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Prefaces

The purpose of this thesis is to study partial regularity of the weakly evolu-
tional harmonic maps whose target manifolds are spheres.

Harmonic maps are considered a generalization of the closed geodesics in dif-
ferential geometry and have been studied by Almgren, Brezis, Eells, Giaquinta,
Hardt, Hildebrandt, Lin, Lieb, Nishikawa, Schoen, Struwe and Uhlenbeck, etc.
We recall several important results on harmonic maps.

Let Bd and SD−1 be the d-dimensional unit ball and the D − 1-dimensional
unit sphere respectively with positive integers d and D more than or equal to 2.
H1,2(Bd; RD) denotes

H1,2(Bd;RD)={u=(ui)(i=1,... ,D);ui∈L2(Bd), ∂ui/∂xα

∈L2(Bd)(α=1,... ,d)}, (
∂ui/∂xα ;weak derivative of ui

)
,

the norm ||u||H1,2 ofH1,2(Bd;RD) is given by

||u||H1,2 =

{
D∑

i=1

∫
Bd

|ui|2dx+
d∑

α=1

D∑
i=1

∫
Bd

∣∣∣∣ ∂ui

∂xα

∣∣∣∣
2

dx

}1/2

.

Also

H1,2(Bd;SD−1)={u∈H1,2(Bd;RD); |u|=1, a.e. x∈Bd},
◦
H

1,2
(Bd;RD)=C∞

0 (Bd;RD)
H1,2(Bd;�D )

.

Give u0 ∈ H1,2(Bd;SD−1). We consider the boundary value problem to the
following system:

�u+ |∇u|2u=0, in Bd,

u=u0 on ∂Bd.

A solution of the boundary value problem above is called a (Dirichlet) har-
monic map.

Since harmonic maps are the Euler-Lagrange equations of the Dirichlet energy

E[u]=
1

2

∫
Bd

|∇u|2dx, with restriction |u|=1,

the existence of a harmonic map follows from the variational problem:

Problem 1. Find a map umin in H1,2(Bd;SD−1) with

E[umin]= inf
u∈H1,2

u0
(Bd;SD−1)

E[u],
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where H1,2
u0

(Bd;SD−1)= {u∈H1,2(Bd;SD−1) ;u−u0∈
◦
H

1,2
(Bd;RD)}.

The map umin is often called “minimizer.” Related to the problem above, the
following two results on minimizer are fundamental:

(I) umin exists in all d,D ifH1,2
u0

(Bd;SD−1) is not empty and it is smooth in d=2.
(Special case of the results by Morrey, C. B. Jr; see “Multiple integrals in
the calculus of variations”)

(II) umin is smooth on an open set whose compliment is a set of at most finite
(d−3)-Hausdorff measure. (This result is due to Schoen, R and Uhlen-
beck, K).

As is well-known, H1,2
u0

(Bd;Sd−1) is not empty and any map u:Bd→Sd−1 with
deg(u|∂Bd) �=0 has at least one singular point (non-continuous point) if d≥3. Thus
the result by Schoen, R and Uhlenbeck, K is sharp.

umin is the critical point of the Dirichlet energyE and hence is a harmonic map.
The result above shows the existence of a harmonic map for a given boundary
value u0. However, in general harmonic maps are not unique. Then the following
problem naturally arises:

Problem 2. For a given map u0 ∈ H1,2
u0

(Bd;SD−1), find all harmonic map
with a boundary value u0.

To solve the problem 2, Eells-Sampson proposed the strategy that considers
the following parabolic system:

∂u

∂t
=�u+ |∇u|2u in Q∞,

u(0,x)=u0(x) in {0}×Bd,

u(t,x)=u0(x) in [0,∞)×∂Bd,

(Q∞=(0,∞)×Bd)

shows that a solution u(t,x) of the system above, converges to a harmonic map
as t→+∞. A solution u(t,x) of the system above is called “evolutional har-
monic map”. By using a certain penalty method, Chen, Y and Struwe, M have
constructed a weakly evolutional harmonic map u(t,x), that is, a map satisfying

u∈L∞(0,T ;H1,2(Bd;SD−1))∩H1,2(0,T ;L2(Bd;SD−1))[A-1]

for any positive number T ,

u(t,x) satisfies the system above in the distribution sense,[A-2]

u(t,x)−u0(x)∈
◦
H

1,2
(Bd;RD) for almost every t∈(0,T ),[A-3]

lim
t→+0

u(t,·)=u0(·) in L2(Bd;RD);[A-4]
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a penalty method is to examine the following approximate systems:

∂uλ

∂t
=�uλ−λ(|uλ|2−1)uλ for Q∞,

uλ(0,x)=u0(x) in {0}×Bd,

uλ(t,x)=u0(x) in [0,∞)×∂Bd,

where λ is any positive number, uλ is a map from Q∞ to RD and u0 is a map from
Bd to RD with |u0|=1. However, in general, the weakly evolutional harmonic
maps are neither unique nor smooth on the whole domain by the topological
obstruction. To ensure the uniqueness, a class of solutions proposed by Chen, Y
and Struwe, M seems too broad. The main purpose of the thesis is to find a class
of solutions with the following two requirements:

(I) There exists a unique weakly evolutional harmonic map in a class of solu-
tions.

(II) The singular set of weakly evolutional harmonic map in this class is smaller
than that of the weakly evolutional harmonic maps constructed by Chen, Y
and Struwe, M.

To the requirements of (I) and (II), we show the class of solutions u(t,x) that
implies the following properties:

u(t,x) satisfies [A-1] - [A-4],[H-1]

lim
h↘0

1

h

∫
Q

|〈x+he,∇〉u(t,x+he)−〈x,∇〉u(z)|2 dz=0,[H-2]

lim
h↘0

1

h

∫
Q

|∇u(t+h,x)−∇u(z)|2dz=0,[H-3]

where z=(t,x), dz=dtdx, e is a unit vector in R
d and any compact set Q⊂⊂Q∞.

Then we state our first main theorem:

Theorem 1. Let d be 3. If a map u:Q∞→SD−1 satisfies the hypothesis [H-1]
- [H-3], then the map u is smooth except for a relative closed set in Q∞ having at
most zero 3-dimensional Hausdorff measure with respect to the parabolic metric
where the parabolic metric dP means for any points (t,x) and (s,y) ∈R+×Rd,

dP((t,x),(s,y))=|t−s|1/2+|x−y|.
The proof of this theorem is directly performed by the combining the following

two theorems:

Theorem 2. Let u be a map satisfying [H-1] - [H-3]; when we set

Σu =

{
z0=(t0,x0)∈Q∞ ; liminf

r↘0
r−3

∫
Qr(z0)

|∇u|2dz>0

}
,
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then Σu is a relative closed set in Q∞ satisfying H3(Σu)=0. Here the 3-dimensional
Hausdorff measure with respect to the parabolic metric H3(Σu) is given by

H3(Σu)=sup
R>0

{
inf

covering

{∑
i

r3
i ;Σu⊂

⋃
i

Pri
(zi),zi=(ti,xi)∈Σu,ri<R

}}
,

with PR(z0) =(t0−R2,t0+R
2)×BR(x0).

Theorem 3. There exist constants 0<ε0, τ0<1 such that for any map u with
[H-1] - [H-3] and any Qr(z0)⊂⊂Q∞,

r−3

2

∫
Qr(z0)

|∇u|2dz<ε0 implies

(τ0r)
−3

2

∫
Qτ0r(z0)

|∇u|2dz≤ 1

2

r−3

2

∫
Qr(z0)

|∇u|2dz.

The following monotonicity lemma has played a crucial role in the proof of
Theorem 3:

Lemma 1. For all map u with [H-1] - [H-3], the inequality holds

1

r2
2

∫ t0

t0−r2
2

dt

r1

∫
Br1 (x0)

|∇u|2dx≤ CM

(2r2)2

∫ t0

t0−(2r2)2

dt

2r2

∫
B2r2 (x0)

|∇u|2dx,

where (t0−r2
2,t0)×Br1(x0)⊂ Qr2(z0)⊂ Q2r2(z0)⊂⊂Q∞ are any concentric cylin-

ders with z0=(t0,x0) and CM is a positive constant independent of r1,r2,z0,u.

To complete the proof of Theorem 1, we apply DeGiorgi-Nash-Moser’s itera-
tion technique to Theorem 3 and successively use the Schauder estimates for the
parabolic equations and the boot strap argument; we can verify that u with [H-1]
- [H-3] belongs to C∞(Q∞\Σu). Struwe, M suggests that the class of solutions
satisfying [A-1] - [A-4] and the monotonicity formula may permit us to possess
the unique solution u to the prescribed initial-boundary condition. The existence
of a map with [H-1] - [H-3] will be discussed in the forthcoming paper. This will
be stated in Chapter 2.

Chapter 3 demonstrates a new proof of a partial regularity of the weakly
evolutional harmonic maps constructed by Chen, Y and Struwe, M. This new
method enables us explicitly to estimate various constants appeared in the proof.
We show it by combining Giaquinta’s and Ladyžhenskaya-Ural’ceva’s iteration
techniques with the nonlinear Fefferman-Phong inequality which is instructive in
itself. Here the nonlinear Fefferman-Phong inequality is

Lemma 2. Let uλ be the smooth solution of the penalty system and η a non-
negative smooth function with a compact support on a parabolic cube DR(z0)
and supDR(z0) η(z) ≤1; Then, for the Ginzburg-Landau energy density eλ(uλ)=
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1/2|∇uλ|2+λ/4(|uλ|2−1)2,∫
DR(z0)

∣∣∣∣
((√

e
(κ)
λ (uλ)

)p
η

)∣∣∣∣
2+2/p

dz≤CFPΦ
2
R(z0)

×
∫

DR(z0)

∣∣∣∣∣∇
((√

e
(κ)
λ (uλ)

)p

η

)∣∣∣∣∣
2

dz

holds where κ is any positive number, e
(κ)
λ = max{eλ−κ,0}, p = 1,1+2/d, CFP

is a positive constant independent of κ, R, z0, uλ and η, and

Φ2
R(z0)=(10

√
3e1/4 +1)R−d

∫ t0+R2

t0−4R2

dt

∫
D(1+δ(R))R(x0)

eλ(uλ)dx

+10
√

3R2−dexp

(
−δ

2(R)

12

)
ess·sup
0≤t≤∞

∫
Bd

eλ(uλ)dx

+5
√

3R

(
sup

x∈∂Bd

(
|x|+ |x|2

ε0

)
sup

z∈{0}×Bd∪[0,∞)×∂Bd

|∇tanu0|2

+2 sup
z∈{0}×Bd∪[0,∞)×∂Bd

∣∣∣∣∂u0

∂t

∣∣∣∣
2)

Ld−1(∂Bd)

× sup
0≤s≤∞

max(s1−d,s5−d)exp(− 1

4s2
inf

x∈∂Bd
|x|2),

with z0=(t0,x0)∈Q∞, dz=dtdx, δ(R) =
√

(12(d−2)+1)·|logR| and Ld−1= the
(d−1)-dimensional Lebesgue measure.
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CHAPTER 1

The evolution of Harmonic maps

1. Harmonic maps

Let M be a d-dimensional Riemannian manifold with metric γ and N a compact
D-dimensional manifold with a metric g, respectively. By Nash’s embedding
theorem (See Nash [87]) we assume that N can be isometrically imbedded to a

D̂-dimensional Euclidean space RD̂ for some positive integer D̂. For a C1-map

u=(u1,...,uD̂) : M→N⊂R
D̂ let

e(u)=
1

2
γαβ(x)ui

xα
ui

xβ
=:

1

2
|∇u|2M

be the energy density, written in local coordinates x=(xα)α=1,...,d on M with
γ=(γαβ), (γαβ)=(γαβ)−1. Repeated Greek indices tacitly will be summed from

1 to d, repeated Latin indices from 1 to D̂. Moreover, ui
xα

=∂ui/∂xα etc. A C1-

variation of u is a family (uε) of C1-maps uε : M→N⊂RD̂ smoothly depending
on a parameter |ε|<ε0, and such that u0=u. A variation (uε) of u is said to be
compactly supported variations if there exists a compact set Ω⊂⊂M such that
uε=u on M \Ω for all |ε|�1.

Definition 1.1. A C1-map u : M→N⊂RD̂ is harmonic if it is stationary for
Dirichlet’s energy

E(u)=

∫
M

e(u)dvolM(1.1)

with respect to compactly supported variations.

Note that in local coordinates dvolM =
√|γ|dx, where |γ|=|det(γαβ)|.

We derive the Euler-Lagrange equation satisfied by a harmonic map u: let

U⊂RD̂ be a tubular neighborhood of N and πN : U→N the (smooth) nearest-

neighbor projection. By TpN(⊂TpR
D̂) denote the tangent space to N at a point

p∈N . Choose φ∈C1
0(M ;RD̂) satisfy

φ(x)∈Tu(x)N

for all x∈M . φ induces a C1-variation

uε=πN ◦(u+εφ).
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Since dπN(p)
TpN

=id for p∈N, clearly we have

duε

dε
ε=0

=(dπN ◦u)φ=φ.

Suppose that φ has support in a single coordinate chart. Then

dE

dε
[uε]

ε=0

=

∫
M

γαβ
√
|γ|ui

xβ
φi

xα
dx

=−
∫

M

1√|γ|
∂

∂xα

(γαβ
√
|γ| ∂
∂xβ

ui)φi
√
|γ|dx

=−
∫

M

�Mu
iφidvolM ,

where �M =1/
√|γ| ∂/∂xα (γαβ

√|γ|∂/∂xβ) denotes the Laplace-Beltrami oper-
ator on M .

Thus, if u∈C2 is harmonic, u satisfies

�Mu⊥TuN(1.2)

and conversely. To obtain a more explicit form of (1.2), let νD+1,...,νD̂ denote a

local orthonormal frame for (TpN)⊥, the orthogonal complement of TpN in RD̂,

near p=u(x)∈N . Then, by (1.2) there exist scalar functions λD+1,...,λD̂ such
that

−�Mu=
D̂∑

k=D+1

λk(νk◦u).

For any fixed k, multiplying by νk, since 〈uxα ,νk◦u〉=0 for all α, we obtain

λk=−�M〈u,(νk◦u)〉=−div〈∇u,νk(u)〉+γαβ〈uxα ,
∂

∂xβ

(νk◦u)〉

=γαβAk(u)(uxα ,uxβ
),

where Ak=dνk denotes the second fundamental form with respect to νk. 〈·,·〉
means the inner product between a map and a map. Thus we find that (1.2) is
equivalent to

−�Mu=A(u)(∇u,∇u)M ,(1.3)

where in local coordinates

A(u)(∇u,∇u)M =
D̂∑

k=D+1

γαβAk(u)(uxα ,uxβ
)(νk◦u).

Example 1.1. If M=T d=Rd/Zd, N=Sd⊂Rd+1, equation (1.3) simply be-
comes

−�u=|∇u|2u.
8



Harmonic maps are a generalized concept of harmonic functions. Harmonic
maps S1→N correspond to closed geodesics on N . Important applications of har-
monic maps are in Teichmüller theory in understanding the Weil-Peterson metric
on Teichmüller space, see Earle-Eells [31], [32], Eells [33], Fisher-Tromba [44],
Tromba [114], or in proving rigidity theorems for Kähler manifolds (Mostow [85],
Mostow-Siu [86], Siu [103]). Comprehensive surveys of harmonic maps and
their applications are given in Eells-Lemaire [34], [35], Hildebrandt [65], [66],
Jost [70], [71] and Schoen-Yau [99]. Also Hardt [58] gives a survey of the struc-
ture of the singular set of harmonic maps and Smith [104] surveys harmonic maps
from spheres to spheres. This thesis mainly treats with the case of M=Bd

1(0)⊂R
d

(the d-dimensional unit ball) and of N=SD−1 (the D−1-dimensional unit sphere)
by the following reason:

(i) The sphere is the simplest target manifold in hard situation; the hard sit-
uation means, for example, the positive curvature target manifold and the
manifold with πD(N) �=0. If we compare Eells-Sampson [36] with Chen-
Struwe [24], what we should realize is that if we can obtain a result on
harmonic maps whose target is the D-dimensional sphere, we can show the
corresponding result on one’s of the D-dimensional compact Riemannian
manifold without a boundary.

(ii) We have two applications to physics: One is liquid crystal theory in M=
B3

1(0),N=S2, another is the instantons in Yang-Mills connections in M=
R4,N=S3∼=SU(2). For instance we refer to Ericksen-Kinderlehrer [38] and
therein for liquid crystal theory and to Atiyah [1] for Yan-Mills connections.

(iii) A higher symmetric structure of the sphere enables us to find “highly sym-
metric harmonic maps.” Later this will be discussed in detail.

Bochner identity

A Bochner identity is very useful to analyze the harmonic maps: It is a cer-
tain differential equation satisfied by the energy density e(u) of a harmonic map

u : M→N . Let R(M), Ric(M) and R(N) denote the Riemann curvature tensor on
M , Ricci curvature on M and the Riemann curvature tensor on N , respectively.
Given any point x0∈M , R(M)=(Rαµβν) and Ric(M)=(Rαβ) respectively means

the coordinate representation of R(M), Ric(M) in normal coordinates x=(xα)
(α=1,... ,d) about x0∈M ; while R(N)=(R̃ikjl) does the coordinate representa-
tion of R(N) in normal coordinates u=(ui) around u0=u(x0)∈N . We use the
notation of Jost [72].

Proposition 1.1. If u∈C3(M ;N) is harmonic, then in local coordinates as
above the following holds:

−�Me(u)+|∇du|2+Rαβu
i
xα
ui

xβ
=R̃ikjlu

i
xα
uj

xα
uk

xβ
ul

xβ
,(1.4)
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where ∇ denotes the covariant derivative on T ∗M⊗u−1TN . (See Jost [72, p. 96f]
for an equivalent expression in general coordinates and an invariant form of
(1.4)).

Proof. The proof relies on the following identities valid at x0∈M in normal
coordinates around x0 on M and around u(x0) on N . Let γµν

,α =(γµν)xα , etc.
Then the identities are

γµν
,αβ=−γµν,αβ;

(�Mu)xµ−�M(uxµ)=(γαβ
√
|γ|)xαxµuxβ

=γαβ
,αµuxβ

+
1

2
γρρ,αµuxα

=−γαβ,αµuxβ
+

1

2
γρρ,αµuxα ;

Rαβ=Rµ
αµβ=Γµ

αβ,µ−Γµ
αµ,β=

1

2
(γαµ,βµ+γβµ,αµ)− 1

2
(γαβ,µµ+γµµ,αβ).

Thus, at x0 we obtain

�Me(u)=�M(
1

2
γµνgij(u)u

i
xµ
uj

xν
)

=(�Mu
i
xµ

)ui
xµ

+
1

2
γµν

,ααu
i
xµ
ui

xν
+ui

xαxµ
ui

xαxµ
+

1

2
gij,kl(u)u

i
xµ
uj

xµ
uk

xα
ul

xα

=(�Mu
i)xµu

i
xµ

+ui
xαxµ

ui
xαxµ

+γαβ,αµu
i
xβ
ui

xµ

− 1

2
(γµν,αα+γαα,µν)u

i
xµ
ui

xν
+

1

2
gij,kl(u)u

i
xµ
uj

xµ
uk

xα
ul

xα

=(�Mu
i)xµu

i
xµ

+ui
xαxµ

ui
xαxµ

+Rαβu
i
xα
ui

xβ

+
1

2
(gij,kl+gil,jk−gjl,ik)u

i
xµ
uj

xµ
uk

xα
ul

xα
.(1.5)

Finally, note that by (1.3) we have

(�Mu
i)xµu

i
xµ

=−Γ̃i
kl,j(u)u

k
xα
ul

xα
ui

xµ
uj

xµ

at x0, because Γ̃(u(x0))=0 by our choice of coordinates. Moreover, note

R̃iljk=Γ̃i
kl,j−Γ̃i

jl,k,

Γ̃i
jl,k=

1

2
(gij,kl+gil,jk−gjl,ik).(1.6)

Then we conclude

−�Me(u)+u
i
xαxµ

ui
xαxµ

=−Rαβu
i
xα
ui

xβ
+R̃iljku

i
xµ
uj

xµ
uk

xα
ul

xα
.

Since R̃iljk=R̃ikjl the claim follows.

As a consequence of (1.4), we have the following corollary; see e.g. Jost [72].
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Proposition 1.2. If M is compact manifold with RicM≥0 and ∂M=∅, and if
the sectional curvature of N is non-positive, then any harmonic map u∈C∞(M ;N)
is totally geodesic in the sense that ∇du≡0; that is, du is parallel with respect to
the pull-back covariant derivative on T ∗M⊗u−1TN . Moreover, if RicM>0 at a
point of M , then u≡const. If the sectional curvature KN of N is negative, then
u≡const or u(M) is covered by a closed geodesic ball.

Proof. Integrate (1.4) over M to obtain |∇du|2≡0, Ric(M)(du,du)≡0,〈
R̃(N)(du,du)du,du

〉≡0 on M under the above assumptions.

For most of our purposes it suffices to note a weaker Bochner-type estimate.
On account of (1.6), we obtain

−�Me(u)+|∇2u|2≤|RicM |e(u)+C(
e(u)

)2
.(1.7)

Weakly harmonic maps

Let

H1,2(M ;N)={u∈H1,2(M ;RD̂);u(x)∈N for almost every x∈M},
whereH1,2(M ;RD̂) is the standard Sobolev space of L2-maps u : M→R

D̂ with dis-
tributional derivative ∇u∈L2. That is,H1,2(M ;N) is the space of maps u : M→N
with finite energy E(u). It was observed by Schoen-Uhlenbeck [98] that in gen-
eral H1,2(M ;N) as defined above is larger than the weak closure of C∞(M ;N) in
the H1,2-norm

‖u‖2
H1,2 =

∫
M

(|u|2+|∇u|2)dvolM ,

which in turn is larger than the strong closure of C∞(M ;N) in H1,2(M ;N). How-
ever, if dimM=2, these spaces all coincide. By a result of Bethuel [4], the same
is true if π2(N)=0. The relations between Sobolev spaces whose elements are
maps from M to N and it’s weak- and strong- closures were analyzed by Bethuel-
Zheng [9] and Bethuel [4].

Definition 1.2. A map u∈H1,2(M ;N) is called weakly harmonic if u satisfies
(1.3) in the distribution sense.

Example 1.2. The map u : Bd
1(0)⊂R

d→Sd−1 given by

u(x)=
x

|x| ,

belongs to H1,2(Bd
1(0);Sd−1) for d≥3 and weakly solves (1.3), that is, this map u

satisfies

−�u=|∇u|2u in (D(Bd
1(0);Rd))

′
.
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Existence of harmonic maps

As in Hodge theory, where one seeks to realize a de Rham cohomology class by
a harmonic differential form, a basic existence problem for harmonic maps is the
following:

Homotopy problem: Given a map u0 : M→N , is there a harmonic map u
homotopic to u0?

This question, as we shall see below, has an affirmative answer if the sectional
curvature KN of N is non-positive (Eells-Sampson [36]) or if d=2 and π2(N)=0
(Lemaire [76], Sacks-Uhlenbeck [95]). However, for N=S2 and d=2, we have the
following counter-examples:

Example 1.3. (Lemaire [76], Wente [119]): If u : B2
1(0)⊂R2→S2 is harmonic

and u
∂B2

1(0)
≡const, then u≡const.

Example 1.4. (Eells-Wood [37]): If u : T 2→S2 is harmonic, then degu �=±1.

In higher dimensions (d≥3), hardly any result is known for the homotopy
problem unlessKN≤0. However, there are various existence results for the Dirich-
let problem.

Dirichlet problem and variational methods

The Dirichlet problem can be formulated as follows: Suppose ∂M �=∅ and let
u0 : M→N be any given map belonging to H1,2(M ;N). Is there a harmonic map
u : M→N such that u=u0 on ∂M?

The Dirichlet problem can be attacked by using variational methods. Once
we can seek a map which minimizes E among the class

H1,2
u0

(M ;N)=
{
u∈H1,2(M ;N);u=u0 on ∂M

}
,

we obtain a weakly harmonic map u satisfying the desired boundary condition
because the harmonic maps are the critical points of the energy (1.1) in the class
above.

In other words, the variational methods are to find a map umin ∈ H1,2
u0

(M ;N)
with

E[umin]= inf
u∈H1,2

u0
(M ;N)

E[u].(1.8)

The map satisfying (1.8) is usually called “minimizer.” It is easy to check that
(1.3) is the Euler-Lagrange equations of the energy (1.1) amongH1,2

u0
(M ;N). That

is, to show the existence of a harmonic map, we have only to search a smooth
minimizer. If dimM=2, Morrey [83] has proved:

Theorem 1.1. Every minimizer umin : M→N with dimM=2, is smooth.

On the other hand, in dimM≥3, by the topological obstruction, we have no-
hope to prove the everywhere regularity. For instance the equator map x→x/|x|
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: B3
1(0)→S2 is the unique absolute minimizer of E[·] in H1,2

x (B3
1(0);S2). (Brezis-

Coron-Lieb [11], Lin [79]). Schoen-Uhlenbeck [97] and [98] have established:

Theorem 1.2. A minimizer umin of E[·] in H1,2
u0

(M ;N) with dimM≥3 is
smooth on an open set whose compliment has at most (dimM−3)-dimensional
Hausdorff dimension.

This result is best possible. For example, even if a map u0
∂Bd

1 (0)
: ∂Bd

1(0)=

Sd→Sd is smooth with 0-degree, a minimizer of E[·] in H1,2
u0

(Bd
1(0);Sd−1) is not

always smooth, nevertheless a smooth extention of u0
∂Bd

1 (0)
inside Bd

1(0) exists.

In addition if we regard the map u(x)=x/|x| as a map u : Bd
1(0) ⊂Rd→Sd−1

⊂Sd⊂Rd+1, there is no topological reason for a singularity. However the maps u
above are still minimizer in H1,2

x (Bd
1(0);Sd) if d≥7 (Jäger-Kaul [68], Baldes [2]).

Related to liquid crystal theory, a property of E[·] in H1,2
u0

(B3
1(0);S2) has been

much drawn into concerns from 80’ (Ericksen-Kinderlehrer [38]). Basic facts to
the minimizers of E[·] in H1,2

u0
(B3

1(0);S2) are the following:

(i) Monotonicity for the scaled energy and the hybrid inequality: The fun-
damental technical properties of minimizers may be monotonicity and the
hybrid inequality: Let umin be minimizers of E[·] in H1,2

u0
(B3

1(0);S2) and set
x0∈B3

1(0), any ball Br1(x0)⊂Br2(x0) ⊂⊂B3
1(0); Then monotonicity denotes

1

r1

∫
Br1

|∇u|2dx≤ 1

r2

∫
Br2

|∇u|2dx,

while the hybrid inequality is given by∫
Br

|∇u|2dx≤C
∫

∂Br

|∇u||u−a|dH2,

for any vector a∈R3 and any ball Br(x0)⊂⊂B3
1(0) with some positive num-

ber C depending only on the dimension 3. For the proof, see Schoen-
Uhlenbeck [97] and Hardt-Kinderlehrer-Lin [59].

(ii) Tangential approximation: A rich development occurred in a paper of Si-
mon [102] which provides with the problem the existence of the unique
tangential approximating maps. At regular points, the tangential approxi-
mating map is constant. For a singular point y of umin in B3

1(0), in the light
of Simon’s result [102], there exists the unique harmonic map f : S2→S2

such that u(y+rω2)→f(ω2) as r↘0 uniformly with ω2=(x−y)/|x−y|.
Similarly, one can try to solve the homotopy problem by minimizing E[·] in a

given homotopy class. However, Lemaire’s example shows that in general homo-
topy classes are not weakly closed in H1,2(M ;N).

This is made explicit by the following example, whose construction relies on
the fact that the conformal group on S2 acts non-compactly on H1,2(S2;S2).
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Example 1.5. When we set πp : S2\{p}→R2 which denotes stereographic
projection and Dλx=λx which is dilation by a factor λ, the maps

uλ=π−1
p ◦Dλ◦πp : S2→S2,

are homotopic to the identity id=u1 : S2→S2. But

uλ⇁u∞(x)≡p (λ→∞),

weakly in H1,2(S2;S2). (Accidentally, by conformal invariance of E in dimension
d=2, all uλ are harmonic!)

Non-minimizing harmonic maps: By the lack of information, the study of non-
minimizing harmonic maps is quite challenging. If dimM=2, Grüter [55] proved
smoothness of conformal weakly harmonic maps. This result was extended by
Schoen [96] to harmonic maps that are stationary with respect to variations of
parameters in the domain: He showed that the harmonic maps above have a
holomorphic Hopf differential

(∂u)2dz2 :=
(|ux|2−|uy|2−2i〈ux,uy〉

)
dz2

in suitable conformal parameters z=x+iy on M . Finally Hélein [63] recently has
shown the regularity of weakly harmonic maps in general.

Theorem 1.3 (Hélein [63]). Assume dimM=2 and let u∈H1,2(M,N) be
weakly harmonic. Then u∈C∞(M ;N).

Proof. For N=SD̂−1 and M=B2
1(0), his proof invokes a trick: the equivalence

of (1.3) and

−�ui=
D̂∑

j=1

〈∇uj ,ui∇uj−uj∇ui〉(i=1,...,D̂),

in the light of 0=∇|u|2=2
∑

ju
j∇uj. He then observes that for any i,j=1,2,... ,D̂,

there holds

div(ui∇uj−uj∇ui)=ui�uj−uj�ui=0.(1.9)

Thus there is a potential aij∈H1,2 such that

rotaij=ui∇uj−uj∇ui

and (1.3) takes the form

−�ui=
D̂∑

j=1

(uj
x1
aij

x2
−uj

x2
aij

x1
) for x=(x1,x2)∈B2

1(0).

Here the right-hand side is the sum of Jacobians of H1,2-maps. Continuity of
u (and hence smoothness) then follows from results of Wente [118] and Brezis-
Coron [10].
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Notice that (1.9) is a consequence of Noether’s principle and the symmetries

of SD̂−1. Hélein then generalized this simple and beautiful idea to arbitrary target
manifolds by an ingenious choice of rotated frame fields on u−1TN .

Inspired by Hélein’s result, Evans [40] has obtained a partial regularity result
for “stationary” weakly harmonic maps from Bd to SD−1 with d≥3 and D≥3.
A drastic difference between d=2 and d≥3 actually emerges to the smoothness
result on weakly harmonic maps. Hardt-Lin-Poon [61] has constructed examples
of harmonic maps u : B3

1(0)→S2 with the cylindrical symmetry whose boundary
data u

∂B3
1(0)

: ∂B1(0)∼=S2→S2 have degree 0 so that u possesses an arbitrarily

large number of singular points on the axis of symmetry and Rivière [93] has
exhibited weakly harmonic maps u : R3→S2 with line singularities.

2. Evolutional harmonic maps

The Eells-Sampson result

By Examples 1.3, 1.4 and 1.5 above, we know that it may be difficult to solve
the homotopy problem for harmonic maps by variational methods. To overcome
these difficulties, Eells - Sampson [36] proposed to study the evolution problem

ut−�Mu=A(u)(∇u,∇u)M on [0,∞)×M(1.10)

with initial and boundary data

u=u0 at t=0 and on [0,∞)×∂M(1.11)

for maps u : [0,∞)×M→N⊂RD̂, the idea behind this strategy of course being
that a continuous deformation u(t,·) of u0 will remain in the given homotopy class.
Moreover, the “energy inequality” (see Lemma 1.1 below) shows that (1.10) is
the (L2)-gradient flow for E, whence one can hope that the solution u(t,·) for
t→∞ will converge to a critical point (a harmonic map) of E, if we can show
that the (L2)-gradient flow for E is smooth; for suitable targets, this program is
successfully solved.

Theorem 1.4 (Eells-Sampson [36]). Suppose that M is compact without
boundary and that the sectional curvature KN of N is non-positive. Then for any
u0∈C∞(M ;N), the Cauchy problem (1.10) and (1.11) admits the unique, global,
smooth solution u : M×[0,∞)→N which, as t→∞ suitably, converges smoothly
to a harmonic map u∞∈C∞(M ;N) homotopic to u0.

The proof uses three ingredients.

Lemma 1.1 (Energy inequality). Set E(u(t)) =
∫

M
e(u)(t,·)dvolM and let T

be any positive number For a smooth solution u of (1.10) and (1.11), it follows∫ T

0

∫
M

|ut|2dtdvolM +E
(
u(T )

)≤E(u0).
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Proof. Recall that A(u)(∇u,∇u)⊥TuN . Multiplying (1.10) by ut and integrat-
ing by parts, we obtain ∫

M

|ut|2dvolM +
dE

dt
(u(t))=0

for any t≥0 and the desired estimate (in fact, with equality) follows from inte-
grating in t.

Lemma 1.2 (Bochner inequality). If KN≤0, then for any smooth solution u
of (1.10) with energy density e(u), there holds(

∂

∂t
−�M

)
e(u)≤Ce(u)(1.12)

with a constant C depending only on the Ricci curvature of M .

Proof. To derive this estimate we use the representation of u in suitable local

coordinates onN : u=(u1,...,uD̂). As in deriving (1.4) from (1.3) in the stationary
case, we can conclude that (in normal coordinates around x0 on M)(

∂

∂t
−�M

)
e(u)+|∇du|2+Rαβu

i
xα
ui

xβ
=R̃ikjlu

i
xα
uj

xα
uk

xβ
ul

xβ

at (t,x0), where ∇, Rαβ, R̃ikjl, respectively, denotes the pull-back covariant de-
rivative on T ∗M⊗u−1TN , the Ricci curvature on M and the Riemann curvature
tensor on N. From this identity, the claim follows.

From (2), we obtain

(
∂

∂t
−�M

)
e(u)+|∇2u|2≤CMe(u)+CN

(
e(u)

)2
,(1.13)

where |∇2u|2 =γαβγµν ui
xαxµ

ui
xβxν

and CM , CN respectively denotes constant
depending only on the Ricci curvature of M and the second fundamental form of
N .

The final ingredient is Moser’s [84] sup-estimate for sub-solutions of parabolic
equations. Set

L=
∂

∂t
−�M .

By QR(z0), denote the cylinder

QR(z0)={z=(t,x);t0−R2<t<t0,|x−x0|<R}
in local coordinates on M , where z0=(t0,x0) ∈M and R>0. Note that γαβ∈
C∞(QR(z0)) satisfies the uniform ellipticity condition: there exist positive num-
bers 0<λ≤Λ such that for any vector ξ∈R

d

λ|ξ|2≤
√

|γ|γαβ(z)ξαξβ≤Λ|ξ|2
holds in z∈QR(z0).
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Lemma 1.3. Suppose that any smooth nonnegative function v on QR(z0) sat-
isfies Lv≤C1v where C1 is a positive constant. Then for some positive constant
CH=CH(λ,Λ,C1) the following holds

sup
QR/2(0)

e(v)≤CHR
−(d+2)

∫
QR(z0)

e(v)dz.

Proof of Theorem 1.4. Local existence can be inferred from the a-priori esti-
mates for uniformly parabolic equations Ladyženskaya-Solonnikov-Ural’ceva [75])
and the standard implicit function theorem; see Hamilton [57].

Let T be a maximal time of a local existence of the solution of (1.10) and
(1.11) and u∈C∞([0,T )×M ;N) the solution of (1.10). By Lemma 1.2, the energy
density is a subsolution to the equation

(∂t−�M )e(u)≤Ce(u).
Let ιM be the convexity radius on M . Choose R<min{1,√T ,ιM} and apply
Lemma 1.3 to conclude that

e(u)(z0)≤CR−(d+2)

∫
QR(z0)

e(u)dz

≤CR−(d+2)

∫ t0

t0−R2

E(u(t))dt

≤CR−dE(u0)

for any z0=(t0,x0), t0≥R2, where C=C(M). Hence |∇u| is uniformly bounded
on any compact set on [0,T ]×M . By a boot-strap argument, we obtain uniform
bounds for all derivatives of u on the same region as above; there exists a positive
constant C depending only on E(u0), M and N such that supK |∇ku| ≤C for
any compact set K in [0,T ]×M and for any positive integer k. The solution thus
can be continued as a smooth solution to (1.10) on [0,∞)×M . The preceding
argument, then gives the uniform a-priori bounds for u and its derivatives on
[1,∞)×M depending only on M , N and E(u0). Hence, by Ascoli and Arzéla’s
theorem, the flow (u(t,·))t≥1 is relatively compact in any Ck-Topology. Finally,
by Lemma 1.1, for a sequence tk→∞ we have ut(tk,·)→0 in L2(M), therefore a
sub-sequence (u(tk,·)) converges smoothly to a harmonic map u∞. As u(tk,·) is
homotopic to u0 through the flow (u(t,·))0≤t≤tk for any k, so is u∞. If KN<0,
the uniqueness of u∞ and the convergencity of the flow u(t,·)→u∞ follows from
a maximum principle due to Jäger-Kaul [67].

The Eells-Sampson result was extended to harmonic maps with boundary by
Hamilton [57]. The condition KN≤0 can be replaced by the condition that the
image of u0 (and hence of u) should support a uniformly strictly convex function;
see Jost [69] and von Wahl [116]. However, none of these results can be applied
in case u0 : T 2→S2 has degree 1 and indeed Example 1.4 above shows that the
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flow (1.10) and (1.11) in this case cannot exist for all time and does not converge
smoothly as t→∞.

3. Finite time blow-up

It is remained to prove the question whether the heat flow (1.10) will develop
singularities in finite or infinite time. Reversing the order of the historical devel-
opments, we first state this problem and later present the existence results for
weak solutions that are the answers to these questions.

The heat flow (1.10) is a quasi-linear parabolic system and therefore hard to
deal with explicitly. However when N=Sd, by enough symmetry, (1.10) can be
reduced to a scalar equation in only two variables. Consider equivariant maps

u0(x)=

(
x

|x| sinh0(r),cosh0(r)

)

of Bd
1(0) into Sd, where r=|x|, h0(0)=0 and let u : [0,T )×Bd

1(0)→Sd ⊂Rd+1 be
the corresponding smooth solution of (1.10) and (1.11), defined on a maximal
time interval [0,T ). By uniqueness, also u is equivariant and can be written

u(t,x)=

(
x

|x| sinh(t,r),cosh(t,r)

)
(1.14)

in terms of a smooth map h : [0,T )×[0,1]→R satisfying the initial and boundary
conditions

h(0,r)=h0(r) for 0≤r≤1,

h(t,0)=h0(0)=h0,rr(0)=0 for 0≤t≤T,(1.15)

h(t,1)=h0(1)(=:b) for 0≤t≤T.
In terms of h, the equation (1.10)

ut−�u=|∇u|2u,
becomes

ht−hrr− d−1

r
hr+

sin2h

2r2
=0.(1.16)

If d≥3, it was shown by Coron-Ghidaglia [28] that for suitable h0, the solution h
of (1.15) and (1.16)—and therefore the solution u of (1.10) and (1.11)—cannot
be smoothly continued beyond some finite time. We will later see a deeper reason
for this; see Theorem 1.11.

The case d=2 is more interesting. In dimension d=2, a family of stationary
solutions h of (1.16) with h(0)=0 is obtained by stereographic projection from
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the south pole; see Example 1.5. In terms of r=|x| and the polar angle θ=φ(r)
the stereographic projection is given by

sinθ

1+cosθ
=r

we can write φ as

φ(r)=arccos

(
1−r2

1+r2

)
.

From a dilation r→rλ, we obtain the family

φλ(r)=φ
( r
λ

)
=arccos

(
λ2−r2

λ2+r2

)
, λ>0,

of stationary solutions of (1.16) with φλ(0)=0.

Theorem 1.5 (Grayson-Hamilton [50], Chang-Ding [17]). Let d=2. Suppose
|h0|≤π. Then the solution h of (1.15) and (1.16) exists for all time.

Proof. The idea is to construct a barrier, preventing h from becoming discon-
tinuous in finite time. Smoothness of h in (0,1) then follows from general results
on quasilinear parabolic systems; see Ladyženskaya-Solonnikov-Ural’ceva [75].

First note that Lemma 1.1 translates into the uniform energy bound

π

∫ 1

0

|hr|2rdr≤E(u(t))≤E(u0).

Hence, by Sobolev’s embedding theorem, h(t,·) is locally Hölder continuous on
(0,1] uniformly in t, and a singularity can only develop at the origin.

We assume 0≤h0≤π for simplicity. Let h1≥h0 satisfy π/2<h1≤π, h1(0)=π
and h1(a)<π for some a∈(0,1]. That is, h1 maps into the (convex) lower hemi-
sphere. Therefore, equation (1.10) and hence (1.16) with initial data h(0,·)=h1

possesses a global, smooth solution h̃. Moreover by the maximum principle (See

Jäger-Kaul [67]), h̃(t,r)<π for 0<r<1 and t>0. Choose a strictly increasing

function λ(t) such that φλ(0)>h0 on (0,a] and φλ(t)(a)>h̃(t,a) for all t≥0. Let

h̄(r,t)=

{
inf{φλ(t)(r),h̃(t,r)} 0≤r≤a,
h̃(t,r) a≤r≤1,

be our barrier. Note that h̄ is a supersolution to (1.16). Similarly, h≡0 is a
subsolution. Hence 0≤h(t,r)≤h̄(t,r) on [0,T ]×[0,1] by the maximum principle
and h(t,·) is continuous. As a result, the smoothness of h follows form Chang-Ding
[17, Lemma 3.1] Thus u is smooth at r=0 for any t≥0.

Quite surprisingly, the initial condition that |b0|≤π in Theorem 1.5 is sharp.

Theorem 1.6 (Chang-Ding-Ye [18]). Suppose |b|>π. Then the solution h to
(1.15) and (1.16) blows up at finite time.
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Proof. Let b>π. We show the existence of a sub-solution f to (1.16) with f(t,0)=
0≤f≤f(t,1)=b such that fr(t,0)→∞ as t→T for some T<∞. Set h0=f(0,·) and
let h be the corresponding solution of (1.15) and (1.16), the maximum principle
then implies that h≥f on [0,1]×[0,T ). Consequently, h must blow up before time
T . (For general initial data the proof is somewhat more complicated.)

We make the following ansatz for f :

f(t,r)=φλ(t)(r)+φµ(r1+ε),

where ε>0,µ>0 and λ=λ(t) will be suitably chosen later. Note that for any ε>0
we have

φµ(r1+ε)=arccos

(
µ2−r2+2ε

µ2+r2+2ε

)
→0 (µ→∞)

uniformly in r∈[0,1]. Hence, for any given ε>0, taking µ2≥2/ε+1, we obtain

cosφµ(r1+ε)≥ 1

1+ε
for r∈[0,1].

Next observe that for any µ and ε>0 the function θ(r)=φµ(r1+ε) satisfies

−θrr− 1

r
θr+

(1+ε)2sin2θ

2r2
=0.

Therefore

τ(f):=frr+
1

r
fr− sin2f

2r2

=

(−sin2(φλ+θ)+sin2φλ+(1+ε)2sin2θ
)

2r2

=

(
sin

(
(2φλ+θ)−θ)−sin

(
(2φλ+θ)+θ

)
+(1+ε)2sin2θ

)
2r2

=

(−2cos(2φλ+θ)sinθ+2(1+ε)2cosθsinθ
)

2r2

≥ (1+ε)−cos(2φλ+θ)

r2
sinθ

≥ ε

r2
sinθ=

ε

r2

2µr1+ε

µ2+r2+2ε
≥ε1rε−1 as long as ε1=

2µε

µ2+1
>0.

On the other hand, we have

∂f

∂t
(t,r)=

∂φλ(t)(r)

∂t
=− 2r

λ2+r2

dλ(t)

dt
.

Let λ(t) solve dλ/dt=−δλε where δ>0 to be determined:

λ(t)=[λ1−ε
0 −(1−ε)δt]1/(1−ε).
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Then fr(t,0)→+∞ as t↗T= λ1−ε
0 /(1−ε)δ. Finally

∂f

∂t
−τ(f)≤ 2δλεr

λ2+r2
−ε1rε−1=

[
2δλεr2−ε

λ2+r2
−ε1

]
rε−1.

But by Young’s inequality

λεr2−ε≤C(ε)(λ2+r2),

and hence f is a sub-solution of (1.16) for sufficiently small δ=δ(ε)>0 as desired.
Since ε>0 is arbitrary, sup|f(0,·)−π| can be taken as small as we wish

4. Global existence and uniqueness of partially regular weak solutions on
the surface

Theorem 1.6 shows that in general, smooth and global solutions to (1.10) and
(1.11) do not exist. However, the following question comes to my mind: Is
there a “weak” analogue of Theorem 1.4 that will still provide a satisfactory
meanings towards deciding the homotopy problem? We state an exact defini-
tion on “a global weak solution of (1.10) and (1.11):” Set V ((0,∞)×M ;N) =
L∞((0,∞);H1,2(M ;N)) ∩ H1,2((0,∞);L2(M :N)).

Definition 1.3. Let u0∈H1,2(M ;N). If we say a map u ∈ V ((0,∞)×M ;N)
to be “weakly evolutional harmonic map”, u satisfy (1.10) in D′

([0,∞)×M),
limt→+0u(t,·)=u0(·) in the sense of L2(M)-norm.

The following result is mainly due to Struwe [107]; the result was extended
to the case ∂M �=∅ by Chang [16].

Theorem 1.7. Suppose that M is a compact Riemann surface and N⊂R
D̂ is

compact Riemannian manifold without boundary. Then for any u0∈H1,2(M ;N),
there exists a global weak solution u : [0,∞)×M→N of (1.10) and (1.11) satis-
fying the energy inequality and belonging to class C∞ on (0,∞)×M away from
finitely many points (ts,j ,xs,j) (j=1,... ,J ). The solution u is unique in this class.

At a singularity (ts,xs), a (non-constant) harmonic sphere ū : S2→N separates
in the sense that for suitable sequences tk↗ts, xk→xs, Rk↘0, the rescaled maps

uk(x)=u(tk,xk+Rkx̄) : B2
1(0)→N

(in a local conformal chart around xs) converge to a non-constant harmonic limit
ũ : R2→N in H2,2

loc (R2;N). ũ has finite energy and extends to a smooth harmonic

map ū : S2∼=R2→N .
Finally, for a suitable sequence tk→∞, the sequence (u(tk,·)) converges weakly

to a smooth harmonic map u∞ : M→N in H1,2(M ;N).
The convergence is strong away from finitely many points x∞l (l=1,... ,L) and

there holds K+L≤ε−1
0 E(u0) where

ε0=inf{E(ū);ū : S2→N is a non-constant smooth harmonic map}>0
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is a constant depending only on N .

The proof of this result is based on the following inequality:

Lemma 1.4 (Ladyženskaya [74]). For any v∈H1,2(R2), v∈L4(R2) and

‖v‖4
L4≤2‖v‖2

L2‖∇v‖2
L2

hold.

See also Friedman [45] or Struwe [112, Lemma 3.5.7].
We now proceed with the proof of Theorem 1.7.
Positivity of ε0: We apply Lemma 1.4 to v=|∇u|φ, where u solves (1.3) on S2

and φ∈C∞(S2) is a smooth cut-off function 0≤φ≤1 with support in a coordinate
neighborhood on S2 to give∫

S2

|∇u|4φ2dvolM(1.17)

≤C
∫

suppφ

|∇u|2dvolM
(∫

S2

|∇2u|2φ2dvolM +

∫
S2

|∇u|2|∇φ|2dvolM
)
.

In particular, if (φ2
j) is a smooth partition of unity subordinate to a finite cover

(Uj) of S2 by local coordinate charts Uj (j=1,... ,J ), we obtain from (1.3), (1.17)
and the Calderón-Zygmund inequality that∫

S2

|∇2u|2dvolS2≤C
∫

S2

|�u|2dvolS2 +C

∫
S2

|u|2dvolS2

≤C
∫

S2

|∇u|4dvolS2 +C

≤CE(u)(

∫
S2

|∇2u|2dvolS2 +E(u))+C

with a constant C=C(N). Hence the number ε0 defined in Theorem 1.7, is strictly
positive. Indeed, if E(uk)→0 for a sequence of harmonic maps uk : S2→N , we
obtain that uk→const in H2,2(S2;N)↪→C0(S2;N). In particular, uk(S

2) lies in a
convex geodesic ball on N for large k. Thus uk must be constant, which provides
a contradiction.

L2-estimates for ∇2u: By (1.17), it is important to control the energy locally.
For Ω⊂M , denote

E(u;Ω)=

∫
Ω

e(u)dvolM .

Lemma 1.5. Set R0 =min{1,ιM} where ιM is the convex radius of M . Denote
BR(x0) by the ball in a local conformal chart around x0 with 0<2R≤R0. Then
for any positive number R with 0<2R≤R0, a smooth solution u : [0,T ]×M→N
of (1.10) and (1.11) satisfies

E
(
u(T );BR(x0)

)≤E(
u0;B2R(x0)

)
+
CT

R2
E(u0)
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with C=C(M,N).

Proof. Let φ∈D(B2R(x0)) satisfy 0≤φ≤1, φ≡1 on BR(x0), |∇φ|≤2/R and test
(1.10) with utφ

2 to obtain∫
M

|ut|2φ2dvolM +
d

dt

(∫
M

e(u)φ2dvolM

)
≤C

∫
M

|∇u||ut||∇φ|φdvolM

≤
∫

M

|ut|2φ2dvolM +C

∫
M

|∇u|2|∇φ|2dvolM .

Hence
d

dt

(∫
M

e(u)φ2dvolM

)
≤CR−2E(u(t))≤CR−2E(u0)

and the lemma follows by integration with respect to a time variable from 0 to
T .

In particular, for any given ε1>0 and u0∈H1,2(M ;N), there exists a number T1>0
depending only on a maximal positive number R1 with

sup
x0∈M

E(u0;B2R1(x0))<ε1,

the geometry of M , N and E(u0), such that any smooth solution u of (1.10) and
(1.11) satisfies

sup
0≤t≤T1,x0∈M

E(u(t);BR1(x0))<2ε1.

Actually, we can set T1=(ε1R
2
1)/(CE(u0)) where C is the constant in Lemma 1.5.

Since M is compact, we can choose finite points (xj) (j=1,2,...J ) so that
M⊂∪J

j=1BRj
(xj). Thus for any given ε1>0, let R1>0 be determined as above

and φi smooth cut-off functions subordinate to a cover of M by balls B2R1(xi)
satisfying 0≤φi≤1, |∇φi|≤2/R1 and

∑
iφ

2
i =1. Then by (1.17) we have∫

M

|∇u|4dvolM =
∑

i

∫
M

|∇u|4φ2
i dvolM

≤C sup
i
E
(
u(t);B2R1(xi)

)(∫
M

|∇2u(t)|2dvolM +R−2
1 E(u0)

)

≤Cε1
(∫

M

|∇2u(t)|2dvolM +R−2
1 E(u0)

)

for any t. Moreover, similar to our Bochner-type estimate (1.13), multiplying
(1.10) by �Mu and integrating by parts, we have

d

dt
(E(u(t)))+

∫
M

|�Mu|2dvolM≤C
∫

M

|∇u|4dvolM .
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By integrating over (0,T1) and combining the above estimates with the Calderón-
Zygmund inequality, we obtain that∫ T1

0

∫
M

|∇2u|2dtdvolM≤C
∫ T1

0

∫
M

|�Mu|2dtdvolM +CT1

≤Cε1
∫ T1

0

∫
M

|∇2u|2dtdvolM +
CT1

R2
1

E(u0)+CT1,

with a constant C=C(M,N). Thus, for sufficiently small ε1>0, we obtain an
a-priori bound for u in the norm

‖u‖2
W ((0,T )×M)= sup

0<t<T
E(u(t))+

∫ T

0

∫
M

(|∇2u|2+|ut|2
)
dtdvolM

with T=T1 of the form

‖u‖2
W ((0,T1)×M)≤C(1+

T1

R2
1

)E(u0)+CT1.

Here we use the fact that W ((0,T )×M) is an admissible class for (1.10) in the
sense that if u∈W ((0,T )×M) solves (1.10) with finite energy initial data u0∈
H1,2(M ;N), then u∈C∞((0,T ]×M ;N).

Local existence: A maximal positive number R1 can be chosen uniformly for

a set of initial data which is compact in {u0}+
◦
H

1,2
(M ;N). In particular, if

u0m∈C∞(M ;N) converges to u0 in H1,2(M ;N) and if {um} (m=1,2,...) is the
corresponding sequence of local solutions (1.10) for initial {u0m} (m=1,2,...)
by the above a-priori estimate, we have ‖um‖2

W ((0,T1)×M)≤C (1+T1/R
2
1) E(u0)+

CT1 where T1=(ε1R
2
1)/(CE(u0)) and the sequence {um} (m=1,2,...), weakly

converges weakly to u∈W ((0,T1)×M).
∇um→∇u in L2(M) for almost every t and then it is easy to pass to the

limit in equation (1.10); u then solves (1.10) classically in (0,T1)×M . Finally, by
Lemma 1.1, u achieves its initial data continuously in H1,2(M ;N).

Uniqueness: The space of functions with bounded W ((0,T )×M)-norm is a
uniqueness class. Indeed, if u and v∈W ((0,T )×M) weakly solve (1.10) with
u(0)=u0=v(0), their difference w=u−v satisfies

|wt−�Mw|≤C|w|(|∇u|2+|∇v|2)+C|∇w|(|∇u|+|∇v|).
Multiply the above inequality by w and perform the integrate by parts to verify
for almost every t≥0

1

2

∫
M

|w(t)|2dvolM +

∫ t

0

∫
M

|∇w|2dsdvolM

≤C
∫ t

0

∫
M

|w|2(|∇u|2+|∇v|2)dsdvolM
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+C

∫ t

0

∫
M

|w||∇w|(|∇u|+|∇v|)dsdvolM

≤C
(∫ t

0

∫
M

|w|4dsdvolM
)1/2(∫ t

0

∫
M

(|∇u|4+|∇v|4)dsdvolM
)1/2

+C

(∫ t

0

∫
M

|w|4dsdvolM
)1/4(∫ t

0

∫
M

|∇w|2dsdvolM
)1/2

×
(∫ t

0

∫
M

(|∇u|4+|∇v|4)dsdvolM
)1/4

≤Cε(t)
[

sup
0≤s≤T1

∫
M

|w(s)|2ds+

∫ t

0

∫
M

|∇w|2ds
]
,

where

ε(t)=

(∫ t

0

∫
M

(|∇u|4+|∇v|4)dsdvolM
)1/4

×
(

1+
(∫ t

0

∫
M

(|∇u|4+|∇v|4))dsdvolM)1/4
)
.

Here we applied Lemma 1.4 to the term of
∫ t

0

∫
M
|w|4dsdvolM in the estimates

above. As in the same way as before, on account of Lemma 1.5 we estimate

ε(t)→0 as t→+0.

Choosing t>0 small enough with ‖w(t)‖L2(M) =sup0≤s≤T1
‖w(s)‖L2(M), the unique-

ness follows.
Global continuation: The local solution u constructed above can be extended

until the first time T=ts,1 such that

limsup
t↗T

(
sup
x0

E
(
u(t);BR(x0)

))≥ε1

for allR>0. By Lemma 1.1, ut∈L2([0,T ]×M). Hence the L2-limit u1=limt↗T u(t)
exists. Let v be the local solution of (1.10) with initial data v=u1 at time T . The
composed function

w(t)=

{
u(t) 0≤t≤T,
v(t) T≤t,

then is a weak solution of (1.10). By iteration we obtain a weak solution u on a
maximal time interval [0,T̄ ). If T̄ <∞, the above arguments again permit us to
extend u beyond T̄ , contradicting our assumption that T̄ was maximal. Hence
T̄=∞.
Finiteness of the singular set: Let ts=ts,1>0 be the first singular time and set

Sing(ts)={x0∈M ;limsup
t↗ts

E(u(t);BR(x0))>ε1 foranyR>0}.
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Sing(ts) is finite. Indeed, let x1,...,xJ∈Sing(ts). Choose R>0 such that
B2R(xi)∩B2R(xj)=∅ (i �=j). Then by Lemma 1.5 for some τ∈ [ts−(ε1R

2) /(2CE(u0)),ts)
where C is the constant in Lemma 1.5,we obtain

Kε1≤
K∑

i=1

limsup
t↗ts

E(u(t);BR(xi))

≤
K∑

i=1

(
E(u(τ);B2R(xi))+

ε1
2

)
≤E(u0)+

Kε1
2
,

and K= #Sing(ts,1)≤2E(u0)ε
−1
1 . Set K be K1. Moreover, for u1=limt↗ts,1u(t)

we have

E(u1)= lim
R↘0

E

(
u1;M \

K1⋃
i=1

B2R(xi)

)

≤ lim
R↘0

liminf
t↗ts,1

E

(
u(t);M \

K1⋃
i=1

B2R(xi)

)

≤ lim
R↘0

liminf
t↗ts,1

(
E(u(t))−

K1∑
i=1

E
(
u(t);B2R(xi)

))

≤ lim
R↘0

(
E(u0)−limsup

t↗ts,1

K1∑
i=1

E
(
u(t);B2R(xi)

))

≤E(u0)−
K1∑
i=1

lim
R↘0

limsup
t↗ts,1

E
(
u(t);BR(xi)

)
≤E(u0)−K1ε1.

Similarly, let K2, K3, ... be the number of concentration points at consecutive
times ts,2<ts,3<... and let uj=limt↗ts,j u(t) for j=2,3,.... Then by induction we
obtain

E(uj)≤E(uj−1)−Kjε1≤···≤E(u0)−(K1+···+Kj)ε1.

Thus it follows that the total number KΣ of concentration points and at same
time the number of concentration times tj are finite; KΣ≤E(u0)ε

−1
1 .

Smoothness: Let ts=ts,j for some j. To see that u is smooth up to time ts
away from Sing(ts), we present an argument based on scaling, as proposed by
Schoen [96] in the stationary case. For a simplicity, we discuss the smoothness
in M=R2. In addition, by scaling we can assume ts≥1 and we shift time so that
ts=0. The solution u then is defined on a domain containing [−1,0]×M . For any
R>0 and z0=(t0,x0), denote

QR(z0)=
{
z=(t,x);t0−R2<t<t0,|x−x0|<R

}
,

and shorten QR(0) to QR and Q1 to Q when no confusion may arise.
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Proposition 1.3. Suppose that u∈C∞(Q;N) solves (1.10). There exist con-
stants C and ε2>0 depending only on N such that if

sup
−1≤t≤0

E
(
u(t);B1(0)

)
<ε2,

then
sup

Q1/2(0)

|∇u(t,x)|≤C

(and corresponding bounds for higher derivatives), holds.

Proof. Choose 0≤ρ<1 so that

(1−ρ)2 sup
Qρ(0)

e(u)= max
0≤σ≤1

{
(1−σ)2 sup

Qσ(0)

e(u)

}

and let zmax= (tmax,xmax) ∈Qρ(0) satisfy

e(u)(zmax)= sup
Qρ(0)

e(u)=:e0.

Then either e0(1−ρ)2<4 in which case

sup
Q1/2(0)

e(u)≤4(1−ρ)2e0<16,

or e
− 1

2
0 ≤(1−ρ)/2. In the latter case, the scaled function

v(t̄,x̄)=u(tmax+e−1
0 t̄,xmax+e

−1/2
0 x̄)

is well defined on Q1(0). Moreover, e(v)(0)=1 and

sup
Q1(0)

e(v)≤e−1
0 sup

Q(1+ρ)/2(0)

e(u)≤e−1
0

(1−ρ)2supQρ(0)e(u)

((1−ρ)/2)2
=4.

Thus e(v) satisfies a linear differential inequality

e(v)t̄−�e(v)≤Ce(v) on Q1(0).

By Lemma 1.3, we have

1=e(v)(0,0)=≤ sup
Q1/2(0)

e(v)≤CH

∫
Q1(0)

e(v)dt̄dx̄≤e20
∫

Q1(0)

e(u)dtdx

≤C sup
−1<t<0

(
E
(
u(t);B1(0)

))≤Cε2.
This is a contradiction if we take CHε2 <1/2. Thus we conclude our claim.

Blow-up of singularities: As in the same way in Struwe [107], we use the scaling
technique to analyze the singularities in more detail. Let (ts,xs) be a singular point
of the solution u constructed above. Shift time so that (ts,xs)=(0,0). Moreover
after scaling we can assume that u∈C∞(Q1(0)\{0};N). Let {Rk} (k=1,2,...) be
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a sequence of numbers Rk∈(0,1),Rk↘0 (k→∞). Set ε1>0 be as above and take
sequences {tk} and {xk} (k=1,2,...) satisfying tk↘0 and xk→0 and

E
(
u(tk);BRk

(xk)
)
= sup

−1≤t≤tk;(t,x)∈Q1(0)

E(u(t);BRk
(x))=

ε1
L
,

where L is the number of unit discs needed to cover B2(0). We may assume
tk−4R2

k≥−1. Rescale

t̄=
t−tk
R2

k

, x̄=
x−xk

Rk

,

and set

vk(t̄,x̄)=u
(
tk+R2

k t̄,xk+Rkx̄
)
,

vk : Qk=
{
(t̄,x̄)∈(−4,0]×R2;(tk+R2

k t̄,xk+Rkx̄)∈Q1(0)
}→N . Note that by Lemma

1.1 we have∫
Qk

|(vk)t̄|2dt̄dvolM≤
∫ tk

tk−4R2
k

∫
M

|ut|2dtdvolM→0 (k→∞),

E
(
vk(t)

)≤E(u0), −4≤ t̄≤0, k∈N.
Moreover, we obtain

sup
(t̄,x̄)∈Qk

E
(
vk(t̄);B2(x̄)

)≤L sup
(t̄,x̄)∈Qk

E
(
vk(t̄);B1(x̄)

)
≤L sup

(t,x)∈Dk

E
(
u(t);BRk

(x)
)≤LE (u(tk);BRk

(xk))=ε1.

Thus, by Proposition 1.3, the sequence {vk} (k=1,2,...) is locally a priori bounded
in C l for any l∈N and a sub-sequence converges strongly in H1,2

loc ((−1,0)×R2;N)
to a smooth solution v of (1.10) on [−1,0]×R2. Moreover, from vt̄=0, it follows
that v(t̄,·)=:ũ is harmonic. Finally

E(ũ;B1(0))= lim
k→∞

E
(
vk(0);B1(0)

)
= lim

k→∞
E
(
u(tk);BRk

(x)
)
=
ε1
L
,

and then ũ is non-constant. If ũ : R2→N , by conformal equivalence R2∼=S2\{p},
ũ induces a weakly harmonic map ū:S2→N . By Hélein’s result, ū is smooth.
Thus, singularities at small scales can be seen as harmonic spheres. In particular
we obtain the estimate ε1≥ε0.

A similar analysis is possible at concentration points at “ts=∞;”
see Struwe [112, Lecture III.5] for details. Moreover, it seems possible to

iterate the above procedure and decompose u in the limit t↗ts into its weak limit
u(ts) and a finite sum of harmonic spheres ū1,...,ūM for some positive integer M ,
similar to Struwe [106] to a related problem, we arrive at

E
(
u(ts)

)
+

M∑
l=1

E(ūl)= lim
t↗ts

E
(
u(t)

)
.(1.18)
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This analysis has been done by Ding-Tian [30]. See also Qing-Tian [91] and
Wang [117]. They call (1.18) “the energy identity.”

Extensions and generalizations

Theorem 1.7 has been extended to target manifolds N with boundary by Chen-
Musina [23]. The same technique can be used to study the evolution problems re-
lated to other two-dimensional variational problems. For instance, in Struwe [108]
and Rey [92], the evolution problem for surfaces of prescribed mean curvature is
investigated; Li Ma [77] has studied the evolution of harmonic maps with free
boundaries.

5. Existence of global, partially regular weak solutions in higher dimensional
manifold

Earlier we observed that singularities must do emerge even for energy-minimizing
weakly harmonic maps if d=dimM≥3 and therefore for the evolution problem
(1.10). The following result was obtained by Chen-Struwe [24].

Theorem 1.8. Suppose that M is a d-dimensional compact manifold with
d≥3 and ∂M=∅. For any u0∈H1,2(M ;N), there exists a distribution solution
u : [0,∞)×M→N of (1.10) and (1.11) satisfying the energy inequality and being
smooth away from a closed set Σ such that for each t the slice Σ(t):=Σ∩({t}×M)
is of co-dimension more than or equal to 2. As t→∞ suitably, u(t) converges
weakly to a weakly harmonic limit u∞ which is smooth away from a closed set
Σ(∞) of co-dimension more than or equal to 2.

Originally, the estimate on the co-dimension of Σ was obtained in space-
time, the above improvement is due to X. Cheng [25]. For manifolds M with
boundary ∂M �=∅, a similar existence and an interior partial regularity result
hold; see Chen [20]. Boundary regularity is open. The proof of Theorem 1.8
rests on two pillars: A penalty approximation scheme for (1.10) is developed
independently by Chen [19], Keller-Rubinstein-Sternberg [73] and Shatah [100];
while a monotonicity estimate for (1.10) is due to Struwe [109].

Penalty approximation

We discuss the case N=SD−1⊂R
D. Given u0∈H1,2(M ;SD−1) and λ∈R+; con-

sider the Cauchy problem

ut−�Mu+λ(|u|2−1)u=0,(1.19)

u
t=0

=u0(1.20)

for maps u : [0,∞)×M→R
D. This scheme enables us to “forget” the target con-

straint. We can regard all map u : M→RD as admissible. However, we “penalize”
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violation of the constraint |u|2=1 more and more severely as λ→∞. (1.19) is the
L2-gradient flow for the functional

Eλ(u)=E(u)+λ

∫
M

(|u|2−1)2

4
dvolM .

Indeed, we have

Lemma 1.6. If uλ∈C∞([0,T )×M ;RD) solves (1.19) and (1.20), then we have
the following identity:∫ T

0

∫
M

|∂tuλ|2dtdvolM +Eλ(uλ(T ))=Eλ(u0)=E(u0)

holds; in particular, u attains its initial data continuously in H1,2(M ;RD)

Proof. Multiply (1.19) by ∂tuλ and integrate to obtain the energy estimate. Since
∂tuλ∈L2([0,T )×M), clearly uλ(t)→u0 in L2(M) and weakly in H1,2(M,N) as
t→+0. Since also

limsup
t→+0

E
(
uλ(t)

)≤limsup
t→+0

Eλ

(
uλ(t)

)≤E(u0),

we also have strong H1,2-convergence.

Moreover, we have an L∞ a-priori bound.

Lemma 1.7. If uλ∈C∞([0,T )×M ;RD) solves (1.19) and (1.20), then

‖uλ‖L∞≤1.

Proof. Multiply (1.19) by uλ to obtain(
d

dt
−�

) |uλ|2
2

+|∇uλ|2+λ(|uλ|2−1)|uλ|2=0;

in particular, (
d

dt
−�+2λ|uλ|2

)(|uλ|2−1
)≤0.

The claim now follows from the parabolic maximum principle, since |u(0)|=|u0|≤
1.

Thus for any λ∈R+ we have the unique, global, smooth solution uλ of (1.19)
and (1.20). Moreover,

‖∂tuλ‖2
L2([0,∞)×M)≤E(u0), sup

t
E
(
uλ(t)

)≤E(u0),

|uλ|≤1, sup
t
‖|uλ(t)|2−1‖2

L2(M)≤
4E(u0)

λ
→0.

30



Thus, passing to a sub-sequence, if necessary, we can claim that for a map u ∈
L2((0,∞);H1,2(M)) ∩H1,2((0,∞);L2(M))

uλ→u in L2
loc([0,∞)×M ;RD),

∇uλ→∇u weakly-∗ in L∞([0,∞);L2(M)),

∂tuλ→∂tu weakly in L2([0,∞)×M)

(1.21)

and |u|=1. Relations (1.21) are not sufficient to pass to the limit λ→∞ in (1.19).
In case N=SD−1, however, a clever manipulation of (1.19) will do the trick.

Lemma 1.8. Suppose N=SD−1⊂RD. A map u∈V ((0,∞)×M ;N) satisfies

|u|=1 a.e z∈(0,∞)×M,(1.22)

ut∧u−div(∇u∧u)=0, in the sense of D′((0,∞)×M ;RD),(1.23)

where “∧” denotes the wedge product between RD-vectors, if and only if the map
u∈V ((0,∞)×M ;N) is a weakly evolutional harmonic map.

Proof. If u is a weakly evolutional harmonic map, an approximation argument
justifies taking an exterior product between (1.10) and ψ, where ψ∈ D((0,∞)×
M ;∧2(RD)), then we obtain (1.23). Conversely, suppose taht u weakly solves
(1.22) and (1.23); (1.23) is written by

(ui
tu

j−uj
tu

i)−div(∇uiuj−∇ujui)=0, (i,j=1,2,... ,D).(1.24)

Multiply (1.24) by ujηi where η=(ηi) (i=1,2,... ,D) ∈ D((0,∞)×M ;RD), sum-
ming up it from 1 to D with respect to j we deduce that u is a weakly evolutional
harmonic map.

Now, taking the wedge product of (1.19) with uλ, the nonlinear term of (1.19)
vanishes. Because of the divergence structure of this equation and since by (1.21),
we have

∂tuλ∧uλ→∂tu∧u,
∇uλ∧uλ→∇u∧u

weakly in L2
loc([0,∞)×M), we may pass to the limit λ→∞ suitably and find that

also u satisfies (1.23). That is, by Lemma 1.6 and Lemma 1.8, u is a weak solution
of (1.10) and (1.11).

Note that this method extended to a homogeneous space by Hélein [64] and
the regularity of the approximating maps uλ may be lost in the limit.
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The monotonicity formula

Monotonicity first were introduced as a tool in the regularity study for minimal
hypersurfaces. After that, Schoen-Uhlenbeck [97] and Giaquinta-Giusti [48] ob-
served that similar estimates hold for the energy-minimizing harmonic maps and
can be used to obtain a partial regularity result for such a minimizer. We review
the monotonicity for energy-minimizing harmonic maps u : B=B1(0)→N .

Theorem 1.9. If u is energy-minimizing (for its boundary values), then for
any 0<ρ<r<1 with Bρ⊂Br ⊂⊂B1(0), there holds

ρ2−d

∫
Bρ

|∇u|2dx≤r2−d

∫
Br

|∇u|2dx.

Proof. Note that the quantity

Φ(ρ):=Φ(ρ;u)=
ρ2−d

2

∫
Bρ

|∇u|2dx

is invariant under scaling u(x)→uR(x̄)=u(Rx̄), which (in case M=B1(0)) also
leaves (1.3) invariant. This observation allows us to give a simple proof of Theo-
rem 1.9 for smooth harmonic maps as follows: Note that Φ(ρ)=Φ(ρ;u)=Φ(1;uρ).
Hence, for instance at ρ=1, we have

dΦ(ρ)

dρ
=
dΦ

dρ
(1;uρ)=

∫
B1(0)

〈∇uρ,∇
(
∂uρ

∂ρ

)
〉dx

=

∫
∂B1(0)

〈〈x,∇〉uρ,
∂uρ

∂ρ
〉dωd−1−

∫
B1(0)

〈�uρ,
∂uρ

∂ρ
〉dx.

Since ∂uρ/∂ρ =〈x/ρ,∇〉uρ∈TuρN , by (1.2), the last term vanishes and the
boundary integral simply becomes

dΦ(ρ)

dρ
ρ=1

=

∫
∂B1(0)

|〈x,∇〉uρ|2dωd−1≥0,

proving the monotonicity for smooth u.

Moreover, since Φ(ρ) scales as a dimension-less quantity, smallness of Φ(ρ) for
some ρ>0 yields a-priori bounds for u near the origin.

A similar result holds in the time-dependent setting. For simplicity we con-
sider smooth solutions u∈C∞([−1,0)×R

d;N) of (1.10) with E(u(t))≤E0<∞ in
−1≤t<0. Denote by

G(t,x)=
1(√

4π|t|
)d

exp

(
−|x|2

4|t|
)
, t<0,
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the fundamental solution to the backward heat equation on R−×Rd. Using G as
a weight function, we define

Φ(ρ)=Φ(ρ;u)=
ρ2

2

∫
{−ρ2}×�d

|∇u|2Gdx,

We then obtain:

Theorem 1.10 (Struwe [109]). For u as above and any 0<ρ<r≤1, the fol-
lowing holds

Φ(ρ)≤Φ(r).(1.25)

Proof. As in the stationary case, we use invariance of (1.10) under scaling
u→uR(t,x)=u(R2t,Rx). Note that Φ(ρ)=Φ(ρ;u)=Φ(1;uρ). Hence, at ρ=1, we
compute

dΦ(ρ)

dρ
=
dΦ

dρ
(1;uρ)=

∫
{−1}×�d

〈∇uρ,∇
(
∂uρ

∂ρ

)
〉Gdx̄.

Integrate by parts; use (1.10) and the relation ∇G(t̄,x̄)=x̄/2t̄G to obtain

dΦ(ρ)

dρ
=

∫
{−1}×�d

〈
(
−�uρ−〈x̄,∇〉uρ

2t̄

)
,
∂uρ

∂ρ
〉Gdx̄

=−
∫
{−1}×�d

〈2t̄∂t̄uρ+〈x̄,∇〉uρ

2t̄
,
∂uρ

∂ρ
〉Gdx̄

=
1

2

∫
{−1}×�d

|2t̄∂t̄uρ+〈x̄,∇〉uρ|2Gdx̄≥0.

Since E(u(t))≤E0<∞, no boundary terms appear.

Remark 1.1. (1.25) is the energy inequality for (1.10) in similarity coordi-

nates s=−log|t| and y=x/
√|t|, as introduced by Giga-Kohn [49] in a different

problem.
By a scaling argument as in the proof of Proposition 1.3, smallness of Φ(ρ)

can be turned into an a-priori gradient bound for u.

Proposition 1.4 (Struwe [109]). Let us suppose that a solution u of (1.10)
belongs to C∞([−1,0)×R

d ;N). There exists ε0=ε0(d,N)>0 such that for some
positive number R>0 if Φ(R)<ε0 then

sup
QδR(0)

|∇u|≤C

R

holds with constants δ=δ(d,N,E0)>0 and C=C(d,N,E0).

Proof. Scaling with R, we may assume R=1. For any δ>0, choose ρ∈(0,δ) and
zmax =(tmax,xmax)∈Qρ satisfying

(δ−ρ)2sup
Qρ

e(u)= max
0≤σ≤δ

{(δ−σ)2sup
Qσ

e(u)},
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e(u)(zmax)=sup
Qρ

e(u)=e0.

First assume e−1
0 ≤((δ−ρ)/2)2 and scale v(t̄,x̄)= u(tmax+e−1

0 t̄,xmax+e
−1/2
0 x̄). Note

that v∈C∞(Q1;N) and

sup
Q1

e(v)(0)=e−1
0 sup

Q
e
−1/2
0

(zmax)

e(u)≤e−1
0 sup

Q(δ+ρ)/2

e(u)

≤4e−1
0 sup

Qρ

e(u)=4,

while
e(v)(0)=1.

Therefore, by the Bochner inequality (1.13), we have(
d

dt̄
−�

)
e(v)≤Ce(v) in Q1(0).

Lemma 1.3 gives

1=e(v)(0)≤CH

∫
Q1

e(v)dt̄dx̄=CHe
d/2
0

∫
Q

e
−1/2
0

(zmax)

e(u)dtdx.

Set Gzs(z)=G(z−zs) with zs =(ts,xs) and choose zs=zmax+(0,e−1
0 ). Then

1≤C
∫

Q
e
−1/2
0

(zmax)

e(u)Gzsdtdx,

and by applying Theorem 1.10 for each t∈[tmax−e−1
0 ,tmax], we proceed to estimate

1≤C
∫
{−1}×�d

e(u)Gzsdx.

Now |xs|≤δ and |ts|≤δ2. Thus at t=−1 we can estimate

|Gzs−G|≤
1√
4π

d

(∣∣∣∣∣1− 1√|1+ts|d
∣∣∣∣∣+

∣∣∣∣∣exp

(
−|x|2

4

)
−exp

(
−|x−xs|2

4|1+ts|
)∣∣∣∣∣

)

≤Cδ,
and therefore we obtain that

1≤Cδ
∫
{−1}×�d

e(u)dx+C

∫
{−1}×�d

e(u)Gdx≤C1δE0+C1Φ(1),

with a uniform constant C1=C1(d,N). Choosing δ=1/(2C1E0) and ε0=1/(2C1),
the above inequality will lead to a contradiction. Thus (δ−ρ)2e0≤4: we deduce

sup
Qδ/2

e(u)≤16δ−2.

The proof is complete.
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As an application we establish the following result from Struwe [109].

Proposition 1.5. Suppose that uk∈C∞([−1,0)×Rd ;N) is a sequence of so-
lutions to (1.10) with E(uk(t))≤E0<∞ for any t and for all k∈N. Moreover,
suppose uk(−1)→u0 in H1,2

loc (Rd;N) (k→∞) and

uk−→u in L2
loc([−1,0]×R

d),

∂tuk−→∂tu in L2
loc([−1,0]×R

d),

∇uk−→∇u in L2
loc([−1,0]×R

d).

Then u weakly solves (1.10) and (1.11) and u is smooth away from a closed set
Σ of co-dimension more than or equal to 2; moreover, for any R>0 we have

Φ(R;u)+

∫ −R2

−1

∫
�d

|2tut+〈x,∇〉u|2
2|t| Gdtdx≤Φ(−1;u).(1.26)

Proof. Set
Σ=

⋂
R>0

{z;liminf
k→∞

Φz(R;uk)≥ε0},

where for any points z0=(t0,x0),

Φz0(r;uk)=
r2

2

∫
{t0−r2}×�d

|∇uk|2Gz0dx in t0−r2≥−1,

Σ is relatively closed. Indeed, if z∞∈Σ, there exists a sequence of points zl=(tl,xl)
∈Σ (l=1,2,...) such that zl→z∞. By definition of Σ and the monotonicity in
Theorem 1.10, we have

liminf
l→∞

liminf
k→∞

(
R2

2

∫
{tl−R2}×�d

|∇uk|2Gzl
dx

)
≥ε0

for any R>0. Since Gzl
→Gz∞ uniformly on any compact set away from z∞ and

since E(uk(t))≤E0<∞, the limits l→∞ and k→∞ may be interchanged for any
fixed R>0, thus we obtain

liminf
k→∞

Φk
z∞(R)≥ε0,

for all R>0: z∞∈Σ.
Next observe that for z0 /∈Σ there is a sequence {uk} (k=1,2,...) and some

R>0 such that
Φz0(R;uk)<ε0.

Proposition 1.4 implies that

sup
QδR(z0)

|∇uk|≤C

R

hold for a positive constant δ=δ(d,N,E0)>0 uniformly in k and similar bounds
for higher derivatives. Thus we may pass to the limit k→∞ in (1.10) and find
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that u is a smooth solution of (1.10) on any compact set outside Σ. In order
to assert that u extends to a weak solution beyond Σ, we need to estimate the
d-dimensional Hausdorff measure with respect to the parabolic metric

dP((t,x),(s,y))=|t−s|1/2+|x−y|.
For a set S⊂R+×Rd, the latter is defined as

Hd(S;dP )=c(d)sup
R>0

{
inf

covering

{∑
i

rd
i ;S⊂

⋃
i

Pri
(zi),zi∈S,ri<R

}}
,

where c(d) is a normalizing constant and

Pr(z0)={z=(t,x);|t−t0|<r2,|x−x0|<r} with z0=(t0,x0).

Fix a compact set P⊂[−1,0)×Rd and let S=P∩Σ. Fix R>0 and let Pri
(zi)(ri<

R) be a cover of S. Since S is compact, we may assume that the cover is finite.
Moreover, a simple variant of Vitali’s covering lemma shows that there is a disjoint
sub-family Pri

(zi) (i∈J ) such that S⊂∪i∈JP5ri
(zi). Let z̄i=zi+(0,r2

i ) (i∈J ).
Since J is finite, there exists k∈N such that

ε0≤Φzi
(θ0ri;uk)≤C

∫ ti−θ2
0r2

i

ti−4θ2
0r2

i

∫
�d

|∇uk|2Gzi
dtdx

≤C(θ0)r
−d
i

∫
Qri (zi)

|∇uk|2dtdx

+Cθ−d
0 exp

(
− 1

16(1+4θ0)θ0

)∫ ti−θ2
0r2

i

ti−4θ2
0r2

i

∫
�d\Bri

|∇uk|2Gz̄i
dtdx

≤C(θ0)r
−d
i

∫
Qri (zi)

|∇uk|2dtdx+Cθ2−d
0 exp

(
− 1

16(1+4θ0)θ0

)
E0

for all i∈J where we used the fact that

Gzi
≤θ−d

0 exp

(
− 1

16(1+4θ0)θ0

)
Gz̄i

on [ti−4θ2
0r

2
i ,ti−θ2

0r
2
i ]×R

d\Qri
(zi)

and Theorem 1.10 to derive the 1st inequality. Take θ0>0 satisfying

Cθ2−d
0 exp

(
− 1

16(1+4θ0)θ0

)
E0<

ε0
2

to verify

rd
i ≤C

∫
Pri (zi)

|∇uk|2dtdx.

Summing over i∈J , we obtain∑
i∈J

rd
i ≤C

∑
i∈J

∫
Pri (zi)

|∇uk|2dtdx

36



=C

∫
∪i∈J Pri (zi)

|∇uk|2dtdx≤C(J )E0

with constants C independent of R>0. Thus the d-dimensional Hausdorff mea-
sure of Σ is locally finite.

In particular, for a suitable cover (Qri
(zi))i∈J of S (ri<R), we can achieve

that

L2+d

(⋃
i∈J

Pri
(zi)

)
→0 as R↘0,

where L2+d denotes the Lebesgue measure on (t,x) in R+×R
d with respect to

the parabolic metric. Now let φ∈D(P2(0)) satisfy 0≤φ≤1,φ≡1 on P1(0) and
scale φi(z)=φ((t−ti)/r2

i ,(x−xi)/ri) ∈D(P2ri
(zi)). Given ψ∈D(P1;R

D), then τ=
ψ infi(1−φi) is a Lipschitz function and τ(z)→ψ(z) a.e. as R↘0. Multiplying
(1.10) by τ , we obtain∫ 0

−1

∫
�d

(ut−�u−A(u)(∇u,∇u))ψdtdx

≤C
∫ 0

−1

∫
�d

|∇u||∇inf
i

(1−φi)|dtdx+o(1)

≤C‖∇u‖L2(
�

i∈J Pri (zi))

(∫ 0

−1

∫
�d

|∇inf
i

(1−φi)|2dtdx
)1/2

+o(1)

≤o(1)

(∑
i

∫
Pri (zi)

r−2
i dtdx

)1/2

+o(1)

=o(1)

(∑
i

rd
i

)1/2

+o(1)→0 (R↘0),

where o(1)→0 as R↘0 and u weakly solves (1.10). Finally (1.26) follows from
(1.25) and the fact that Φ(R;u)≤liminfk→∞Φ(R;uk), Φ(1;u)=Φ(1;u0)=limk→∞Φ(1;uk).

The proof of Theorem 1.8 uses the fact that results similar to Theorem 1.10
and Proposition 1.4 hold for solutions u to (1.10) on a compact manifold M ,
where Φ is defined with reference to a local coordinate chart V and where we
truncate the integrand with a smooth cut-off function τ∈D(V ). Set λ∈R+. If Uδ

is 3δ-tubular neighborhood on N in RD̂ and if for maps u:M→RD̂, Eλ is

Eλ(u):=E(u)+λ

∫
M

χ(dist2(u,N))dx,

where χ(s)=s for s≤δ, χ′(s)≥0,χ(s)≡2δ for s≥3δ, then the sequence of ap-
proximate solutions {uλ} (λ>0) to (1.10) defined by the gradient flow of Eλ again
satisfies an analogue of Theorem 1.10 and Proposition 1.4. Similar to Proposition
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1.5, we then establish that a sub-sequence {uλ} (λ>0) converges weakly to a par-
tially regular weak solution u of (1.10) and (1.11). Moreover, inequality (1.25)
holds. See Chen-Struwe [24] for details.

Let us now turn to some further consequences of the monotonicity formula.

Nonuniqueness

Coron [27] observed that for certain weakly harmonic maps u0 :B
3→S2, the sta-

tionary weak solution u(t,x)=u0(x) of (1.10) does not satisfy (1.26), hence must
be different from the solution constructed in Theorem 1.8.

We repeat his construction: Suppose u0∈H1,2
loc (R

3;S2) is weakly harmonic,
u0(x)=u0(x/|x|) and consider u(t,x)=u0(x). Then u weakly solves (1.10) and

Φz̄(ρ)=
1

2
√

4π
3
ρ

∫
�3

|∇u0|2exp

(
−|x−x̄|2

4ρ2

)
dx<∞

for any z̄=(t̄,x̄) ∈R+×R
3 and any ρ>0. Suppose that u satisfies (1.25). This

implies

1

ρ

∫
�3

|∇u0|2exp

(
−|x−x̄|2

4ρ2

)
dx≤ 1

r

∫
�3

|∇u0|2exp

(
−|x−x̄|2

4r2

)
dx(1.27)

for any 0<ρ<r<∞. We show that (1.27) does not hold for a suitable map u0.
This ill-behaved map u0 is obtained as follows. Let π : S2\{(0,0,1)} →R2∼=C be
the stereographic projection from the north pole (0,0,1) of S2 and let g :C→C be
a rational map. Composing the weakly harmonic map u:x→x/|x| from Example
1.2 with π and g we obtain a map

u0(x)=π
−1

(
g

(
π

(
x

|x|
)))

.

Regarding u0(x)=u0(x/|x|) as a map u0 :S
2→S2, by conformal invariance u0 is

harmonic; hence u0 :R
3→S2 is weakly harmonic. By suitable choice of g (for

instance, g(z)=λz with λ∈R and λ>1), we can achieve that the center of mass

q=

∫
S2

|∇u0(
x

|x|)|
2 x

|x| dvolS2 �=0.

(Hence the map u0 is not minimizing for its boundary values on B3
1(0); see Brezis-

Coron-Lieb [11, Remark 7.6].)
Denote

φ(ρ,x̄)=
1

ρ

∫
�3

|∇u0|2exp

(
−|x−x̄|2

4ρ2

)
dx

for simplicity. Note that

φ(ρ,0)=

∫ ∞

0

(∫
S2

|∇u0(
x

|x|)|
2dvolS2

)
exp

(
−|x|2

4ρ2

)
d|x|
ρ

(:=a0)
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is independent of ρ>0. Moreover, compute

∇x̄φ(ρ,0)=

∫
�3

|∇S2u0(
x

|x|)|
2 x

2ρ3
exp

(
−|x|2

4ρ2

)
dx

=

∫ ∞

0

(∫
S2

|∇S2u0(
x

|x|)|
2 x

|x|dvolS2

)
·
exp

(
− |x|2

4ρ2

)
2ρ3

|x|d|x|

=q

∫ ∞

0

exp(−σ)dσ

ρ
=
q

ρ
.

Hence for x̄=tq and 0<ρ<r, if t>0 is sufficiently small, we then obtain

φ(ρ,x̄)=a0+t
|q|2
ρ

+O(t2)>φ(r,x̄)=a0+t
|q|2
r

+O(t2),

contradicting (1.27). On the other hand, as in Theorem 1.8 we can construct
weak solutions ũ to (1.10) for initial data u0 satisfying (1.25): This reads that
u �=ũ and therefore we show nonuniqueness in the energy class of weak solutions
to (1.10) and (1.11).

Note that we look at spontaneous symmetry breaking, since u cannot be of
the form u(t,x)=v(t,x/|x|). The latter map v would solve (1.10) and (1.11) on
[0,∞)×S2. Since u0 :S

2→S2 is smooth and harmonic, by local unique solvability
of (1.10) and (1.11) on [0,∞)×S2 for smooth data, this would imply v(t)≡u0.

It is remained to discuss a class of functions satisfying (1.10) and (1.11) which
possesses a unique solution. Struwe, M suggests that the class of solutions satis-
fying the strong monotonicity formula

Φz̄(ρ)≤Φz̄(r)

for all z̄ and all 0<ρ<r≤
√
t̄ is a likely candidate.

Development of singularities

The most surprising aspect of the monotonicity formula is that it may be used to
prove that (1.10) and (1.11) in general will develop singularities in arbitrarily short
time. The existence of singularities was first established by Coron-Ghidaglia [28];
see also Grayson-Hamilton [50]. These results were based on comparison princi-
ples for the reduced harmonic map evolution problem (1.16) in the equivariant
setting. A deeper reason for the formation of singularities was worked out by
Chen-Ding [21]. This is related to a result by White [120].

Theorem 1.11. Let M and N be compact Riemannian manifolds and consider
a smooth map u0 : M→N . Then

inf{E(u);u∈C∞(M ;N), u is homotopic to u0}>0

if and only if the restriction of u0 to a 2-skeleton of M is not homotopic to a
constant.
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Remark 1.2. In particular, there are examples of non-trivial homotopy classes
of maps u0 : M→N such that

inf{E(u);u is homotopic to u0}=0.

Example 1.6. Let u1=id: S3→S3. Let π : S3\{(0,0,0,1)}→R3 be the stere-
ographic projection and let Dλ : R

3→R
3,Dλ(x)=λx be dilation with λ>0. Then

define
uλ=π−1◦Dλ◦π : S3→S3.

Clearly, uλ∼u1=id for all λ>0 and E(uλ)→0 (λ→∞).

Singularities of first and second kind

Let u∈C∞([−1,0)×Rd;N) be a solution to (1.10) with an isolated singularity at
the origin and satisfying (1.25). If

|∇u(t,x)|2≤ C

|t| ,(1.28)

the rescaled sequence
uR(t̄,x̄)=u(R2t̄,Rx̄), R>0

satisfies the same estimate and hence a sub-sequence converges smoothly locally
on (−∞,0)×Rd to a smooth limit ū as R↘0. ū satisfies (1.10). Moreover,
ū �≡const; otherwise Φ(R;u)=Φ(1,uR)<ε0 for some R>0 and u is regular at 0.
Since by (1.26) there holds∫ −τR2

−TR2

∫
�d

|2t∂tu+〈x,∇〉u|2
2|t| Gdtdx≤ lim

R↘0

∫ −τ

−T

∫
�d

|2t̄∂t̄uR+〈x̄,∇〉uR|2
2|t̄| Gdt̄dx̄

=

∫ −τ

−T

∫
�d

|2t̄∂t̄ū+〈x̄,∇〉ū|2
2|t̄| Gdt̄dx̄=0

for any 0<τ<T<∞, it follows that ū satisfies

2t̄ūt̄+x̄∇ū≡0;

that is possibly

ū(t̄,x̄)=v

(
x̄√|t̄|

)
or

ū(t̄,x̄)=w

(
x̄

|x̄|
)
.

Struwe, M calls the singular point satisfying (1.28) “singular point of the first

kind.” It is not known whether self-similar solutions ū(t,x)=v
(
x/

√|t|
)

actu-

ally may exist. All other singular points are said to be “singularities of second
kind.” Since singularities in d=2 by Theorem 1.7 are related to time-independent
harmonic maps ū : S2→N of finite energy and since a non-constant, radially
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homogeneous map ū(x)=w(x/|x|) in d=2 has infinite energy, Theorem 1.6 of
Chang-Ding-Ye [18] above shows that singularities of second kind exist for the
evolution problem (1.10).

Extensions and generalizations

Further current developments include the evolution problem to harmonic maps on
general complete, non-compact manifolds (Li-Tam [78]) and to harmonic maps
with symmetry (see Grotowsky [51], [52], [53] and [54]).

6. Notation

In this section, we collect abridged notation and function spaces used in the
following chapter. Let T be a positive number or +∞. Set Ω be a bounded
domain in Rd with a smooth boundary.

Abridged Notation

(i) Bd
1(0) = {x=(x1,x2,... ,xd); |x|=

√∑d
α=1(xα)2<1}, we abbreviate Bd

1(0) to

B1 or B when no ambiguity may occur.
(ii) QT is (0,T )×Ω and ∂QT (the boundary of QT ) means {0}×Ω ∪ [0,T )×∂Ω.
(iii) The parabolic metric function d(z,z′) is given by

dP(z,z′)= |t− t′|1/2 + |x−x′|
whenever z=(t,x) and z′=(t′,x′) ∈QT , and we set

dP(z,∂QT )= inf
z′∈∂QT

dP(z,z′),

diam(Ω)= sup
x,y∈Ω

|x−y|.

(iv) νx denotes the outward normal unit vector to Ω at x∈ ∂Ω. When no con-
fusion may arise, we shorten νx to ν.

(v) For a point x0 = (x0,α) (α=1,... ,d) ∈ R
d or z0 = (t0,x0) ∈ R

1+d and
positive numbers ρ,τ, we set


Bρ(x0) ={x∈Rd : |x−x0|<ρ},
Cρ(x0) ={x∈Rd : |xα−x0,α|<ρ(α=1,... ,d)},
Pρ,τ (z0) ={(t,x)∈R1+d : t0−τ 2<t≤ t0+τ 2 , |x−x0|<ρ},
Qρ,τ (z0) ={(t,x)∈R1+d : t0−τ 2<t≤ t0 , |x−x0|<ρ},
Dρ,τ (z0) ={(t,x)∈R1+d : t0−τ 2<t≤ t0 , |xα−x0,α|<ρ

(α=1,... ,d)},
Pρ(z0) =Pρ,ρ2(z0), Qρ(z0)=Qρ,ρ2(z0)andDρ(z0)=Dρ,ρ2(z0).

We call Bρ(x0), Cρ(x0), Pρ(z0), Qρ(z0) and Dρ(z0), a ball, a cube, a full
cylinder, a cylinder and a semi-cube and moreover when no confusion may
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arise, we respectively abbreviate Bρ(x0), Cρ(x0), Pρ(z0), Qρ(z0) and Dρ(z0)
to B,C,P,Q and D.

(vi) For vectors x = (xα), y = (yα) ∈Rd, u = (ui), v = (vi) ∈RD and any
matrices A = (Ai

α), B = (Bi
α) ∈R

d×D (α=1,... ,d;i=1,... ,D), 〈·,·〉 respec-

tively designates the inner product given by 〈x,y〉 =
∑d

α=1 xαyα, 〈u,v〉 =∑D
i=1u

ivi and 〈A,B〉 =
∑d

α=1

∑D
i=1 A

i
αB

i
α. The respective norm is also given

by |u| =
√∑D

i=1(u
i)2 and |A| =

√∑d
α=1

∑D
i=1(A

i
α)2. Moreover, for any vec-

tor x = (xα) (α=1,2,... ,d), we use the symbol 〈x,∇〉 as
∑d

α=1xα∂/∂xα.
(vii) For a map v :Rd→RD, we denote ∇v and ∇2v by

∇u=(
∂ui

∂xα
) (α=1,2,... ,d; i=1,2,... ,D);

∇2u=(
∂2ui

∂xα∂xβ

) (α,β=1,2,... ,d; i=1,2,... ,D).

In addition, a normal derivative ∂u/∂ν is given by 〈ν,∇〉u, while a
tangential derivative ∇tan is by ∇u−ν〈ν,∇〉u.

(viii) Let κ be a positive number. For any function u on QT , we write the
truncation function of u by

u(κ) =max(u−κ,0).

(ix) A
(κ)
R (z0) is the set of QR(z0) at which eλ(uλ)>κ.

(x) Ldi(A) expresses the Lebesgue measure of a measurable set A in R
di with

respect to the canonical metric in di=d−1,d and with respect to the para-
bolic metric in di=d+1.

(xi) A is the closure of A where A is a set in Rdi, (di =d,d+1).
(xii) The letters C, CAlphabets and CNumber

Alphabets denote generic constants.

Function spaces

(i) If 1≤p<∞, Lp(Ω) and Lp(QT ) is respectively the Banach space consisting
of all pth summable functions on Ω and QT with the norm of ||f ||Lp(Ω)=(∫

Ω
|f(x)|pdx)1/p

and ||f ||Lp(QT )=
(∫

QT
|f(z)|pdz

)1/p

.

(ii) L∞(Ω) is the space of essentially bounded functions on Ω with the norm of
||f ||L∞(Ω) = ess·sup

x∈Ω
|f(x)|.

(iii) C∞[0,T ), C∞(Ω) and C∞(QT ) respectively means the space of infinite dif-
ferentiable functions on [0,T ), Ω and QT .

(iv) D(Ω) and D(QT ) respectively denotes the space of infinite differentiable
functions with a compact support on Ω and QT and D′(QT ) does the dual
of D(QT ).

(v) H1,2(Ω) = {f∈L2(Ω)| ∂f/∂xα ∈L2(Ω), (α=1,... ,d)}.
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(vi)
◦
H

1,2
(Ω) = H1,2(Ω) ∩ {f=0on∂Ω in the trace sense}.

In the following, X(Ω) denotes a Banach space on Ω endowed with the norm
||·||X(Ω).

(v) Xloc(Ω) = {f∈X(K) for any open set K⊂⊂Ω}.
(vi) X(Ω;RD) = {u=(ui) (i=1,... ,D) | ui∈X(Ω)}.
(vii) X(Ω;SD−1) = {u=(ui)(i=1,... ,D)∈X(Ω;RD) | |u|=1fora.ex∈Ω}.
(viii) L∞(QT ;RD) = {f |f is measurable fromQT →R

D with the norm of ||f ||L∞(QT )

= ess·sup
z∈QT

|f |}.
(ix) C0(0,T ;H1,2(Ω;RD)) = {f |f is continuous from [0,T )→H1,2(Ω;RD)}.
(x) H1,2(0,T ;X(Ω;RD))

= {f |f and∂f/∂t are measurable of [0,T )→X(Ω;RD) satisfying(∫ T

0
||f(t)||2X(Ω)dt

)1/2

+
(∫ T

0
||∂f/∂t(t)||2X(Ω)dt

)1/2

<∞}.
(xi) H1,2(QT ;RD)= H1,2(0,T ;L2(Ω;RD)) ∩ L2(0,T ;H1,2(Ω;RD)).

(xii)
◦
H

1,2
(QT ;RD)= H1,2(0,T ;L2(Ω;RD)) ∩ L2(0,T ;

◦
H

1,2
(Ω;RD)).

(xiii) V (QT ;SD−1)= H1,2(0,T ;L2(Ω;SD−1)) ∩ L∞(0,T ;H1,2(Ω;SD−1)).
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CHAPTER 2

Modified strong evolutional harmonic maps

1. Introduction and theorem

In chapter 1, we have reviewed various results on harmonic maps and evolu-
tional harmonic maps. In this chapter, to discuss the well-behaved solutions of
the weakly evolutional harmonic maps from (0,+∞)×B3

1(0)→SD−1, we propose
a certain function class and discuss an evolutional harmonic map belonging to
this function class, which will be called “modified strong evolutional harmonic
maps.” The similar class of solutions of evolutional harmonic maps can be seen
in Feldman [43] and Chen-Li-Lin [22]. We begin with formulating “modified
strong evolutional harmonic maps” from (0,+∞)×B3

1(0) to SD−1. Here B3
1(0) is

the open unit ball in R3 and SD−1 denotes the (D−1)-dimensional unit sphere in
R

D where D is a positive integer with D≥2. In the following we abbreviate B3
1(0)

to B1. Consider the Sobolev space H1,2(B1;S
D−1) := {u∈H1,2(B1;R

D) ;|u|=
1 fora.e.x∈B1}. When we set Q∞=[0,+∞)×B1 and fix u0 ∈H1,2(B1;S

D−1)
being any given maps, “weakly evolutional harmonic maps u” are to satisfy the
following:

u :Q∞→SD−1,(2.1)

∂u

∂t
=�u+ |∇u|2u in Q∞,(2.2)

u(0,x)=u0(x) in {0}×B1,(2.3)

u(t,x)=u0(x) in [0,T )×∂B1.(2.4)

This parabolic system strictly holds in the following weak sense:

u∈V (Q∞;SD−1),(2.5) ∫
Q

[〈∂u
∂t
,φ〉+〈∇u,∇φ〉−〈u,φ〉|∇u|2]dz=0

for any φ∈D(Q∞;RD),(2.6)

u(t,x)−u0(x)∈
◦
H

1,2
(B1;R

D) foralmosteveryt∈(0,+∞),(2.7)

lim
t→+0

u(t,·)=u0(·) in L2(B1;R
D),(2.8)
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where the definition of various function spaces V,D,
◦
H

1,2
and L2 will be given

in p.42.
We call a map u with (2.5),(2.6),(2.7) and (2.8) weakly evolutional harmonic

maps; as we saw in the previous chapter, weakly evolutional harmonic maps are
still not unique. To distinguish a well-behaved solution among many weakly
evolutional harmonic maps, we give a new notion of solutions to the problem
(2.1),(2.2), (2.3) and (2.4); we name such a solution as “modified strong evolu-
tional harmonic map.” The exact definition of modified strong evolutional har-
monic map from Q∞ to SD−1 is as follows: For any unit vector e∈R

3, and for
any compact set Q⊂⊂Q∞, if weakly evolutional harmonic maps satisfy

lim
h↘0

1

h

∫
Q

|〈x+he,∇〉u(t,x+he)−〈x,∇〉u(z)|2dz=0,(2.9)

lim
h↘0

1

h

∫
Q

|∇u(t+h,x)−∇u(z)|2dz=0,(2.10)

then this heat flows u i.e. map u satisfying (2.5), (2.6), (2.7), (2.8), (2.9) and
(2.10) is said to be “modified strong evolutional harmonic map.”

In this chapter, we discuss a partial regularity result on the modified strong
evolutional harmonic maps. The further imposition, i.e. (2.9) and (2.10) on
modified strong evolutional harmonic map u, is required to show that u satisfies
a fundamental energy estimate and a monotonicity for the scaled energy on the
whole domain.

We must recall that the monotonicity for the scaled energy is a one of the key
ingredients to investigate the structure of the singular set of solutions to various
elliptic systems or variational problems.

We close this section by introducing a partial regularity result, which is our
main theorem of this chapter. The proof of theorem is directly derived from the
following two theorems: Former theorem proves a Hausdorff dimensional estimate
for a singular set to modified strong evolutional harmonic map. This sort of
theorem is founded in Caffarelli-Kohn-Nirenberg [14] and Giaquinta-Giusti [47].
We state this theorem without proof. On the other hand, the latter crucially is
modeled on Evans [40]:

Theorem 2.1. Let u be the modified strong heat flows. When we set

Σu :=

{
z0=(t0,x0)∈Q∞ ; liminf

r↘0
r−3

∫
Qr(z0)

|∇u(z)|2dz>0

}
,

then Σu is a relatively closed set having a property of H3(Σu) =0 with respect
to the parabolic metric.

Theorem 2.2. There exist constants 0<ε0, τ0<1 such that for any Qr(z0)⊂
⊂Q
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r−3

2

∫
Qr(z0)

|∇u(z)|2dz<ε0 implies

(τ0r)
−3

2

∫
Qτ0r(z0)

|∇u(z)|2dz≤ 1

2

r−3

2

∫
Qr(z0)

|∇u(z)|2dz.(2.11)

Now we can state our main theorem in this chapter:

Theorem 2.3 (Main theorem of this chapter). Modified strong evolutional
harmonic maps are Hölder continuous on an open set in Q∞ whose compliment
has zero 3-dimensional Hausdorff measure with respect to the parabolic metric.

Preparation

We introduce a glossary of notation, function spaces and various results from
functional analysis used only in this chapter.

Abridged Notation. Suppose X be a Banach space. Let {vk} (k=1,2,3,...) be a
sequence of functions in X and v a function in X.

vk

k→∞−−⇀ v in X,

vk

k→∞−−→ v in X,

respectively means that {vk} (k=1,2,3,...) weakly and strongly converges to
v in X.

Let h be a positive number sufficiently small. For a map u :Q∞→RD, various
forward and backward difference operators are given by

∂+u

∂t
(z)=

1

h
(u(t+h,x)−u(t,x)),

∇−u(z)=

{
1/h (u(t,x)−u(t,|x|−h,x/|x|)) h≤|x|,
1/h (u(t,x)−u(t,h−|x|,x/|x|)) |x|<h,

with x=(|x|, x|x|).
For a map f :Q∞→RD, we use the following notation:

∫
−

A

f(z)dz=
1

L3+1(A)

∫
A

f(z)dz,

∫
−

B

f(t,y)dy=
1

L3(B)

∫
B

f(t,y)dy,

where A and B is respectively a measurable set on R1+3 and R3.
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Preliminaries Lemmas. We review a few technical lemmas which will play a cru-
cial role on the proof of our result. First we state the well-known decomposition
lemma on L2− maps (See O.A.Ladyženskaja [74]. ).

Lemma 2.1 (Weyl Decomposition Lemma). Let
◦
JJJ(Q1;R

3) be a closure of {v∈
D(Q1); divv=0} in L2(Q1;R

3). Then for a map f∈ L2(Q1;R
3), there exists a

map g∈
◦
JJJ(Q1;R

3) and a function h∈ L2(0,1;H1,2(B1)), such that f is uniquely
decomposed to f=g+∇h.

To state the second lemma, we first introduce the definition and a few proper-
ties on B.M.O and the Hardy space H1. These function spaces are used to control
the nonlinear term of our parabolic systems. Let f be a function belonging to
L1

loc(R
3;R3). Set

[f ]B.M.O := sup
x∈�3 ,r∈�+

∫
−

Br(x)

|f−fx,r|dy,

withfx,r =

∫
−

Br(x)

f(y)dy.

Then we say that f has bounded mean oscillation (B.M.O) provided [f ]B.M.O<
∞. Also φ is any smooth function with a support in the unit ball and

∫
�3 φ(x)dx

=1. Say that f belongs to the Hardy space H1 if f∗∈L1(R3) where f∗ is defined
by

f∗(x):=sup
r>0

∣∣∣∣
∫
−

Br(x)

f(y)φ

(
x−y
r

)
dy

∣∣∣∣.
Also, its norm is given by ||f ||H1 := ||f∗||L1(�3 ). For the facts above, we refer

to Fefferman-Stein [42], Stein [105] and Torchinsky [115]. The well-known result
states that (H1)′ = B.M.O and∣∣∣∣

∫
�3

f(y)g(y)dy

∣∣∣∣≤CFS[f ]B.M.O ||g||H1(2.12)

holds for any f ∈ B.M.O and any g∈H1.
We successively introduce the following lemma by Coifman-Lions-Meyer-Sem

mes [26].

Lemma 2.2 (Coifman-Lions-Meyer-Semmes [26]). Assume f ∈H1,2(R3) and
g∈L2(R3;R3) with divg=0 in the distribution sense. Then 〈∇f,g〉 ∈H1 with the
following inequality:

||〈∇f,g〉||H1 ≤CCLMS||∇f ||L2(�3 ) ||g||L2(�3 ;�3 ).(2.13)

Next, we prepare the fundamental energy inequality on modified strong evolu-
tional harmonic maps. Let z0 =(t0,x0) be a point inQ∞ and positive numbers t1,t2
and r1,r2 with 0<t0− t2 <t0− t1≤ t0 and all balls Br1(x0) and Br2(x0) satisfying
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Br1(x0)⊂⊂Br2(x0) ⊂⊂B. We also choose two cut-off functions η∈D(Br2(x0))
and χ∈C∞(0,t0] given by

η(|x|)=

{
1 in Br1,

0 outside Br2 ,

0≤η(|x|)≤1, |∇η(|x|)|≤2/(r2−r1),

χ(t)=

{
1 t0− t1<t≤ t0,
0 t≤ t0− t2,

0≤χ(t)≤1, |dχ/dt(t)|≤2/(t2− t1).
Lemma 2.3 (An energy inequality). For modified strong evolutional harmonic

map u, there holds

1

2

∫ t0

t0−t1

dt

∫
Br1

∣∣∣∣∂u∂t (z)
∣∣∣∣
2

dx+
1

2

∫
Br1

|∇u(t0,x)|2dx

≤
[

8

(r2−r1)2
+

1

(t2− t1)
]∫ t0

t0−t2

dt

∫
Br2

|∇u(z)|2dx.
(2.14)

Finally, we show the monotonicity inequalities for the scaled energies of mod-
ified strong evolutional harmonic map.

Lemma 2.4 (A monotonicity formula). The modified strong evolutional har-
monic maps u satisfy the following monotonicity formula:

1

r2
2

∫ t0

t0−r2
2

dt

r1

∫
Br1 (x0)

|∇u(z)|2dx

≤ CM

(2r2)2

∫ t0

t0−(2r2)2

dt

2r2

∫
B2r2(x0)

|∇u(z)|2dx
(2.15)

holds for any concentric cylinders (t0,t0−r2
2)×Br1(x0)⊂ (t0,t0−(2r2)

2)×B2r2(x0)
⊂⊂Q∞ and CM is a positive constant independent of r1,r2,z0,u.

Proof of lemma 2.3

First, fix 0<h and recall the weak formula (2.6); We test ∂+u/∂t η2χ into
φ in (2.6). This is always possible by taking the mollifier of ∂+u/∂t. Then we
obtain

∫ t0

t0−t2

dt

∫
Br2

〈∂u
∂t

(z),
∂+u

∂t
(z)〉η2(|x|)χ(t)dx
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+

∫ t0

t0−t2

dt

∫
Br2

〈∂
+

∂t
∇u(z),∇u(z)〉η2(|x|)χ(t)dx

+2

∫ t0

t0−t2

dt

∫
Br2

〈∇u(z), ∂
+u

∂t
(z)∇η(|x|)〉η(|x|)χ(t)dx

=

∫ t0

t0−t2

dt

∫
Br2

|∇u(z)|2〈u(z), ∂
+u

∂t
(z)〉η2(|x|)χ(t)dx.

Here, a non-negativity of the right-hand side is derived from 〈u(z),u(t+h,x)−
u(z)〉≤0 because of |u(z)|=1, a.e z ∈Q∞.

Thus, by applying Schwarz inequality to the 3rd term on the left-hand side,
we infer

∫ t0

t0−t2

dt

∫
Br2

〈∂u
∂t

(z),
∂+u

∂t
(z)〉η2(|x|)χ(t)dx− 1

2

∫ t0

t0−t2

dt

∫
Br2

∣∣∣∣∂+u

∂t
(z)

∣∣∣∣
2

η2(|x|)χ(t)dx

− 1

2h

∫ t0

t0−t2

dt

∫
Br2

|∇u(t+h,x)−∇u(t,x)|2η2(|x|)χ(t)dx

+
1

2h

∫ t0

t0−t2

dt

∫
Br2

[|∇u(t+h,x)|2−|∇u(t,x)|2]η2(|x|)χ(t)dx

≤2

∫ t0

t0−t2

dt

∫
Br2

|∇u(z)|2|∇η(|x|)|2χ(t)dx,

which implies

∫ t0

t0−t2

dt

∫
Br2

〈∂u
∂t

(z),
∂+u

∂t
(z)〉η2(|x|)χ(t)dx

− 1

2

∫ t0

t0−t2

dt

∫
Br2

∣∣∣∣∂+u

∂t
(z)

∣∣∣∣
2

η2(|x|)χ(t)dx

− 1

2h

∫ t0

t0−t2

dt

∫
Br2

|∇u(t+h,x)−∇u(t,x)|2η2(|x|)χ(t)dx

+
1

2h

∫ t0+h

t0

dt

∫
Br2

|∇u(z)|2η2(|x|)χ(t)dx

− 1

2h

∫ t0−t2+h

t0−t2

dt

∫
Br2

|∇u(z)|2η2(|x|)χ(t)dx

≤ 1

2

∫ t0+h

t0−t2+h

dt

∫
Br2

|∇u(z)|2η2(|x|)
(
χ(t)−χ(t−h)

h

)
dx
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+
8

(r2−r2)2

∫ t0

t0−t2

dt

∫
Br2

|∇u(z)|2χ(t)dx.

By a few properties of definition on modified strong evolutional harmonic
map, i.e. (2.5) and (2.10), we can pass to the limit h↘0. Thus we can conclude
the claim of this lemma.

Proof of lemma 2.4

First of all, let us remark that our system (2.6) is invariant under translation
z→z−z0, hence we may shift z0→0. For any positive number δ sufficiently small
and any positive number r<r2/2, we define three support functions given by

ηδ(x)≡ηδ(|x|)=




1 |x|≤r,
− 1

δ
(|x|−(r+δ)) r< |x|≤r+δ,

0 r+δ< |x|,

Ψδ(x)≡Ψδ(|x|)=

{∫ r+δ

|x| tηδ(t)dt |x|<r+δ,
0 r+δ≤|x|,

Ψ0(x)≡Ψ0(|x|)=

{
1
2
(r2−|x|2) |x|<r,

0 r≤|x|.
Here note that ηδ(|x|) and Ψδ(|x|) have the following relations:

dΨδ

dρ
(ρ)+ρηδ(ρ)=0 in ρ>0.(2.16)

After the preparation above, we start the proof of our monotonicity for the
scaled energy. To this end, recall the weak formula: The evolutional evolutional
harmonic maps u satisfy

∫
Qr2

〈∂u
∂t

(z),φ(z)〉dz+
∫

Qr2

〈∇u(z),∇φ(z)〉dz

=

∫
Qr2

|∇u(z)|2〈u(z),φ(z)〉dz
(2.17)

for all maps φ ∈ D (Qr2;R
D).

As before, set a positive number h with 0<h< |t0−T |. By approximations,
we can take φ as follows:

φ(z)=
∂+u

∂t
(z)Ψδ(|x|)+ |x|∇−u(z)ηδ(|x|).
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We calculate the space gradients of φ:

∇φ(z)=
∂+

∂t
∇u(z)Ψδ(|x|)+

∂+u

∂t
(z)∇Ψδ(|x|)

+∇[|x|∇−u(z)]ηδ(|x|)+ |x|∇−u(z)∇ηδ(|x|).
By testing φ chosen above into (2.17), we obtain

∫
Qr2

〈∂u
∂t

(z),
∂+u

∂t
(z)〉Ψδ(|x|)dz+

∫
Qr2

〈∂u
∂t

(z),|x|∇−u(z)〉ηδ(|x|)dz

+

∫
Qr2

〈∇u(z), ∂
+

∂t
∇u(z)〉Ψδ(|x|)dz+

∫
Qr2

〈∇u(z), ∂u
+

∂t
(z)∇Ψδ(|x|)〉dz

+

∫
Qr2

〈∇u(z),∇[|x|∇−u(z)
]〉ηδ(|x|)dz

+

∫
Qr2

〈∇u(z),|x|∇−u(z)∇ηδ(|x|)〉dz

=

∫
Qr2

|∇u(z)|2〈u(z), ∂
+u

∂t
(z)Ψδ(|x|)+ |x|∇−u(z)ηδ(|x|)〉dz.(2.18)

We successively perform the estimates of the 3rd term and the 5th term on
the left-hand side:

∫
Qr2

〈∇u(z), ∂
+

∂t
∇u(z)〉Ψδ(|x|)dz

=
1

h

∫
Qr2

〈∇u(z),∇u(t+h,x)−∇u(z)〉Ψδ(|x|)dz

=− 1

2h

∫
Qr2

|∇u(t+h,x)−∇u(z)|2Ψδ(|x|)dz

+
1

2h

(∫ 0

−r2
2

dt

∫
Br2

|∇u(t+h,x)|2−|∇u(t,x)|2
)
Ψδ(|x|)dx

=− 1

2h

∫
Qr2

|∇u(t+h,x)−∇u(z)|2Ψδ(|x|)dz

+
1

2h

∫ h

0

dt

∫
Br2

|∇u(z)|2Ψδ(|x|)dx

− 1

2h

∫ −r2
2+h

−r2
2

dt

∫
Br2

|∇u(z)|2Ψδ(|x|)dx.(2.19)
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∫
Qr2

〈∇u(z),∇[|x|∇−u(z)
]〉ηδ(|x|)dz

=

∫
Qr2

〈∇u(z),∇|x|∇−u(z)〉ηδ(|x|)dz

+

∫
Qr2

〈∇u(z),|x|∇∇−u(z)〉ηδ(|x|)dz

=

∫
Qr2

〈∇u(z),∇|x|∇−u(z)〉ηδ(|x|)dz

+
1

2h

∫ 0

−r2
2

∫
Br2\Bh

|x|
∣∣∣∣∇u(z)−∇u(t,|x|−h, x|x|)

∣∣∣∣
2

ηδ(|x|)dz

+
1

2h

∫ 0

−r2
2

dt

∫
Br2\Bh

|x||∇u(z)|2ηδ(|x|)dx

− 1

2h

∫ 0

−r2
2

dt

∫
Br2\Bh

|x||∇u(t,|x|−h, x|x|)|
2ηδ(|x|)dx

− 1

h

∫ 0

−r2
2

dt

∫
Bh

|x|〈∇u(z),∇u(z)−∇u(t,h−|x|, x|x|)〉ηδ(|x|)dx

=

∫
Qr2

〈∇u(z),∇|x|∇−u(z)〉ηδ(|x|)dz

+
1

2h

∫ 0

−r2
2

dt

∫
Br2\Bh

|x|
∣∣∣∣∇u(z)−∇u(t,|x|−h, x|x|)

∣∣∣∣
2

ηδ(|x|)dz

− 1

2

∫ 0

−r2
2

dt

∫
Br2\Bh

|∇u(t,|x|−h, x|x|)|
2∇−(

ηδ(|x|)|x|3
) dx
|x|2

+
1

2h

∫ 0

−r2
2

dt

∫
Br2\Br2−h

|x||∇u(z)|2ηδ(|x|)dx

− 1

2h

∫ 0

−r2
2

dt

∫
Bh

|x||∇u(z)|2ηδ(|x|)dx

+
1

h

∫ 0

−r2
2

dt

∫
Bh

|x|〈∇u(z),∇u(z)−∇u(t,h−|x|, x|x|)〉ηδ(|x|)dx.(2.20)

Combining (2.18) with (2.19) and (2.20), we infer

(r+δ)2

2

∫
Qr2

∣∣∣∣∂u∂t (z)
∣∣∣∣
2

ηδ(|x|)dz
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+

∫
Qr2

〈∂u
∂t

(z),
∂u+

∂t
(z)− ∂u

∂t
(z)〉Ψδ(|x|)dz

− 1

2h

∫
Qr2

|∇u(t+h,x)−∇u(z)|2Ψδ(|x|)dz

+
1

2h

∫ 0

−r2
2

dt

∫
Br2\Bh

|x|
∣∣∣∣∇u(z)−∇u(t,|x|−h, x|x|)

∣∣∣∣
2

ηδ(|x|)dx

+

∫
Qr2

(
〈∂u
∂t

(z),|x|∇−u(z)〉ηδ(|x|)+〈〈x,∇〉u(z), ∂
+u

∂t
(z)〉Ψ

′
δ(|x|)
|x|

)
dz

+
1

2h

∫ h

0

dt

∫
Br2

|∇u(z)|2Ψδ(|x|)dx

− 1

2h

∫ −r2
2+h

−r2
2

dt

∫
Br2

|∇u(z)|2Ψδ(|x|)dx

+

∫
Qr2

〈∇u(z),∇|x|∇−u(z)〉ηδ(|x|)dz

+

∫
Qr2

〈∇u(z),|x|∇−u(z)∇ηδ(|x|)〉dz

− 1

2

∫ 0

−r2
2

dt

∫
Br2\Bh

|∇u(t,|x|−h, x|x|)|
2∇−(

ηδ(|x|)|x|3
) dx
|x|2

+
1

2h

∫ 0

−r2
2

dt

∫
Br2\Br2−h

|x||∇u(z)|2ηδ(|x|)dx

− 1

2h

∫ 0

−r2
2

dt

∫
Bh

|x||∇u(z)|2ηδ(|x|)dx

+
1

h

∫ 0

−r2
2

dt

∫
Bh

|x|〈∇u(z),∇u(z)−∇u(t,h−|x|, x|x|)〉ηδ(|x|)dx

≥
∫

Qr2

|∇u(z)|2〈u(z), ∂
+u

∂t
(z)Ψδ(|x|)+ |x|∇−u(z)ηδ(|x|)〉dz,(2.21)

where we used Ψδ(|x|)≤ (r+δ)2/2·ηδ(|x|) in the 1st term on the left-hand
side.

We here estimate the 1st term on the left-side hand in (2.21) as follows: First,
recall the weak formula (2.6):

∫
Qr2

〈∂u
∂t

(z),φ(z)〉dz+

∫
Qr2

〈∇u(z),∇φ(z)〉dz=

∫
Qr2

|∇u(z)|2〈u(z),φ(z)〉dz

for any mapping φ∈ D (Q;RD).
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As before, by the approximation, we can substitute ∂+u/∂t ηδ for φ to obtain

∫
Qr2

∣∣∣∣∂u∂t (z)
∣∣∣∣
2

ηδ(|x|)dz+

∫
Qr2

〈∂u
∂t

(z),
∂+u

∂t
(z)− ∂u

∂t
(z)〉ηδ(|x|)dz

+

∫
Qr2

〈∇u(z), ∂
+

∂t
∇u(z)〉ηδ(|x|)dz+

∫
Qr2

〈〈x,∇〉u(z), ∂
+u

∂t
(z)〉η

′
δ(|x|)
|x| dz

=

∫
Qr2

|∇u(z)|2〈u(z), ∂
+u

∂t
(z)〉ηδ(|x|)dz.

A similar calculation modifies the term above to

∫
Qr2

∣∣∣∣∂u∂t (z)
∣∣∣∣
2

ηδ(|x|)dz=−
∫

Qr2

〈∂u
∂t

(z),
∂+u

∂t
(z)− ∂u

∂t
(z)〉ηδ(|x|)dz

+
1

2h

∫
Qr2

|∇u(t+h,x)−∇u(z)|2ηδ(|x|)dz

− 1

2h

∫
Qr2

(|∇u(t+h,x)|2−|∇u(z)|2)ηδ(|x|)dz

−
∫

Qr2

〈〈x,∇〉u(z), ∂
+u

∂t
(z)〉η

′
δ(|x|)
|x| dz

+

∫
Qr2

|∇u(z)|2〈u(z), ∂
+u

∂t
(z)〉ηδ(|x|)dz

=−
∫

Qr2

〈∂u
∂t

(z),
∂+u

∂t
(z)− ∂u

∂t
(z)〉ηδ(|x|)dz

+
1

2h

∫
Qr2

|∇u(t+h,x)−∇u(z)|2ηδ(|x|)dz

− 1

2h

∫ h

0

dt

∫
Br2

|∇u(z)|2ηδ(|x|)dx

+
1

2h

∫ −r2
2+h

−r2
2

dt

∫
Br2

|∇u(z)|2ηδ(|x|)dx

−
∫

Qr2

〈〈x,∇〉u(z), ∂
+u

∂t
(z)〉η

′
δ(|x|)
|x| dz

+

∫
Qr2

|∇u(z)|2〈u(z), ∂
+u

∂t
(z)〉ηδ(|x|)dz.(2.22)

We substitute (2.22) for (2.21), which leads to
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∫
Qr2

〈∂u
∂t

(z),
∂+u

∂t
(z)− ∂u

∂t
(z)〉

(
Ψδ(|x|)− (r+δ)2

2
ηδ(|x|)

)
dz

− 1

2h

∫
Qr2

|∇u(t+h,x)−∇u(z)|2
(
Ψδ(|x|)− (r+δ)2

2
ηδ(|x|)

)
dz

+
1

2h

∫ 0

−r2
2

dt

∫
Br2\Bh

|x||∇u(z)−∇u(t,|x|−h, x|x|)|
2ηδ(|x|)dx

+

∫
Qr2

(
〈∂u
∂t

(z),|x|∇−u(z)〉ηδ(|x|)dz

+ 〈〈x,∇〉u(z), ∂
+u

∂t
(z)〉Ψ

′
δ(|x|)
|x|

)
dz

+
1

2h

∫ h

0

dt

∫
Br2

|∇u(z)|2
(
Ψδ(|x|)− (r+δ)2

2
ηδ(|x|)

)
dx

− 1

2h

∫ −r2
2+h

−r2
2

dt

∫
Br2

|∇u(z)|2
(
Ψδ(|x|)− (r+δ)2

2
ηδ(|x|)

)
dx

+

∫
Qr2

〈∇u(z),∇|x|∇−u(z)〉ηδ(|x|)dz

+

∫
Qr2

〈∇u(z),|x|∇−u(z)〉∇ηδ(|x|)dz

− 1

2

∫ 0

−r2
2

dt

∫
Br2\Bh

|∇u(t,|x|−h, x|x|)|
2∇−(

ηδ(|x|)|x|3
) dx
|x|2

+
1

2h

∫ 0

−r2
2

dt

∫
Br2\Br2−h

|x||∇u(z)|2ηδ(|x|)dx

− (r+δ)2

2

∫
Qr2

〈〈x,∇〉u(z), ∂
+u

∂t
(z)〉η

′
δ(|x|)
|x| dz

+
1

h

∫ 0

−r2
2

dt

∫
Bh

|x|〈∇u(z),∇u(z)−∇u(t,h−|x|, x|x|)〉ηδ(|x|)dx

≥
∫

Qr2

|∇u(z)|2〈u(z), ∂
+u

∂t
(z)〉

(
Ψδ(|x|)− (r+δ)2

2
ηδ(|x|)

)
dz

+

∫
Qr2

|∇u(z)|2〈u(z),|x|∇−u(z)〉ηδ(|x|)dz≥0.(2.23)

A non-negativity on the last 2-terms in (2.23) follows from 〈u(z),u(t+h,x)−
u(z)〉 ≤0, 〈u(z),u(z)−u(t,±(|x|−h),x/|x|)〉 ≥0, and Ψδ(|x|) ≤(r+δ)2/2·ηδ(|x|).
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We now pass to the limit h↘0 in (2.23): By recalling a few properties of
definition of modified strong evolutional harmonic map: (2.5), (2.9), (2.10) and
by a property of cut-functions, we infer

+
1

2

∫
Br2

|∇u(0,x)|2
(
Ψδ(|x|)− (r+δ)2

2
ηδ(|x|)

)
dx

− 1

2

∫
Br2

|∇u(−r2
2,x)|2

(
Ψδ(|x|)− (r+δ)2

2
ηδ(|x|)

)
dx

+

∫
Qr2

|∇u(z)|2ηδ(|x|)dz

− 3

2

∫
Qr2

|∇u(z)|2ηδ(|x|)dz− 1

2

∫
Qr2

|∇u(z)|2|x|η′δ(|x|)dz

+

∫
Qr2

|〈x,∇〉u(z)|2 η
′
δ(|x|)
|x| dz

− (r+δ)2

2

∫
Qr2

〈〈x,∇〉u(z), ∂u
∂t

(z)〉η
′
δ(|x|)
|x| dz≥0.

Finally, taking the limit δ↘0, we conclude

1

2

∫
Br

|∇u(0,x)|2
(
Ψ0(|x|)− r2

2

)
dx− 1

2

∫
Br

|∇u(−r2
2,x)|2

(
Ψ0(|x|)− r2

2

)
dx

− 1

2

∫
Qr,r2

|∇u(z)|2dz+
r

2

∫ 0

−r2
2

dt

∫
∂Br

|∇u(z)|2dH2

+
r

2

∫ 0

−r2
2

dt

∫
∂Br

〈〈x,∇〉u(z), ∂u
∂t

(z)〉dH2− 1

r

∫ 0

−r2
2

dt

∫
∂Br

|〈x,∇〉u(z)|2dH2

=
1

2

∫
Br

|∇u(0,x)|2
(
Ψ0(|x|)− r2

2

)
dx− 1

2

∫
Br

|∇u(−r2
2,x)|2

(
Ψ0(|x|)− r2

2

)
dx

− 1

2

∫
Qr,r2

|∇u(z)|2dz+
r

2

∫ 0

−r2
2

dt

∫
∂Br

|∇u(z)|2dH2

+
r3

16

∫ 0

−r2
2

dt

∫
∂Br

∣∣∣∣∂u∂t (z)
∣∣∣∣
2

dH2

− 1

r

∫ 0

−r2
2

dt

∫
∂Br

|〈x,∇〉u(z)− r2

4

∂u

∂t
(z)|2dH2≥0.

Multiplying the above by r−2, we deduce
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1

2

∫
Br

|∇u(−r2
2,x)|2

(
−Ψ0(|x|)

r2
+

1

2

)
dx+

r

16

∫ 0

−r2
2

dt

∫
∂Br

∣∣∣∣∂u∂t (z)
∣∣∣∣
2

dH2

− 1

2r2

∫
Qr,r2

|∇u(z)|2dz+
1

2r

∫ 0

−r2
2

dt

∫
∂Br

|∇u(z)|2dH2

− 1

r3

∫ 0

−r2
2

dt

∫
∂Br

|〈x,∇〉u(z)− r2

4

∂u

∂t
(z)|2dH2≥0.

We thus show that for a.e. r>0 with 0<r<r2,

− 1

2

∫
Br

|∇u(−r2
2,x)|2

(
Ψ0(|x|)
r2

− 1

2

)
dx

+
r

16

∫ 0

−r2
2

∫
∂Br

∣∣∣∣∂u∂t (z)
∣∣∣∣
2

dz+
1

2

d

dr

(
1

r

∫
Qr,r2

|∇u(z)|2dz
)

≥ 1

r3

∫ 0

−r2
2

dt

∫
∂Br

|〈x,∇〉u(z)− r2

4

∂u

∂t
(z)|2dH2≥0,(2.24)

holds.
We integrate (2.24) from r1 to r2 with respect to r, which obtains

r2
4

∫
Br2

|∇u(−r2
2,x)|2dx+

r2
16

∫
Qr2

|∂u
∂t

(z)|2dz

+
1

2r2

∫
Qr2

|∇u(z)|2dz≥ 1

2r1

∫
Qr1,r2

|∇u(z)|2dz.

We apply Lemma 2.3 to the 1st and the the 2nd term on the left-hand side
above to complete our proof.

2. Proof of theorem

2.1. Proof of theorem 2.2

We prove the claim of this theorem by contradiction: Were our statement false,
there would exist a sequence of cubes {QRk

(zk)} (k=1,2,...) in Q∞ such that

R−3
k

2

∫
QRk

(zk)

|∇u(z)|2dz< 1

k
whereas

(τ0Rk)
−3

2

∫
Qτ0Rk

(zk)

|∇u(z)|2dz
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>
Rk

−3

2

∫
QRk

(zk)

|∇u(z)|2dz wouldhold.(2.25)

We rescale the variables z= (t,x) to the unit cubes Q1(0)⊂R1+3 as follows:

t̄=
1

R2
k

(t− tk), x̄=
1

Rk

(x−xk), z̄=(t̄,x̄),

λk =

√
Rk

−3

2

∫
QRk

(zk)

|∇u(z)|2dz,

uQ6/8Rk
(zk) =

∫
−

Q6/8Rk
(zk)

u(z′)dz′, vk(z̄)=
1

λk

[
u(z)−uQ6/8Rk

(zk)

]
.

From the change of variables, (2.25) becomes

λ2
k≤

1

k
,

τ−3
0

2

∫
Qτ0(0)

|∇vk(z̄)|2dz̄>1.(2.26)

Also, choose w ∈ D(Q7/8(0);RD) and set

wk(z)=w

(
t−tk
R2

k

,
x−xk

Rk

)
∈D(Q7Rk/8(zk);R

D).

We substitute wk for φ in (2.6), which gives

∫
Q7/8Rk

(zk)

〈∂u
∂t

(z),wk(z)〉dz+

∫
Q7/8Rk

(zk)

〈∇u(z),∇wk(z)〉dz

=

∫
Q7/8Rk

(zk)

|∇u(z)|2〈u(z),wk(z)〉dz.
(2.27)

From definition of vk : u(z)= λkvk(z̄)+ uQ6/8Rk
(zk),

we find that vk satisfies

∫
Q7/8(0)

〈∂vk

∂t̄
(z̄),w(z̄)〉dz̄+

∫
Q7/8(0)

〈∇vk(z̄),∇w(z̄)〉dz̄

=λk

∫
Q7/8(0)

|∇vk(z̄)|2〈u(z̄),w(z̄)〉dz̄.
(2.28)

From lemma 2.3, we obtain
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1

2

∫
Q6/8Rk

(zk)

∣∣∣∣∂u∂t (z)
∣∣∣∣
2

dz+
1

2

∫
B6/8Rk

(xk)

|∇u(t,x)|2dx

≤C
∫

Q7/8Rk
(zk)

|∇u(z)|2dz,
(2.29)

for almost all t with tk−(6/8Rk)
2< t≤ tk.

By transferring the variables z=(t,x) to z̄=(t̄,x̄), we find that the above
(2.29) becomes

1

2

∫
Q6/8(0)

∣∣∣∣∂vk

∂t̄
(z̄)

∣∣∣∣
2

dz̄+
1

2

∫
B6/8(0)

|∇vk(t̄,x̄)|2dx̄

≤C
∫

Q7/8(0)

|∇vk(z̄)|2dz̄≤C,
(2.30)

with a.e t̄ in (−(6/8)2,0].
Thus, there exists a subsequence {vk(i)} of {vk} ∈ V (Q6/8(0);RD) (i=1,2,...)

and a mapping v ∈ V (Q6/8(0);RD) such that


∇vk(i)(z̄)

k→∞−−⇀ ∇v(z̄) inL2(Q6/8(0);RD),
∂vk(i)

∂t
(z̄)

k→∞−−⇀ ∂v

∂t
(z̄) inL2(Q6/8(0);RD).

(2.31)

In view of these facts (2.28), (2.30) and (2.31), we deduce that

∫
Q6/8(0)

〈∂v
∂t̄

(z̄),w(z̄)〉dz̄+

∫
Q6/8(0)

〈∇v(z̄),∇w(z̄)〉dz̄=0

holds for all w∈ D(Q6/8(0);RD). This shows that the map above v is the
solution of the linear heat equations, i.e. v satisfies

∂v

∂t
(z̄)−�v(z̄)=0 locally in Q6/8(0).(2.32)

Thus Lemma 1.3 implies that for any positive number τ0<1/2,

||∇v||L∞(Qτ0(0))≤CH

[∫
−

Q6/8(0)

|∇v(z̄)|2dz̄
]1/2

holds where CH is a universal positive constant.
Now, we assume
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∇vk(z̄)
k→∞−−→ ∇v(z̄) in L2(Q1/2(0);R3×D).(2.33)

Thus, from assumption (2.26), we deduce that

1

2
<

1

2τ 3
0

∫
Qτ0(0)

|∇v(z̄)|2dz̄ implies

1

2
<

1

2τ 3
0

∫
Qτ0(0)

|∇v(z̄)|2dz̄≤ 1

2τ 3
0

|Qτ0(0)|||∇v||2L∞(Qτ0 (0))

≤C2
H

|Q1|
|Q6/8|

τ 2
0

2

∫
Q6/8(0)

|∇v(z̄)|2dz̄< 1

4
,

as long as 0<τ0<
1

2

(
4

3

)5/2
1

CH

.

Since τ0 is any positive number with τ0<1/2, then the above choice of τ0 gives
a contradiction.

2.2. Proof of theorem 2.3

Since r−3
∫

Qr(z0)
|∇u(z)|2dz is continuous function with respect to z0, if z0∈ Q/Σu,

there exists an open cube Qr0(z0) with Q2r0(z0) ⊂⊂ Q∞ such that for any z∈
Qr0(z0),

r−3
0

∫
Qr0(z)

|∇u(z̄)|2dz̄≤ε0.

By using (2.11), a standard iteration technique implies that

∫
Qr(z)

|∇u(z̄)|2dz̄≤ 1

τ 3
0

(
r

r0

)3+log2/log(1/τ0)∫
Qr0(z)

|∇u(z̄)|2dz̄

holds for any r<r0/2.
By using Lemma 2.3, we then infer

r2

∫
Qr/2(z)

∣∣∣∣∂u∂t (z̄)
∣∣∣∣
2

dz̄+

∫
Qr/2(z)

|∇u(z̄)|2dz̄

≤C
(
r

r0

)3+log2/log(1/τ0)∫
Q2r0(z0)

|∇u(z̄)|2dz̄.

Then it consequently follows from Campanato [15] that u∈Cα(Q/Σu;R
3) with

α= 1/2 log2/log(1/τ0).
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3. Compactness of the blow-up sequence

The reminder of this paper is to show the compactness of a blow-up sequence.
This compactness is our main technical result. To this end, we first prepare the
inequality of Poincaré type:

Lemma 2.5. In any t̄ in (−(6/8)2,0], vk satisfies

||vk(t̄,·)||L2(B6/8(0))≤C,(2.34)

where C is a positive constant depending only on D.

Proof. Recall definition of vk :

||vk(t̄,·)||L2(B6/8(0))

=
1

λk

[∫
B6/8(0)

|u(t̄,x̄)−
∫
−

Q6/8(0)

u(s̄,ȳ)ds̄dȳ|2dx̄
]1/2

≤ 1

λk

[∫
B6/8(0)

|u(t̄,x̄)−
∫
−

B6/8(0)

u(t̄,ȳ)dȳ|2dx̄
]1/2

+
1

λk

[∫
B6/8(0)

|
∫
−

Q6/8(0)

(u(t̄,ȳ)−u(s̄,ȳ))ds̄dȳ |2dx̄
]1/2

≤C||∇vk(t̄,·)||L2(B6/8(0)) +C||∂tvk||L2(Q6/8(0))≤C,(2.35)

where we used Lemma 2.3 and 1/2
∫

Q1
|∇vk|2dz̄ = 1.

Now we are in the position to state main lemma:

Lemma 2.6. Let vk (k=1,2,...) and v be maps appearing in the previous sec-
tion.

Then ∇vk(z̄)
k→∞−−→ ∇v(z̄) in L2(Q1/2(0);R3×D).

Proof. To prove the strong convergence of {∇vk} (k=1,2,...), first recall (2.28),
(2.32):

∫
Q6/8(0)

〈∂vk

∂t̄
(z̄),w(z̄)〉dz̄+

∫
Q6/8(0)

〈∇vk(z̄),∇w(z̄)〉dz̄

=λk

∫
Q6/8(0)

|∇vk(z̄)|2〈u(z̄),w(z̄)〉dz̄,
(2.36)

and
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∫
Q6/8(0)

〈∂v
∂t

(z̄),w(z̄)〉dz̄+

∫
Q6/8(0)

〈∇v(z̄),∇w(z̄)〉dz̄=0,(2.37)

where w is any mapping of D(Q6/8(0);RD).
After subtracted (2.37) from (2.36), we have

∫
Q6/8(0)

〈 ∂
∂t̄

(vk(z̄)−v(z̄)),w(z̄)〉dz̄

+

∫
Q6/8(0)

〈∇(vk(z̄)−v(z̄)),∇w(z̄)〉dz̄

=λk

∫
Q6/8(0)

|∇vk(z̄)|2〈u(z̄),w(z̄)〉dz̄.

(2.38)

By the approximation, the same identity obtains for w∈ L2(−(6/8)2,0;
◦
H

1,2

(B6/8(0); R
D)

) ∩ L∞(Q6/8(0);RD). Fix φ∈ C∞(−(6/8)2,0; C∞(B6/8(0);R+)
)

satisfying

φ(z̄)=

{
1 in Q4/8(0),

0 outside R
1+3/Q5/8(0),

0≤φ(z̄)≤1, |∇φ(z̄)|≤16,

|∇2φ(z̄)|≤128,|∂tφ(z̄)|≤128.

Substituting (vk−v)φ3 for w in the identity (2.38), we obtain

1

2

∫
B6/8(0)

|vk(z̄)−v(z̄)|2φ3(z̄)dx̄

∣∣∣∣∣
0

t=−(6/8)2

− 3

2

∫
Q6/8(0)

|vk(z̄)−v(z̄)|2φ2(z̄)
∂φ

∂t̄
(z̄)dz̄

+

∫
Q6/8(0)

|∇(vk(z̄)−v(z̄))|2φ3(z̄)dz̄

+3

∫
Q6/8(0)

〈∇(vk(z̄)−v(z̄))φ3/2(z̄),(vk(z̄)−v(z̄))φ1/2(z̄)∇φ(z̄)〉dz̄

=λk

∫
Q6/8(0)

|∇vk(z̄)|2〈u(z̄),(vk(z̄)−v(z̄))φ3(z̄)〉dz̄.

We here apply Schwartz inequality to the 4th term on the left-hand side above
and invoke Hélein’s trick (See Hélein [64].) on the right-hand side; We obtain

63



1

2

∫
Q6/8(0)

|∇(vk(z̄)−v(z̄))|2φ3(z̄)dz̄

≤ 1

2

∫
Q6/8(0)

|vk(z̄)−v(z̄)|2
(

3φ2(z̄)
∂φ

∂t̄
(z̄)+9φ(z̄)|∇φ(z̄)|2

)
dz̄

+λk

∫
Q6/8(0)

|∇vk(z̄)|2〈u(z̄),(vk(z̄)−v(z̄))φ3(z̄)〉dz̄

=
1

2

∫
Q6/8(0)

|vk(z̄)−v(z̄)|2
(

3φ2(z̄)
∂φ

∂t̄
(z̄)+9φ(z̄)|∇φ(z̄)|2

)
dz̄

−λk

D∑
i,j=1

∫
Q6/8(0)

〈vi
k(z̄)∇φ(z̄),(vj

k(z̄)−vj(z̄))φ(z̄)

×φ(z̄)
(
uj(z̄)∇vi

k(z̄)−ui(z̄)∇vj
k(z̄)

)〉dz̄
+λk

D∑
i,j=1

∫
Q6/8(0)

〈∇(vi
k(z̄)φ(z̄)),(vj

k(z̄)−vj(z̄))φ(z̄)

×φ(z̄)
(
uj(z̄)∇vi

k(z̄)−ui(z̄)∇vj
k(z̄)

)〉dz̄.(2.39)

We proceed to estimate (2.39). For this purpose, we implement Lemma 2.1
to the 3rd term on the right-hand side in (2.39): When we set B

i,j
k =

(
Bi,j

α,k

)
(α=1,2,3) as Bi,j

α,k(z̄) = (uj∇αv
i
k − ui∇αv

j
k

)
φ, there exists a map C

i,j
k ∈

L2(Q6/8(0);R3) and a function φi,j
k ∈ L2 (−(6/8)2,0;

◦
H

1,2
(B6/8(0) ;R3)) such that

B
i,j
k =C

i,j
k +∇φi,j

k inQ6/8(0),

with C
i,j
k ∈

◦
JJJ,{

�φi,j
k =divB

i,j
k in L2(Q6/8(0)),

∂φi,j
k /∂n =0 on ∂B6/8(0), a.e t.

Here we must remark that divB
i,j
k does belong to L2(Q6/8(0)). Indeed, since

vk satisfies (2.36),

divB
i,j
k =

3∑
α=1

∇α

[(
uj∇αv

i
k−ui∇αv

j
k

)
φ
]

=
(
uj�vi

k−ui�vj
k

)
φ+〈uj∇vi

k−ui∇vj
k,∇φ〉

=
(
uj∂t̄v

i
k−ui∂t̄v

j
k

)
φ+〈uj∇vi

k−ui∇vj
k,∇φ〉

(
:=Di,j

k

)
in D′(Q6/8(0))

holds. In the following, we write φi,j
k = �−1Di,j

k .
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Thus, (2.39) becomes

1

2

∫
Q6/8(0)

|∇(vk(z̄)−v(z̄))|2φ3(z̄)dz̄

≤ 1

2

∫
Q6/8(0)

|vk(z̄)−v(z̄)|2
(

3φ2(z̄)
∂φ

∂t
(z̄)+9φ(z̄)|∇φ(z̄)|2

)
dz̄

−λk

D∑
i,j=1

∫
Q6/8(0)

〈vi
k(z̄)∇φ(z̄),(vj

k(z̄)−vj(z̄))φ(z̄)Bi,j
k (z̄)〉dz̄

+λk

D∑
i,j=1

∫
Q6/8(0)

〈∇(
vi

k(z̄)φ(z̄)
)
,(vj

k(z̄)−vj(z̄))φ(z̄)Ci,j
k (z̄)〉dz̄

+λk

D∑
i,j=1

∫ 0

−(6/8)2
dt̄

∫
�3

〈∇(
vi

k(z̄)φ(z̄)
)
,(vj

k(z̄)−vj(z̄))φ(z̄)∇(�−1Di,j
k (z̄))〉dx̄

=(Rk
1)+(Rk

2)+(Rk
3)+(Rk

4).

From now we begin with estimating (Rk
j ), (j=1,2,3,4). First, since ||∇vk||L2

(Q6/8(0)) and ||∂vk/∂t̄||L2(Q6/8(0)) are uniform bounded with respect to k, Rellich-
Kondrachov theorem reads

lim
k→∞

(Rk
1)=0.(2.40)

Next, we perform the estimates of (Rk
2) as follows: By using Hölder inequality

and Sobolev imbedding theorem
◦
H

1,2
(Q6/8(0)) ↪→L4(Q6/8(0)), we infer

(Rk
2)≤λk

D∑
i,j=1

(∫
Q6/8(0)

|vi
k(z̄)|4|∇φ(z̄)|4dz̄

)1/4

×
(∫

Q6/8(0)

|vj
k(z̄)−vj(z̄)|4dz̄

)1/4(∫
Q6/8(0)

|Bi,j
k (z̄)|2dz̄

)1/2

=Cλk||vk||L4(Q6/8(0))

×
(
||vk||L4(Q6/8(0)) +liminf

k→∞
||vk||L4(Q6/8(0))

)
||∇vk||L2(Q6/8(0))

≤Cλk

(
||∇vk||L2(Q6/8(0)) + ||∂t̄vk||L2(Q6/8(0))

)
×

[(
||∇vk||L2(Q6/8(0)) +liminf

k→∞
||∇vk||L2(Q6/8(0))

)
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+
(
||∂t̄vk||L2(Q6/8(0)) +liminf

k→∞
||∂t̄vk||L2(Q6/8(0))

)]
×||∇vk||L2(Q6/8(0))≤Cλk.(2.41)

The last evaluations directly follow from Lemma 2.3, definition of vk and
1/2

∫
Q1(0)

|∇vk|2 dz =1.

We next perform the estimates of (Rk
3) and (Rk

4) (k=1,2,...): We apply
Lemma 2.2 to ∇vi

kφ C
i,j
k . This is possible because of vi

kφ ∈ H1,2(B6/8(0)) for

a.e t and C
i,j
k ∈ L2(B6/8(0)) with divC

i,j
k =0 in D′ (B6/8(0);R3) for a.e t. Also

note that φ vanishes outside B5/8(0), and v,vk belong to L∞(Q5/8(0);RD). Then
by using (H1)′ =B.M.O, i.e. (2.12), we infer the following inequality:

(Rk
3) :=λk

D∑
i,j=1

∫ 0

−(6/8)2
dt̄

∫
�3

〈∇(
vi

k(z̄)φ(z̄)
)
,(vj

k(z̄)−vj(z̄))φ(z̄)Ci,j
k (z̄)〉dx̄

≤λkCFS

D∑
i,j=1

∫ 0

−(6/8)2
||∇(

vi
kφ

)
C

i,j
k ||H1 [(vj

k−vj)φ]B.M.Odt̄.

≤λkCFSCCLMS

D∑
i,j=1

∫ 0

−(6/8)2
||∇(

vi
kφ

)||L2(�3 ) ||Bi,j
k −∇(�−1Di,j

k )||L2(�3 )

×[(vj
k−vj)φ]B.M.Odt̄

≤2λkCFSCCLMS ess·sup
−(6/8)2<t̄≤0

||∇(vkφ)||L2(�3 )

×
D∑

i,j=1

(∫ 0

−(6/8)2

(
||Bi,j

k ||2L2(�3 ) + ||∇(�−1Di,j
k )||2L2(�3 )

)
dt̄

)1/2

×
(∫ 0

−(6/8)2
[(vk−v)φ]2B.M.Odt̄

)1/2

=2λkCFSCCLMS×(Rk
3.1)×(Rk

3.2)×(Rk
3.3).

First, by using Lemma 2.3 and lemma 2.5, we obtain

(Rk
3.1)≤ ess·sup

−(6/8)2<t̄≤0

||∇vkφ||L2(�3 ) + ess·sup
−(6/8)2<t̄≤0

||vk∇φ||L2(�3 )≤C.

Next, we estimate (Rk
3.2): We invoke a continuity of ∇�−1 from L2 to L2.

Then we obtain

(Rk
3.2)=

D∑
i,j=1

(∫ 0

−(6/8)2
dt̄

∫
B6/8(0)

|ui(z̄)∇vj
k(z̄)−uj(z̄)∇vi

k(z̄)|2dx̄
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+

∫ 0

−(6/8)2
dt̄

∫
B6/8(0)

|∇(�−1Di,j
k )(z̄)|2dx̄

)1/2

≤
D∑

i,j=1

(∫ 0

−(6/8)2
dt̄

∫
B6/8(0)

|ui(z̄)∇vj
k(z̄)−uj(z̄)∇vi

k(z̄)|2dx̄
)1/2

+CRH

D∑
i,j=1

(∫ 0

−(6/8)2
dt̄

∫
B6/8(0)

|Di,j
k (z̄)|2dx̄

)1/2

.

Once we recall definition of Di,j
k , we then proceed to estimate (Rk

3.2) as follows:

(Rk
3.2)≤

D∑
i,j=1

(∫ 0

−(6/8)2
dt̄

∫
B6/8(0)

|uj(z̄)∇vi
k(z̄)−ui(z̄)∇vj

k(z̄)|2dx̄
)1/2

+C
D∑

i,j=1

(∫ 0

−(6/8)2
dt̄

∫
B6/8(0)

|uj(z̄)∂tv
i
k(z̄)−ui(z̄)∂tv

j
k(z̄)|2dx̄

)1/2

+C
D∑

i,j=1

(∫ 0

−(6/8)2
dt̄

∫
B6/8(0)

|〈uj(z̄)∇vi
k(z̄)−ui(z̄)∇vj

k(z̄),∇φ(z̄)〉|2dx̄
)1/2

≤C||∇vk||2L2(Q6/8(0)) +C||∂tvk||2L2(Q6/8(0))≤C.(2.42)

Finally, (Rk
3.3) will be estimated from above. By definition of B.M.O, we can

always assume that there exist sequences of positive numbers {rν} with 0< rν

<1/8 and points {xν} in B6/8(0) (ν=1,2,...) such that

(Rk
3.3)=

(∫ 0

−(6/8)2
dt̄ lim

ν→∞

(∫
−

Brν (xν)

∣∣∣(vk(z̄)−v(z̄))φ(z̄)−((vk−v)φ)Brν (xν)

∣∣∣dx̄)2
)1/2

≤ liminf
ν→∞

(∫ 0

−(6/8)2
dt̄

∫
−

Brν (xν)

∣∣∣(vk(z̄)−v(z̄))φ(z̄)−((vk−v)φ)Brν (xν)

∣∣∣2dx̄)1/2

≤C liminf
ν→∞

(∫ 0

−(6/8)2

dt̄

rν

∫
Brν (xν)

|∇((vk(z̄)−v(z̄))φ(z̄))|2dx̄
)1/2

≤C liminf
ν→∞

(∫ 0

−(6/8)2

dt̄

rν

∫
Brν (xν)

|∇(vk(z̄)−v(z̄))φ(z̄)|2dx̄
)1/2

+C liminf
ν→∞

(∫ 0

−(6/8)2

dt̄

rν

∫
Brν (xν)

|vk(z̄)−v(z̄)|2|∇φ(z̄)|2dx̄
)1/2

.
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Successively, using Lemma 2.4 to the 1st term and Hölder inequality to the
2nd term, we infer

(Rk
3.3)≤C liminf

ν→∞

(∫ 0

−(6/8)2

dt̄

rν

∫
Brν (xν)

|∇vk(z̄)|2dx̄
)1/2

+C liminf
ν→∞

(∫ 0

−(6/8)2

dt̄

rν

∫
Brν (xν)

|∇v(z̄)|2dx̄
)1/2

+C liminf
ν→∞

(∫ 0

−(6/8)2
dt̄

(∫
Brν (xν)

|vk(z̄)−v(z̄)|3|∇φ(z̄)|3dx̄
)2/3

)1/2

≤C+C


∫ 0

−(6/8)2
dt̄

(∫
B6/8(0)

|vk(z̄)−v(z̄)|6|∇φ(z̄)|6dx̄
)1/3




1/2

.

We apply Sobolev imbedding theorem
◦
H

1,2
(B6/8(0)) ↪→ L6(B6/8(0)) to the 2nd

term; We can continue to estimate (Rk
3.3) as follows.

(Rk
3.3)=C+C

(∫
Q6/8(0)

|∇(vk(z̄)−v(z̄))|2|∇φ(z̄)|2dz̄
)1/2

+C

(∫
Q6/8(0)

|vk(z̄)−v(z̄)|2|∇2φ(z̄)|2dz̄
)1/2

.

From Lemma 2.5, it consequently follows

(R3.i)≤C (i=1,2,3).(2.43)

Finally, we perform the estimates of (Rk
4): For this purpose, note that

∣∣∇�−1Di,j
k (t̄,x̄)

∣∣≤ 1

2π

∫
B6/8(0)

∣∣x̄− ȳ|−2|Di,j
k (t̄,ȳ)

∣∣dȳ.
In addition, Riesz-Hölder inequality implies

||∇�−1Di,j
k ||L3(B6/8(0))≤C||Di,j

k ||L2(B6/8(0))

for a.e. t.
Then we implement Hölder inequality, Sobolev inequality and Riesz-Hölder

inequality to obtain
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(Rk
4)≤λk

D∑
i,j=1

∫ 0

−(6/8)2
dt̄||∇(vi

kφ)||L2(B6/8(0))||(vj
k−vj)φ||L6(B6/8(0))

×||∇(�−1Di,j
k )||L3(B6/8(0))

≤Cλk

D∑
i,j=1

∫ 0

−(6/8)2
dt̄||∇(vi

kφ)||L2(B6/8(0))||∇((vj
k−vj)φ)||L2(B6/8(0))||Di,j

k ||L2(B6/8(0)).

As in the same way as in the estimates of (Rk
3), we conclude the estimates of

(Rk
4):

(Rk
4)≤Cλk ess·sup

−(6/8)2<t≤0

(
||∇vkφ||L2(B6/8(0)) + ||vk∇φ||L2(B6/8(0))

)

× ess·sup
−(6/8)2<t≤0

(
||∇vkφ||L2(B6/8(0)) + ||vk∇φ||L2(B6/8(0))

+||∇vφ||L2(B6/8(0)) + ||v∇φ||L2(B6/8(0))

)

×
D∑

i,j=1

||Di,j
k ||L2(Q6/8(0))≤Cλk.(2.44)

From (2.40), (2.41), (2.43) and (2.44), we conclude

∫
Q4/8(0)

|∇(vk(z̄)−v(z̄))|2dz̄=O(λk),

which completes the proof of Lemma 2.6.
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CHAPTER 3

Evolutional Ginzburg-Landau mappings

1. Introduction

In chapter I, section 5, we observed that to construct “a weakly evolutional har-
monic map into a sphere,” Chen [19] plied a penalty scheme. The corresponding
elliptic system:

�u+λ(|u|2−1)u=0 u : B1(0)→R
D̂,λ∈R+

are called “Ginzburg-Landau systems,” which stem from superconductors and
superfluids such as helium II in physics. For the physical background, ask to
Bethuel-Brezis-Hélein [5] and Neu [88]. Main interest of Ginzburg-Landau sys-
tems in physics, is to investigate the zero points of it because zero points are
translated into the normal state in the superconductivity state. In this chapter
we mainly study the relation between zero sets of solutions of Ginzburg-Landau
systems and the singular set of weakly evolutional harmonic maps into a sphere
that are constructed by passing to the limit of a subsequence of λ→∞ of uλ

which is a solution to (3.1), (3.2) and (3.3). We start this chapter by stating our
problem exactly:

Let d and D be positive integers greater than or equal to 3 and λ a positive
integer. Suppose that Ω⊂ Rd is a domain. For any fixed positive number T, the
parabolic cylinder QT is defined by QT = (0,T )×Ω ⊂ R1+d.

The evolutional Ginzburg-Landau mappings uλ = (u1
λ,··· ,uD

λ ) :QT →RD are
given as the solutions to the following parabolic systems:

∂uλ

∂t
=�uλ−λ(|uλ|2−1)uλ for z=(t,x)∈QT ,(3.1)

uλ(0,x)=u0(0,x) for t=0, x∈Ω,(3.2)

uλ(t,x)=u0(t,x) for t∈ [0,T ), x∈∂Ω(3.3)

where u0 =(u1
0,··· ,uD

0 ) :QT →RD with |u0|=
√∑D

i=1 |ui
0|2 =1 for a.e. z=(t,x)

∈ ∂QT .
This system (3.1) is the L2-gradient flow for the Ginzburg-Landau energy
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Eλ(u) :=
1

2

∫
Ω

(
|∇u|2 +

λ

2

(|u|2−1
)2

)
dx.(3.4)

In the following, we call eλ(uλ) the energy-density of the evolutional Ginzburg-
Landau mappings defined by

eλ(uλ)=
1

2
(|∇uλ|2 +

λ

2

(|uλ|2−1
)2

).(3.5)

This chapter studies the evolutional Ginzburg-Landau mappings on QT =
(0,T )×Ω when Ω is a bounded star-shaped domain with respect to the origin in
R

d (d≥3) with the following properties:

(i) ∂Ω is of C4-boundary.
(ii) γ(x) := infλ>0,λx /∈∂Ω λx belongs to C1(Ω).
(iii) The inner product between each point x∈∂Ω and the outward normal unit

vector νx at x∈∂Ω, denoted by 〈x,νx〉, is greater than 2.

We prove that the energy density eλ(uλ) of the evolutional Ginzburg-Landau
mappings uλ is uniformly bounded with respect to the parameter λ if the scaled
energy of the evolutional Ginzburg-Landau mappings is uniformly small. After it,
we indicate that these energy estimates much concern the behavior of the evolu-
tional Ginzburg-Landau mappings near the so-called cluster set of zero points of
the evolutional Ginzburg-Landau mappings uλ. The uniform bounded estimates
to an energy density eλ(uλ) may be firstly obtained by Chen-Struwe [24] in case
of Ω= Rd with d≥2 and D≥2.

This chapter is organized as follows: In section 2, we mention existence and
uniqueness results to our initial - boundary value problem. Section 3 collects
the technical auxiliary lemmas: We establish a fundamental energy estimate, a
Bochner type formula, the monotonicity inequality for the energy density and a
Fefferman-Phong type inequality; Section 4 first applies ε-regularity theory to the
scaled energy of the evolutional Ginzburg-Landau mappings. The proof of the
theorem above is performed by reductio ad absurdum. Successively we discuss a
certain estimate related to a behavior near zero sets of the evolutional Ginzburg-
Landau mappings. Finally, we study an alternative approach to prove the uniform
boundedness of eλ(uλ) on the cylinder where the scaled energy is uniformly small
with respect to λ. The benefit of this method is the point that we can explicitly
estimate a certain constant appeared in the statement of the theorem. We state
this result as the third theorem.

2. Existence and uniqueness

In this section we first formulates our problem exactly and we next establish
the existence and uniqueness theorems to the problem. Set d and D be positive
numbers greater than 2. Let u0 be a map belonging to C0(0,T ;W 1,2(Ω;RD)) with
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u0|∂Ω (A trace to ∂Ω) ∈ C∞([0,T )×∂Ω;RD) and |u0| =
√∑D

i=1(u
i
0)

2 =1 on

∂QT .

Definition 3.1. If we say uλ :QT →RD to be evolutional Ginzburg-Landau
system. a smooth map uλ satisfies (3.1) classically, (3.2) and (3.3) in the sense

that limt→+0 ||uλ(t,·)−u0(t,·)||L2(Ω) =0 and uλ(t,·)−u0(t,·) ∈
◦
H

1,2
(Ω;RD) for a.e.

t∈(0,T ).

To the initial-boundary value problems (3.1), (3.2) and (3.3), we show

Theorem 3.1. There uniquely exists the evolutional Ginzburg-Landau system
uλ such that

uλ∈C∞([0,T )×Ω),(3.6)

|uλ|≤1 in QT ,(3.7)

1

2

∫
QT

∣∣∣∣∂uλ

∂t
(z)

∣∣∣∣
2

dz+
1

4
ess·sup
0≤t≤T

∫
Ω

eλ(uλ)(t,x)dx(3.8)

≤ ε0
2

∫ T

0

dt

∫
∂Ω

(〈x,ν〉+ |x|2)|∇tanu0(z)|2 dHd−1

+
1

ε0

∫ T

0

dt

∫
∂Ω

∣∣∣∣∂u0

∂t
(z)

∣∣∣∣
2

dHd−1 +

∫
Ω

|∇u0(0,x)|2dx

with ε0 = min(1/(2diam(Ω)2), 1/(1+ ||∇γ||2L∞ diam(Ω)2)).

Proof of Theorem 3.1

For the time being, suppose that evolutional Ginzburg-Landau mappings exist
and these satisfy

lim
h↘0

sup
0<t≤h

∫
Ω

|∇uλ(t,x)|2dx=

∫
Ω

|∇u0(0,x)|2dx.(3.9)

Then we preliminarily verify the uniqueness, the boundedness (3.7) and the
fundamental energy inequalities (3.8). To this end, assume the existences of two
evolutional Ginzburg-Landau mappings uλ and vλ: these maps uλ and vλ satisfy

∂uλ

∂t
(z)=�uλ(z)−λ(|uλ(z)|2−1)uλ(z) in QT ,(3.10)

∂vλ

∂t
(z)=�vλ(z)−λ(|vλ(z)|2−1)vλ(z) in QT ,(3.11)

uλ(0,x)=vλ(0,x)=u0(0,x) in {0}×Ω,(3.12)
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uλ(z)=vλ(z)=u0(t,x) in (0,T )×∂Ω.(3.13)

Subtracting (3.11) from (3.10), multiplying φ∈ C∞
0 (QT ;RD) and integrating

it over QT , we have

∫
QT

〈 ∂
∂t

(uλ(z)−vλ(z)),φ(z)〉dz+

∫
QT

〈∇(uλ(z)−vλ(z)),∇φ(z)〉dz

=−λ
∫

QT

〈(|uλ(z)|2−1)uλ(z)−(|vλ(z)|2−1)vλ(z),φ(z)〉dz.(3.14)

Noting uλ−vλ =0 on ∂QT , we substitute φ in (3.14) for (uλ−vλ) e
−2λt to

obtain

1

2

∫
QT

∂

∂t
|uλ(z)−vλ(z)|2e−2λtdz

+

∫
QT

|∇(uλ(z)−vλ(z))|2e−2λtdz

=−λ
∫

QT

(|uλ(z)|4 + |vλ(z)|4

−(|uλ(z)|2 + |vλ(z)|2)〈uλ(z),vλ(z)〉
)
e−2λtdz

+λ

∫
QT

|uλ(z)−vλ(z)|2e−2λtdz.(3.15)

By using Schwarz inequality to the 1st term on the right-hand side, we arrive
at

1

2

∫
Ω

|uλ(T,x)−vλ(T,x)|2e−2λT dx+

∫
QT

|∇(uλ(z)−vλ(z))|2e−2λtdz

−λ

2

∫
QT

∣∣|uλ(z)|2−|vλ(z)|2
∣∣2 e−2λtdz≤0.(3.16)

Thus, we deduce uλ≡vλ in QT .
Second, we show (3.7): We multiply (3.1) by (|uλ|2−1)(0) uλ and integrate it

on QT with respect to z. Then by recalling |u0|=1 on ∂QT , we obtain

1

4

∫
Ω∩{|uλ|≥1}

(|uλ(T,x)|2−1
)2
dx

+

∫
QT∩{|uλ|≥1}

|∇uλ(z)|2(|uλ(z)|2−1)(0)dz

+
1

2

∫
QT∩{|uλ|≥1}

∣∣∇|uλ(z)|2
∣∣2 dz
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+λ

∫
QT ∩{|uλ|≥1}

(|uλ(z)|2−1
)2 |uλ(z)|2dz=0.

Thus we conclude Ld+1 ({z∈QT ; |uλ|≥1}) =0: |uλ| ≤1 for a.e. z∈QT . Since
uλ ∈C2(QT ), |uλ|≤1 on z∈QT .

Next, we prove (3.8). For this purpose, we first estimate
∫ T

0
dt

∫
∂Ω

|∂uλ/∂ν(t,x)|2
dHd−1 : We multiply (3.1) by ∂uλ/∂t (γ2(x)−|x|2)/2 + 〈x,∇〉 uλ, integrating it
on (h,t) × Ω ⊂QT over z to imply

0=
1

2

∫ t

h

dt

∫
Ω

∣∣∣∣∂uλ

∂t
(z)

∣∣∣∣
2

(γ2(x)−|x|2)dx

− 1

2

∫ t

h

dt

∫
Ω

〈
�uλ(z),

∂uλ

∂t
(z)

〉
(γ2(x)−|x|2)dx

+
λ

8

∫ t

h

dt

∫
Ω

∂

∂t

(|uλ(z)|2−1
)2

(γ2(x)−|x|2)dx

−
∫ t

h

dt

∫
Ω

〈�uλ(z),〈x,∇〉uλ(z)〉dx

+
λ

4

∫ t

h

dt

∫
Ω

〈x,∇〉(|uλ(z)|2−1
)2
dx.

Repeating the integral by parts and taking the limit h↘0 and noting ∇=
ν∂/∂ν +∇tan, we have

0=
1

2

∫
Qt

∣∣∣∣∂uλ

∂t
(z)

∣∣∣∣
2

(γ2(x)−|x|2)dz

+
1

2

∫
Ω

eλ(uλ)(z)(γ
2(x)−|x|2)dx− 1

4

∫
Ω

|∇u0(h,x)|2(γ2(x)−|x|2)dx

+

∫
Qt

〈
〈∇γ(x),∇〉uλ(z),

∂uλ

∂t
(z)

〉
γ(x)dz

+
2−d

2

∫
Qt

|∇uλ(z)|2dz− λd

4

∫
Qt

(|uλ(z)|2−1
)2
dz

−
∫ t

0

dt

∫
∂Ω

〈x,ν〉
∣∣∣∣∂uλ

∂ν
(z)

∣∣∣∣
2

dHd−1−
∫ t

0

dt

∫
∂Ω

〈
∂uλ

∂ν
(z),〈x,∇tan〉u0(z)

〉
dHd−1

+
1

2

∫ t

0

dt

∫
∂Ω

〈x,ν〉|∇uλ(z)|2dHd−1.

Thus we infer
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1

2

∫ t

0

dt

∫
∂Ω

∣∣∣∣∂uλ

∂ν
(z)

∣∣∣∣
2

dHd−1

≤ diam(Ω)2

2

∫
Ω

eλ(uλ)(t,x)dx

+
1+||∇γ||2L∞

2
diam(Ω)2

∫
Qt

∣∣∣∣∂uλ

∂t
(z)

∣∣∣∣dz
+

3−d
2

∫
Qt

|∇uλ(z)|2dz− λd

4

∫
Qt

(|uλ(z)|2−1
)2
dz

+
1

2

∫ t

0

dt

∫
∂Ω

(〈x,ν〉+ |x|2)|∇tanu0(z)|2dHd−1.(3.17)

By using (3.17), we complete (3.8). Similarly as above, a multiplier of (3.1)
by ∂uλ/∂t, an integration of it over (h,t) × Ω ⊂ QT , the integral by parts and
the limit h↘0 read

∫
Qt

∣∣∣∣∂uλ

∂t
(z)

∣∣∣∣
2

dz+
1

2

∫
Ω

eλ(uλ)(t,x)dx

=

∫ t

0

dt

∫
∂Ω

〈
∂uλ

∂ν
(z),

∂u0

∂t
(z)

〉
dx+

1

2

∫
Ω

|∇u0(0,x)|2 dx

≤ ε0
2

∫ t

0

dt

∫
∂Ω

∣∣∣∣∂uλ

∂ν
(z)

∣∣∣∣
2

dHd−1 +
1

2ε0

∫ t

0

dt

∫
∂Ω

∣∣∣∣∂u0

∂t
(z)

∣∣∣∣
2

dHd−1

+
1

2

∫
Ω

|∇u0(0,x)|2dx(3.18)

for any positive ε0.
By substituting (3.17) for (3.18) and taking ε0 as

ε0 =
1

2(1+||∇γ||2L∞)diam(Ω)2
,

we have

1

2

∫
Qt

∣∣∣∣∂uλ

∂t
(z)

∣∣∣∣
2

dz+
1

2

∫
Ω

eλ(uλ)(t,x)dx

≤ ε0
2

(
diam(Ω)+diam(Ω)2

)∫ t

0

dt

∫
∂Ω

|∇tanu0(z)|dHd−1

+
1

2ε0

∫ t

0

dt

∫
∂Ω

∣∣∣∣∂u0

∂t
(z)

∣∣∣∣
2

dHd−1 +
1

2

∫
Ω

|∇u0(0,x)|2 dx
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for any t∈ (0,T ).
From now on, we prove the existence of the evolutional Ginzburg-Landau

system: We begin with constructing an approximation map of the evolutional
Ginzburg-Landau system: Let v(0) be the solution of

∂v(0)

∂t
(z)−�v(0)(z)=0 in QT ,

v(0)(0,x)=u0(0,x) at {0}×Ω,

v(0)(t,x)=u0(t,x) on (0,T )×∂Ω.

Set X = {v∈C∞ ((0,tλ)×Ω) ; ||v||L∞((0,tλ)×Ω) ≤1, v(z)
∣∣
∂Ω

=0, v(0,x)=0}
with a certain positive number tλ depending only on λ. Assume that v(j) (j=
0,1,... ,k−1) exists in X.

Then v(k) is decided by

v(k)(z)=Av(k−1)(z)=−λ
∫ t

0

ds

∫
Ω

U(t−s;x,y)(|v(k−1)(s,y)+v(0)(s,y)|2−1)

×(
v(k−1)(s,y)+v(0)(s,y)

)
dy,

where U(t;x,y) (t>0, x,y∈ Ω̄) is the fundamental solution of

∂w

∂t
(z)−�w(z)=0 (t>0, x∈Ω),

w(t,x)=0 on (0,T )×∂Ω.

By employing Ladyzhenskaya-Solonnikov-Uralceva [75] and Friedman [45,
Theorem 6 in Chap III], a choice of tλ implies that A is a contraction opera-
tor from X to X : If we define uλ by v(∞) +v(0), then we easily show that the
mapping uλ satisfies (3.1), (3.2), (3.3) (3.6) and (3.9). By virtue of an energy
inequality (3.8), we can extend uλ constructed above in (0,tλ) × Ω to QT .

3. Theorems

After the preparation in the former chapter, we can state our main theorems of
this chapter. To this end, we need to introduce more symbols:

(i) Φ1
R(z0) and Φ2

R(z0) will be given in Corollary 3.1.

(ii) For any positive number t, δ(t) :=
√

(12(d−2)+1)|logt|.
(iii) N := ∪∞

λ=1 Nλ with Nλ := {z0∈QT ;uλ(z0)=0}.
(iv) If we say a point z0 to belong to NCL, it means the following: there exist

sequences of positive integers λ(j) and of points zλ(j) ∈ Nλ(j) with λ(1)<
λ(2)< ···<∞ such that zλ(j)→z0 as j→∞.
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(v) Reg :=
⋃∞

λ0=1

⋃
R>0

⋂∞
λ=λ0

{z0∈QT ; Φ1
R(t0+2(R/4)2,x0) <ε1 with (t0 +

2(R/4)2− 4R2,t0 +2(R/4)2 +4R2) × B(1+δ(R))R(x0) ⊂⊂QT} for a positive
number ε1.

Theorem 3.2. Then there exists a positive constant ε1 depending only on
d such that if for a point z0 = (t0,x0) and a cylinder (t0 +(R/4)2−4R2,t0 +
(R/4)2 +4R2) × B(1+δ(R))R(x0) ⊂⊂QT , the evolutional Ginzburg-Landau system
uλ satisfies

Φ1
R(t0+(R/4)2,x0)<ε1 then, sup

QR/4(z0)

eλ(uλ)<64R−2.(3.19)

Next theorem is

Theorem 3.3.

NCL
⋂

Reg=∅, i.e. NCL⊂�Reg.(3.20)

Remark 3.1. By using (3.20), as in the similar way as in the proof of Chen-
Struwe [24], we find

Hd(NCL)≤Hd(�Reg)<∞.

Remark 3.2. LetBd be the d-dimensional unit ball and u0 an initial-boundary
mapping of the evolutional Ginzburg-Landau system satisfying

u0∈W 1,2(Bd;Sd−1),

u0 |∂Bd ∈C∞(∂Bd;Sd−1),

u0(∂B
d)isnothomotopictoaconstantmap.

Here note that by Bethuel-Zheng [9], such u0 exists. From the theory of degree
of a mapping (See for example, Nirenberg [89].), the evolutional Ginzburg-Landau
system uλ must have at least one zero point in Bd at each t∈ (0,T ) if uλ

∂Bd
=

u0
∂Bd

has a non-zero degree. This shows Nλ �= ∅ and furthermore if uλ has a finite

zero point in Bd at each t (0<t<T ), Nλ may be finite in 2-dimensional Hausdorff
dimension with respect to the parabolic metric. While, as showing in the previous
remark, NCL has at most finite d-dimensional Hausdorff measure. These observa-
tions draw me to the question how sharply the Hausdorff measure of NCL depends
on the Hausdorff dimension of the zero set of the evolutional Ginzburg-Landau
system with the initial-boundary value. Recently several literatures study a zero
set of solutions of various equations. For instance, to second-order elliptic equa-
tions, it is studied by Caffarelli-Friedman [13] and Hardt-Simon [62] and to the
heat equations on an analytic compact Riemann manifold, it by Lin [80].

From Lemma 3.4 stated below, Giaquinta [46] and Ladyzhenskaya-Solonnikov-
Uralceva [75], the 3rd theorem follows
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Theorem 3.4. Let uλ be the evolutional Ginzburg-Landau system. Then for
any point z0 =(t0,x0) and a cylinder (t0+(R/4)2−4R2,t0+(R/4)2+4R2) ×B(1+δ(R))R(x0),

Φ2
R(z0)≤min

(
1

64·24·CFP

· d

d+2
,(

1

C3
RH

)d/δ0(d+2)(
1

4
)(d+2)/(d+1)(1+δ0)/δ2

0
1

C1
RH

)
where

C1
RH =

CSO

τ 2(1−τ 2)
,

C2
RH =

CSO

d(2τ 2−1)

(
3d

d+2
· 8τ

1−τ +4d
16τ 2

(1−τ 2)
+

8d

(d+2)2
· 16τ 2

(1−τ)2

+
d

(d+2)2
· 16τ 2

(1−τ)2
+

64

d+2

)
,

C3
RH =41/d

(
44C2

RH +
(64d)

(d+2)
32(1+2/d)

)
,

τ = 1/2(1+
√

2), CFP is the nonlinear Fefferman-Phong’s constant appears
in Lemma 3.4 and CSO is the best Sobolev constant,

implies

sup
QR/4(z0)

eλ(uλ)(z)≤2/R2.(3.21)

4. Technical lemmas

We review a few technical lemmas which will play a crucial role on the proof of
our results. The first lemma is as follows:

Lemma 3.1. Let uλ be the evolutional Ginzburg-Landau mappings. Then we
have

∂|uλ|2
∂t

−�|uλ|2 +2λ(|uλ|2−1)|uλ|2≤0,(3.22) (
∂

∂t
−�

)
eλ(uλ)+fλ(uλ)≤16e2λ(uλ)(3.23)

with fλ(uλ)=
1

2

(
|∇2uλ|2 +4λ|uλ|2

∣∣∇|uλ|
∣∣2).

We successively present the second lemma:

Lemma 3.2 (A local energy inequality). Let z0 = (t0,x0) be a point in QT

and set positive numbers t1,t2 and r1,r2 with 0< t0− t2 < t0− t1 ≤ t0 and r1<r2
with C2r2(x0) ⊂⊂Ω. Then the evolutional Ginzburg-Landau system uλ satisfies
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1

2

∫ t0

t0−t1

dt

∫
Br1

∣∣∣∣∂uλ

∂t
(z)

∣∣∣∣
2

dx+

∫
Br1

eλ(uλ)(t,x)dx(3.24)

≤
[

32

(r2−r1)2
+

4

(t2− t1)
]∫ t0

t0−t2

dt

∫
Br2

eλ(uλ)(z)dx,

1

2

∫ t0

t0−t1

dt

∫
Cr1

∣∣∣∣∂uλ

∂t
(z)

∣∣∣∣
2

dx+

∫
Cr1

eλ(uλ)(t,x)dx(3.25)

≤
[

32

(r2−r1)2
+

4

(t2− t1)
]∫ t0

t0−t2

dt

∫
Cr2

eλ(uλ)(z)dx

for any time t with t0− t1 < t ≤ t0.
Next, we state the monotonicity inequality for the scaled energies of the evo-

lutional Ginzburg-Landau mappings

Lemma 3.3 (A monotonicity formula). Let uλ be the evolutional Ginzburg-
Landau mappings Then the following inequality holds:

1

r1d

∫ t0

t0−r2
1

dt

∫
Ω

eλ(uλ)(z)e
|x−x0|2
4(t−t0) dx

≤ 1

r2d

∫ t0

t0−r2
2

dt

∫
Ω

eλ(uλ)(z)e
|x−x0|2
4(t−t0) dx

+
r2
d+1

(
sup
x∈∂Ω

(
|x|+ |x|2

ε0

)
sup

z∈∂QT

|∇tanu0(z)|2

+2 sup
z∈∂QT

∣∣∣∣∂u0

∂t
(z)

∣∣∣∣
2
)
Ld−1(∂Ω)

× sup
0≤s<∞

max(s1−d,s5−d)exp

(
− 1

4s2
inf

x∈∂Ω
|x|2

)
(3.26)

for any point z0=(t0,x0) ∈QT and any positive numbers r1, r2 with r1<r2. Here
ε0 = minx∈∂Ω (〈x,νx〉/2−1).

To prove the next lemma and Theorem 3.4, we prepare the following corollary;
this corollary is easily derived from Lemma 3.2 and Lemma 3.3:

Corollary 3.1. Give two parabolic cylinders QR(z0) ⊂ (t0−4R2,t0+4R2)
× B(1+δ(R))R(x0) ⊂⊂ QT with R<e−d/(d+2). For any point z̄0 = (t̄0,x̄0) ∈ QR(z0)
and any positive number r <R, we have

r−d

∫
Qr(z̄0)

eλ(uλ)(z)dz
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≤
(

8+
21−d

3

)
e1/4R−d

∫ t0+R2

t0−3R2

dt

∫
B(1+δ(R))R(x0)

eλ(uλ)(z)dx

+

(
8+

21−d

3

)
e1/4R

2−d

2
exp

(
−δ

2(R)

4

)
ess·sup
0≤t≤T

∫
Ω

eλ(uλ)(t,x)dx

+
R

2

(
sup
x∈∂Ω

(
|x|+ |x|2

ε0

)
sup

z∈∂QT

|∇tanu0(z)|2

+2 sup
z∈∂QT

∣∣∣∣∂u0

∂t
(z)

∣∣∣∣
2)

Ld−1(∂Ω)

× sup
0≤s<∞

max(s1−d,s5−d)exp

(
− 1

4s2
inf

x∈∂Ω
|x|2

)(
=:Φ1

R(z0)
)
,(3.27)

ess·sup
t̄0−r2<t≤ t̄0

r2−d

∫
Cr(x̄0)

eλ(uλ)(t,x)dx

≤36
√

3e1/4R−d

∫ t0+R2

t0−4R2

dt

∫
C(1+δ(R))R(x0)

eλ(uλ)(z)dx

+10
√

3R2−dexp

(
−δ

2(R)

12

)
ess·sup
0≤t≤T

∫
Ω

eλ(uλ)(t,x)dx

+5
√

3R

(
sup
x∈∂Ω

(
|x|+ |x|2

ε0

)
sup

z∈∂QT

|∇tanu0(z)|2

+2 sup
z∈∂QT

∣∣∣∣∂u0

∂t
(z)

∣∣∣∣
2)

Ld−1(∂Ω)

× sup
0≤s≤∞

max(s1−d,s5−d)exp(− 1

4s2
inf

x∈∂Ω
|x|2)

(
:=Φ

2

R(z0)
)

(3.28)

for the number ε0 = minx∈∂Ω (〈x,νx〉/2−1).

By employing Corollary 3.1, we can prove the following inequality. This in-
equality can be regarded as a sort of the weighted Poincaré inequality. In the

following convenience, we set Φ2
R(z0) =: Φ

2

R(z0) + 1/Rd
∫

DR(z0)
eλ(uλ)(z) dz :

Lemma 3.4 (Nonlinear Fefferman-Phong inequality). Let η be a non-negative
smooth function with a compact support on a cube DR(z0) and supDR(z0) η(z) ≤1.
Then, for the Ginzburg-Landau energy density eλ(uλ),

∫
DR(z0)

∣∣∣∣(
√
e
(κ)
λ (uλ)(z)

)p
η(z)

∣∣∣∣
2+2/p

dz≤CFPΦ
2
R(z0)

×
∫

DR(z0)

∣∣∣∣∣∇
((√

e
(κ)
λ (uλ)(z)

)p

η(z)

)∣∣∣∣∣
2

dz(3.29)
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holds where p = 1,1+2/d and CFP is a positive constant independent of κ,
R, z0, uλ and η.

Proof of lemma 3.1

The inequality (3.22) directly follows from multiplying (3.1) by uλ.
On the other hand, (3.23) can be proved as follows: Taking the gradients of

the both sides of (3.1) and multiplying it by ∇uλ, we have

1

2

(
∂

∂t
−�

)
|∇uλ|2

+ |∇2uλ|2 +2λ|uλ|2
∣∣∇|uλ|

∣∣2 +λ
(|uλ|2−1

)|∇uλ|2 =0 inQT .(3.30)

The similar way as above, namely a multiplier of (3.1) by λ(|uλ|2−1) uλ leads
to

λ

4

(
∂

∂t
−�

)(|uλ|2−1
)2

+2λ|uλ|2
∣∣∇|uλ|

∣∣2
+λ

(|uλ|2−1
)|∇uλ|2 +λ2

(|uλ|2−1
)2 |uλ|2 =0.(3.31)

Adding (3.30) with (3.31), we infer

1

2

(
∂

∂t
−�

)(
|∇uλ|2 +

λ

2

(|uλ|2−1
)2

)
+ |∇2uλ|2 +4λ|uλ|2 |∇|uλ||2

=−2λ
(|uλ|2−1

)|∇uλ|2−λ2
(|uλ|2−1

)2 |uλ|2

≤
(
|uλ|2 +

(|uλ|2−1
)2

)−1

|∇uλ|4 +λ2
(|uλ|2−1

)4

≤16

(
1

2
|∇uλ|2 +

λ

4

(|uλ|2−1
)2

)2

.(3.32)

Proof of lemma 3.2

We multiply (3.1) by ∂tuλη
2χ, integrate it over (t0−t2,t0)×Br2 and (t0−t2,t)×

Br2 for any t ∈(t0−t2,t0) with respect to z and perform the integral by parts to
conclude (3.24). Here two smooth cut-off functions η and χ are given by
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η(|x|)=

{
1 in Br1,

0 outside Br2 ,

0≤η(|x|)≤1, |∇η(|x|)|≤2/(r2−r1),

χ(t)=

{
1 t0− t1<t≤ t0,
0 t≤ t0− t2,

0≤χ(t)≤1, |dχ/dt(t)|≤2/(t2− t1).
We can prove the desired inequality (3.25) as in the same way as above.

Proof of lemma 3.3

First of all, let us remark that our system (3.1) is invariant under translation
z→z−z0, hence we may shift z0→0.

We mean φ by

φ(z)=
∂uλ

∂t
(z)2te

|x|2
4t +〈x,∇〉uλ(z)e

|x|2
4t .

multiplier of (3.1) by φ implies

0=

∣∣∣∣∂uλ

∂t

∣∣∣∣
2

2te
|x|2
4t +

〈
∂uλ

∂t
,〈x,∇〉uλ

〉
e

|x|2
4t

−
〈
�uλ ,

∂uλ

∂t

〉
2te

|x|2
4t −〈�uλ ,〈x,∇〉uλ〉e

|x|2
4t

+
λ

4

∂

∂t

(|uλ|2−1
)2

2te
|x|2
4t +

λ

4
〈x,∇〉(|uλ|2−1

)2
2te

|x|2
4t .(3.33)

We integrate (3.33) on (−r2,0)×Ω to obtain

0=

∫ 0

−r2

dt

∫
Ω

∣∣∣∣∂uλ

∂t
(z)

∣∣∣∣
2

2te
|x|2
4t dz

+

∫ 0

−r2

dt

∫
Ω

〈∂uλ

∂t
(z),〈x,∇〉uλ(z)〉e

|x|2
4t dx

−
∫ 0

−r2

dt

∫
∂Ω

〈∂uλ

∂ν
(z),

∂uλ

∂t
(z)〉2te |x|2

4t dHd−1

+
1

2

∫ 0

−r2

dt

∫
Ω

∂

∂t
|∇uλ(z)|2 2te

|x|2
4t dx
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+

∫ 0

−r2

dt

∫
Ω

〈〈∇e |x|2
4t ,∇uλ(z)〉, ∂uλ

∂t
(z)〉2tdx

−
∫ 0

−r2

dt

∫
∂Ω

〈∂uλ

∂ν
(z),〈x,∇〉uλ(z)〉e |x|2

4t dHd−1

+
2−d

2

∫ 0

−r2

dt

∫
Ω

|∇uλ(z)|2e
|x|2
4t dx

− 1

2

∫ 0

−r2

dt

∫
Ω

〈x,∇〉e |x|2
4t |∇uλ(z)|2dx

+
1

2

∫ 0

−r2

dt

∫
∂Ω

〈x,νx〉|∇uλ(z)|2e |x|2
4t dHd−1

+

∫ 0

−r2

dt

∫
Ω

〈〈∇e |x|2
4t ,∇uλ(z)〉,〈x,∇〉uλ(z)〉dx

+
λ

4

∫ 0

−r2

dt

∫
Ω

∂

∂t

(|uλ(z)|2−1
)2

2te
|x|2
4t dx

− dλ

4

∫ 0

−r2

dt

∫
Ω

(|uλ(z)|2−1
)2
e

|x|2
4t dx

− λ

4

∫ 0

−r2

dt

∫
Ω

〈x,∇〉e |x|2
4t

(|uλ(z)|2−1
)2
dx

=−2

∫ 0

−r2

dt

∫
Ω

∣∣∣∣∣∂uλ

∂t
(z)

√
|t|− 〈x,∇〉

2
√|t|uλ(z)

∣∣∣∣∣
2

e
|x|2
4t dx

−
∫ 0

−r2

dt

∫
∂Ω

∣∣∣∣∂u0

∂t
(z)|t|− ∂uλ

∂ν
(z)

∣∣∣∣
2

e
|x|2
4t dHd−1

+

∫ 0

−r2

dt

∫
∂Ω

〈
∂uλ

∂ν
(z),

∂uλ

∂ν
(z)−〈x,∇〉uλ(z)

〉
e

|x|2
4t dHd−1

+
1

2

∫ 0

−r2

dt

∫
∂Ω

〈x,νx〉|∇uλ(z)|2e |x|2
4t dHd−1

+

∫ 0

−r2

dt

∫
∂Ω

∣∣∣∣∂u0

∂t
(z)

∣∣∣∣
2

t2e
|x|2
4t dHd−1

+

∫ 0

−r2

dt

∫
Ω

∂eλ

∂t
(uλ)(z)2te

|x|2
4t dx

+(2−d)
∫ 0

−r2

dt

∫
Ω

eλ(uλ)(z)e
|x|2
4t dx

−
∫ 0

−r2

dt

∫
Ω

〈x,∇〉e |x|2
4t eλ(uλ)(z)dx
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− λ

4

∫ 0

−r2

dt

∫
Ω

(|uλ|2−1
)2
e

|x|2
4t dx.(3.34)

Since

− ∂e
|x|2
4t

∂t
2t−〈x,∇〉e |x|2

4t =0,

∇uλ =νx〈νx,∇〉uλ +∇tanuλ,

using Schwarz’s inequality, we arrive at

−2

∫ 0

−r2

dt

∫
Ω

∣∣∣∣∂uλ

∂t
(z)− 〈x,∇〉

2|t| uλ(z)

∣∣∣∣
2

|t|e |x|2
4t dx

−
∫ 0

−r2

dt

∫
∂Ω

∣∣∣∣∂u0

∂t
(z)|t|− ∂uλ

∂ν
(z)

∣∣∣∣
2

e
|x|2
4t dHd−1

+

∫ 0

−r2

dt

∫
∂Ω

(
1+

ε0
2
− 〈x,νx〉

2

)∣∣∣∣∂uλ

∂ν
(z)

∣∣∣∣
2

e
|x|2
4t dHd−1

+

∫ 0

−r2

dt

∫
∂Ω

∣∣∣∣∂u0

∂t
(z)

∣∣∣∣
2

t2e
|x|2
4t dHd−1

+
1

2

∫ 0

−r2

dt

∫
∂Ω

(
〈x,νx〉+ 1

ε0
|x|2

)
|∇tanu0(z)|2e

|x|2
4t dHd−1

+

∫
Ω

eλ(uλ)(z)2te
|x|2
4t dx

∣∣∣∣
0

t=−r2

−d
∫ 0

−r2

dt

∫
Ω

eλ(uλ)(z)e
|x|2
4t dx≥0(3.35)

with any positive number ε0.
Dividing (3.35) by r−d−1 and recalling a property of ∂Ω, i.e. 1+ε0/2 <

〈x,νx〉/2 on x∈∂Ω as long as ε0< 2minx∈∂Ω (〈x,νx〉/2−1), we conclude

d

dr

(
r−d

∫ 0

−r2

dt

∫
Ω

eλ(uλ)(z)e
|x|2
4t dx

)

+
r−d−1

2

∫ 0

−r2

dt

∫
∂Ω

(
〈x,ν〉+ 1

ε0
|x|2

)
|∇tanu0(z)|2e

|x|2
4t dHd−1

+r−d−1

∫ 0

−r2

dt

∫
∂Ω

∣∣∣∣∂u0

∂t
(z)

∣∣∣∣
2

t2e
|x|2
4t dHd−1≥0.(3.36)

We integrate (3.36) from r1 to r2 with respect to r to deduce the desired
estimates.

Proof of Corollary 3.1
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Substituting respectively
√

2r,
√

2R and t̄0+r
2 for r1, r2 and t0 in Lemma 3.3

and noting e−1/4 ≤ exp
(|x−x̄0|2 / (4(t−(t̄0+r

2)))
)

in t̄0−r2 < t ≤ t̄0, we have

r−d

∫ t̄0

t̄0−r2

dt

∫
Br(x̄0)

eλ(uλ)(z)dx

≤e1/42d/2r−d

∫ t̄0+r2

t̄0+r2−(
√

2r)2
dt

∫
Br(x̄0)

eλ(uλ)(z)exp

( |x−x̄0|2
4(t−(t̄0+r2))

)
dx

≤e1/42d/2(
√

2R)
−d

∫ t̄0+r2

t̄0+r2−(
√

2R)2
dt

∫
Ω

eλ(uλ)(z)exp

( |x−x̄0|2
4(t−(t̄0+r2))

)
dx

+
2d/2R

d+1

(
sup
x∈∂Ω

(
|x|+ |x|2

ε0

)
sup

z∈∂QT

|∇tanu0(z)|2 +2 sup
z∈∂QT

∣∣∣∣∂u0

∂t
(z)

∣∣∣∣
2
)

×Ld−1(∂Ω) sup
0≤s≤∞

max(s1−d,s5−d)exp

(
− 1

4s2
inf

x∈∂Ω
|x|2

)

≤e1/4R−d

∫ t0+R2

t0−3R2

dt

∫
B(1+δ(R))R(x0)

eλ(uλ)(z)dx

+2e1/4R2−dexp

(
−δ

2(R)

8

)
ess·sup
0≤t≤T

∫
Ω

eλ(uλ)(t,x)dx

+
R

d+1

(
sup
x∈∂Ω

(
|x|+ |x|2

ε0

)
sup

z∈∂QT

|∇tanu0(z)|2 +2 sup
z∈∂QT

∣∣∣∣∂u0

∂t
(z)

∣∣∣∣
2
)

×Ld−1(∂Ω) sup
0≤s≤∞

max(s1−d,s5−d)exp

(
− 1

4s2
inf

x∈∂Ω
|x|2

)
(
=:Φ1

R(z0)
)
.(3.37)

Here note r ≤ R and t̄0 ∈ (t0−R2,t0).
On the other hand, we use e−1/4 ≤ exp

(|x−x̄0|2/(4(t−(t̄0+r
2)))

)
for each t

∈ (t̄0−r2,t̄0) and we respectively take
√

3r,
√

3R and t̄0+r
2 as r1, r2 and t0 in

Lemma 3.3. Then we can estimate r−d
∫ t̄0

t̄0−2r2 dt
∫

C2r(x̄0)
eλ(uλ)(z) dx as follows:

r−d

∫ t̄0

t̄0−2r2

dt

∫
Cr(x̄0)

eλ(uλ)(z)dx

≤e1/43d/2(
√

3r)
−d

∫ t̄0+r2

t̄0+r2−(
√

3r)2
dt

∫
Cr(x̄0)

eλ(uλ)(z)exp

( |x−x̄0|2
4(t−(t̄0+r2))

)
dx

≤e1/43d/2(
√

3R)
−d

∫ t̄0+r2

t̄0+r2−(
√

3R)2
dt

∫
Ω

eλ(uλ)(z)exp

( |x−x̄0|2
4(t−(t̄0+r2))

)
dx
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+

√
3R

d+1

(
sup
x∈∂Ω

(
|x|+ |x|2

ε0

)
sup

z∈∂QT

|∇tanu0(z)|2 +2 sup
z∈∂QT

∣∣∣∣∂u0

∂t
(z)

∣∣∣∣
2
)
Ld−1(∂Ω)

× sup
0≤s≤∞

max(s1−d,s5−d)exp

(
− 1

4s2
inf

x∈∂Ω
|x|2

)

≤e1/4R−d

∫ t̄0+r2

t̄0+r2−(
√

3R)2
dt

∫
Bδ(R)R(x̄0)

eλ(uλ)(z)exp

( |x−x̄0|2
4(t−(t̄0+r2))

)
dx

+e1/43R2−dexp

(
−δ

2(R)

12

)
ess·sup
0≤t≤T

∫
Ω

eλ(uλ)(t,x)dx

+
3R

d+1

(
sup
x∈∂Ω

(
|x|+ |x|2

ε0

)
sup

z∈∂QT

|∇tanu0(z)|2 +2 sup
z∈∂QT

∣∣∣∣∂u0

∂t
(z)

∣∣∣∣
2
)
Ld−1(∂Ω)

× sup
0≤s≤∞

max(s1−d,s5−d)exp

(
− 1

4s2
inf

x∈∂Ω
|x|2

)
.

We must remark that r≤R, t̄0 ∈ (t0−R2,t0) and x̄0 ∈ BR(x0); Then we obtain

r−d

∫ t̄0

t̄0−2r2

dt

∫
C2r(x̄0)

eλ(uλ)(z)dx

≤e1/4R−d

∫ t0+R2

t0−4R2

dt

∫
B(1+δ(R))R(x0)

eλ(uλ)(z)dx

+e1/43R2−dexp

(
−δ

2(R)

12

)
ess·sup
0≤t≤T

∫
Ω

eλ(uλ)(t,x)dx

+
3R

d+1

(
sup
x∈∂Ω

(
|x|+ |x|2

ε0

)
sup

z∈∂QT

|∇tanu0(z)|2

+2 sup
z∈∂QT

∣∣∣∣∂u0

∂t
(z)

∣∣∣∣
2)

Ld−1(∂Ω)

× sup
0≤s≤∞

max(s1−d,s5−d)exp

(
− 1

4s2
inf

x∈∂Ω
|x|2

) (
=:Φ

2

R(z0)
)
.(3.38)

We next set r1 = r, r2 = 2r, t1 = r2, t2 = 2r2 and z̄0 = z0 in Lemma 3.2;
Then the left-hand side of (3.38) can be estimated from below as follows:

ess·sup
t̄0−r2<t≤t̄0

r−d

∫
Cr(x̄0)

eλ(uλ)(t,x)dx

≤36r−d

∫ t̄0

t̄0−2r2

dt

∫
C2r(x̄0)

eλ(uλ)(z)dx.(3.39)
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Combining (3.38) with (3.39), we can conclude our second claim.

Proof of lemma 3.4

First of all, we introduce a few symbols: For any cube C and a function f on
R

1+d, we define a few averaging functions of f by

fC(t) :=
1

Ld(C)

∫
C

f(t,x̄)dx̄,

fC(t) :=f(t,x)−fC(t),

f∗(z) :=f∗(t,x)=sup
x∈C

1

Ld(C)

∫
C

|f(t,x̄)|dx̄,

f#(z) :=f#(t,x)=sup
x∈C

1

Ld(C)

∫
C

|f(t,x̄)−fC(t)|dx̄.

We must remark that without a loss of generality, it suffices to prove this

inequality as ((

√
e
(κ)
λ (uλ))pη)

CR(x0)
instead of ((

√
e
(κ)
λ (uλ))

pη).

We divide our proof into two steps; the first claim is to show the following:
Recall DR(z0) = (t0−R2,t0] × CR(x0). For any function f ∈ D(DR(z0)) with
fCR(x0) (t) =0 in each t ∈ (t0−R2,t0],

∫
CR(x0)

|f∗(z)|2+2/pdx≤C1
FP

∫
CR(x0)

|f#(z)|2/p |f∗(z)|2 dx(3.40)

holds where C1
FP is a positive constant depending only on d.

... ) Let α0 = 1/Ld(CR)
∫

CR(x0)
|f(t,x̄)|dx̄. Suppose thatK be a certain positive

number sufficiently large. A Calderón-Zygmund stopping process yields for each
α>α0 the following: There exist two sequences of cubes {Ck}, {Ck,l} (k,l=1,2,...)
satisfying

Ck,l⊂Ck,

α≤ 1

Ld(Ck)

∫
Ck

|f(t,x̄)|dx̄<2d+3α,(3.41)

Kα≤ 1

Ld(Ck,l)

∫
Ck,l

|f(t,x̄)|dx̄<2d+3Kα.

Here give a positive number δ sufficiently small. Note that obviously f# >
δα holds on any cubes Ck �x with
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1

Ld(Ck)

∫
Ck

|f(t,x̄)−fCk
(t)|dx̄>δα.

On the remaining cubes, we have

δαLd(Ck)≥
∫

Ck

|f(t,x̄)−fCk
(t)|dx̄

≥
∑

l

∫
Ck,l

|f(t,x̄)−fCk
(t)|dx̄

≥Kα

2

∑
l

Ld(Ck,l) as long as K≥2d+4.

Thus, we infer

Ld({(t,x);f∗>Kα})=
∑
k,l

Ld(Ck,l)

=
∑
k,l

Ld(Ck,l∩{(t,x);f#≤δα})

+
∑
k,l

Ld(Ck,l∩{(t,x);f#>δα})

≤ 2δ

K

∑
k

Ld(Ck)+Ld({(t,x);f∗>Kα}∩{(t,x);f#>δα})

≤ 2δ

K
Ld({(t,x);f∗>α})

+Ld({(t,x);f∗>Kα}∩{(t,x);f#>δα})(3.42)

for α>0.
By noting

{(t,x);f∗>Kα}∩{(t,x);f#>δα}
⊂{(t,x); (f#)p/(p+1)(f∗)1/(p+1)>δp/(p+1)K1/(p+1)α},(3.43)

we then multiply the above (3.43) by α1+2/pdα and integrate it from α0 to ∞
over α to verify

∫ ∞

α0

α1+2/pdαLd({(t,x);f∗>Kα})

≤ 2δ

K

∫ ∞

α0

α1+2/pdαLd({(t,x);f∗>α})
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+

∫ ∞

α0

α1+2/pdαLd({(t,x); (f#)p/(p+1)(f∗)1/(p+1)>δp/(p+1)K1/(p+1)α}).

Namely, we obtain

(
1

K

)2(1+1/p)∫ ∞

Kα0

α1+2/pdαLd({(t,x);f∗>α})

≤ 2δ

K

∫ ∞

0

α1+2/pdαLd({(t,x);f∗>α})

+

(
1

δ

)2(
1

K

)2/p∫ ∞

0

α1+2/pdαLd({(t,x); (f#)p/(p+1)(f∗)1/(p+1)>α}),

which is equivalent to

∫
{x∈CR(x0);f∗>α0}

|f∗(z)|2+2/pdx≤2δK1+2/p

∫
CR(x0)

|f∗(z)|2+2/pdx

+
p

p+2

(
1

δ

)2

K2(1+2/p)

∫
CR(x0)

(f#(z))2(f∗(z))2/pdx.(3.44)

While, noting fCR
(t) = 0,

∫
{x∈CR(x0);f∗≤α0} |f∗(z)|2+2/pdx is estimated as fol-

lows:

∫
{x∈CR(x0);f∗≤Kα0}

|f∗(z)|2+2/pdx

≤Ld(CR(x0))K
2+2/pα

2+2/p
0 ≤K2+2/p

∫
CR(x0)

(f#(z))2(f∗(z))2/pdx.(3.45)

If we take δ=1/(4K1+2/p), we thus complete the first claim with C1
FP =

2p/(p+2)(1/δ)2 K2 +K2+2/p = 32 K2+6/p +K2+2/p.

Substituting f for ((e
(κ)
λ (uλ))p/2η)CR(x0) with any η ∈ C∞

0 (CR(x0)), supCR(x0)η

≤1, p= 1 or 1+2/d and any positive number κ>0, gives

∫
CR(x0)

∣∣∣∣∣∣
((

e
(κ)
λ (uλ)(z)

)p/2

η(z)

)
CR(x0)

∣∣∣∣∣∣
2+2/p

dx

≤C1
FP

∫
CR(x0)

(((
(e

(κ)
λ (uλ)(z))p/2η(z)

)
CR(x0)

)#
)2

×
(((

(e
(κ)
λ (uλ)(z))p/2η(z)

)
CR(x0)

)∗)2/p

dx.
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Thus, to establish the result of our lemma, it suffices to show

∫
CR(x0)

(((
(e

(κ)
λ (uλ)(z)

)p/2
η(z)

)
CR(x0)

)#
)2(((

(e
(κ)
λ (uλ)(z))p/2η(z)

)
CR(x0)

)∗)2/p

dx

≤ p 22/p 5d

2−p Φ2
R(z0)

∫
CR(x0)

∣∣∇((√
e
(k)
λ (uλ)(z)

)p
η(z)

)∣∣2dx.
(3.46)

... ) Put

α0 =
1

Ld(CR)

∫
CR(z0)

|f(t,x̄)−fCR(x0)(t)|dx̄

and set K = 2d+5.
For any α>α0 and each t ∈ (t0−R2,t0], we apply the Calderón-Zygmund stop-

ping process; {x∈CR(x0);f
#(z)>α} and {x∈CR(x0);f

#(z)>Kα} are divided
into cylinders Ck, and Ck,l with the following properties:

{x∈CR(x0);f
#(t,x)>α}=

⋃
k

Ck,

{x∈CR(x0);f
#(t,x)>Kα}=

⋃
k,l

Ck,l.

Ck,l⊂Ck,

α≤ 1

Ld(Ck)

∫
Ck

|f(t,x̄)−fCk
(t)|dx̄<2d+3α,

Kα≤ 1

Ld(Ck,l)

∫
Ck,l

|f(t,x̄)−fCk,l
(t)|dx̄<2d+3Kα.

Now observe that

(∇f)∗≥α(diamCk)
−1 throughout Ck,(3.47)

Ld(Ck)≥2Ld(∪lCk,l)(3.48)

Indeed, (3.47) follows from

1

Ld(Ck)

∫
Ck

|f(t,x̄)−fCk
(t)|dx̄≤(diamCk)

1

Ld(Ck)

∫
Ck

|∇f(t,x̄)|dx̄.

While (3.48) is a consequence of
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2d+3αLd(Ck)>

∫
Ck

|f(t,x̄)−fCk
(t)|dx̄≥

∑
l

∫
Ck,l

|f(t,x̄)−fCk
(t)|dx̄

≥ 1

2

∑
l

∫
Ck,l

|f(t,x̄)−fCk,l
(t)|dx̄≥Kα

2

∑
l

Ld(Ck,l)

and the fact that K = 2d+5. We thus write

∫
Ck\∪lCk,l

|(∇f)∗(z)|2dx≥α2(diamCk)−2Ld(Ck/
⋃
l

Ck,l)

≥ α2

2
(diamCk)−2Ld(Ck).(3.49)

Also from Corollary 3.1 and the maximal function theory (See Ziemer [122].),
we obtain the following:

µ(Ck) :=

∫
Ck

(((
(

√
e
(κ)
λ (uλ)(z))pη(z)

)
CR(x0)

)∗)2/p

dx

≤ p 22/p 5d

2−p
∫

Ck

((
(

√
e
(κ)
λ (uλ)(z))pη(z)

)
CR(x0)

)2/p

dx

=
p 22/p 5d

2−p
∫

Ck

∣∣∣∣(
√
e
(κ)
λ (uλ)(z))

pη(z)

− 1

Ld(CR)

∫
CR(x0)

(

√
e
(κ)
λ (uλ)(t,x̄))

pη(t,x̄)dx̄

∣∣∣∣
2/p

dx(3.50)

≤ p 24/p−1 5d

2−p
∫

Ck

∣∣∣∣(
√
e
(κ)
λ (uλ)(z))

pη(z)

∣∣∣∣
2/p

dx

+
p 24/p−1 5d

2−p
(

1

Ld(CR)

)2/p

Ld(Ck)

∣∣∣∣
∫

CR(x0)

(

√
e
(κ)
λ (uλ)(z))

pη(z)dx

∣∣∣∣
2/p

≤ p 24/p−1 5d

2−p (diamCk)
d−2Φ2

R(z0).

Combining (3.49) with (3.50), we infer

∫
Ck/∪lCk,l

|(∇f)∗(z)|2dx≥ 2−p
24 p 24/p−1 5d

(Φ2
R(z0))

−1α
2

2
µ(Ck),(3.51)

which implies
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∫
{α<f#≤Kα}

|(∇f)∗(z)|2dx≥ 2−p
24 p 24/p−1 5d

(Φ2
R(z0))

−1

×α2

2
µ(f#>α).

Let now α range over 2Knα0 (n= 0,1,2,...) and sum over n to imply∫
CR(z0)

|(∇f)∗(z)|2dx

≥ 1

K2
· 2−p
p 24/p−1 5d

(Φ2
R(z0))

−1

2

∫
{f#>2α0}

|f#(z)|2dµ.
(3.52)

On the other hand,
∫
{f#≤2α0} |f#(z)|2 dµ is estimated as follows:

∫
{f#≤2α0}

|f#(z)|2dµ≤4α2
0µ(CR(x0))(3.53)

≤ 4 24 p 24/p−1 5d

2−p
(

1

Ld(CR)

∫
CR(x0)

|f(t,x̄)−fCR(x0)(t)|dx̄
)2

Φ2
R(z0)R

d−2

≤ 4 24 p 24/p−1 5d CPO

2−p Φ2
R(z0)

(∫
CR(x0)

|∇f(t,x̄)|2dx̄
)
.

Combining (3.52) with (3.53), applying the maximal function theory and in-
tegrating it with respect to t on (t0−R2,t0], establish our claim.

5. Proof of theorems

5.1. Proof of Theorem 3.2

Set σ ∈ (0,R/4). Also fix z̄0 = (t̄0,x̄0) ∈QR/4(z0).
Since uλ is smooth, there exists σ0 ∈ [0,R/4] such that

(
R

4
−σ0

)2

sup
Qσ0 (z̄0)

eλ(uλ)= max
0≤σ≤R/4

(
R

4
−σ

)2

sup
Qσ(z̄0)

eλ(uλ).(3.54)

Moreover, there exists a point zmax = (tmax,xmax) ∈ Qσ0
(z̄0) such that

sup
Qσ0 (z̄0)

eλ(uλ)=eλ(uλ)(zmax) :=e0.(3.55)

We must note that σ0 = R/4 implies supQR/4(z0)eλ(u) ≡0. Thus we can always

assume R/4−σ0>0.
If we set ρ0 = 1/2(R/4−σ0), by choice of σ0 and zmax, we obtain

93



sup
Qρ0(zmax)

eλ(uλ)≤ sup
Qσ0+ρ0 (z̄0)

eλ(uλ)≤4e0.(3.56)

Now we define

r0 :=
√
e0 ·ρ0, λ̄ :=λ/e0,

vλ(t̄,x̄) :=uλ

(
t̄

e0
+ tmax,

x̄√
e0

+xmax

)
.

Assume r0≥1. Note that vλ also solves (3.1) in Qr0 and moreover vλ satisfies

eλ̄(vλ)(0,0)=1, sup
Qr0(0)

eλ̄(vλ)≤4.(3.57)

By (3.23) in Lemma 3.1 and (3.57), eλ̄(vλ) satisfies

(
∂

∂t̄
−�

)
eλ̄(vλ)≤64eλ̄(vλ) in Qr0.(3.58)

Thus Lemma 1.3 implies

1=eλ̄(vλ)(0,0)≤CH

∫ +1

−1

dt̄

∫
B1(0)

eλ̄(vλ)(z̄)dx̄.(3.59)

But scaling back, by means of 1/
√
e0 +σ0 ≤ρ0 <R/4, and the monotonicity

(3.27) in Corollary 3.1, we have

eλ̄(vλ)(0,0)≤C(
√
e0)

d

∫ tmax+1/e0

tmax−1/e0

dt

∫
B1/

√
e0

(xmax)

eλ(uλ)(z)dx

≤CΦ1
R(z0)(t0+(R/4)2,x0)≤Cε1.(3.60)

We arrive at a contradiction if we take ε1<1/C. Consequently we can assert
that r0≤1, which implies our claim.

5.2. Proof of Theorem 3.3

Suppose that NCL
⋂

Reg �z0 for a point z0∈QT . Then from definition of NCL

and Reg, there exist a sequence of λj and positive numbers λ0 and R0 such that

{zλ(j)}(λ(1)<λ(2)< ···<∞)withzλ(j)∈Nλ(j) s.t. zλ(j)→z0,(3.61)

λ0,R0>0 s.t. Φ1
R0

(t0+2(R0/4)2,x0)≤ε1 for anyλ≥λ0.(3.62)

Theorem 3.2 implies the following:
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sup
QR0/4(t0+(R0/4)2,x0)

|∇uλ(j)|≤ 8
√

2

R0

(λ(1)<λ(2)< ···<∞).(3.63)

Since zλ(j)→z0 as j→∞, there exists j0 ∈ N such that for any j≥j0, zλ(j)∈
QR0/4 (t0+(R0/4)2,x0); and {uλ(j)} (j=j0,j0+1,j0+2,...) is uniform bounded and
equi-continuous. Then Ascoli-Arzelà’s theorem asserts that for a sub-sequence
{λ(j ′)} (j′=1,2,...) of {λ(j)} (j=j0,j0+1,...), uλ(j′) uniformly converges to u∞
on QR0/4(t0+(R/4)2,x0) as j′→∞ and u∞ is continuous mapping in QR0/4(t0+
(R/4)2,x0). From (3.8), |u∞| =1 on QR0/4(t0+(R/4)2,x0). However this forces a
contradiction because the following holds:

|u∞(z0)|≤|u∞(z0)−uλ(j′)(z0)|+ |uλ(j′)(z0)−uλ(j′)(zλ(j′))|
≤|u∞(z0)−uλ(j′)(z0)|+ 8

R0

|z0−zλ(j′)|→0

asj′→∞.

(3.64)

5.3. Proof of Theorem 3.4

First of all, we prove that(
1

Rd+2

∫
QR/2(z0)

e
1+2/d
λ (uλ)(z)dz

)d/(d+2)

≤ C1
RH

Rd+2

∫
QR(z0)

eλ(uλ)(z)dz(3.65)

holds for any cylinders QR/2(z0) ⊂ QR(z0) ⊂⊂QT and a positive constant
C1

RH depending only on d.

... ) Define a sequence of numbers Rj by

Rj =

{
R/2 (j=0),

R/2+(1−τ)/τ∑j
i=1τ

iR/2 (j=1,2,...).
(3.66)

Furthermore, give a smooth cut-off function η with

η(z)=

{
1 on QRj−1

(z0),

0 outside QRj
(z0)

for t≤ t0(3.67)

and

0≤η(z)≤1, |∇η(z)|≤ 4τ

(1−τ)τ j

1

R
,

|�η(z)|≤ 8τ 2

(1−τ)2τ 2j

1

R2
, |∂η
∂t

(z)|≤ 4τ

(1−τ)τ j

1

R2
.
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Then, we multiply (3.23) by η4 and successively integrate it on QR(z0) to
imply

∫
QR(z0)

∂eλ

∂t
(uλ)(z)η

4(z)dz−
∫

QR(z0)

�eλ(uλ)(z)η
4(z)dz

+

∫
QR(z0)

fλ(uλ)(z)η
4(z)dz≤16

∫
QR(z0)

e2λ(uλ)(z)η
4(z)dz.(3.68)

From the integral by parts in the 1st and the 2nd term on the left-hand side
in (3.68), we obtain

∫
QR(z0)

fλ(uλ)(z)η
4(z)dz

≤
∫

QR(z0)

eλ(uλ)(z)

(
4η3(z)

∂η

∂t
(z)+12η2(z)|∇η(z)|2

× 4η3(z)�η(z)
)
dz

+16

∫
QR(z0)

(eλ(uλ)(z))
2η4(z)dz.(3.69)

By recalling a property of η and applying Lemma 3.4 as p=1 and κ=0 to the
1st term on the right-hand side in (3.69), we infer

∫
QR(z0)

fλ(uλ)(z)η
4(z)dz

≤
(

14·16τ 2

(1−τ)2
+

16τ

(1−τ)
)

1

τ 2jR2

∫
QR(z0)

eλ(uλ)(z)dz

+16CFPΦ
2
R(z0)

∫
QR(z0)

∣∣∣∇(√
eλ(uλ)(z)η(z)

)∣∣∣2 dz.(3.70)

Noting |∇eλ(uλ)| ≤ 4
√
fλ(uλ)

√
eλ(uλ), we proceed to estimate

∫
QRj

(z0)

fλ(uλ)(z)η
4(z)dz

≤
(

(14+32CFPΦ
2
R(z0))

16τ 2

(1−τ)2
+

16τ

(1−τ)
)

× 1

τ 2jR2

∫
QR(z0)

eλ(uλ)(z)dz
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+16·8CFPΦ
2
R(z0)

∫
QRj

(z0)

fλ(uλ)(z)dz.(3.71)

As in the similar calculation as above, we obtain

ess·sup
t0−R2

j ≤t≤t0

∫
BRj

(x0)

eλ(uλ)(t,x)η
4(t,x)dx

≤
(

(14+32CFPΦ
2
R(z0))

16τ 2

(1−τ)2
+

16τ

(1−τ)
)

× 1

τ 2jR2

∫
QR(z0)

eλ(uλ)(z)dz

+16·8CFPΦ
2
R(z0)

∫
QRj

(z0)

fλ(uλ)(z)dz.(3.72)

We again invoke |∇eλ(uλ)| ≤ 4
√
fλ(uλ)

√
eλ(uλ) and (3.71) to estimate as

follows:

∫
QRj

(z0)

∣∣∇(
eλ(uλ)(z)η

4(z)
)∣∣dz

≤
∫

QRj
(z0)

fλ(uλ)(z)η
4(z)dz+4

∫
QRj

(z0)

eλ(uλ)(z)η
4(z)dz

+4

∫
QRj

(z0)

eλ(uλ)(z)η
3(z)|∇η(z)|dz

≤4

∫
QR(z0)

eλ(uλ)(z)dz+16·8CFPΦ
2
R(z0)

∫
QRj

(z0)

fλ(uλ)(z)dz

+

(
(14+32CFPΦ

2
R(z0))

16τ 2

(1−τ)2
+

32τ

(1−τ)
)

× 1

τ 2jR2

∫
QR(z0)

eλ(uλ)(z)dz.(3.73)

Thus, from (3.71), (3.72) and (3.73), the Sobolev imbedding theorem of the
parabolic type (We refer to Ladyžhenskaya-Solonnikov-Ural’ceva, N.N [ [75],
Chapter II, p75].) and definition of η, it follows that

C−1
SO

(∫
QR/2(z0)

(
eλ(uλ)(z)

)1+2/d
dz

)d/(d+2)

+

∫
QRj−1

(z0)

fλ(uλ)(z)dz
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≤24·16CFPΦ
2
R(z0)

∫
QRj

(z0)

fλ(uλ)(z)dz

+

((
14+16CFPΦ

2
R(z0)

) 48τ 2

(1−τ)2
+

64τ

(1−τ) +4

)
1

τ 2jR2

∫
QR(z0)

eλ(uλ)(z)dz

where CSO is the best Sobolev constant.
Since 24·32 CFPΦ

2
R(z0) < 1/2, recalling definition of η, we have

C−1
SO

(∫
QR/2(z0)

(
e
1+2/d
λ (uλ)(z)

)1+2/d
dz

)d/(d+2)

+

∫
QRj−1

(z0)

fλ(uλ)(z)dz

≤ 1

2

∫
QRj

(z0)

fλ(uλ)(z)dz

+

(
(1+14·48) τ 2

(1−τ)2
+

64τ

(1−τ) +4

)
1

τ 2jR2

∫
QR(z0)

eλ(uλ)(z)dz.

If we employ the usual iteration technique by Giaquinta [46, Theorem 3.1,
p. 159 and Lemma 3.1, p. 161] to the inequality above, we then conclude

C−1
SO

j−1∑
i=0

(
1

2

)i
(∫

QR/2(z0)

(eλ(uλ)(z))
1+2/ddz

)d/(d+2)

+

∫
QR/2(z0)

fλ(uλ)(z)dz

≤
(

1

2

)j∫
QRj

(z0)

fλ(uλ)(z)dz+

(
(1+14·48) τ 2

(1−τ)2
+

64τ

(1−τ) +4

)

×
j−1∑
i=0

(
1

2τ 2

)i
1

τ 2R2

∫
QR(z0)

eλ(uλ)(z)dz.(3.74)

Let j→∞ to obtain the conclusion (3.65) because of 1/
√

2 < τ <1, i.e. τ=
1/2(1+

√
2).

We proceed to the second step: Set σ be any number with 0<σ<1/2. Then
we establish a higher integrability of the truncation function of eλ(uλ) as follows:

(∫
Q(1−σ)R/2(z0)

(
e
(κ)
λ (uλ)(z)

)(1+2/d)2
dz

)d/(d+2)

≤ C2
RH

(σR)2

∫
QR/2(z0)

(
e
(κ)
λ (uλ)(z)

)1+2/d

dz
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+32(d+2)R4/d κ2/d(d+2) Ld+2(A
(κ)
R/2(z0))(3.75)

holds for any cylinders Q(1−σ)R/2(z0) ⊂ QR/2(z0) ⊂⊂ QT where C2
RH is a

positive constant independent of σ,R,z0,κ and eλ(uλ).

... ) We define a sequence of numbers Rj by

Rj =

{
(1−σ)R/2 (j=0),

(1−σ)R/2+(1−τ)/τ∑j
i=1τ

i(σR)/2 (j=1,2,...).
(3.76)

Also choose a smooth cut-off function η satisfying

η(z)=

{
1 on QRj−1

(z0),

0 outside QRj
(z0)

in t<t0,(3.77)

with

0≤η(z)≤1, |∇η(z)|≤ 4τ

σ(1−τ)τ j

1

R
,

|�η(z)|≤ 8τ 2

σ2(1−τ)2τ 2j

1

R2
, |∂η

∂t
(z)|≤ 4τ

σ(1−σ)(1−τ)τ j

1

R2
.

Set p = 1+2/d; A multiplier of (3.23) by (e
(κ)
λ (uλ))

2/d η2+2/p and an integration
of it on QR(z0) yield

∫
QR(z0)

∂eλ

∂t
(uλ)(z)

(
e
(κ)
λ (uλ)(z)

)2/d
η2+2/p(z)dz

+
2

d

∫
QR(z0)

(
(e

(κ)
λ (uλ)(z)

)2/d−1
∣∣∣∇e(κ)

λ (uλ)(z)
∣∣∣2η2+2/p(z)dz

+

∫
QR(z0)

〈∇e(κ)
λ (uλ)(z),

(
e
(κ)
λ (uλ)(z)

)2/d∇η2+2/p(z)〉dz

≤32

∫
QR(z0)

(
e
(κ)
λ (uλ)(z)

)2+2/d
η2+2/p(z)dz

+32 κ2

∫
QR(z0)

(
e
(κ)
λ (uλ)(z)

)2/d
η2+2/p(z)dz.(3.78)

By using the integral by parts in the 1st term, Schwarz’s inequality in the
3rd term on the left-hand side and applying Lemma 3.4 to the 1st term on the
right-hand side in (3.78), we obtain
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d

d+2

∫
BR(x0)

(
e
(κ)
λ (uλ)(t0,x)

)1+2/d

η2+2/p(t0,x)dx

+
4d

(d+2)2

∫
QR(z0)

∣∣∣∣∇(
e
(κ)
λ (uλ)(z)

)1/2(1+2/d)
∣∣∣∣
2

η2+2/p(z)dz

≤ d

d+2

(
2+

2

p

)∫
QR(z0)

(
e
(κ)
λ (uλ)(z)

)(1+2/d)

η1+2/p(z)
∂η

∂t
(z)dz

+d(1+
1

p
)2

∫
QR(z0)

(
e
(κ)
λ (uλ)(z)

)(1+2/d)

|∇η(z)|2dz

+32CFPΦ
2
R(z0)

∫
QR(z0)

∣∣∣∣∇
(

(

√
e
(κ)
λ (uλ)(z))

pη(z)

)∣∣∣∣
2

dz

+32 κ2

∫
QR(z0)

(
e
(κ)
λ (uλ)(z)

)2/d
η2+2/p(z)dz.(3.79)

Namely, we infer

d

(d+2)2

∫
QR(z0)

∣∣∣∣∇
[(
e
(κ)
λ (uλ)(z)

)1/2(1+2/d)

η1+1/p(z)

]∣∣∣∣
2

dz

+
2d

(d+2)2

∫
QR(z0)

∣∣∣∣∇(
e
(κ)
λ (uλ)(z)

)1/2(1+2/d)
∣∣∣∣
2

η2+2/p(z)dz

≤64CFPΦ
2
R(z0)

∫
QR(z0)

∣∣∣∣∇(
e
(κ)
λ (uλ)(z)

)1/2(1+2/d)
∣∣∣∣
2

η2(z)dz

+

∫
QR(z0)

(
e
(κ)
λ (uλ)(z)

)(1+2/d)
(

d

d+2

(
2+

2

p

)
η1+2/p(z)

∂η

∂t
(z)

+d(1+
1

p
)2|∇η(z)|2 +

2d

(d+2)2
(1+

1

p
)2|∇η(z)|2

+64CFPΦ
2
R(z0)|∇η(z)|2

+
64

d+2

1

R2

)
dz+

32 d

d+2
R4/dκ2/d(d+2) Ld+2(A

(κ)
R (z0)).(3.80)

As in the similar calculation above, we infer

d

(d+2)2
ess·sup

t0−R2<t≤t0

∫
BR(z0)

∣∣∣∣(e(κ)
λ (uλ)(z)

)1/2(1+2/d)
∣∣∣∣
2

η2+2/p(z)dz

+
2d

(d+2)2

∫
QR(z0)

∣∣∣∣∇(
e
(κ)
λ (uλ)(z)

)1/2(1+2/d)
∣∣∣∣
2

η2+2/p(z)dz
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≤64CFPΦ
2
R(z0)

∫
QR(z0)

∣∣∣∣∇(
e
(κ)
λ (uλ)(z)

)1/2(1+2/d)
∣∣∣∣
2

η2(z)dz

+

∫
QR(z0)

(
e
(κ)
λ (uλ)(z)

)(1+2/d)
(

d

d+2

(
1+

2

p

)
η1+2/p(z)

∂η

∂t
(z)

+d(1+
2

p
)2|∇η(z)|2 +

2d

(d+2)2

(
1+

1

p

)2

|∇η(z)|2

+64CFPΦ
2
R(z0)|∇η(z)|2 +

64

d+2

1

R2

)
dz

+
32 d

d+2
R4/dκ2/d(d+2) Ld+2(A

(κ)
R (z0)).(3.81)

Thus, summing up (3.80) with (3.81) and applying the Sobolev imbedding
theorem of the parabolic type as before, we arrive at

C−1
SOd

(d+2)2

(∫
QR(z0)

(
e
(κ)
λ (uλ)(z)

)(1+2/d)2

η2(1+1/p)(1+2/d)(z)dz

)d/d+2

+
4d

(d+2)2

∫
QR(z0)

∣∣∣∣∇(
e
(κ)
λ (uλ)(z)

)1/2(1+2/d)
∣∣∣∣
2

η2+2/p(z)dz

≤128 CFPΦ
2
R(z0)

∫
QR(z0)

∣∣∣∣∇(
e
(κ)
λ (uλ)(z)

)1/2(1+2/d)
∣∣∣∣
2

dz

+2

∫
QR(z0)

(
e
(κ)
λ (uλ)(z)

)(1+2/d)
(

d

d+2

(
1+

2

p

)
∂η

∂t
(z)η1+2/p(z)

+d(1+
1

p
)2|∇η(z)|2 +

2d

(d+2)2

(
1+

1

p

)2

|∇η(z)|2

+64CFPΦ
2
R(z0)|∇η(z)|2

+
64

d+2

1

R2

)
dz+

64 d

d+2
R4/dκ2/d(d+2) Ld+2(A

(κ)
R (z0)).(3.82)

Since Φ2
R(z0) < 1/(64 CFP) d/(d+2)2, we then conclude

C−1
SOd

(d+2)2

(∫
Q(1−σ)R/2(z0)

(
e
(κ)
λ (uλ)(z)

)(1+2/d)2

dz

)d/d+2

+
4d

(d+2)2

∫
QRj−1

(z0)

∣∣∣∣∇(
e
(κ)
λ (uλ)(z)

)1/2(1+2/d)
∣∣∣∣
2

dz
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≤ 2d

(d+2)2

∫
QRj

(z0)

∣∣∣∣∇(
e
(κ)
λ (uλ)(z)

)1/2(1+2/d)
∣∣∣∣
2

dz

+

(
d

d+2

(
1+

2

p

)
· 4τ

(1−σ)(1−τ) +d

(
1+

1

p

)2
16τ 2

(1−τ)2

+
2d

(d+2)2

(
1+

1

p

)2
16τ 2

(1−τ)2
+

d

(d+2)2

16 τ 2

(1−τ)2
+

64

d+2

)

× 2

(σR)2

1

τ 2j

∫
QR(z0)

(
e
(κ)
λ (uλ)(z)

)(1+2/d)

dz

+
64 d

d+2
R4/dκ2/d(d+2) Ld+2(A

(κ)
R (z0)).(3.83)

We here used the iteration technique from Giaquinta [46, Theorem 3.1, p. 159
and Lemma 3.1, p. 161] again; a choice of τ i.e. 1/

√
2 < τ <1 and the limit for

j→∞ proves our second step.

Now we are in the position of completing our theorem: To this end, take a
sequence of decreasing cylinders:

QRj(z0) with Rj =
R

4
+

R

2j+2
(j=0,1,...)

and a sequence of increasing levels:

kj =M+M

(
1− 1

2j

)
(j=0,1,...)

where M is a certain positive number selected below.
Here in (3.75), choose

(1−σ)R/2=Rj+1, R/2=Rj, σR/2=R/2j+3,

κ=kj+1.

Then recalling (3.75), we can estimate 1/(M 1+2/dRd+2)
∫

A
(kj+1)

Rj+1
(z0)

(e
(kj+1)
λ

(uλ)(z))
1+2/d dz as follows:

1

M 1+2/dRd+2

∫
A

(kj+1)

Rj+1
(z0)

(
e
(kj+1)
λ (uλ)(z)

)1+2/d
dz

≤ 1

M 1+2/dRd+2
Ld+2(A

(kj+1)
Rj+1

(z0))
2/(d+2)
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×
(∫

A
(kj+1)

Rj+1
(z0)

(
e
(kj+1)
λ (uλ)(z)

)(1+2/d)2

dz

)d/(d+2)

≤ 1

M 1+2/dRd+2
Ld+2(A

(kj+1)
Rj

(z0))
2/(d+2)

×
(
C2

RH4j+4

R2

∫
A

(kj+1)

Rj
(z0)

(
e
(kj+1)
λ (uλ)(z)

)(1+2/d)

dz

+
64 d

d+2
R4/d(2M)2/d(d+2) Ld+2(A

(kj+1)
Rj

(z0))

)
.

By means of

Ld+2(A
(kj+1)
Rj

(z0))

≤ (kj+1−kj)
−(1+2/d)

∫
A

(kj)

Rj
(z0)

(
e
(kj)
λ (uλ)(z)

)(1+2/d)

dz,

we can proceed to estimate

1

M 1+2/dRd+2

∫
A

(kj+1)

Rj+1
(z0)

(
e
(kj+1)
λ (uλ)(z)

)1+2/d

dz

≤41/d4(1+1/d)j

(
C2

RH 44 +
64 d

d+2
23(1+2/d)M 1+2/dR2(1+2/d)

)

×
(

1

M 1+2/dRd+2

∫
A

(kj)

Rj
(z0)

(
e
(kj)
λ (uλ)(z)

)1+2/d

dz

)1+δ0

=C3
RH ·4(1/d+1)j

(
1

M 1+2/dRd+2

∫
A

(kj)

Rj
(z0)

(
e
(kj)
λ (uλ)(z)

)1+2/d

dz

)1+δ0

(3.84)

with C3
RH = 41/d (44C2

RH +(64 d)/(d+2)32(1+2/d)(MR2)1+2/d ) and δ0 = 2/(d+2).
Thus, an induction for j leads to

1

M 1+2/dRd+2

∫
A

(kj)

Rj
(z0)

(
e
(kj)
λ (uλ)(z)

)1+2/d

dz

≤(C3
RH)−1/δ04−(1+1/d)(1+δ0)/δ0

×
(

(C3
RH)1/δ04(1+1/d)(1+δ0)/δ2

0
1

M 1+2/dRd+2

∫
QR/2(z0)

(
e
(k0)
λ (uλ)(z)

)1+2/d

dz

)(1+δ0)j

.

Here recall (3.65); We infer
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1

M 1+2/dRd+2

∫
A

(kj)

Rj
(z0)

(
e
(kj)
λ (uλ)(z)

)1+2/d

dz

≤(C3
RH)−1/δ04−(1+1/d)(1+δ0)/δ0

×

(C3

RH)1/δ04(1+1/d)(1+δ0)/δ2
0

1

M 1+2/d

(
C1

RH

Rd+2

∫
QR/2(z0)

eλ(uλ)(z)dz

)1+2/d



(1+δ0)j

≤(C3
RH)−1/δ04−(1+1/d)(1+δ0)/δ0

×
(

(C3
RH)1/δ04(1+1/d)(1+δ0)/δ2

0

(
1

MR2

)1+2/d(
C1

RH Φ2
R(z0)

)1+2/d

)(1+δ0)j

where we used Corollary 3.1 and
If we choose M = 1/R2, since

Φ2
R<(C3

RH)−d/(δ0(d+2))4−(d+2)/(d+1)(1+δ0)/δ2

(C1
RH)−1,

we can pass to the limit j→∞; We conclude

∫
A

(k∞)
R/4

(z0)

e
(k∞)
λ (uλ)(z)dz=0 which deduces

sup
QR/4(z0)

eλ(uλ)(z)≤ 2

R2
.

This provides us the assertion of this theorem.
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63. Hélein, F.: Regularitè des applications faiblement harmoniques entre une
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115. Torchinsky, A.: Real-variable methods in harmonic analysis, Pure and Ap-
plied Mathematics, 123 (1986), Academic Press Inc.

116. von Wahl, W.: The continuity or stability method for nonlinear elliptic and
parabolic equations and systems, Rendiconti Sem. Mat. Fis. Milano, (to
appear).

117. Wang, C.: Bubble phenomenom of certain Plais-Smale sequences from sur-
face to general targets, Houston J. Math, (to appear).

118. Wente, H.C.: An existence theorem for surfaces of constant mean curvature,
J. Math. Anal. Appl. 26 (1969), 318–344.

119. Wente, H.C.: The differential equation �x=2Hxu∧xv with vanishing
boundary values, Proc. Amer. Math. Soc. 50 (1975), 131–137.

120. White, B.: Infima of energy functionals in homotopy classes of mappings,
J. Differential Geom. 23 (1986), no. 2, 127–142.

121. Ye, R.: Global existence and convergence of Yamabe flow, J. Differential
Geom. 39 (1994), no. 1, 35–50.

122. Ziemer, W.P.: Weakly differentiable Functions, Sobolev spaces and func-
tions of bounded variation, Graduate Texts in Mathematics. 120 (1989),
Springer-Verlag.

111





TOHOKU MATHEMATICAL PUBLICATIONS

No.1 Hitoshi Furuhata: Isometric pluriharmonic immersions of Kähler manifolds

into semi-Euclidean spaces, 1995.

No.2 Tomokuni Takahashi: Certain algebraic surfaces of general type with irreg-

ularity one and their canonical mappings, 1996.

No.3 Takeshi Ikeda: Coset constructions of conformal blocks, 1996.

No.4 Masami Fujimori: Integral and rational points on algebraic curves of certain

types and their Jacobian varieties over number fields, 1997.

No.5 Hisatoshi Ikai: Some prehomogeneous representations defined by cubic forms,

1997.
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