2 x3

x̃3 ξ3




−

) (by (8))

= −n(x2)ξ2 − n(x1)ξ3 + n(x̃1x2, x3) (by (9)),

(a ◦ v̄) ◦ a�

= ((x1, x2) ◦

 ξ3 −x3

−x̃3 ξ2


 ◦


 −n(x1) −x̃1x2

−x̃2x1 −n(x2)


 (by (5) and (8))

= (ξ3x1 − x2x̃3,−x1x3 + ξ2x2) ◦

 −n(x1) −x̃1x2

−x̃2x1 −n(x2)


 (by (7))

=
(−ξ3n(x1)x1 + n(x1)x2x̃3 + (x1x3)(x̃2x1)− ξ2n(x2)x1,

−ξ3n(x1)x2 + (x2x̃3)(x̃1x2) + n(x2)x1x3 − ξ2n(x2)x2)
(by (7) and B.7 (4))

=
(−ξ3n(x1)x1 + n(x1, x2x̃3)x1 − ξ2n(x2)x1,

−ξ3n(x1)x2 + n(x2, x1x3)x2 − ξ2n(x2)x2),
(by B.7 (10))

and

(a ◦ v̄)� + q(v)a�

= (ξ3x1 − x2x̃3,−x1x3 + ξ2x2)
� + (ξ2ξ3 − n(x3))


 −n(x1) −x̃1x2

−x̃2x1 −n(x2)




(by (7), (4), (8) and (5))

=


 ξ′2 x′3
x̃′3 ξ′3


 ,
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where

ξ′2 = −n(−x1x3 + ξ2x2)− (ξ2ξ3 − n(x3))n(x1)

= ξ2n(x1x3, x2)− ξ2
3n(x2)− ξ2ξ3n(x1) (by B.7 (5))

= ξ2(n(x1x3, x2)− ξ2n(x2)− ξ3n(x1)),

x′3 = (ξ3x̃1 − x3x̃2)(−x1x3 + ξ2x2)− (ξ2ξ3 − n(x3))x̃1x2

= −ξ3n(x1)x3 + (x3x̃2)(x1x3)− ξ2n(x2)x3 + n(x3)x̃1x2 (by B.7 (4))

= (−ξ3n(x1) + n(x3, x̃1x2)− ξ2n(x2))x3 (by B.7 (10)),

and

ξ′3 = −n(ξ3x1 − x2x̃3)− (ξ2ξ3 − n(x3))n(x2)

= −ξ2
3n(x1)− ξ3n(x1, x2x̃3)− ξ2ξ3n(x2) (by B.7 (5))

= ξ2(−ξ3n(x1) + n(x1, x2x̃3)− ξ2n(x2)).

However we have n(x̃1x2, x3) = n(x2, x1x3) = n(x2x̃3, x1) and n(x3, x̃1x2) = n(x1x3, x2) =

n(x1, x2x̃3) by B.7 (9). Thus we get (MJ3) and (MJ4). Finally, we compute

q(a× b, v̄) = q(


 −n(x2, y2) x̃1y2 + ỹ1x2

x̃2y1 + ỹ2x1 −n(x1, y1)


 ,


 ξ2 x3

x̃3 ξ3




−

) (by (10))

= −ξ2n(x2, y2)− ξ3n(x1, y1) + n(x̃1y2, x3) + n(ỹ1x2, x3) (by (9))

and

−T1(a ◦ v̄, b) = −T1((x1, x2) ◦

 ξ3 −x3

−x̃3 ξ2


 , (y1, y2)) (by (5))

= −T1((ξ3x1 − x2x̃3,−x1x3 + ξ2x2), (y1, y2)) (by (7))

= −n(ξ3x1 − x2x̃3, y1)− n(−x1x3 + ξ2x2, y2) (by (6))

= −ξ3n(x1, y1) + n(x2x̃3, y1) + n(x1x3, y2)− ξ2n(x2, y2).

However we have n(x2x̃3, y1) = n(x2, y1x3) = n(ỹ1x2, x3) and n(x1x3, y2) = n(x3, x̃1y2) by

B.7 (9). Thus we get (MJ5).

B.9 In the situation of B.8, the k-module J = k ⊕ J1 ⊕ J0 becomes precisely H3(C)
after we make identification



ξ1 x1 x2

x̃1 ξ2 x3

x̃2 x̃3 ξ3


 =




ξ1 (x1, x2)

∗

 ξ2 x3

x̃3 ξ3






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of elements. In particular, J carries a bilinear composition xy calculated by the matrix

product. Direct calculation shows that Q(x)e, where

e := e1 + e0 =




1 0

∗

 1 0

0 1





 =




1 0 0

0 1 0

0 0 1




(cf. B.8 (11), B.6 (6)), coincides with the square of x with respect to the matrix product.

This result can be read as follows: Assume that we are in the classical situation where 2

is invertible over k. Then J = H3(C) becomes a linear Jordan algebra by means of the

bilinear composition

(1) x · y :=
1

2
(xy + yx).

Since we have Q(x)e = x · x, the circle product x ◦ y, which is the linearization Q(x, y)e

of Q(x)e, coincides with 2x · y. On the other hand, we have 2Q(x)y = x ◦ (x ◦ y)− x2 ◦ y
by B.6 and [Jac 1, I-§3, QJ 20]. Thus we get the formula

(2) Q(x)y = 2x · (x · y)− x2 · y,

which recovers the quadratic composition by means of the classical Jordan product.
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