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Abstract

The purpose of this article is to study the influence of dynamical behavior of clas-
sical Hamilton systems with ergodic and periodic properties on asymptotic behavior of
eigenfunctions and eigenvalues of the corresponding positive elliptic operator on a com-
pact Riemannian manifold, and conversely, to investigate the asymptotic properties of
eigenfunctions or eigenvalues which make the corresponding classical mechanics ergodic
or periodic.

We will give an estimate of the off-diagonal asymptotics of quantum observables for
quantum ergodic systems and a regularity result on limit measures associated with quan-
tum observables for systems with homogeneous Lebesgue spectrum. We will also give
necessary and sufficient conditions for ergodicity and weak-mixing property of the clas-
sical Hamilton systems, which are obtained by a reduction procedure with symmetry,
in terms of semi-classical asymptotic properties of eigenfunctions. Finally, a result on
the structure of the set of cluster points for the differences of eigenvalues in a certain
semi-classical sense is given, which is considered as a semi-classical analogy of Helton’s

theorem.
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Introduction

Asymptotic behavior of the eigenvalues of an elliptic operator on a compact Rieman-
nian manifold has been vigorously investigated. For instance, Duistermaat—Guillemin [8]
investigated the influence of the periodic orbits of the Hamilton flow on the asymptotic be-
havior of the counting function of eigenvalues. Helton [17] and Guillemin [11] studied, as
we will see in Section 4, the relationship between the periodicity of the classical mechanics
and the structure of the set of the cluster points for the differences of eigenvalues.

On asymptotic behavior of eigenfunctions, a remarkable result was established by
Shnirelman [26], Zelditch [37] and Colin de Verdiere [6]. The result of S-Z-C states,
roughly speaking, that the eigenfunctions of the Laplacian on a compact Riemannian
manifold with ergodic geodesic flow are asymptotically uniformly distributed in the high
energy level. In 1994, Sunada [28] introduced the concept of quantum ergodicity at infinite
enerqy level and, as we will state precisely in Section 2, obtained a necessary and sufficient
condition in terms of asymptotic properties of eigenfunctions of a positive elliptic operator
in order that the corresponding classical Hamilton system is ergodic. Furthermore his
method was used by Zelditch [42] to formulate the notion of quantum weak-mixing.

In the classical ergodic theory, there are many other concepts which are sufficient
conditions of classical ergodicity, and these have been intensively investigated. Accord-
ingly, it seems natural to ask how the dynamical behavior of the classical mechanics with
more chaotic property than ergodicity affects asymptotic behavior of eigenfunctions or
eigenvalues.

Moreover, the classical systems which are dealt in the above works are homogeneous
Hamilton systems on a cotangent bundle, and hence the dynamical system at an energy
level is isomorphic to it at every other energy level. However, in case where the flow is
not homogeneous, the dynamical behavior is different at different energy levels. Indeed,
there is the following important example ([14], [29]).

Let M be a compact Riemann surface with constant negative curvature —1 and 2
the symplectic form on the cotangent bundle 7*M over M defined by Q = Q) — 73, B,
where €2,/ is the canonical symplectic form, B is the volume 2-form on M, and 7, is the
projection from T* M onto M. The term of the 2-form B in the definition of the symplectic
form € introduces a magnetic field on M. Consider the Hamiltonian H(z,§) = ||£||. Let
¢¢ be the Hamilton flow determined by (H, ), which is called magnetic flow under the
magnetic field B. We denote by w, the Liouville measure on the hypersurface ¥, = H!(e)
with e > 0. Then the dynamical system (3, ¢, we) is ergodic if e > 1 and periodic if

e < 1. Ergodicity of such dynamical system as a magnetic flow affects semi-classical



asymptotic behavior of the eigenfunctions for reduced quantum Hamiltonian ([18], [27],
[39]).

Taking the above background into account, we will consider the following problems.

Problem A Investigate the influence of the dynamical behavior of the classical mechan-
ics satisfying a sufficient condition of ergodicity, such a mixing property, on asymptotic

behavior of the eigenfunctions of the corresponding elliptic operator.

Problem B Formulate quantum ergodicity and weak-mixing for the quantum me-
chanics corresponding to the classical mechanics obtained by a reduction procedure of
a homogeneous Hamilton flow with symmetry, and investigate the relationships between

classical ergodicity and quantum ergodicity.

Problem C For the same dynamical systems as in Problem B, examine the influence
of the periodicity of classical mechanics on the structure of the set of cluster points in a

certain semi-classical sense for the differences of eigenvalues.

Of course, one can consider many other problems on the relation between asymptotic
behavior of eigenvalues or eigenfunctions and dynamical behavior of the corresponding
Hamilton flow. We refer the reader to the recent article of Zelditch [44].

We will mention the contents of this article.

In Section 1, we will review some aspects of the classical ergodic theory.

Problem A is one of the central subject in the area of quantum chaos, and it remains
unsettled. In Section 2, we will present some results on this problem. Here we will state
the main theorems in Section 2.

Let M be a compact connected Riemannian manifold without boundary, H a first
order self-adjoint non-negative elliptic pseudodifferential operator (¢)DO for short) on M
with positive principal symbol H > 0. Let ¢; be the Hamilton flow generated by the
Hamiltonian H and the canonical symplectic form €2,,. Let w be the Liouville measure
on ¥ = H~'(1). We thus obtain the classical dynamical system (X, ¢y, w). We denote
by 0 < ep < ey < --- 7 oo and {p;}%2, the eigenvalues and an orthonormal basis of

eigenfunctions of H, respectively: ]:.hpj =ejp;. Weset N(A) =1{j € N;e; <A}

Theorem 2.5 Assume that the Hamilton flow ¢, on 3 is transitive Anosov. Then, for



every DO A of order zero, we have

limsup N (A\)~* Z Y. Ay, ‘sz>|2 = 0(9).

A—00
e; <A 0<|ej—eg|<d

It is well-known that the left hand side tends to zero as 6 — 0 if the dynamical system
(3, pp,w) is ergodic. We note that the transitive Anosov flow is ergodic with respect to

the Liouville measure.

Theorem 2.6  Assume that the dynamical system (X, o, w) has homogeneous Lebesque
spectrum. Then, for every wDO A of order zero with (og(A)) = 0, there exists an
integrable function pa on R such that, for any a < b, we have

b
lm NOO' Y Y [(Ags @)l = [ payax,

A—00 01 <A .
a<erp—e;<b

where {(oo(A)) denotes the space average of the principal symbol oo(A) of A:

(00(A)) = w(z)! /E o0(A) dw.

See Section 1 for the definition of transitive Anosov flow and homogeneous Lebesgue
spectrum.

In Section 3, the dynamical system obtained by the reduction of a homogeneous Hamil-
ton flow with symmetry, which is the same dynamical system as in [39], will be formulated
and some results on Problem B are given. We will give a brief account of them.

Let m: P — M be a compact connected principal bundle over a compact Riemannian
manifold M with structure group G, a compact connected Lie group. Choosing a bi-
invariant metric on G and a connection 1-form on P, we have a unique G-invariant metric
on P which makes the bundle 7 : P — M into a Riemannian submersion, with fibers
isometric to G. We fix such a metric. Let H be a self-adjoint non-negative elliptic ¢)DO
of order one on P commuting with G-action and let H = oy (H) be its principal symbol.
The action of G on the cotangent bundle 7P is Hamiltonian and we will denote its
moment map by ® : T*P — G* with G*, the dual space of the Lie algebra of G. Let
A be the highest weight of an irreducible representation of G and let Oy (C G*) be the
coadjoint orbit through A. Tt is well-known ([12]) that there is a natural symplectic form
on X, = ®71(0,)/G induced by the canonical symplectic forms on T*P and O,. Since
the function H on T*P is G-invariant, it induces the Hamiltonian H, on X,. Let 90;\
be the Hamilton flow on Xy, and let w} be the Liouville measure on the hypersurface
Hi'(e) = ¥). Then we obtain the Hamilton system CD} = (22, o}, w?).

3



The action of G on the Hilbert space L?(P) breaks it into a direct sum of the form

where p Tuns over dominant integral weights and £, is the isotypical subspace associated
with the irreducible representation (m,, V) corresponding to the dominant integral weight
1. We denote by H, the restriction of H on the ladder subspace ([13], [15])

Hy = @ /Cm/\ (C LQ(P))7
m=1
and call H, the reduced quantum Hamiltonian. Let e;(m) < es(m) < -- - be the cigenval-
ues of Hy and let {ij} jmen be an orthonormal basis for H, consisting of the eigenfunc-

tions of H: ﬁyjm = e;j(m)vj". For a fixed constant ¢ > 0, we set

Nu(e,c) = {j € Njlej(m) —me| < c},
Npn(e,c) = tNu(e c).

The quantity N,,(e,c) plays the same role as the counting function N(A) in the high
energy case. Before going to state the main theorem in Section 3, we need to prepare the

following two conditions on the dynamical system CD?.

(H1) The Hamilton vector field, Xy, of H is not tangent to the G-orbit through any point
in ¥ =Z. N Y0O,), where Z, = H'(e) C T*P.

(H2) The set of periodic points of the reduced flow ¢} on X} has Liouville measure zero.

The condition (H1) is used to extend the functions on ¥} to the homogeneous G-invariant
functions on 7% P. Under the assumption (H2), the existence of the quantum space average
( A)2 of zeroth order DO A commuting with G-action, which is defined by

(A)) = lim Ny(e,c)™" Y (A" v,

€ m— 00 J J

JENm(e,c)

is guaranteed by the semi-classical asymptotic formula due to Guillemin—Uribe [14], [15]
and Zelditch [39]. Note that the condition (H1) is fulfilled for the dynamical system
generated by the principal symbol of the Laplacian with respect to the fixed metric. We
also note that, if the dynamical system CD? is ergodic, then the condition (H2) is satisfied.
For a bounded operator A on L?(P), we define the quantum (long) time average A by

_ 1t - L
A =w-lim- [ "7 Ae "H (s.
t—00 0

4



Now the main theorems in Section 3 can be stated as follows.

Theorem 3.1  Assume that the dynamical system CD) satisfies the conditions (H1)
and (H2). Then the dynamical system CD? is ergodic if and only if the following two
conditions hold.
(1) For every A € Ao and for every orthonormal basis {v]"}%,,_, for H consisting of
eigenfunctions of H,, we have
2
lim Np,(e,c)™" Y ‘(Aym V,Z”)’Q:

M—00 77
J,kENm (e,c)
ej(m)=ex(m)

Vol(Eé‘)_I/ oo(A) dw
A

e

(2) For every A, {vj"} as above, we have

lim lim sup N, (e, ¢)™* Z Z ‘(ijma v, )| =0.
410 mloo JENm(e,c) k
0<lej(m)—ex(m)|<d

‘ 2

Theorem 3.3  Suppose that the condition (H2) is satisfied. Then the following three

conditions are equivalent.

(S) For every A € Ay, we have

Jim Ny (e, )™ Y0 [(A= (A))* =0,
JENm (e,c)
where || - || is the L*-norm and {v}*};m is an orthonormal basis for Hy consisting

of eigenfunctions of Hy.
(Z) For every A € Ay and for every orthonormal basis {vj"};m for Hy consisting of
eigenfunctions of H,, we have

lim Np(e,o) ™" > [(Av, V) — VOI(Z;\)_l/ oo(A) dw

Jo 7 N
JENm(e,c) e

=0.

(C) For every A, {vj"} as in (Z), there exists a family {Jom}men of subsets in Ny, (e, c)

satisfying
Im
lim b

—— =1
m— N, (e, c)

such that

lim max |(Av}", V") — Vol(Eé‘)_l/ Aao(A) dw| = 0.
s

m—00 jEJp, J €

e



Theorem 3.5 Assume that the conditions (H1) and (H2) are fulfilled. Then the classical

dynamical system CD;\ s weak-mizing if and only if the following two conditions hold.

(1) For every A € Ao, 7 € R and every orthonormal basis {v"}35,_, for Hx consisting

of eigenfunctions of Hy, we have
2
hm N ( Yy Z ’(AV}”, I/,T>‘

JENm (e,c)

er(m)= ej (m)+1

2
= |vol(zH)! / oo(A)dw?| 5.
Ee
(2) For every A, T and {v]"}35,_, as above, we have
1 2 _
lgr(r)lhmsupN (e,o)™h Y > )<AI/ , >‘ = 0.

mToo JENm (e,c) k
0<|ex(m)—e;(m)—7|<d

Problem C is also still open. However, in Sections 4, 5, we will point out that the
periodicity of the classical mechanics, defined as above, relates to the structure of the set
of the cluster points in a certain semi-classical sense. We will also mention a result which
can be considered as an analogy of Helton’s theorem [17]. Here we will give the definition
of the notion of the cluster point and state the main theorem in Section 4.

For an open interval I and a positive constant ¢ > 0, we set
Np(e,e:I) =8{(j,k) € Nim(e,c) x N; eg(m) —e;(m) € 1}.

Definition 4.2 A real number 7 is said to be the cluster point of the set {er(m) —
e;(m); (4,k) € Ni(e,¢) x N, m € Z'} in the semi-classical sense at energy level e if, for
some constant ¢ > 0,

lim N, (e,c;I) =00

holds for any open interval I containing 7. We denote by s-Do. the set of all cluster

points at the energy level e in the above sense.

Theorem 4.3  Assume that the conditions (H1) and (H2) are satisfied. Then the set

s-Da, of all cluster points in the sense of Definition 4.2 is whole real line:
s-Do, = R.

In Section 5, we will give some examples for the case where the reduced flow } on X2

is periodic.



1 Review of ergodic theory

In this section, we will review briefly some aspects of the classical ergodic theory, and

collect several facts which will be used in the following sections.

1.1 Ergodicity and weak-mixing

Let (X3, ¢4, w) be a dynamical system on a compact manifold ¥, where ¢; is a flow
such that (z,t) — ¢(x) is measurable and w is an invariant probability measure. For

every square integrable function a € L*(X) = L*(X,w), we denote its space average by

(a):
(a) :/Eadw.

For every real number 7 € R and positive number ¢ > 0, we set

1t .
ay(1) = ?/o e Macp,ds (€ LA(X)).

For 7 = 0, we will write a; instead of a;(0), and we will call it the time average of a up to

time ¢ > 0.

Theorem 1.1 (von Neumann mean ergodic theorem) Let H be a separable Hilbert
space, {Vi hier a strongly continuous one-parameter group of unitary operators on H. Let
Ho be the closed subspace in H consisting of all the vectors invariant under V;, P the
orthogonal projection onto Hy. Then for every a € 'H, we have

1 rt
lim n Vsads = Pa, in H. (1.1)
0

t—o00

For a proof of Theorem 1.1, we refer the reader to [7]. Applying Theorem 1.1 for H =
L3(X) and Via = e "aoypy, the limit a(7) := lim ay(7) exists in L*(X) for every a € L*(X)
and 7 € R, and it satisfies a(7)op; = e™a(r). For 7 = 0, we will write @ instead of a(0),
and call it the long time average of a. Clearly we have (a) = (a) and (a(r)) = 0 for

T # 0.

Definition 1.1 (1) The dynamical system (3, o, w) is said to be ergodic if, for every
a € L*(X), we have a = (a), a.e.

(2) The dynamical system (3, ¢y, w) is said to have the weak-mizing property if, for
every a € L*(X) and 7 € R, we have a(1) = (a(7)), a.e.



Remark 1.1 The dynamical system (X, ¢, w) is said to have the mizing property if

yny/@h¢gbdw=i/amﬂ/$dw (1.2)

for all a,b € L*(X). The mixing property implies weak-mixing property, and the weak-
mixing property implies ergodicity. Note that, if the invariant measure of an ergodic
system has positive measure for every non-empty open set, then the set of periodic points

has measure zero ([36]).

Lemma 1.1 (1) For every a € L*(X) and 7 € R, we have the following.
(i) Jim (Ja(r)) = (Ja(r)),
(i) (|a(r)|*) > [{a)|*0r0, where 6,0 =1 if T =0, §,0 =0 if T £ 0.

(2) The dynamical system (X, gy, w) is ergodic if and only if we have

(lal*) = I(a)P", (1.3)
for every smooth function a € C*(%).

(3) The dynamical system (X, g, w) has weak-mizing property if and only if we have

(la(n)*) = [(a(m))I*, (1.4)
for every a € C*(¥).

Proof. For a € L*(X), we denote the L?-norm by ||a||. Clearly we have ||a|> = (|a|?).
Therefore the inequality |||a(7)]| — ||a:(7)]|| < ||a(7) — ai(7)|| implies (1), (i). For any
b € L*(X), we obtain the following:

(161) = [(0)17 = (b — (D)[*). (1.5)

Combining this for b = a(7) with the identity (a(7)) = (a )00, we obtain (1), (ii). To
prove (2), we note that, by the equalities (1.5) and (@) = (a), if (X, ¢, w) is ergodic
then (1.3) holds for every a € L*(%).

Conversely, assume that (1.3) holds for every a € C*(X). Let b € L*(X). One can
take a sequence b, € C*°(X) such that ||b, — b|| — 0 as n — oo. By (1.3) and (1.5), one

has ||b, — (b, )|| = 0. Hence one obtains
16— (oM < 11D = bull + () = (B)] < 2[|b = byl = 0 (n — o0).

Therefore b = (b), a.e., and hence the dynamical system (%, ¢;, w) is ergodic. One can

prove (3) in a similar way. |



1.2 Homogeneous Lebesgue spectrum

Let H be the orthogonal complement in L?(X) of the one-dimensional subspace of
the constant functions, and let U,a = aoy; for a € H. The operators {U,} form a strongly

continuous one-parameter group of unitary operators. Let
U, = / ¢t dB(z) (1.6)
be its spectral resolution.

Theorem 1.2 (Hellinger-Hahn) Let H be a separable Hilbert space and let E be an
spectral measure on H. Then there is a constant k, 1 < k < 0o, and an orthonormal

system {h,}%_, such that if we set
dptn () = d||E(z)hall?, (1.7)

H, = {a €H:a= /Rf(a;) dE(x)h,, f € LA(R, un)} , (1.8)

then the closed subspaces H, are invariant under the unitary operators {U,}, the Hilbert

space H decomposes into the direct sum of the subspaces H,:

H=EpH,, (1.9)
n=1
and the measures [, satisfy:
1 > o > Uz > -0, (1.10)

where, for two measures 1 and v, p > v means that v is absolutely continuous with respect
to p. Furthermore, this decomposition is unique in the sense that if another sequence {h! }
satisfies (1.7)—(1.10), then the measure p, associated with h,, is equivalent to the measure

iy, for all n.

Definition 1.2 The dynamical system (X, g, w) is said to have the homogeneous
Lebesque spectrum with multiplicity k if the measures u, described in Theorem 1.2 are

equivalent to the Lebesgue measure on R for all n.

Note that, the above definition of homogeneous Lebesgue spectrum is equivalent to
the following, which is adopted as the definition in [23]: there are the subspaces H,, in H
(1 <n < k) such that

H= @ Hn; UtHn = Hn
n=1



for all t € R, and, for each n, there exists an isomorphism ®,, of the subspace H,, onto

L?(R, dx) such that, for a € H,,, we have
¢, Ua(x) = (Ppa)(z — ).

Remark 1.2 Here we will give the definition of K-system (Kolmogorov system). Let F
be the complete o-algebra obtained by the completion of the Borel o-algebra with respect
to the measure w. Then the dynamical system (3, ¢;,w) is said to be a K-system if there

exists a complete o-subalgebra Fy satisfying
(1) Fo C gy for all t > 0,

(2) \/ ¢uFo = F, where \/ ¢, F is the smallest o-algebra containing ¢, F for all ¢ € R,
teR teR.

(3) ) ¢tFo = F(v), where F(v) is the o-subalgebra of the set of measure 0 or 1.
teR

It is well-known ([23]) that a K-system has homogeneous Lebesgue spectrum, and a system

with homogeneous Lebesgue spectrum has mixing property.

1.3 CLT for transitive Anosov flows

In this subsection, we will assume that the map (p,t) — ¢:(p) is smooth. We will
also assume that the compact manifold ¥ is endowed with a Riemannian metric and
the invariant measure w is absolutely continuous with respect to the Riemannian volume

measure. Finally we will assume that dim ¥ > 3.
Definition 1.3 The flow ¢, is said to be an Anosov flow if the following are satisfied.
(1) The vector field X generating the flow @, does not vanish.
(2) For every point p € 3, the tangent space T, splits into the direct sum
T,¥ = E°(p) & E°(p) & E*(p),

where E°(p) is the one-dimensional subspace spanned by X,, dim E¢(p) = k # 0,
dim E¢(p) = k # 0, and the subspaces E° and E° satisfy that there are constants c,
B, v > 0 independent of p € X such that, for every p € ¥ and t > 0, we have the
following.

(i) Fach v € E°(p) satisfies

ldpevll < ae™loll, [ldp—wll = Be|[v],

10



(ii) Fach v € E°(p) satisfies

ldpevll = Be™||v]l, Nldep—vll < ae™v]].

It is well-known ([1], [2]) that the constants k, | are independent of p € X. Tt is
also well-known that the tangent distributions p +— FE¢(p), E¢(p) are continuous and

completely integrable, and hence these generate the foliations F¢, F¢ whose leaves are

Cl-manifolds.

Definition 1.4 The Anosov flow p; is said to be transitive if the leaves of the foliations
F¢, F¢ are dense in Y.

Remark 1.3 Though an Anosov flow is automatically ergodic ([1]), it does not necessar-
ily have weak-mixing property. However, it is known ([25]) that a transitive Anosov flow
with an invariant measure absolutely continuous with respect to a Riemannian volume

measure is a K-system, and hence has homogeneous Lebesgue spectrum.

For a real-valued function a € L*(X), let

t

wy = ((at—(a))) * W (1.11)
Dy(a)

be the push-forward measure on R of the measure w, where D;(a) denotes the variance

of a:
Di(a) = &(|a, — (a)]*). (1.12)

Definition 1.5 A real-valued function a € L>(X) is said to obey the central limit theorem
(CLT) relative to the flow ¢ if the measure w; on R converges (in the dual space of

the space of bounded continuous functions on R) weakly to the Gaussian distribution
(2m) 127" 2.

Equivalently, a real-valued function a € L*(X) obeys the CLT if and only if

| e (e _ N L
tli)rgw (26 ¥, Drta) <a> = \/%/_OO 2 dz. (1.13)

In Section 2, we will use the following theorems.

Theorem 1.3 (Ratner [21]) Let ¢, be a transitive Anosov flow and let X be the vector
field generating the flow p;. Then, for every real-valued function a € C*°(3), we have the
following.

11



(i) If the equation a — {(a) = Xb has no solution in L*(X), then there is a positive
constant o = o, such that Di(a) ~ o4t and the function a obeys the CLT.

(ii) If the equation a — {a) = Xb has a solution in L*(X), then Dy(a) = O(1).
Theorem 1.4 (Zelditch [41]) Let ¢; be a transitive Anosov flow. Then for every a €
C>®(X) and every positive integer k, we have

(lae = (a)*) = O@t™"). (1.14)

Remark 1.4 The geodesic flow on a compact Riemannian manifold of (possibly variable)
negative curvature is a transitive Anosov flow ([1]), and hence we can apply Theorems

1.3, 1.4 with the Liouville measure.
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2 Off-diagonal asymptotics in quantum ergodicity

In this section, we will consider Problem A in Introduction.
Before going to discuss this problem, we will describe the notion of quantum ergodicity
and quantum weak-mixing at infinite energy level introduced by Sunada [28] and Zelditch

[42], which are quantum analogies of Lemma 1.1.

2.1 Quantum ergodicity and weak-mixing

Let M be a compact connected Riemannian manifold without boundary and let H be
a first order self-adjoint non-negative elliptic pseudodifferential operator (¢»DO for short)
on M with positive principal symbol H > 0. H is a smooth homogeneous function of
degree one on the punctured cotangent bundle 7*M \ 0. Let ¢; be the Hamilton flow
generated by the Hamiltonian H and the canonical symplectic form §25,. Let w be the
Liouville measure on Y := H~*(1). Since the flow ¢; can be restricted on X, we have the
classical dynamical system (X, ¢y, w).

Let 0 < e; < ey < --- T o be the eigenvalues of H counting with the repetition
according to the multiplicity, and let N(\) = #{j € N; e; < A}. Let Aj be the set of all
1DQO’s of order zero on M, which is considered as the x-algebra of quantum observables.
We denote by 0g(A) the principal symbol of A € A,.

The following theorem is due to Sunada [28].

Theorem 2.1 (Sunada) The dynamical system (3, g, w) is ergodic if and only if the

following conditions hold. .

(1) For every A € Ay and every orthonormal basis {¢;}32, for L*(M) consisting of
eigenfunctions of H, we have

2

Jm NS (g )l = | [ ou4) do (2.1)
e]-:JéIZS)\
(2) For every A, {¢;} as above, we have
o _ 2
lim limsup N(X)™" 3 Ekj [(Apj, i) =0. (2.2)

J
e; <A 0<|ej—eg|<d

In [28], (2.1) and (2.2) are called near-diagonal and off-diagonal asymptotics, respec-
tively. Zelditch [42] obtained the following theorem by using the method of [28].
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Theorem 2.2 (Zelditch) The dynamical system (X, ¢y, w) has weak-mixing property if
and only if the following conditions hold.

(1) Forevery A € Ay, 7 € R and every orthonormal basis {@;}52, for L*(M) consisting
of eigenfunctions of H, we have

2
5ro- (2.3)

A—00

lim NS S (A )l = | [ oo(4) do

e;j <\ ex=e;+T7

where 0,0 =014 7 #0, 0,p=11if 7=0.

(2) For every A, T and {p;} as above, we have

(lsim limsup N(\)™* Z zk: 1{ Ap;, o )]> = 0. (2.4)

=0 N>oo

J
Ejﬁ)\ 0<‘ek7€j77‘|<5

Sunada introduced the notion of quantum ergodicity at infinite energy level and ob-
tained Theorem 2.1 by examining the relationship between this notion and classical er-
godicity. We will describe this notion briefly.

For a bounded operator A on L*(M), we define the bounded operator A;(7) (7 € R,
t >0) by

1 it . .~ .~
Ay(r) = ;/O e 5Tl AeisH (g, (2.5)

We will write A; instead of A;(0) and call it the time average of A up to time ¢ > 0. The
bounded operator A;(7) converges weakly as ¢ — oo to the bounded operator A(7) given
by

A= Y P..AR, (2.6)

6’
e,e+r€Spec(H)

where P, is the orthogonal projection onto the eigenspace with the eigenvalue e € Spec(ﬁ ).
We will also write A instead of A(0) and call it the long time average of A. The quantum
space average ( A) of the bounded operator A is defined by

ejJSA
if the limit in (2.7) exists. The statements (1) and (2) in the following lemma is well-

known and these are called Szego limit formula and Egorov theorem, respectively. See

[10], [34] for the proof of the following lemma.

Lemma 2.1 For every quantum observable A € Ay, we have the following.
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(1) The space average ( A) of A exists and equals the space average (oo(A)) of its
principal symbol oo(A) € C(X).

(2) The bounded operator ¢ Ae="™ | and hence A,(7), is a DO of order zero and their
principal symbol are given by Uioo(A) and oo(A)(T), respectively.

Now we will consider the triple (V, H, Ap) as the quantum dynamical system associated

with the classical dynamical system (X, s, w), where V is the unit sphere in L?(M).
Definition 2.1 (Sunada, Zelditch) (1) The quantum dynamical system (V, H, Ao)

1s said to be quantum ergodic at infinite enerqy level if, for every zeroth order 1) DO
A € Ay, the quantity ( A*A) exists and satisfies

(A A) =[(A)" (2.8)

(2) The quantum dynamical system (V, H,Ay) is said to be quantum weak-mizing at
infinite energy level if, for every DO A € Ay of order zero and every T € R, the

quantity { A(T)*A(T)) ewists and satisfies

(A(r)"A(7)) = [(A)[*d-0. (2.9)

The following lemma is due to Sunada [28], which is used in the next subsection.

Lemma 2.2 the dynamical system (3, ¢y, w) is ergodic if and only if the following two

conditions hold.

(1) The quantum dynamical system (V, H,A()) is quantum ergodic at infinite energy

level.

(2) For every quantum observable A € Ay, we have lim (AjA;) = (A*A).

t—o0
Sunada [28] also obtained the following theorem.
Theorem 2.3 The quantum dynamical system (V, fI,AO) 1 quantum ergodic at infinite

energy level if and only if for every orthonormal basis {¢;} of eigenfunction of H there

exists a subsequence J C N such that

lim NN M{jeJ;e; <A} =1, (2.10)
and for every A € Ay we have
lim (Ag;, ) = [ oo(4) d, (2.11)

The results of Shnirelman [26], Zelditch [37] and Colin de Verdiere [6] follow from
Theorem 2.3 and Lemma 2.2.
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2.2 More on the off-diagonal asymptotics

Theorems 2.1, 2.2 shows that the ergodicity or weak-mixing property of classical
mechanics have an impact on the asymptotic behavior of the matrix elements ( Agp;, @i )
of an observable A € Ay. Zelditch [41] showed that, in case where the system (3, ¢y, w)
has more chaotic property than ergodicity, the near-diagonal asymptotics (2.1) has a

logarithmic order. That is, he obtained the following.

Theorem 2.4 (Zelditch) Let M be a compact Riemannian manifold of negative curva-
ture, and let H be the square root of the Laplacian on M. Then, for every A € Ay and
positive integer k, we have

N D2 (A, ¢5) = (00(A))[* = O((log )™*2). (2.12)

e; <A

By Theorems 2.1, 2.3, we know that the left hand side of (2.12) tends to 0 as A — oo if the
dynamical system (X, ¢, w) is ergodic. Zelditch used the moment estimates for transitive
Anosov flows (Theorems 1.3, 1.4) to prove this theorem. Our main theorems state that
the dynamical assumption on (X, ¢, w) also affects the off-diagonal asymptotics (2.2).

That is we have the following.

Theorem 2.5 Assume that the Hamilton flow ¢, on ¥ is transitive Anosov. Then for
every wDO A € Ay of order zero, we have
limsup N3 D0 [(Agy, @) = 0(9). (2.13)
j k

A—00 j
e; <A 0<|ej—eg|<d

Theorem 2.6 Assume that the dynamical system (3, ¢4, w) has homogeneous Lebesque
spectrum. Then, for every vDO A € Ay of order zero with (A) = 0 there exists an
integrable function pa on R such that, for any a < b, we have

b
lim NO)' S 3 [{Ags )l = [ palh)da (2.14)

A
o e <A k
a<ep—e;<b

We note that, Theorem 2.6 has proved in [42] for H the square root of the Laplacian
on a compact hyperbolic manifolds. Zelditch has proved that, on a compact hyperbolic
manifold, one can take the function p, to be smooth. He has used the fact that the
correlation functions have an exponential decay. However the assumption of Theorem
2.6 is somewhat weak. Indeed, there is a metric on the two-dimensional sphere whose

geodesic flow is a K-system ([3]), and hence it has homogeneous Lebesgue spectrum.
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2.3 Proof of Theorem 2.5

We will give a proof of Theorem 2.5. We note that the Liouville measure w is
equivalent to the Riemannian volume measure, and hence we can apply Theorem 1.4. We
also note that the dynamical system (X, ¢y, w) is ergodic.

Let A € Ag be a ¥DO of order zero. We may assume that A is self-adjoint, and hence
its principal symbol o¢(A) is real. For each k € N, we set

Ri(At) = (Af) = (A)". (2.15)

Since (A;) = (A), we have
Ry(A,t) = 2,:2 ( i ) (A= (A))") (A (2.16)

By Lemma 2.1 and Theorem 1.4, if the exponent r is even then we obtain

(4= () = (et~ oty =0 (7)) @)

t

If r is odd then, by Cauchy-Schwarz inequality, we have

1 r/2
(= (YY) < (= =0 (7)) (218)
Applying these estimates to the terms in the sum of the expression (2.16), we have
1
Ri(At) = O (;) (2.19)
for all k£ € N. We use this estimate for k = 2. A direct calculation leads us to
1 eit(ek—ej) -1
A== Y ————(Ag;, er)or+ Y (Avj, i )er, (2.20)
t o iler —ej) -
ep#e; €j =€k

and hence

(A7) = N N30 D7 S(ter — ¢))I{ Ay i)

+lim NOOT Y S (A, o) (2.21)

<Ak
ej=ey

where, S(x) = (]e®* — 1|/2)? = (sin®2/2)/(x/2)%. Note that the second term of (2.21)
equals ( A*A). Therefore, applying Lemma 2.2, we obtain

Ry(A,t) = Jim N 32 30 S(ter — )l (A, i) (2.22)
= 8]'7]261@
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Now, we can take dy > 0 so that |z| < § implies 1/2 < R(x). Then

msup N D" 3 (A, )P < 2Ry(A1)

A—00 6]<)\ k

0<|er—ej|<do/t

which completes the proof of Theorem 2.5. |

2.4 Proof of Theorem 2.6

Before proceeding to the proof of Theorem 2.6, we have to mention the spectral
measure lemma established by Zelditch [42], [43].
Let A be a bounded operator on L*(M). For every compactly supported smooth
function f € C5°(R) on R, we set
ma(f) = lim N 3 3 flen - e) [( Ay, i) (2.23)
e; <A k

if the limit exists.
Lemma 2.3 Let A € Ay. Then the limit in (2.23) exists for all f € CP(R).

Proof. If a bounded operator B is approximated by ¥DQO’s in the operator norm, then
the space average ( B) exists. Indeed, for a bounded operator B and a positive number
A, we set
S(B;A) =N Y By, vj). (2.24)
e <A
Then, by definition, we have (B) = )\11_{1;0 S(B;\) if the limit exists. By (2.24), we have
S(B;\) < ||B||. Assume that B, € Ay and || B,—B|| — 0. Then we have [( B,,)—( B, )| <

1B, — B[ — 0 as n,m — oo, and hence the limit ¢ = lim (B, ) exists. Therefore

=SB A < e = (Bu)[ +[{Bn) = S(Bu; A)| +|S(Bn; A) = S(B; A
< o= (Bu)|l+ [(Bn) = S(Bu; A)| + [| B — B (2.25)

for all n € N. Letting A — oo in (2.25), we obtain

tim sup e — S(B; \)| < e — { Ba) | + | B — B (2.26)
A—00
Since (2.26) holds for arbitrary n, we conclude that ( B ) exists and equals ¢ = Jim. (By).
For A e A, f e Ci°(R) and R > 0, we set
1 0o . oA LA
A= / F(t)eitf Ae=ith g, (2.27)
T J—00
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1
o

where f is the Fourier transform of f. By Lemma 2.1 (2), the operator A? is a ¥DO

R oA A
AR / F(t)eitf Ae=itH g, (2.28)
—-R

of order zero for R > 0, and converges to the bounded operator Ay as R — +o0 in the

operator norm. Therefore the quantity ( A*A;) exists and equals Rlim <A*A?>. By a

H

direct computation using the spectral decomposition for the operator e, we have

S(A"ApA) = NO)H 30 37 flew — ) [{ Agy, o)l (2.29)

e]'S)\ k

and hence (A*Ap) =ma(f). 1

By Lemma 2.3, m4 is well-defined as a positive linear functional on Cj°(R), and hence it
defines a Borel measure on R. We also denote this measure by m,4. We note that, by the
inequality ma(f) < [|AI?[|fll (f € C°(R)), the measure m 4 is a finite measure.

There is another finite measure on R associated with a DO A € Ay. Let Ut be the

one-parameter group of unitary operators on L?(X) defined by U,a = aopy. Let
0, = / et d B () (2.30)

be the spectral resolution for U,. Note that the one-parameter group of unitary operators
U, defined in Section 1.2 is the restriction of Ut to the closed subspace H which is the
orthogonal complement of the one-dimensional subspace of the constant functions. Thus
we have PU, = U,P, where P is the orthogonal projection onto H: Pa = a — (a),
a € L*(X). For every a € L*(X), let ji, be the spectral measure associated with a and
E, that is ji,(A) = || E(A)al|® for every Borel set A C R. Since a constant function is an

cigenfunction of U, with eigenvalue 1, we have
ppa(A) = fia(A) = [{a)[*d, (2.31)

where pip,(A) = ||E(A)Pal? is the spectral measure associated with Pa € H and FE, and

0o is the Dirac measure. The following lemma is called spectral measure lemma, due to

Zelditch [42], [43].

Lemma 2.4 (Zelditch) Let A € Ay be a v DO of order zero. Then we have

MA = flag(a) = Hraoa) + [(A)[* (2.32)
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Proof. By lemma 2.1, we have (U;a0(A), 09(A))r2(m) = ( A*eitH Ae=itH)  Therefore we

obtain

[ i = 5= [ F0)To(A), oAz d
_ %/f(t)<A*eitﬁAe—itﬁ>dt
= (A"Ayf)
= /fdmA7

for every f € C3°(R), which completes the proof. |

Proof of Theorem 2.6 Let A € Ay with (A) = (0¢(A)) = 0, and let h,, p, be the
orthonormal system and the measures described in the Hellinger-Hahn theorem (Theorem

1.2), respectively. By the decomposition (1.9), there are functions g, 4 € L*(u,,) such that
so(4) =Y / Gun(z) dB(z)hn. (2.33)

Then we have
poaiy (D) = X [ xa @) lg0.a (@) dpn () (2:34)

Since {U;} has homogeneous Lebesgue spectrum, the measure p,, is equivalent to Lebesgue
measure, and hence, for each n, there is a function e, € L*(R, dz) such that e, > 0 (da-

a.e.) and du,(x) = e,(z)dz. Therefore we obtain
oo (8) = X [ Xa(@)lgna(a)Pen() da. (2.35)

The above equation (2.35) implies that the measure ji,,(4) is absolutely continuous with
respect to Lebesgue measure. Combining this with Lemma 2.4, we conclude that the
measure dm 4 is absolutely continuous with respect to Lebesgue measure.

To deduce (2.14) from the assertion proved as above, we need to take care because
it is not trivial that one can replace f in (2.23) by the characteristic function x of the
interval (a,b). However it can be shown as follows. Let 0 < f,, <1 be a smooth function
on R such that f,, = 1 on the interval [a 4+ 1/n,b—1/n]| and f,, = 0 on the outside of the

interval (a,b). By Lebesgue convergence theorem one has

/deA :JE&/fn dma. (2.36)
For a function f on R, set
Sa(fiN) =N D0 flen —e)[( Apy, on) . (2.37)
ejSA k
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Then one obtain

’/deA — Salx; A)’

< ‘/deA—/fndmA +‘/fndmA—SA(fn,>\)‘
+Sa(fus A) = Salx, V] - (2.38)

By the typical choice of the function f, as above, one can easily deduce that

1Sa(fa, X) =S4l M) < NO)T D2 > HAw, el

ejg/\ k
O0<er—ej—a<l/n

+NA)T Y > ( Ay, pi)*. (2:39)

ejg)\ k
—1/n<ep—e;—b<0

Note that the dynamical system with homogeneous Lebesgue spectrum has mixing, and
hence weak-mixing, property. So, after taking the limsup in A in the inequality (2.39),
one can apply quantum weak-mixing theorem (Theorem 2.2) to the right hand side of
(2.39). Thus one obtains that the limsup in A of the third term of (2.38) tends to zero
as n goes to infinity. Combining this and (2.36), one concludes that the left hand side of
(2.38) tends to zero as A goes to infinity. From this, (2.14) follows. |
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3 Quantum ergodicity at a finite energy level

This section is devoted to the discussion on Problem B in Introduction.

In Section 2.1, we have described the notion of quantum ergodicity at infinite energy
level. The classical system investigated in Section 2 is homogeneous Hamilton flow, that
is the flow which commutes with R -action on the cotangent bundle. However, there are
natural classical systems which are not homogeneous. For example, the magnetic flow
under the uniform magnetic field on a compact Riemann surface with constant negative
curvature —1 has different behavior on different energy surfaces. (See [14], [29]. See also
Section 5.) This phenomenon arises from the effect of the magnetic field. Ergodicity of
such dynamical systems affects the semi-classical asymptotic behavior of the eigenfunc-
tions of corresponding quantum Hamiltonian ([18], [27], [39]).

Our purposes of this section are to formulate a notion of quantum ergodicity for the
quantum mechanics corresponding to the classical system such a magnetic flow by using
Sunada’s method described in Section 2, and investigate the relationship between classical
and quantum ergodicity. We will call the notion introduced in this section quantum
ergodicity at a finite energy level because we take the dependence of dynamical behavior
on the energy level into consideration.

We will give a brief account of the dynamical system discussed in this section. The
precise formulation of the dynamical system, which is the same as in [39], is described in
the following subsection.

We note that the magnetic flow is obtained by the reduction of the geodesic flow on
a compact S'-bundle with a connection 1-form and with a Riemannian metric which is
invariant under S'-action. (See Section 5 for the definition of the magnetic flow.) In this
case, the magnetic field is represented by the curvature 2-form of a connection form. Ac-
cordingly, we will consider the reduced dynamical system of the Hamilton flow generated
by the Hamiltonian which is invariant under the group action on the cotangent bundle
over a compact principal bundle. The corresponding quantum mechanics is generated by
a first order positive elliptic pseudodifferential operator () DO for short) which commutes
with the group action. However, as the case of classical mechanics, we need to consider
a reduced quantum mechanics. More precisely, we consider the operator restricted to a
ladder subspace associated with a fixed irreducible representation of the structure group
as a reduced quantum Hamiltonian. We will define the notion of quantum ergodicity
at a finite energy level for the quantum mechanics generated by the reduced Hamilto-
nian. To study the relationship between classical and quantum ergodicity, we will use
the semi-classical trace formula due to Guillemin—Uribe [14], [15] and Zelditch [39]. We
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will also describe the notion of quantum weak-mizing at a finite energy level, which is a

semi-classical analogy of Definition 2.1, (2).

3.1 Formulation of dynamical systems

Let m : P — M be a compact connected principal bundle over a compact Riemannian
manifold (M, (, )a) with structure group G, a compact connected Lie group. We fix a
connection 1-form © on P and an adjoint-invariant inner product (, )g on the Lie algebra

G of the Lie group G. We define the Riemannian metric (, )p by
(u,v)p = (dr(u),dr(v) )y + (O(u),0) )g, u,v e TP. (3.1)

Let H be a first order self-adjoint non-negative elliptic DO on P commuting with G-
action and let H = 01(]:[ ) be its principal symbol. Since H commutes with G-action,
H is a G-invariant smooth function on the punctured cotangent bundle 7*P \ 0. We
will assume that the principal symbol H is positive. The (left) action of G on T*P is

Hamiltonian and its equivariant moment map ® : T*P — G* is given by

(@(p,Q), A) =C(4), (p.Q)eT' P A, (3.2)

where G* is the dual space of the Lie algebra G of G. Let (my,V)) be an irreducible
representation of G with the highest weight A in the positive Weyl chamber of a dual
Cartan subalgebra, and let O, be the coadjoint orbit through A. Since the differential
map d® of the moment map ® is surjective at each point, ®~1(0,) is a submanifold in
T*P, and G acts freely on it. The leaves of the null-foliation of the G-invariant closed 2-
form 15Qp — ®*wy on ®71(0,) are just the G-orbits, where Qp is the canonical symplectic
form on T*P, 1y : @ 1(O,) < T*P \ 0 is the inclusion, and w) is the Kostant-Kirillov
symplectic form on Oy. Thus it induces the symplectic form Q, on X\ = ®71(0,)/G.
The symplectic manifold (X, 2,) is called the reduced phase space. The G-invariant
Hamiltonian H defines the Hamiltonian H, on X, such that H, satisfies the relation
¢ Hy = H on ®71(0,), where gy : ®71(0,) — X, is the projection. Let )} denotes the
Hamilton flow generated by (Hy, ). The flow ¢} can be restricted on the energy surface
¥} = Hy *(e), which preserves the Liouville measure w?. Therefore, we have the classical

dynamical system CD? = (X2, ¢}, w?).

A quantum counterpart of the dynamical system CD;\ will be described as follows. The
Lie group G acts on L?(P), the Hilbert space of square integrable functions on P, by the
identity

Ryp(p) = ¢(p-g), g€ G, pe P, peL*(P). (3.3)
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This action breaks L?(P) into a direct sum of Hilbert spaces,
L*(P) =P L,, (3.4)
o

where 1 runs over the dominant integral weights and £, is the isotypical subspaces asso-
ciated with the irreducible representation (,, V},) corresponding to the dominant integral
weight ;1. More precisely, the Hilbert space £,, is the closure of the image of the evaluation
map, Homg(V,,,C>®(P)) ® V,, — L*(P). The Hilbert space L, is also obtained by the
following way. Since the operator His elliptic and the manifold P is compact, the Hilbert
space L2(P) is the direct sum of finite dimensional eigenspaces of H. Since the operator
H commutes with G-action, GG acts on each eigenspace, and hence each eigenspace is
decomposed into irreducible representations. Then the Hilbert space £,, is the direct sum
of the representations which is equivalent to the irreducible representation corresponding

to pu. We set
Hy= P L (C L*(P)), (3.5)

m=1

and denote the unit sphere in H) by V,. The subspace H, is called the ladder space
associated with the irreducible representation A ([13], [15]).

Now we set up the triple QD* = (Vy, H,, A}) as a quantum dynamical system where
H, is the restriction of H to Hy, A} is the x-algebra of operators on H, which are the
restriction of the elements in Ag, the x-algebra of all yDO of order zero commuting with
G-action, to H). We will regard the x-algebra A, as the algebra of quantum observables.

We will call the dynamical system QD* the reduced quantum dynamical system.

3.2 Some properties of the dynamical system CDQ

Let 1, be the Hamilton flow generated by H and the canonical symplectic form 2p
on T*P. The flow 1; commutes with G-action. We note that the reduced flow ¢} can be
obtained from the Hamilton flow ;.

Lemma 3.1 The flow ¢; can be restricted on ®~1(0,), and the following diagram is
commutative:

1 (0) — YOy

ax gx

where qy 1s the projection.
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Proof.  First, we will show that the flow ¢, can be restricted to ®~1(0,). Let Xy be
the Hamilton vector field on 7*P \ 0 generated by (H,Qp). The differential map d®,
at each point z € T*P is surjective, and hence we have T,®1(0,) = d®_ ! (Ty(,)O,) for
z € 71(0,). By the definition of the moment map, we have

<dq)z; A> - Z(A,ﬁz)QP

for every A € G, where

d
Al = — | (exptA)z,
dt|,_,

and i(-) denotes the interior product. Since the Hamiltonian H is invariant under G-

action, we obtain
(d®.(Xp), A) = Qp(AL, Xpr) = —(dH)(AL) = 0,

for every A € G. This implies d®,(Xp) = 0, and hence Xy € T, 1(0O,). Therefore the
flow ¢y can be restricted to ®~1(O,).

Next, we will show that the diagram is commutative. Let u € T,®~1(O,)
(z € @71(0,)). By the identity ¢iHyx = H on ®~1(0,), we have

G ((a0) X)) (u) = (G0 (Xa, )
= QP(XH,U) (SiIlCQ d(I)Z<XH) = 0)
= (qxdH))(uw).
Since gy is a submersion, we have i((¢))«Xg)Q2x = dHy at z € ®71(0,). Therefore we

obtain that (¢))«Xyg = Xpg,, where Xy, is the Hamilton vector field on X, determined
by (Hy, ). Hence we conclude that gyoty = @rogy. 1

Next, we will consider the following condition.

(H1) The Hamilton vector field, Xy, of H is not tangent to the G-orbit through any point
in ¥ = Z,Nd1O,), where Z. = H ' (e) C T*P.

Note that, for example, the dynamical system generated by the Riemannian norm
function with respect to the fixed metric (see Section 3.1) satisfies the condition (H1) if

e > |A|. The condition (H1) makes us to obtain the following lemmas.

Lemma 3.2 Suppose that the condition (H1) is satisfied. Then the subset ié‘ s a sub-

manifold in T* P, and hence ié is a principal G-bundle over ¥}
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Proof.  Since the differential map d®, at z € %) is surjective, we have T,®~1(0,) =
d®; ! (Te(:O,). By the equivariance of ®, we obtain
AP (Ta(:Ox) = G(2) + G(2)",

where G(z) = {Af € T.T*P; A € G} and “L” denotes the annihilator of G(z) with respect
to Qp. Since H is G-invariant, we have G(2) C (Xg)* = T,Z.. Therefore we obtain

T.Z.+ T.271(0)) = (Xu)~ +G(2)",
and hence

(T.Z. + T, 27 (O))* = (Xu)NG(2). (3.6)
By the assumption (H1), the right hand side of (3.6) is zero. So the submanifolds Z, and

®~1(0,) intersect transversally. Thus we conclude the assertion. |

Lemma 3.3 For each smooth function a on ¥, there exists a smooth function a on

T*P\ 0 which is G-invariant, homogeneous of degree zero such that
Ga=a on X (3.7)
where qy is the projection from f]g\ onto 2.

Proof. The function gia is a G-invariant smooth function on ¥, and it can be extended
to a smooth function ay on Z,. Averaging ag on the G-orbits and extending to a smooth

function on 7% P \ 0 of degree zero, we obtain a desired function a. |

Remark 3.1 We note that a G-invariant smooth function a on 7% P\ 0 defines a smooth
function on X,. We will continue to denote it by a. If a is G-invariant on 7" P, then
aol)y is also G-invariant, and hence, by Lemma 3.1, the function on X, induced by the

G-invariant function act); coincides with aop).

3.3 Statements of main theorems

Let e1(m) < ey(m) < --- be the eigenvalues of the restriction of the operator H
to L,,, and let {V;”}jeN be the orthonormal basis for £,,, of the eigenfunctions of H:

FIV}” = e;j(m)vj". For a fixed constant ¢ > 0, let

Nu(e,e) = {j € Nilej(m) —me| <c},
Npn(e,c) = Nn(e c).

Then our first theorem can be stated as follows. (See Section 3.4 for the assumption
(H2).)
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Theorem 3.1 Assume that the dynamical system CD? satisfies the conditions (H1), (H2).
Then the dynamical system CD;\ 1s ergodic if and only if the following two conditions hold.

oo
Jm=1

(1) For every A € Ay and for every orthonormal basis {vj"} for Hy consisting of

eigenfunctions of Hy, we have

2
lim Np,(e,c)™" Y ’(AV;”, V,Z”)’Q = VOI(EQ)_I/ oo(A) dw (3.8)
m—oo 2
J,kEN M (e,c) e
ej(m)=ex(m)
(2) For every A, {vj"} as above, we have
lim lim sup N, (e,¢) ™" > > ‘(AV]T-”, v )‘2 = 0. (3.9)
010 mtoo JENm(e,c) k

0<|e;(m)—ex(m)|<d

This theorem is a semi-classical analogy of Sunada’s theorem (Theorem 2.1).

Before going to state our second theorem, we refer to Zelditch’s result ([39]).

Theorem 3.2 (Zelditch) Assume that the dynamical system CD? is ergodic. Then for

every orthonormal basis {ij} and for every DO A of order zero, we have

lim Np,(e,c)™" Y

Mm—00 ]
JENm (e,c)

(v v ) = [ Gol(A) diad

X — 0. (3.10)

Remark 3.2 We will give a brief explanation for the integral in (3.10). For details,
see [12], [13], [15], [39]. Let (1™ P)c(o,) be the space of the leaves of the null-foliation on
d~1(C(0O,)) determined by the canonical symplectic form Qp, where C'(O,) is the cone
through the orbit Oy, C(O,) ={rf; f € O, r > 0}. Note that the orbit O, is integral,
that is, for f € O,, there is a character x; : Gy — S (G is the stabilizer of f) such
that dxs(A) = 2mi( f, A) for every A € Gy (G is the Lie algebra of Gy). Then the leaf
of the null-foliation through z € ®~(C(0,)) is the orbit through z under the action of
the identity component of the kernel, ker xs, of xs. The function ¢y(A) is the one on
(T*P)c(o,) obtained by integrating oo(A) over the fibers.

The natural action of G on the symplectic manifold (77P)¢(,) is Hamiltonian. Let
U : (T*P)co,) — G* be the moment map of the above action, and let p = |¥|. Then the
Hamilton flow of p on (T"P)¢(o,) is periodic with constant period, and hence it induces
an S'-action on (T*P)c(o,). This S'-action is obtained by regarding S* as G/ ker x;.
The level surface p~*(])]) is an S*-bundle over the Kazhdan—Kostant-Sternberg reduction
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XE\ with respect to the orbit Oy, which is the leaf-space of the null-foliation on ®~1(0,)
of Qp. The surface S in (3.10) is the intersection S = p~'(|]\|) N H; ' (e) in (T*P)c(o,),
where H, is the function on (T*P)c(o,) induced by G-invariant Hamiltonian H on T*P.

The measure g in (3.10) is the normalized Liouville measure on S2.

Remark 3.3 In case where the function 0y(A) is invariant under the action of G, the
integral in the right hand side of (3.10) is reduced to the integral over X} C X of the
function induced by o¢(A). We explain this as follows.

The level surface S is an S'-bundle over the level surface S* = (H%)"!(e) in X%,
where the function H§ is the one on Xf\ induced by H. Note that Xfi\ is symplectically
diffeomorphic to the product X} = X, x Oy ([12]), and the action of G on X} is interpreted
as the action only on the second component of the product. Since Hfi\ is G-invariant, we

have S = ¥ x O,. Therefore the integral in (3.10) is reduced to the integral over 3.

To state our second theorem, which relates Theorem 3.1 to Zelditch’s theorem (The-
orem 3.2), we need to prepare some notation. For every quantum observable A € Ay, we
define the quantum space average ( A)} of A by

(A)) = lim Ny(e,c)™" Y (Av" v, (3.11)

€ m— o0 J J

JENm (e0)

The existence of the above limit and the independence of the choice of the constant ¢ are
guaranteed by the semi-classical trace formula due to V. Guillemin-A. Uribe ([14], [15])
and S. Zelditch ([39]) under the assumption (H2). (See Theorem 3.4 in Section 3.4.) We
also define the quantum time average A of A € Ay by

_ 1 7t . - .
A=w-lim - [ ™7 Ae " gs. (3.12)

t—oo t Jo

Now we can state our second theorem as follows.

Theorem 3.3 Suppose that the condition (H2) is satisfied. Then the following three

conditions are equivalent.

(S) For every A € Ay, we have

Tim Ny, S (A= (A2 =0, (3.13)
JENm (e,c)
where || - || is the L*-norm and {v}*};m is an orthonormal basis for Hy consisting

of eigenfunctions of Hy.
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(Z) For every A € Ay and for every orthonormal basis {v}"};m for Hy consisting of
eigenfunctions of H,, we have

lim Ny(e,o)™' Y [(AV", v™) —VOI(ZQ)*I/ oo(A) dw?
A

m—oo 77

JENm (e,c) e

~0. (3.14)

(C) For every A, {vj"} as in (Z), there exists a family {Jom}men of subsets in Ny, (e, c)

satisfying
I
lim b

—— =1 3.15
m— oo Nm(e,c> ( )

such that

lim max |( AV, V) —VOl(Eé\)_l/ oo(A) dw| = 0. (3.16)
>

m—>ooje]m J 7

e

We note that the conditions (1) in Theorem 1 and (S) in Theorem 3.3 are equivalent
to quantum ergodicity of QD* at energy level e defined in Section 3.4. (See Lemma 3.5.)
Note also that the conditions (Z) and (C) in Theorem 3.3 are equivalent without assuming
the condition (H2). (See Proposition 3.4 in Section 3.6.) The condition (C) in Theorem

3.3 is a semi-classical analogy of the convergence theorem (Theorem 2.3).

3.4 Quantum ergodicity at a finite energy level

This subsection is devoted to defining the notion of quantum ergodicity for QD* at
energy level e > 0, following the method in [28]. Let A be a bounded operator on L*(P)

which commutes with G-action. Then the quantum time average of A is defined by
_ 1t .
A= V¥-lim Ay, A= ;/ e Ae~iH . (3.17)
—00 0

The above weak limit exists, and the bounded operators A;, A commute with G-action.

Furthermore the operators A and H commute. By the spectral theorem, we have

H=3"3e(p)Pyy, =33 e"Wpy,, (3.18)
Koe(p)

Boe(u)

where p runs over irreducible representations of G, e(u) runs over eigenvalues of the
restriction of H to L,, and P, is the projection onto the eigenspace with the eigenvalue

e(p). Using the expression (3.18), we obtain that the time average A of A has the form

A = Z Z Pe(H)APe(H). (319)
Boe(p)
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The quantum space average of A is defined by
(A :Wllinéon(e,c)_l > (Av v, (3.20)
JENm (e,c)
if the above limit exists, where Ny, (e, c), Np(e,c) and v} are described in Section 3.3.

Note that ( A)» = ( A)? if the left hand side exists. To guarantee the existence of the

e

space average of A € Ay, we need the following condition.
(H2) The set of periodic points of @} on X2 has Liouville measure zero.

Under the condition (H2), we have the following semi-classical asymptotic formula due to
Guillemin-Uribe ([14], [15]) and Zelditch ([39]).

Theorem 3.4 (Guillemin-Uribe, Zelditch) Suppose that the condition (H2) is satis-
fied. Then for every A € Ay we have the following formula.

A oy =2 (TN oAy nkd—1 3.21
S oy =20 (2 [ el + oy, o)
jeNm(ec)

e

where n = dim M and 2d = dim O,.

We refer to [5], [14], [15] and [39] for the proof of this formula.
Next, we will prepare some notation on the classical mechanics CD;\. For each L*-

function a € L*(X2), let a; be the time average of a up to time ¢ > 0:

a; = —/ aopy ds,
tJo

and let (a)) be the space average of a:

(a)) = VOI(Z;\)_l/ adw.

>

e

By Theorem 1.1, the long time average a = 1tlim a; exists in L2(X2). The following lemma

is the direct consequence of Egorov’s theorem (Lemma 2.1, (2)) and Theorem 3.4.

Lemma 3.4 (1) For every A € Ay, we have et Ae=tH ¢ Ao and hence A, € Ay. The

principal symbols of the operators eitH Ae=itH gnd Ay are given by oo(A)etyy and

1 t
oo(A) = 7 /0 oo(A)oths ds, (3.22)
respectively, where 1y is the Hamilton flow on T*P.

(2) If the condition (H2) is fulfilled, then for every A € Ay we have (A)} = (ao(A))2.
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Now we will define quantum ergodicity at a finite energy level, which is an analogy of
Definition 2.1, (1).

Definition 3.1 The reduced quantum dynamical system QD* is said to be quantum er-

godic at energy level e if, for every observable A € Ay, the space average { A*A)} of the

€

operator A*A exists and satisfy

(A*ANY = [{ AV (3.23)

Lemma 3.5 Assume that the condition (H2) is satisfied. Then the reduced quantum
mechanics QD is quantum ergodic at energy level e if and only if the condition (S) in the
statement of Theorem 3.3 holds.

Proof. Note that ( A*A)? exists and satisfies (3.23) if and only if the following is satisfied:

(A= (A)) (A= (A4)2))2 =0, (3.24)

€ €

and, by the definition of the quantum space average, (3.24) holds in and only if (3.13) in
the condition (S) holds. |

Proposition 3.1 Assume that the condition (H2) is satisfied. Then QD* is quantum
ergodic at energy level e if and only if the condition (1) in Theorem 3.1 holds.

Proof. Let A € Ay be a zeroth order DO commuting with G-action and let {v]"} be
an orthonormal basis of eigenfunctions for . Since the bounded operator A commutes
with H and G-action, flyjm is an eigenfunction of H with eigenvalue e;(m). Therefore, by
(3.19), we have

Avir= > (AU vt (3.25)

and hence we obtain

(A = lim Nl S A (3.26)
JENm (e,c) ( )k )
ex(m)=e;(m

Thus the assertion follows from Lemma 3.4, (2) and Definition 3.1. |

In order to prove Theorem 3.1, we shall prepare the following proposition.
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Proposition 3.2 Assume that the condition (H2) is satisfied. Then every quantum ob-
servable A € Ay satisfies
lim (A7 A;)) = (A*A)) (3.27)

t—o0

if and only if (3.9) in the condition (2) of Theorem 3.1 holds.

Proof. This proposition is obtained by the similar way to the proof of Lemma 2-2 in
[28]. However, we will recall it just to make sure. Note that, by the assumption (H2) and

Lemmas 3.4, 1.1, 1tlim (A7 A, )} exists. A direct computation leads us to

) 1 Z (eit(ek(m)fej(m)) — 1) <A > 121 (3 28)
i : Vit vt ot + AT :
R A Tilem) —e(my) A
ex(m)#e;(m)
and hence
1 |eit(ek(m)—ej(m)) —1)?
ATAVT VY = — Ay, i) [?
R D P e T LA AR
ex(m)#e;(m)
-|-<fl*[1u]’-", ij> (3.29)

We set S(z) = 272" — 1> = 2272(1 — cos ) and

Sy = limsup Ny (e,c)™" > > S(t(ej(m) — ex(m))) [ Amry, i) (3.30)
" TN tmyfenom)
€j(m)#er(m

We observe that (3.27) holds if and only if
lim S, = 0. (3.31)

Indeed, under the assumption (3.27), (3.31) follows directly from (3.29). Conversely,
assume that (3.31) holds. Since ( AfA¥)? exists, the existence of { A*A) follows from
(3.29), and hence we have

(ATA7)} = S, + (A"A)] (3.32)

By taking ¢t — oo in (3.32), we obtain (3.27).
Note that there exists a > 0 such that S(z) > 1/2 if |z| < o. Then we have

S, > limsup Ny,(e,c) ™t x
mToo
> > S(tei(m) —ex(m))) (A", ) |?
JENM(€7C3<|ej(m)—zk(m)\ga/t
1
> §limsup]\fm(e,c)_1 > > AV, )], (3.33)
mToo

i ENm (e,c k
TENm(EQ) | (m)—en(m)l<a/t
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Therefore (3.31) implies (3.9).

Conversely, we will assume (3.9). For any € > 0, there exists 7' > 0 such that S(z) < ¢

if |#| > T. Then we have

Nu(e, )8 >0 D0 S(t(e;(m) — ex(m))) [{ Av",

iENm (e,c k
TN e (m)

< eNp(e, o)™ Z Z |<AV3m7 vt )P
JENm (e,c) k
lej(m)—er(m)|>T/t

+Nm(e, )™t Y > [(Av", vi)I®

JENm(e,c) k
0<|ej(m)—ex(m)|<T/t
< el|AIP + Ninle, o)™t Y > [(Av, ).
JENm(e,c)

k
0<le; (m)—ex (m)|<T/t

Therefore we obtain

S, < || A||? + limsup Ny, (e, ¢) Z Z |<ijm, 2
mToo

i ENm (e,c k
TR oy (m)—exmyl<T 1

(3.34)

(3.35)

Letting ¢ — oo in (3.35), we have limsup S; < ¢||A|*>. Since ¢ > 0 is arbitrary, we
¢

conclude that lim Sy = 0, and hence (337). I

3.5 Proof of Theorem 3.1

In the preceding subsection, we have defined quantum ergodicity of the reduced

quantum dynamical system QD* at a finite energy level. This notion plays an important

role in the proof of Theorem 3.1 (stated in Section 3.3). Indeed, in view of Propositions

3.1, 3.2, we only need to prove the following proposition for the proof of Theorem 3.1.

Proposition 3.3 Assume that the conditions (H1) and (H2) are fulfilled. Then the dy-

namical system CD? 1s ergodic if and only if the following two conditions hold:

(1) The reduced quantum dynamical system QD is quantum ergodic at energy level e.

(2) For every observable A € Ay, we have (3.27) in Proposition 3.2.

Proof. We take an arbitrary A € Ay. Then we have

(A)? = [{o0(A))| (Lemma 3.4, (2))
= (loo(A)]*)  (ergodicity)
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tlim (oo

On the one hand, by (3.29), we have ( A; A},

(A7 Ay ) > limsup Ny,

mToo

On the other hand,
limTinf N (e, c

limTinf Ny (e, c

Therefore we have

[{A)[*

v

v

2
This implies that ( A*A) exists and

[(A)[* =

We will prove the converse. Let A € A,.

[{A)[*

IA

< A

|o0(A

(
n
(

A)el?)
Tim (00(A7 40))

lim
t—o0

[{o0(A))[*

hm oo(AfA;))

(Lemma 1.1, (1), (1))
(Lemma 3.4, (1))
(Lemma 3.4, (2)).

vty > (A*A

m
7

m

), and hence

CRONEDS

JENm(e,c)

(AA) = (A A).

Then we have

( Lemma 3.4, (2))

( Lemma 1.1, (1), (ii))
)e|*)  ( Lemma 1.1, (1), (i))
( Lemma 3.4, (1))

)

= lim (A7A;)  ( Lemma 3.4, (2))
= (A*A) ( Assumption (1))

[{A)[

Thus for every smooth function oy(A)

equation (1.3) in Lemma 1.1 (2) holds.

( Assumption (2) ).

which is the principal symbol of A € A, the
Now, by Lemma 3.3, for every a € C>®(%2),
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there exists a smooth function @ on 7% P \ 0 which is G-invariant, homogeneous of degree
zero and gya = a on ié‘ Let Ay be the 9DO of order zero whose principal symbol is
a. Then the operator A = [, gAog~'dyg is in Ay whose principal symbol is a, and hence
{|loo(A)?) = (]al?). Therefore the dynamical system CD? is ergodic. |

3.6 Proof of Theorem 3.3

Now we will proceed to the proof of Theorem 3.3. For this sake, we will define

auxiliary notions.

Definition 3.2 (1) A family { S, ; S C oml(e, )} of subsets in
omle,c) ={X€a(H|z, ):|\—me| <c}is said to satisfy the condition (D1) if it
satisfies

Tim Nu(e,)™ Y (dimVy) =1, (3.36)
AES’m

where V) is the eigenspace of an eigenvalue \ of ﬁ|gm.

(2) A family { Jon; Jm C Nin(e,c) } of subsets in
Nu(e,c) = {j € N; ej(m) € onle,c)} is said to satisfy the condition (D2) if we
have
lim Ny (e,0)7 T = 1. (3.37)

Let & = {7 },,cz be a family of sequences 2™ = {27} jcn, () Of nON-negative num-

bers such that 0 < z7* < K for all m, j, for some constant K > 0. For each A € om(e, c),

we set
(dim V)~ Z ! (3.38)
67(77’1) A
so that
Np(e,e)™h > 2" =Np(e,e)™ Y. (dimVy) 2y (3.39)
JENm (e,c) AEom (e,c)

Lemma 3.6 Let © = {2™},cz be a family of sequences ™ = {27} jen(ec) a5 above.
Then x = {x™},,ez satisfies
lim Np(e,c)™ >0 (dimVy)ay =0, (3.40)
AETm (e,c)
if and only if there exists a family { Sy ; S C oml(e, )} satisfying the condition (D1)
such that
lim max 2z} = 0. (3.41)

m—00 \eSp,
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Proof. Since “if 7 part is obvious, we will only give a proof of “ only if 7 part. Assume
that @ = {2™},,ez satisfies (3.40). Then one can find a sequence {l,,} of natural numbers

which is monotone increasing and goes to infinity as m — oo such that

Np(e,o)™t Y (dimVy) 2% <

AEom (e,c)

P

for every m € N. We define

1
={Ae€onlec); 2y < —

U
It is clear that S, satisfies (3.41). Furthermore {S,,} satisfies (D1). Indeed we have

K

STl Np(e,o)™h 0 (dim Vy) 2%

AEom(e,c)

> {lwNm(e, )} 32 (dimVy),

A€om(e,c)\Sm

and hence

L,
1= Ny(e,o)™' D (dimV)) < Kz—
AESm 2

This implies (3.36). 1

Lemma 3.7 Let * = {2™}nez be a family of sequences ™ = {27'}jen;,(e.c) Of non-

negative numbers as above. Then the following conditions are equivalent.
(1) There exists a family {Sm}m satisfying (D1) such that it satisfies (3.41).
(2) There exists a family {Jy,}m satisfying (D2) such that

lim max 2" = 0. (3.42)

mToo jE€EJIm

Proof.  First, we will assume the condition (1). Then one can find a sequence {l,,} of

natural numbers which is monotone increasing and goes to infinity as m — oo such that
forall A € S,,
K
(dim V)~ Z x < T
€j (m) A
We define J,,, C Ny, (e, c) by
. 1
Im =1{J € Nim(e,c); ej(m) €S, and 27" < —}

m
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This family clearly satisfies (3.42). Note that we have

1— Nm(e,c)_lﬁJm

= Np(e,o)" > 14 Nyle,o) ™t > Z 1

AESm jENm (e,c)\Im )\Gom(e,c)\sm
ej(m)=A ej(m)=A

= I+1 (say).
Since {S,,} satisfies the condition (D1), I goes to zero as m — oo. On the other hand,
[ = Ny(ec)™? Z (dim V) SV,
/\ESm

where we set

S =(dimVy)~ Y L
JENm (e,c)\Im
e;j(m)=X

If ej(m) =X €S, and j & Jp,, then 27" > [ 1. Thus, for A € S,,, we have
K . —1 m —1gm
T > (dim Vjy) oo x>0 tsy
JENm (e, e\ Im

ej(m)=X

This implies that I < K1,,,/2'™ — 0 (m — o). Hence the family {J,,} satisfies (D2).
Next, we shall prove the converse. In view of Lemma 3.6, it suffices to prove that the

condition (2) implies (3.40). Combining (3.39) and the assumption (2), we have

Np(e,e) 'Y (dim Vi) a2} < Nple,o) ' Y 2"+ K [1 - Nm(e,c)flﬁJm}

AEom(e,c) J€Im

< maxa] + K [1 - Nm(e,c)_ljij} :

T j€Im

Letting m — oo in the above inequality, the condition (3.40) follows. |
Proposition 3.4 The conditions (Z) and (C) in the statement of Theorem 3.3 are equiv-
alent.

Proof. We take an A € Ay and set

for j € Npm(e,c). Note that 0 < 2" < ||A|| + [(0¢(A))2]>. Hence, by Lemmas 3.6, 3.7 we

conclude the assertion. |

The conditions (Z) and (C) are equivalent without assuming (H2). Next we will prove

the equivalence of (S) and (C). For this sake, we prepare the following lemma.
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Lemma 3.8 Consider a family { J, ; Jm C Nu(e,¢) }, and set
In(A) ={J € Jn;ej(m) =X}, Then {Jp}m satisfies (D2) if and only if there exists a
family {Sy; Sm C om(e, )} satisfying (D1) such that

lim max(dim V3) " "4.J,,(\) = 1. (3.43)

mToo AESy,

Proof. Set
" 0 it je€J,
xr. =
! 1 if jeNu(e,e)\ I
Then for all A € g,,(e, c), we have 27 = 1 — (dim V3)~'#.J,,(\). Therefore

1= Np(e,0) dm = Npple,o)™t Y (dim Vi)

AEom(e,c)

Hence by Lemma 3.7, {J,,}n satisfies (D2) if and only if there exists a family {S,,}m
satisfying (D1) such that

lim min " < lim max Y = 0.
m—00 \eSp, m—00 AeSpm,

Since ){nén y=1-— g\ngx(dim V) (), we conclude the assertion. |
ESm ESm

Finally, we will prove the following proposition, which completes the proof of Theorem
3.3.

Proposition 3.5 Assume that (H2) is satisfied. Then the conditions (S) and (C) in

Theorem 3.3 are equivalent.

Proof.  We will assume that the condition (S) holds. Note that ( A)} = (0¢(A))2 by
Lemma 3.4, (2). Therefore by setting 27 = ||(A — (A)})v}"|, the condition (C) follows
from Lemmas 3.6, 3.7 and the inequality

[(Av], ") = (oo(A) )21 < (A = (A))wy]l

Jjo 7 e

We will prove the converse. We may assume, without loss of generality, that A € Ay
is self-adjoint. Since the time average A commutes with H and G-action, we can take an
orthonormal basis {v]"} for L5 consisting of eigenfunctions of H such that flyjm = pivi
for some p" € R. Note that (A", v") = (Avj*, v;* ). Then we have

I(A = CAYDI? = [ = (Al = [( A", v ) = (oo(A) )2 (3.44)

e
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Let {J;}m be a family described in the condition (C). By Lemma 3.8, we can find a
family S, satisfying (D1) such that (3.43) holds. In view of Lemma 3.6, we only need to
prove that this family {S,,} satisfies

lim max(dim V)" > [[(A— (A)é‘)l/]””‘H2 = 0. (3.45)

mToo AES, ;
ej(m)=X\

By (3.43), for arbitrary £ > 0 we can find a positive number N; such that m > N implies
(dim Vy) 7 (dim Vy) — #J,,(A\)] < € for all A € S,,,. By the condition (C) and (3.44), there
is a positive number Ny such that m > Ny implies [|(A — (A)2)v"|]? < e for all j € Jp,.
Therefore if m > max{N;, Ny} then for all A € S,,, we have

(dim V)™ > (A= (A

GJ(T)?L):A
= (dmVy)™" Y (A= (A
Jj€Im
ej(m)=A

Hdim VA" 3 (A= (A
Rt

< (1+ K)e,

where K = ||A]| + |( A)}|?. Since € > 0 is arbitrary, we obtain (3.45). |

3.7 Quantum weak-mixing at a finite energy level

Theorem 3.1 says that ergodicity of classical dynamical system CD? is related to the
semi-classical asymptotic behavior of near-diagonal components of quantum observables.
Thus it is natural to ask which property of classical mechanics affects the asymptotic
behavior of the components far from the diagonal. For this problem, Zelditch [42] showed
that classical weak-mixing is equivalent to the notion of quantum weak-mizing (see Section
2.2) plus an additional condition, and he obtained Theorem 2.2.

In this section, we will discuss quantum weak-mixing of QD* at a finite energy level.
We will begin with recalling some notation in Section 1.1.

For every 7 € R and every a € L*(X}), we define a;(7) € L*(Z)) by

1
ay (1) = ;/0 e M aop ds.

By von Neumann’s ergodic theorem (Theorem 1.1), the function a;(7) converges in L?-

sense to the function a(r) € L*(X)) satisfying a(7)op} = ea(r) as t — oo. The
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dynamical system CD? is said to be weak-mizing if
a(t) = (a)}s.o, ae.,

or equivalently
(la(r)I*)2 = Ka(r))el
for all a € C*°(X}). (See Lemma 1.1, (3).)
We will describe a quantum analogue of this notion. (See Section 2.1 for the high

energy case.) For every quantum observable A € A4, and for every 7 € R, we define the

bounded operator A(7) by

_ 1t
A(r) = V\tf—lim A1), A(r) = Z/ e~ oeisH Ao H (g,
—00 0

The bounded operator A(7) commutes with G-action and has the following form

Ay =2 X PewirAPw-

oe(peo(Hle,)

By Egorov’s theorem (Lemma 3.4, (1)), the operator A;(7) is in Ay and its principal
symbol is given by .

oo (Ay(r)) = % [ e oAy, ds.
Definition 3.3 The reduced quantum dynamical system QD> is said to be quantum weak-
mixing at energy level e > 0 if for every observable A € Ay and every 7 € R,
(A(T)*A(7))2 and (A)) exist and satisfy

(A(r) A(r))e = [{A)2or0 .

or equivalently,

The following proposition and theorem can be obtained by a method similar to the

proofs of Proposition 3.3 and Theorem 3.1, respectively.

Proposition 3.6 Assume that the conditions (H1) and (H2) are fulfilled. Then the clas-
sical dynamical system CD? s weak-mizing if and only if the following two conditions
hold.

(1) The reduced quantum dynamical system QD* is quantum weak-mizing

at energy level e.
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(2) For every observable A € Ay and for every T € R, we have
Jim (A7) A7) = () Ar)2

Theorem 3.5 Assume that the conditions (H1) and (H2) are fulfilled. Then the classical

dynamical system CD;\ s weak-mizing if and only if the following two conditions hold.

(1) For every A € Ay, 7 € R and orthonormal basis {v]"}35,—, for Hy consisting of

eigenfunctions of H,, we have
2
lim N, ( Yy Z ’(AV;”, I/,T>‘

mfoo JENm(e.)

o (m)=es (m) 7

2
— |vol(2)! / 00(A) dw?| br.
Ee
(2) For every A, T and {vi"}55,—, as above, we have
hmhmsupN (e.o)™t > > ’<AV , >‘2:O.

910 mfoo JENm (e,c) k
0<|ex(m)—e;(m)—7|<é
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4 A semi-classical analogy of Helton’s theorem

In this section, we will discuss Problem C in Introduction.

The theorem of Helton-Guillemin [17], [11] gives a necessary and sufficient condition
in terms of the cluster points for the differences of eigenvalues of the Laplacian on a
compact Riemannian manifold in order that the geodesic flow is periodic. The purpose
of this section is to investigate the relationship between the structure of the set of cluster
points in a certain semi-classical sense for the differences of eigenvalues of the reduced
quantum Hamiltonian H, and periodicity of the reduced Hamilton flow ¢} described in

Section 3.1.

4.1 Helton’s theorem

Let M be a compact Riemannian manifold and let H be a first order self-adjoint
non-negative elliptic pseudodifferential operator on M. We denote the eigenvalues of the
operator H by e; < ey <eg < ---. For a positive real number A\ and an open interval I,

we set

N = {jeN;e <A}
N T) = H0,k) e N(A) x N; ep —e; € I}
Definition 4.1 A real number 7 is said to be a cluster point of the set {e, —e;} if
)\lim N(XT) =00 (4.1)

holds for any open interval I containing 7. We denote the set of all cluster points by

A

Do(H).

Remark 4.1 Note that the notion of the cluster point in the sense of Definition 4.1
is differ from that of the accumulate point in the usual sense. Indeed, zero is always a
cluster point in the sense of Definition 4.1. However, let M be the standard sphere of
dimension n and H be the square root of the Laplacian with respect to the standard

metric. The eigenvalues of H are given by \/p(p +n — 1) with p non-negative integers.
Then the inequality

Vo +n—1) = alg+n—1)] > Ip—q

shows that zero is not an accumulate point of the set {e, — e, }.

With Definition 4.1, Helton’s theorem [17] (see also [11]), which is well-known in

spectral geometry, can be stated as follows.
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Theorem 4.1 (Helton) If the Hamilton flow generated by the principal symbol of]:I 18

not periodic, then we have Do(H) = R.

Theorem 4.2 (Helton-Guillemin) Let H be the positive square root of the Laplacian

on M. Then the geodesic flow is periodic if and only if there exists a positive constant
- 2

T such that Do(H) = {%n, n € Z}. In this case, the positive constant T is the least

common period of the periodic geodesic flow.

Remark 4.2 The cause of the restriction of the operator H to the Laplacian in Theorem
4.2 is the fact that the periodic geodesic flow has the common period ([35]) though the

periodic Hamilton flow does not necessarily have the common period.

The notion of the cluster point defined in the following subsection (Definition 4.2) is a
semi-classical analogy of Definition 4.1. The set of cluster points in the sense of Definition
4.2 depends on the energy level. However, it is natural since the dynamical behavior of
the reduced flow ¢} depend on the energy level.

Unfortunately, our main theorem stated in Section 4.2 does not completely clarify the
relation between the structure of the set of the cluster point in the sense of Definition
4.2 and periodicity of the reduced flow ;. Particularly, in case where the flow ¢} has
quite different behavior on different energy surfaces, such as a magnetic flow on a compact
Riemann surface with constant negative curvature —1 (see Section 5), it is not made clear
to what extent the structure of the set of the cluster points in the sense of Definition 4.2
depends on the energy level.

However, as we will see some examples in the next section, the structure of the set of
the cluster points in the sense of Definition 4.2 will be closely related to the periodicity

of the dynamical system CD?.

4.2 Cluster points in the semi-classical sense

As described in Section 3, for each integer m, let e;(m) < ea(m) < eg(m) < --- be
the eigenvalues of the operator H aon L,,n. We fix e > 0 as an energy level. For an open

interval I, we set

Nu(e,e) = {jeN;lej(m)—me| <c},
Np(e,c;I) = #{(j,k) € N(e,c) x N; ex(m) —e;(m) € I},

where ¢ > 0 is a positive constant.
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Definition 4.2 A real number 7 is said to be a cluster point of the set
{ex(m) —ej(m); (j,k) € Npn(e,c) x N, m € Z} in the semi-classical sense at energy
level e if, for some constant ¢ > 0,

lim N,,(e,c;I) =00 (4.2)

m—00

holds for any open interval I containing 7. We denote by s-Da. the set of all cluster

points at the energy level e in the above sense.

We will investigate the relation between the structure of the set s-Do,. and the peri-
odicity of the reduced flow ¢} on ¥}, Note that, if the operator H is the Laplacian on
P with respect to a Riemannian metric, then Theorem 4.2 can be applied for the set of

A

cluster points Do (H) in the sense of Definition 4.1.

Lemma 4.1 For every e, the set s-Do, of cluster points in the sense of Definition 4.2 is

a subset of the set Do(H) of cluster points in the sense of Definition 4.1.

Proof. Set \,, = me + 1. Then for any open interval I we have N,,(e;1) < N(Ap;1).

Note that the number N(A; ) is monotone increasing in A\. Hence the lemma follows. |

Corollary Let H be the square root of the Laplacian on P with respect to the Riemannian
metric described in Section 3.1. Suppose that the geodesic flow 1y on the cotangent bundle

2
T*P\ 0 is periodic with period T > 0. Then s-Do, C %Z.

Our main theorem of this section is the following. (See Sections 3.2, 3.4 for the
conditions (H1), (H2), respectively.)

Theorem 4.3 Assume that the conditions (H1) and (H2) are satisfied. Then the set

s-Da. of all cluster points in the sense of Definition 4.2 is whole real line:

s-Do, = R.

By Theorem 4.3, we obtain the following.

Corollary Assume that the conditions (H1) and (H2) are satisfied. Then for every real

number T, there are sequences my, j;, ki € N with m; T oo such that we have

i (ml)

— e and ey (my) —ej(my) =17 (I — 00).
m
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4.3 Proof of Theorem 4.3

To begin with, we will recall the notation in Section 3. For e > 0, we set X} =
H;'(e) C X, where H, is the reduced Hamiltonian. Let L?(X}) be the Hilbert space
of L2-functions on ¥} with respect to the normalized Liouville measure, dw?, and let
Uf be the one-parameter family of unitary operators on L*(32) defined by Ufa = aop},
a € L*(X)). Let

Us = / ¢t 4, (z) (4.3)

be the spectral resolution of Uf. (We have written the above spectral measure by E in

Section 1. However, in this subsection, we will write it E, for simplicity.) We set

SA = /sze(x). (4.4)

The self-adjoint operator S2 is an L2-extension of the restriction on ¥} of —/—1 times
the Hamilton vector field.

Lemma 4.2 If the reduced flow o} is not periodic on ), then the spectrum Spec(S2) of

the self-adjoint operator S is whole real line.

Proof. The following proof is due to Guillemin [11]. However we will repeat it to make
sure. Suppose that the orbit of the flow ¢} through zy € ¥ is not periodic. Consider the

bounded operator
f(S§ha= [ f@)dBlo)a= o [ f00adt, a e () (45)

for f € C°(R), where f is the Fourier transform of f. We will show that, f(S}) = 0
implies f = 0. This claim concludes Spec(S2) = R.
First we note that, by (4.5), for every continuous function a, the function f(S})a is

also continuous and its value at z € ¥ is given by

F($a(z) = o- [ F@0Ratz)dr (4.6)

Second we claim that, for large K > 0 and g € C{°(R) with suppg C (—K, K),
there are smooth functions ax € C*(X}) and gx € C*®(R) such that these are satisfy
ax(prz0) = g(t) + gr (1), x|l < 2l|gllee and supp g N [~ K, K] = 0.

Indeed, let

vk = {pta0; t € [-K, K]},

Since the Hamilton vector field Xp, generating the flow ¢} is non-vanishing, the segment

vk is diffeomorphic to the interval [—K, K|. Let I'x be a tubular neighborhood of 7
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such that T'x is diffeomorphic to [—K, K] x D with vx = [—K, K] x {0}, where D is
sufficiently small disk of dimension dim X} — 1. We will take a function p € C§°(D) with
0<p<1 p(0)=1 Set

ao(s,x) = g(s)p(x), (s,z)e[-K,K]x D,

which is a compactly supported smooth function on 'k, and extend ay to the smooth
function ax on X} which is zero on the outside of I'x. If we set gx (t) = ax(¢p20) — g(t),
then we have gk (t) = 0 for |t| < K, and hence supp gx N [—K, K] = (). Furthermore we

obtain
g (8)] = lax (9720) — g(t)| < 2g(t)]

for all ¢t € R, since |a(z)| < |g(s)| for z = (s,z) € 'k = [~ K, K| x D. Then the functions
ar, gk have the required properties.

Now, suppose that f € C5°(R) satisfies f(S}) = 0. By (4.6), for every a € C>®(%2),
g € C3°(R) and K > 0, we have

A

0= f(SNax(z0) = 5 /f 1) dt + [R\[ o | (D0t (4.7)

The second term in the right hand side of (4.7) tends to zero as K — oo by the inequality

[ F0ga
R\[-K,K]

| Fg(t)dt =

for arbitrary g € C5°(R), which implies f = 0. |

<olglle [, 1F0]

Therefore we obtain

Before proceeding the proof of the main theorem, we need to give an account of the
spectral measure lemma. For a function a € L?(X?), we denote by du, the spectral
measure corresponding to a, that is u(A) = ||E.(A)a|* for Borel subset A C R. Let
{I/Jm}ijeN be an orthonormal basis for H) consisting of eigenfunctions of the operator
H 1. We set

(A)) = lim Np(e,c)™t > (AU, M), (4.8)

oo JENm(e,c)
where Ny, (e, c) = N (e, ).
By Theorem 3.4, we have (A )} = Jsr00(A) dw? if the condition (H2) is satisfied. We

set

WA = Tim Nu(e,0)' 3 flex(m) — e;(m)[(Av?, )2 (49)

JENm(e) k
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By Theorem 3.4, the existence of the limit in (4.9) can be proved by the same fashion as
the proof of Lemma 2.2.
The functional m} on C$°(R) defines a measure on R. We will also denote this

measure by dm?.

Lemma 4.3 (Zelditch) Assume that the condition (H2) holds. Then for every pseu-
dodifferential operator A of order zero on P commuting with the action of G, we have

dmg = dﬂao(A)-

This lemma can be proved by a method similar to the proof of Lemma 2.3.

We will prove the following proposition, which completes the proof of Theorem 4.3.

Proposition 4.1 Assume that the conditions (H1) and (H2) are satisfied. Then the

spectrum Spec(S2) of the self-adjoint operator S is contained in s-Da,.

Proof. Let 7 be not in s-Do.. Then, for every positive constant ¢ > 0, one can take a
sequence m; of positive integers and an open interval I containing 7 such that m; T oo
as [ — oo and N, (e,c;I) < C for some constant C' > 0. For any smooth function
f on R with compact support containing the open interval I, we consider the bounded
operator f(S2). Let A be a pseudodifferential operator on P of order zero commuting
with G-action, and let a be the smooth function on X2 induced by the principal symbol

of A. On the one hand, by Lemma 4.3, we have

(F(SNa, ey = [ Fda

where
Sm(A, ) = Nm(e,e)™t >0 > flex(m) — e;(m)[(Av®, v ),
JENm (e,c) kEN

On the other hand,

Ny, (e,c; 1)
S, (A, < J|Al|? su )P
Su(A D) < A sup )P SRS
< ClA|*sup | f(2)]* Nyn, (e,) . (4.10)
zeR
Since N, (e,c) — oo as | — oo, the last term in (4.10) tends to zero as | — oo. Thus
we have (f(S2)a, a)r2syy = 0. For every smooth function, a, on X7, there exists a
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pseudodifferential operator A on P of order zero commuting with the action of G such
that the function on ¥? induced by the principal symbol of A coincides with a (see Lemma
3.3). Hence we obtain (f(S))a, a)r2xy) = 0 for every smooth function a on X}. By the

polarization identity

13 n n
(f(S2)a, b) L2y = 1 Z "(f(S))(a+i"), a+i b) L2 =0,

n=0

we have f(S2) = 0. Since f is arbitrary as far as its support is contained in the open
interval I, we conclude that 7 is not in the spectrum of S, which completes the proof of

this proposition. |
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5 Examples for the circle bundle case

Here we will discuss the circle bundle case, that is the case where G = S*. This case is
particularly important since there are interesting examples. In Section 5.1, we will recall
the definition of the reduced quantum and classical dynamical system for this case. We

will give some examples in Section 5.2.

5.1 Magnetic Schrodinger operator

Let 7 : P — M be a principal S'-bundle over a compact Riemannian manifold
(M, (, )n) and let © be a connection 1-form on P. Let B be the curvature 2-form of ©.
Note that B is a closed 2-form on M. We fix a strictly positive function V' on M. Then
the metric (, )p on P, defined by the identity

(u,v)p = (dr(u),dr(v) )y +V20(u)O(v) u,v € TP, (5.1)

is invariant under the action of S'. Now we consider the first order self-adjoint non-
negative elliptic yDO H on P defined by

H = \/D*D — V232, (5.2)

where D is the covariant exterior differentiation with respect to the connection ©, and
9y is the infinitesimal generator of S*-action. The operator H commutes with S'-action.
Note that the principal symbol H of H is the Riemannian norm function on 7*P \ 0, and
hence corresponding Hamilton flow ¢; is the geodesic flow. The S'-action on P lifts to

the Hamiltonian (left) action on 7% P:
2(p,¢) = (pz71,27¢), 2 €S, (p.¢) €TP, (5.3)
and its moment map is given by
O:T"P— R, ®(p,¢) = ((0). (5.4)

We take the irreducible representation A = 1 € R of S!, that is the multiplication by
elements of S1. Then the corresponding reduced phase space (X1,€;), X; = ®71(1)/5' is
symplectically diffeomorphic to (T*M, Qy — 75, B), where €, is the canonical symplectic
form on T*M. The Hamiltonian H on X; = T*M, which is induced by H, is of the form

H(z, &) = /€l + V(). (5.5)

The reduced flow ¢, is generated by (H,Qy — 73, B) and it is called electro-magnetic flow
associated with the magnetic field B and the electric potential V. Let w, be the Liouville
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measure on 3, = H '(e) (e > max V). Then the dynamical system CD, formulated in
Section 3 is the triple (2., ¢y, we).
If we set (z(t),&(t)) = pi(xo, &) for (zg, &) € Xe, then the curve x(t) on M satisfies

the equation

D dx 1 _dx 1
2825y~ grad (V2 5.6
aar = o la) T gasmad (V). (5:6)
with the initial conditions
2(0) =70, (0) = ¢ (5.7)
— L0 dt — e 05 .

where D/dt is the covariant differentiation associated with the given metric on M, J :

TM — TM is the skew symmetric operator characterized by the identity
By (u,v) = (u, J(v)). (5.8)
Note that, in (5.7), we have identified 7*M with T'M by the Riemannian metric (, ).

Next We will recall the formulation of the reduced quantum dynamical system QD
described in Section 3.1.
The action of S* on L?*(P) breaks it into the following direct sum of Hilbert spaces:

L*(P)= P L, (5.9)

meZ

where the closed subspace L, is defined by
Lyn={feL*P); fpz)==""f(p) z€S", pe P} (5.10)

Now, for every integer m € Z, we define the magnetic Schrodinger operator H,, by
the restriction of the operator H to the subspace L,,.

We will give another description of the magnetic Schrédinger operator H,,. For ev-
ery integer m € Z, let L™ — M be the Hermitian line bundle associated with P via
the character z +— 2™ of the group S!. Then there is a natural unitary isomorphism
L*(M, L™) = L,, from the Hilbert space L*(M, L™) of L?-sections of L™ onto the Hilbert
space L,,. By this unitary isomorphism, the operator I:Ifn is unitarily equivalent to the

second order positive elliptic operator
(V5 V) +m?V2, (5.11)

where V' = ||0/06||~! and V,,, is the connection on the line bundle L™ induced by ©. The
elliptic operator V V,, is locally expressed by the following form:

ViV

1 (0 y 9
WV == 3 (W + m\/—lAZ) gIVG (W + m\/—1Aj> , (5.12)
1,7=1
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where G is the determinant of the matrix (g;;) of the component of the Riemannian metric
on M, (¢7) = (g;;)~* and A = > A;dz’ is the pull-back of the connection 1-form © by a

local section of 7 : P — M, and Eence it satisfies dA = B. The local 1-form A represents

a vector potential of the magnetic field B.

5.2 Examples

Example 1 Let M be a Riemann surface with constant negative curvature —1 and let
B be the volume form on M. Then, by Gauss-Bonnet theorem, the integral of (27)~!
times the volume form B is an integer, and hence there exists a principal S'-bundle P
and a connection 1-form © whose curvature form is B. We take V = 1. Then, for e > 1,
the Liouville measure w, on the energy surface 3, = H!(e) is given by the direct product
of the canonical measure on the unit sphere and the volume measure dV,; on M up to
constant multiple. For an integer m, let {¥/"} be an orthonormal basis of eigenfunctions
of the Magnetic Schrédinger operator H,, for the Hilbert space £,,. Let f be a smooth
function on M and Ay € A, be the multiplication operator by the lift of f on P. The
principal symbol of A; is given by the lift of f. Therefore we have

(A vy = [ f P dvag, (5.13)

(00(Af)) = vol(M)-l/Mfde. (5.14)

It is well-known ([29]) that the dynamical system (3., ¢, w.) is ergodic if e > /2, periodic
if 1 < e < v/2. Therefore we obtain the following corollary of Theorems 3.1, 3.3.

Corollary Let M be a compact Riemann surface with constant negative curvature —1, B
the volume 2-form and e > /2. Then for every orthonormal basis {V]m} of etgenfunctions

of H, there ezists a family {J,,} of subsets in Ny, (e, c) satisfying

. £ Sm
lim ———~ =1 1
AL N (e 0) (5.15)

such that for all f € C*°(M) we have

lim max

m—00 jeJm

[ty pava = voiant | fde’ 0. (5.16)
M M

Proof. In view of Theorems 3.1 and 3.3, we only need to prove that a family {.J,,} can
be taken independently of the choice of a smooth function f. For this sake, let {¢,} be
an orthonormal basis for L?(M) consisting of eigenfunctions of the Laplacian. For every
l € N, let {J,,(1)} be a family satisfying (5.15), (5.16) for all f = ¢, with p <. We may
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assume J,, (I + 1) C J,, (1) for all I. We can find a sequence {l,, },nen of natural numbers
which is monotone increasing and tends to infinity as m goes to infinity such that

1 _ ()
1_217_]\7 (e,c) (5:17)

We set J,,, = Ju(ln). We will show that the family {J,,}, J,, C Ny (e,c) is a required

one. In view of (5.17), (5.15) is obvious. We will write
AP(F) = [ Al Edvis —vol(M) ™ [ faviy,

for each smooth function f € C*°(M). Since lim max |AT (pp)] = 0, for p < [ and

m—=00 jE ]

[y T 00 as m — 0o, we have
lim max |A7"(p,)] = 0 (5.18)

m—00 j€Jp,
for all p € N. For every smooth function f, and every positive integer n, we set f, =
n

> (f, ¢p )pp, which converges to f in L*(M) as n — oo. Note that, since {¢,} is an

p=1
orthonormal basis of eigenfunctions, the function f, is also smooth and converges to f

uniformly on M. Therefore, for any € > 0, we can take n € N so that ||f — f.||c < €.

Then, for every j € J,,,, we have
AP < [1F = Fallo Vi + AT (fa)] +vol (M) [ 1 = falaVas
M M
< 2f = falloo + 221 @) IAT ()]

p=1
N 1/2

< 2+ || f]lr (ZIA}”(%)IQ) ,
p=1

and hence
. 1/2
m m 2
max [A7()] < 2¢ + ]2 (;g}gij <<,op>|) . (5.19)

By (5.18), we obtain
lim sup max |A7'(f)| < 2e.

m—oo JEIm

Since € > 0 is arbitrary, the family {.J,,} satisfies (5.16) for every f € C*(M). 1|

Example 2 The Hopf fibration S? — S2. Let P = S? = SU(2) and M = S?. We fix
the inner product (A, B )2 = 2Tr(B*A) on the Lie algebra su(2) of SU(2). Then

1{i 0 1{ 0 1 1/{0 i
e = — , €y = — , €3 = —
"ol 72\ 10 T2l 0
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form an orthonormal basis which satisfy the relation
[61762] = €3, [62763] = €1, [63761] = €2.

We consider M as the adjoint orbit through e;, and hence it equipped with the metric
(, ym which is isometric to the standard 2-sphere with radius 1. The natural projection
7: P — M is an S'-bundle. Let © be the connection 1-form on P defined by

O(A) = %<A,e1 VE, A€ su(2),

where £/ = 2e;. We regard R+ E as the Lie algebra of S'. Note that the curvature form of
the connection O equals (1/2) times the volume form on M. For positive constant V' > 0,

we define the metric (, )py by

1

(,)pv=m"(,)m+ 4—‘/2<®>®>5u(2)-

Especially, the Riemannian manifold (P, (, )p1/2) is isometric to the standard 3-sphere

with radius 2.

Lemma 5.1 For every e >V, the magnetic flow p; on Y. is periodic with period T'(e) =

e2

e2 —

21

y where d =V?* —1/4.

Proof.  'We will show that the solution curve of the equation (5.6), (5.7) is periodic with
with period T'(e). The magnetic field B is (1/2) times the volume form on S?. Thus B
is of the form

1
B.(u,v) = §<u X v, x),

where (, ) is the canonical metric on R® 2 su(2), and we regard T'S? as
TS? = {(z,u) € R*x R?; |z| =1, (x, u) = 0}.

Therefore the map J : T'S? — T'S? defined in (5.8) is given by J(v) = (1/2)v x z. Since

V' is constant, the equation (5.6) comes into the following form:

D 1
—T = —1 . 2
Gt =g E X7 (5.20)

Note that the covariant differentiation of & is obtained by the projection of & onto the

subspace perpendicular to x. Thus we have

D
—&=%— (&, z)x.

dt
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Since |Z(t)| is constant, we have (%, z) = —a?, where we set a = [2(0)] = (1/e)¢]).

Clearly we have

L ;VQ. (5.21)
Therefore the equation (5.20) is written as
N 9
=g txz—a (5.22)
We will seek for a solution of the form
x(t) = acos(ct)e; + asin(ct)es + bes. (5.23)

Substituting (5.23) into (5.22), we obtain that, if

e2 — V2 b 1 e2 —d
a = _ = - C =
e2—d’ 20/ez —d’ e2

then (5.23) is a solution of (5.22). Since the isometry group of S? acts transitively on
Y., every solution of (5.22) is an isometric image of (5.23). Clearly the solution (5.23) is
periodic with period 27 /c = T'(e). |

Remark 5.1 Lemma 5.1 is essentially obtained by Sunada [30].

It is easy to see that, the eigenvalues of the magnetic Schrodinger operator ﬁ% are

given by

1
Ag(m):5\/(2p+|m|+1)2+4dm2—1, p=0,1,2..,

and the multiplicity of A}’ (m) equals 2p 4 [m| 4 1. (See, for instance, [19].) Then we will

claim the following.

2T

Proposition 5.1 We have s-Do, =
T(e)

Z for alle > V.
Proof. We note that, for e >V, |)\X(m) — me| < c if and only if
C_(m) < p < C.(m), (5.24)

where we set

\/4(emj:c)2—4dm2+1—m—1

C’i(m) = 2

(5.25)

It is easy to see that

2cem

Celm) = C-(m) 2 \/4(62 —d)m? +4c¢® + 1
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We take constants mg > 0 and ¢ > 0 such that e?m2 —1 > 0 and

4(e2 —dym +1
c> .
4(e2m3 — 1)

Then we have Cy(m) — C_(m) > 1 for every m > my, and hence we can take a positive
integer ¢, satisfying (5.24) for every m > my.
For an integer d, we set p,, = ¢,, + d. Then we have
2
1%
qm (m) - T(e)
as m — oo. Therefore (27/T(e))Z C s-Do..

Conversely, let 7 € s-Do, and let I = (a,b) be an open interval containing 7 such that

A o(m) — A

Pm

b—a < 2n/T(e). Then, for every positive integer m, there are positive integers ¢, pm
such that ¢, satisfies (5.1) and a < AV (m) — AY (m) < b. Let dm = pn — @ We will
assume that 7 > 0, and hence a > 0, d,,, > 0. By the inequality

1
Ao (m) =N (m) > ——
Foam) = X m) >

(if d < 0 then the right hand side of this inequality can be replaced by 1), we have
A
> —— > 0.
1+2vd

Note that d,, is a positive integer. Therefore, by taking a subsequence of {d,,} if necessary,

v v
b> A, (m) — Ao (m)

we can assume that there is an integer d such that d,, = d for sufficiently large m. Then,
by the same argument as above, we obtain that A} (m) — AV (m) — (2r/T(e))d as
m — oo. Thus by b —a < 27/T(e), we conclude that {(27/T(e))d} = I N (2 /T(e))Z,
and hence 7 = (27 /T(e))d. We can prove it in a similar fashion for 7 < 0. Since the open
interval [ is arbitrary as far as it contains 7, we conclude that 7 = (27/T'(e))d, which

completes the proof. |

Example 3 Let H? be the reduced Heisenberg group of dimension 3 (see [9]). The
group multiplication of HI* = R? x S! is defined by the identity

27rit’) 2m(t+t’+(l/2)(x’y—xy’))) _

(z,y,e>™") - (2!, , ™) = (x + 2/, y + o/, e

Let T be the lattice T' = {(k,n,e™") € H*; k,n € Z}. Then the nilmanifold P =
H*/T is an S'-bundle over the flat torus T?> = R?/Z*. We fix the connection 1-form

© = 2m(dt + %(xdy — ydzx))

on P, whose curvature 2-form is 27 times the volume form on T?. We fix the invariant

metric on P obtained by setting V' = 27 in (5.1).
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Lemma 5.2 For every e > 2w, the magnetic flow p; on X, is periodic with period e.

This lemma can be proved by solving directly the equation (5.6).
It is not hard to see that the eigenvalues of the magnetic Schrodinger operator H,, are

given by

Ap(m) = \/27T|m|(2p +1)+4m®m?2, p=0,1,2,...,

and the multiplicity of A\,(m) is equal to |m/|. (See [16].)

2
Proposition 5.2 For every e > 27, we have s-Do, = Ty,
e

Proof. Note that |A\,(m) —me| < ¢ if and only if
C_(m) <p < Cy(m), (5.26)

where we set ( )2 ) )
me + ¢ ™m +
C — - .
i<m) 4m 2

We also note that for non-negative integers p, ¢, we have

2v2m(p — q)
V@p+1)/m+ 21 +/(2q +1)/m + 27

Ap(m) — Ag(m) = (5.27)

Since Cy(m) — C_(m) = ce/m, if we take a constant ¢ > 0 such that ¢ > 7 /e, then for
every positive integer m we can take a positive integer g, satisfying (5.26). For arbitrary
integer d, let p,, = ¢ + d. Then, by (5.27), we have
2
Ay () = Mg, (m) = =d.
e
2m
and hence —d € s-Do.,.
e
Conversely, let 7 € s-Do and I = (a,b) be an open interval containing 7. Let p,, ¢m
be two non-negative integers such that ¢, satisfies (5.26) and X, (m) — A,,,(m) € I. We
set = (2¢m +1)/m + 271 and d,,, = pp, — ¢m- Then A, (m) — A, (m) € I if and only if
b r

a [Tm dm,
/= < Y (5.28)
2V2m 14 2d,, /mry, +1 2

21
Assume that 7 > 0, and hence a > 0. Note that \/r,,/2m — €?/2m as m — oo and
d,, € Z. Then, by the inequality (5.28), we have a < (27/e)d,, < b for sufficiently large

m. Therefore if we take b —a sufficiently small, then there is an integer d such that d,, = d
for sufficiently large m. By the same argument as in Example 2, we have 7 = (27/e)d.

We can prove it by the same way in case where 7 < 0. |

Examples 2, 3 suggest that, if the magnetic flow ¢} is periodic on ¥2 with period T'(e),
then s-Do, = (2r/T(e))Z. However, it has not been proved yet.
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Appendix: Weak limits of eigenfunctions

Throughout this section, we will follow the notation of Section 2. In Section 2,
we have mentioned quantum ergodicity. Ergodicity of the classical dynamical system
(X, ¢, w) affects the asymptotic behavior of eigenfunctions ¢; in the high energy level.
Especially, Theorem 2.3 says that, if the dynamical system (X, ¢, w) is ergodic then, for
every orthonormal basis {¢;} of eigenfunctions of H, there exists a subsequence of full
density such that it converges weakly to the Liouville measure. Then it is natural to ask
whether the sequence {¢;} converges without taking a subsequence. Though there are
several results on this problem ([22], [44]), it seems very hard to solve it completely. Here
we will give some generalities on the weak limit points of the eigenfunctions, which are

called quantum limits, and some results obtained by using the methods in this article.

A.1 (C*-algebra A and its properties

Let A be the closure of the algebra Ay with respect to the operator norm. A is a
C*-subalgebra of the algebra of all bounded operators on L?*(M).

Lemma A.1 There exists a unique x-homomorphism o : A — C(X) from A onto the
commutative C*-algebra C(X) of all continuous functions on % such that the restriction

01, 0f 0 to Aq coincides with the principal symbol map oy.

Proof.  For every A € A, we can choose a sequence A,, € Ay such that |A — A, || — 0 as
n — oo. Note that the sequence {og(A;,) }nen in C(X) converges to a continuous function.
Indeed, by the formula (see [34])

loo( Al = ,_inf |4, + K], (A1)
we have
loo(An) = 00(Am)llec < [|An = Aml| — 00 (n,m — o0).
We define
o(A) = lim oo(Ap). (A.2)

Let B, € Ay be another sequence such that ||A — B,|| — 0. Let b = 1im 0¢(B,). Then

we have
[0(A) = blloo < [lo(A) = 00(An) oo + [[An — Ball + [|b — 00(Bn)[lc — 0,

and hence the limit in (A.2) is independent of the choice of the sequence A, € A, as

far as it converges to A. Since the principal symbol map o¢ is a *-homomorphism, the
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map o is also a s-homomorphism. Clearly we have o), = 0p. To show the surjectivity
of o, we note that o is surjective onto the x-subalgebra C'*°(X), and hence the image of
o is dense in C(X). It is well-known (see Proposition 2.3.1 in [4]) that the image of a
sx-homomorphism from a C*-algebra to another is closed. Thus the image of o is closed,

and hence the assertion follows. |

Before going to discuss the weak limits of eigenfunctions, we will mention some proper-
ties of the C*-algebra A. Let K be the C*-algebra of all compact operators on L?(M). Let
A € K. Then, for any € > 0, we can take a finite-rank operator B such that ||A — BJ| < e.
Let {e,}"_, be an orthonormal basis for the image of B (N = dimImB). The operator

B is an integral operator with the kernel

2)Bren(y) € L3 (M x M).

||M2

We take L € C®(M x M) such that ||K — L||p2guxamy < €. We denote by T, the
integral operator with the kernel L. The operator T, is a smoothing operator, and hence

T, € Ay C A with o(T) = 0. Furthermore we have
[A=TL|| < A= Bl +[|B =1Ll < [[A = Bl + [ K = Ll L2(asxn) < 2e.
Since T7, is a compact operator, so is A. Thus we obtain
Kcol(0) C A (A.3)

(A.3) makes us to obtain the following proposition.
Proposition A.1 The following sequence is exact:

0— K-> A-5 0% — 0, (A.4)
where © : K — A is the inclusion.

Proof. Let A € A with 0(A) = 0. Then one can take a sequence A, € Aj such that

|A— A,| — 0. Since o is continuous, we have
lo0(An)[loc — 0. (A.5)
By (A.1), for each n, there is a compact operator K, € K such that

1
lo(An)lloo < 1 An = Kall < llo(An)llec + 0. (A.6)
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From (A.6), it follows that
A = Kyl < [J[A = Aul| + [[An — Kal| — 0.

Since K,, € K, we have A € K, and hence 07'(0) = K. Therefore the sequence (A.4) is

exact. |

Lemma A.2 The C*-algebra A is separable.

Proof. Let {a,}nen be a countable dense set in C'(X), and let A,, € 07 (a,,). Note that
the C*-algebra IC of all compact operators is separable. Thus we can take a countable
dense set {K,,}nen in K. Set By, = A, + K,,,. We will show that the countable set
{Bm.n}mnen is dense in A. Let A € A. For arbitrary € > 0, there is a positive number n
such that

lo(A—A)||le =  inf [JA—A,+K| <e.

K: compact
Let K be a compact operator such that ||A — A, + K| < e. Then we can take a positive
number m such that | K + K,,|| < e. Therefore we obtain

|A—= Bl <||A—A,+ K|+ ||K + K| < 2e.

This shows that the countable set { By, » }mnen is dense in A. |

A.2 Quantum limits

Let {¢;} be an orthonormal basis of eigenfunction of the operator H. We will con-
sider ¢; as a vector state on the C*-algebra A defined by ¢;(A) = (Ayp;, p;), A € A
Since {¢;} is bounded in A*, it is relatively compact with respect to the weak*-topology.
Combining this with Lemma A.2, we can find a convergent subsequence of {¢,} in the

weak*-topology.

Lemma A.3 Let {¢;};es (J C N) be a convergent subsequence of the fized orthonormal
basis of eigenfunctions in the weak*-topology. Then there exists a measure p; on % which

1s invariant under the Hamilton flow ¢; such that

lim_;(4) = [ o(4)dus, (A7)

J3j—00

for every A € A.
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Proof. First, we note that the orthonormal basis {¢;} converges weakly to zero, and a
compact operators map a weakly convergent sequence to a strongly convergent one. Thus
the limit w”-lim ¢, is constant on each fiber of the exact sequence (A.4). In view of the

Joj—00

surjectivity of o, it defines a linear functional p; on C'(X) by the identity
po(o(A) = lim_p(A)
j—00
Next, we will show the positivity of the linear functional p;. Let a € C*°(X) is non-
negative. Then we can take an operator Op(a) € o~'(a) C Ay such that Op(a) > 0. (See
[6] or Chapter VII in [34].) Thus we obtain
= 1 ; > 0.
paa) = lim ¢;(Op(a)) =0

This shows that the linear functional 1 is positive, and hence it defines a Borel measure on
.. Finally, we will prove the invariance of the measure p;. We define the x-automorphism
o A— Aby ;A = eitﬁAe_itﬁ, A € A. By Egorov’s theorem (Lemma 2.1, (2)), we
have

o(aA) = o(A)oy, (A.8)

for every A € A. Let a € C(X) and A € o7 !(a). Then, by (A.8), we obtain

py(acp) = lim pj(Ad) = lim @;(A) = p(a).

J3j—00 J3j—00

This shows that the measure p; is invariant. |

Definition A.1 The invariant measure py which is a weak™-limit of a subsequence
{@j}jes is called a quantum limit with respect to the subsequence J C N. We will denote

by O the set of all quantum limaits.
Note that Q is a subset of the set M (X) of all invariant probability measures.

Remark A.1 Let pu; € Q be a quantum limit with respect to a subsequence J € N.
Let my : X — M be the projection. For a smooth function f € C*°(M), we will denote
by A; € A the multiplication operator by f. Then we have

/Mf|90j|2dVM = pj(Ar) — /ZWXM dpy = /M fd(mar) e, (A.9)

as J 3 j — oo. Therefore the measure (mys).p; on M is the weak limit of the measures
{l;1?dVas}jes. We also note that, if the dynamical system (X, ¢, w) with w the normal-
ized Liouville measure is ergodic, then by Theorem 2.3 we have w € Q with respect to a

subsequence J C N of full-density.
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A.3 Ergodicity of quantum limits

Let pu; € Q be a quantum limit with respect to a subsequence J C N. Then
we have the dynamical system (X, ¢y, py). The following theorem gives a condition for
the ergodicity of (X, ¢y, p1y) in terms of asymptotic properties of eigenfunctions. In the

following, we will denote by u;(a) the integral of a € L?(u;) by the measure .

Proposition A.2 Let u; € Q be a quantum limit with respect to J = {jx} C N. Then
the dynamical system (X, @4, puy) is ergodic if and only if the following two conditions hold.

(1) For every A € A, we have

lim > [(Apj, @5) = lus(o(A))I (A.10)

k—o0

ej=ej,
(2) For every A € A, we have

(l;im limsup > [(Apj,, ¢;)> =0. (A.11)

-0 koo J
0<|6]’76]’k |<6

Proposition A.3 The dynamical system (X, @y, j17) has weak-mizing property if and only
if the following two conditions hold.

(1) For every A€ A and 7 € R, we have

k—o0

lm 3 KA, ) = ls(o(4) v, (A12)

ej:e]jk—H'
(2) For every A€ A and 7 € R, we have

lim lim sup ; (Apj,, ¢5)° =0. (A.13)
0<|ej—ej, —T|<d

Proof. We will give a proof only for Proposition A.3. Suppose that the dynamical system
(3, ¢, py) has weak mixing property. Let A € A and 7 € R. Then we have

s (@ (A)Poro = |pa(o(A)(7))*
= ps(loe(A)(7)]*) (weak-mixing property)

= Hm (o (A(7)" A(7))). (A.14)
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By the definition of A;(7) (see Section 2.1), we have

1 e’it(Ej —e—T) __ 1

Alr)pr = > A E— (Aei wi)ei+ 2. (Api 05)e) (A.15)

J J
ejFe+1 ej=e;+T

This implies

1A()esll® = 20 S(te; — e =TI Apse, 95)FF + 1A @s]*  (A16)
ej;éejjk—l—ﬂ-
> [A(T)esll, (A.17)

where A(7) is the operator defined by

A(T) = Z P€+TAP67

e,e+rESpec(H)

and S(z) = (|e® — 1]|/x)%. Note that the bounded operator A(7) is not necessarily an
element of A. From (A.17), it follows that

pa(o(A(r) A7) = lim [|A(T)e; )" = lin sup IA(T) 5117 (A.18)
On the other hand, we have

0 < lminf [(A(r) = @A)y

= liminf | A(7)g;, [* — s (o (A) (7). (A.19)
Therefore we obtain
s (@AE)P = lim A, | = lim as(o(A) AD).  (A20)

Since
lim ([ A7), |* = lim 37 [(Apy, o),
ej :ejjlC +7

we conclude (A.12). Furthermore, by (A.20) and (A.16), we have

T limsup 3 S(te; — e, — 1)l Ay, 05) =0, (A.21)

=00 koo
eﬂée]k—l—T

By the same argument as in the proof of Proposition 3.2, we conclude (A.13).

Conversely, we will assume (A.12) and (A.13). We set

Sjk(t7‘/4) = Z S(t(ej — G — T>>|<A<10jk7 Pj >|2

J
€ #e]-k +7
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From the assumption (A.12), it follows that

lim [ A(T)g;, [I* = s (o (A)(r)) .

By (A.13) and the same argument as in the proof of Proposition 3.2, we obtain (A.21).
Combining (A.16) with klim | A:(T) 5|12 = ps(|o(A)(7)]?), we have

Jim 85, (1 4) = py(jou(n) ) = s (A (D)

—

Letting ¢ — o0, we conclude

pa(lo(A)(T)[?) = I (o (A)())[.

Since o is surjective, the dynamical system (X, 4, py) has weak-mixing property. |

A.4 Cluster points and quantum limits
Let sy € Q be a quantum limit with respect to a subsequence J = {j,} C N. For a
bounded open interval I C R, we set
Ni(I) = {(G,jx) ENXJ;ej—ej €1},
Ny(I) = N;(I).

Definition A.2 A real number 7 € R is said to be a cluster point with respect to the

subsequence J C N if N;j(I) = +oo for every bounded open interval I containing 7. We

will denote by Doj(H) the set of all cluster points with respect to J.

Let L*(uy) = L*(X,py) be the Hilbert space of L?-functions with respect to the
measure ;. Note that, since p; is a finite measure, C'(X), and hence C*(X), is dense in

L?(pz). Let U/ be the strongly continuous one-parameter group of unitary operators on
L?(py) defined by U/a = acpy, a € L*(uy), and let

UJ = / ¢t 4B, ()
be its spectral resolution. We define the self-adjoint operator S; on L?(u;) by
Sy = /xdEJ(x).

We will denote by (-, -); the L?-inner product on L?(uy). The following proposition is

an analogy of Proposition 4.1.
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Proposition A.4 We have Spec(S;) C Do (H).

Proof. For a € C(X) we take an operator A € o7 1(a) C A. For every f € C*(R), we

have .
f(Sn)a == [ foiadt = a(4)).

where Ay € A is the operator defined by (see Section 2.5)
1

T or

Ay /OO f(t)eitHAe_itH dt

with f the Fourier transform of f.
Now, let 7 is not in Do ;(H). Then we can choose an open interval I such that N, (I)
is finite. Let f € C§°(I). A direct calculation by using the spectral decomposition for the

operator et Jeads us to obtain that
(F(Si)a )y = lim g, (AA) = lim Y fe; — e )[{Apso ). (A22)
j

Note that e;, — 0o as k — co. By the assumption N;(I) < oo, if we take k large enough,

then e; — e, is not contained in I for every j € IN. Since the support of f is contained

k
in I, the right hand side of (A.22) equals zero. This implies that f(S;) = 0 as far as
the support of f is contained in the open interval I, and hence it concludes that 7 is not

contained in Spec(Sy). 1
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