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Geometry at Tôhoku University for their encouragement.

This work was supported by the JSPS Research Fellowship for Young Scientists.

i



Abstract

The purpose of this article is to study the influence of dynamical behavior of clas-

sical Hamilton systems with ergodic and periodic properties on asymptotic behavior of

eigenfunctions and eigenvalues of the corresponding positive elliptic operator on a com-

pact Riemannian manifold, and conversely, to investigate the asymptotic properties of

eigenfunctions or eigenvalues which make the corresponding classical mechanics ergodic

or periodic.

We will give an estimate of the off-diagonal asymptotics of quantum observables for

quantum ergodic systems and a regularity result on limit measures associated with quan-

tum observables for systems with homogeneous Lebesgue spectrum. We will also give

necessary and sufficient conditions for ergodicity and weak-mixing property of the clas-

sical Hamilton systems, which are obtained by a reduction procedure with symmetry,

in terms of semi-classical asymptotic properties of eigenfunctions. Finally, a result on

the structure of the set of cluster points for the differences of eigenvalues in a certain

semi-classical sense is given, which is considered as a semi-classical analogy of Helton’s

theorem.
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Introduction

Asymptotic behavior of the eigenvalues of an elliptic operator on a compact Rieman-

nian manifold has been vigorously investigated. For instance, Duistermaat–Guillemin [8]

investigated the influence of the periodic orbits of the Hamilton flow on the asymptotic be-

havior of the counting function of eigenvalues. Helton [17] and Guillemin [11] studied, as

we will see in Section 4, the relationship between the periodicity of the classical mechanics

and the structure of the set of the cluster points for the differences of eigenvalues.

On asymptotic behavior of eigenfunctions, a remarkable result was established by

Shnirelman [26], Zelditch [37] and Colin de Verdierè [6]. The result of S–Z–C states,

roughly speaking, that the eigenfunctions of the Laplacian on a compact Riemannian

manifold with ergodic geodesic flow are asymptotically uniformly distributed in the high

energy level. In 1994, Sunada [28] introduced the concept of quantum ergodicity at infinite

energy level and, as we will state precisely in Section 2, obtained a necessary and sufficient

condition in terms of asymptotic properties of eigenfunctions of a positive elliptic operator

in order that the corresponding classical Hamilton system is ergodic. Furthermore his

method was used by Zelditch [42] to formulate the notion of quantum weak-mixing.

In the classical ergodic theory, there are many other concepts which are sufficient

conditions of classical ergodicity, and these have been intensively investigated. Accord-

ingly, it seems natural to ask how the dynamical behavior of the classical mechanics with

more chaotic property than ergodicity affects asymptotic behavior of eigenfunctions or

eigenvalues.

Moreover, the classical systems which are dealt in the above works are homogeneous

Hamilton systems on a cotangent bundle, and hence the dynamical system at an energy

level is isomorphic to it at every other energy level. However, in case where the flow is

not homogeneous, the dynamical behavior is different at different energy levels. Indeed,

there is the following important example ([14], [29]).

Let M be a compact Riemann surface with constant negative curvature −1 and Ω

the symplectic form on the cotangent bundle T ∗M over M defined by Ω = ΩM − π∗
MB,

where ΩM is the canonical symplectic form, B is the volume 2-form on M , and πM is the

projection from T ∗M onto M . The term of the 2-form B in the definition of the symplectic

form Ω introduces a magnetic field on M . Consider the Hamiltonian H(x, ξ) = ‖ξ‖. Let

ϕt be the Hamilton flow determined by (H,Ω), which is called magnetic flow under the

magnetic field B. We denote by ωe the Liouville measure on the hypersurface Σe = H−1(e)

with e > 0. Then the dynamical system (Σe, ϕt, ωe) is ergodic if e ≥ 1 and periodic if

e < 1. Ergodicity of such dynamical system as a magnetic flow affects semi-classical
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asymptotic behavior of the eigenfunctions for reduced quantum Hamiltonian ([18], [27],

[39]).

Taking the above background into account, we will consider the following problems.

Problem A Investigate the influence of the dynamical behavior of the classical mechan-

ics satisfying a sufficient condition of ergodicity, such a mixing property, on asymptotic

behavior of the eigenfunctions of the corresponding elliptic operator.

Problem B Formulate quantum ergodicity and weak-mixing for the quantum me-

chanics corresponding to the classical mechanics obtained by a reduction procedure of

a homogeneous Hamilton flow with symmetry, and investigate the relationships between

classical ergodicity and quantum ergodicity.

Problem C For the same dynamical systems as in Problem B, examine the influence

of the periodicity of classical mechanics on the structure of the set of cluster points in a

certain semi-classical sense for the differences of eigenvalues.

Of course, one can consider many other problems on the relation between asymptotic

behavior of eigenvalues or eigenfunctions and dynamical behavior of the corresponding

Hamilton flow. We refer the reader to the recent article of Zelditch [44].

We will mention the contents of this article.

In Section 1, we will review some aspects of the classical ergodic theory.

Problem A is one of the central subject in the area of quantum chaos, and it remains

unsettled. In Section 2, we will present some results on this problem. Here we will state

the main theorems in Section 2.

Let M be a compact connected Riemannian manifold without boundary, Ĥ a first

order self-adjoint non-negative elliptic pseudodifferential operator (ψDO for short) on M

with positive principal symbol H > 0. Let ϕt be the Hamilton flow generated by the

Hamiltonian H and the canonical symplectic form ΩM . Let ω be the Liouville measure

on Σ = H−1(1). We thus obtain the classical dynamical system (Σ, ϕt, ω). We denote

by 0 ≤ e1 ≤ e2 ≤ · · · ↑ ∞ and {ϕj}∞j=1 the eigenvalues and an orthonormal basis of

eigenfunctions of Ĥ, respectively: Ĥϕj = ejϕj. We set N(λ) = �{j ∈ N ; ej ≤ λ}.

Theorem 2.5 Assume that the Hamilton flow ϕt on Σ is transitive Anosov. Then, for

2



every ψDO A of order zero, we have

lim sup
λ→∞

N(λ)−1
∑
j

ej≤λ

∑
k

0<|ej−ek|<δ

|〈Aϕj , ϕk 〉|2 = O(δ).

It is well-known that the left hand side tends to zero as δ → 0 if the dynamical system

(Σ, ϕt, ω) is ergodic. We note that the transitive Anosov flow is ergodic with respect to

the Liouville measure.

Theorem 2.6 Assume that the dynamical system (Σ, ϕt, ω) has homogeneous Lebesgue

spectrum. Then, for every ψDO A of order zero with 〈σ0(A) 〉 = 0, there exists an

integrable function pA on R such that, for any a < b, we have

lim
λ→∞

N(λ)−1
∑
ej≤λ

∑
k

a<ek−ej<b

|〈Aϕj , ϕk 〉|2 =
∫ b

a
pA(λ) dλ,

where 〈σ0(A) 〉 denotes the space average of the principal symbol σ0(A) of A:

〈σ0(A) 〉 = ω(Σ)−1
∫
Σ
σ0(A) dω.

See Section 1 for the definition of transitive Anosov flow and homogeneous Lebesgue

spectrum.

In Section 3, the dynamical system obtained by the reduction of a homogeneous Hamil-

ton flow with symmetry, which is the same dynamical system as in [39], will be formulated

and some results on Problem B are given. We will give a brief account of them.

Let π : P →M be a compact connected principal bundle over a compact Riemannian

manifold M with structure group G, a compact connected Lie group. Choosing a bi-

invariant metric on G and a connection 1-form on P , we have a unique G-invariant metric

on P which makes the bundle π : P → M into a Riemannian submersion, with fibers

isometric to G. We fix such a metric. Let Ĥ be a self-adjoint non-negative elliptic ψDO

of order one on P commuting with G-action and let H = σ1(Ĥ) be its principal symbol.

The action of G on the cotangent bundle T ∗P is Hamiltonian and we will denote its

moment map by Φ : T ∗P → G∗ with G∗, the dual space of the Lie algebra of G. Let

λ be the highest weight of an irreducible representation of G and let Oλ (⊂ G∗) be the

coadjoint orbit through λ. It is well-known ([12]) that there is a natural symplectic form

on Xλ = Φ−1(Oλ)/G induced by the canonical symplectic forms on T ∗P and Oλ. Since

the function H on T ∗P is G-invariant, it induces the Hamiltonian Hλ on Xλ. Let ϕλt

be the Hamilton flow on Xλ, and let ωλe be the Liouville measure on the hypersurface

H−1
λ (e) = Σλ

e . Then we obtain the Hamilton system CDλ
e = (Σλ

e , ϕ
λ
t , ω

λ
e ).
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The action of G on the Hilbert space L2(P ) breaks it into a direct sum of the form

L2(P ) =
⊕
µ

Lµ,

where µ runs over dominant integral weights and Lµ is the isotypical subspace associated

with the irreducible representation (πµ, Vµ) corresponding to the dominant integral weight

µ. We denote by Ĥλ the restriction of Ĥ on the ladder subspace ([13], [15])

Hλ =
∞⊕
m=1

Lmλ (⊂ L2(P )),

and call Ĥλ the reduced quantum Hamiltonian. Let e1(m) ≤ e2(m) ≤ · · · be the eigenval-

ues of Ĥλ and let {νmj }j,m∈N be an orthonormal basis for Hλ consisting of the eigenfunc-

tions of Ĥ: Ĥνmj = ej(m)νmj . For a fixed constant c > 0, we set

Nm(e, c) = {j ∈ N; |ej(m) −me| ≤ c},
Nm(e, c) = �Nm(e, c).

The quantity Nm(e, c) plays the same role as the counting function N(λ) in the high

energy case. Before going to state the main theorem in Section 3, we need to prepare the

following two conditions on the dynamical system CDλ
e .

(H1) The Hamilton vector field, XH , of H is not tangent to the G-orbit through any point

in Σ̃λ
e = Ze ∩ Φ−1(Oλ), where Ze = H−1(e) ⊂ T ∗P .

(H2) The set of periodic points of the reduced flow ϕλt on Σλ
e has Liouville measure zero.

The condition (H1) is used to extend the functions on Σλ
e to the homogeneous G-invariant

functions on T ∗P . Under the assumption (H2), the existence of the quantum space average

〈A 〉λe of zeroth order ψDO A commuting with G-action, which is defined by

〈A 〉λe = lim
m→∞Nm(e, c)−1

∑
j∈Nm(e,c)

〈Aνmj , νmj 〉,

is guaranteed by the semi-classical asymptotic formula due to Guillemin–Uribe [14], [15]

and Zelditch [39]. Note that the condition (H1) is fulfilled for the dynamical system

generated by the principal symbol of the Laplacian with respect to the fixed metric. We

also note that, if the dynamical system CDλ
e is ergodic, then the condition (H2) is satisfied.

For a bounded operator A on L2(P ), we define the quantum (long) time average Ā by

Ā = w-lim
t→∞

1

t

∫ t

0
eisĤAe−isĤ ds.
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Now the main theorems in Section 3 can be stated as follows.

Theorem 3.1 Assume that the dynamical system CDλ
e satisfies the conditions (H1)

and (H2). Then the dynamical system CDλ
e is ergodic if and only if the following two

conditions hold.

(1) For every A ∈ A0 and for every orthonormal basis {νmj }∞j,m=1 for Hλ consisting of

eigenfunctions of Ĥλ, we have

lim
m→∞Nm(e, c)−1

∑
j,k∈Nm(e,c)
ej(m)=ek(m)

∣∣∣〈Aνmj , νmk 〉
∣∣∣2 =

∣∣∣∣∣vol(Σλ
e )

−1
∫
Σλ

e

σ0(A) dωλe

∣∣∣∣∣
2

.

(2) For every A, {νmj } as above, we have

lim
δ↓0

lim sup
m↑∞

Nm(e, c)−1
∑

j∈Nm(e,c)

∑
k

0<|ej(m)−ek(m)|<δ

∣∣∣〈Aνmj , νmk 〉
∣∣∣2 = 0.

Theorem 3.3 Suppose that the condition (H2) is satisfied. Then the following three

conditions are equivalent.

(S) For every A ∈ A0, we have

lim
m→∞Nm(e, c)−1

∑
j∈Nm(e,c)

‖(Ā− 〈A 〉λe )νmj ‖2 = 0,

where ‖ · ‖ is the L2-norm and {νmj }j,m is an orthonormal basis for Hλ consisting

of eigenfunctions of Ĥλ.

(Z) For every A ∈ A0 and for every orthonormal basis {νmj }j,m for Hλ consisting of

eigenfunctions of Ĥλ, we have

lim
m→∞Nm(e, c)−1

∑
j∈Nm(e,c)

∣∣∣∣∣〈Aνmj , νmj 〉 − vol(Σλ
e )−1

∫
Σλ

e

σ0(A) dωλe

∣∣∣∣∣ = 0.

(C) For every A, {νmj } as in (Z), there exists a family {Jm}m∈N of subsets in Nm(e, c)

satisfying

lim
m→∞

�Jm
Nm(e, c)

= 1

such that

lim
m→∞ max

j∈Jm

∣∣∣∣∣〈Aνmj , νmj 〉 − vol(Σλ
e )

−1
∫
Σλ

e

σ0(A) dωλe

∣∣∣∣∣ = 0.
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Theorem 3.5 Assume that the conditions (H1) and (H2) are fulfilled. Then the classical

dynamical system CDλ
e is weak-mixing if and only if the following two conditions hold.

(1) For every A ∈ A0, τ ∈ R and every orthonormal basis {νmj }∞j,m=1 for Hλ consisting

of eigenfunctions of Ĥλ, we have

lim
m↑∞

Nm(e, c)−1
∑

j∈Nm(e,c)

∑
k

ek(m)=ej(m)+τ

∣∣∣〈Aνmj , νmk 〉∣∣∣2

=

∣∣∣∣∣vol(Σλ
e )−1

∫
Σλ

e

σ0(A) dωλe

∣∣∣∣∣
2

δτ,0.

(2) For every A, τ and {νmj }∞j,m=1 as above, we have

lim
δ↓0

lim sup
m↑∞

Nm(e, c)−1
∑

j∈Nm(e,c)

∑
k

0<|ek(m)−ej(m)−τ |<δ

∣∣∣〈Aνmj , νmk 〉∣∣∣2 = 0.

Problem C is also still open. However, in Sections 4, 5, we will point out that the

periodicity of the classical mechanics, defined as above, relates to the structure of the set

of the cluster points in a certain semi-classical sense. We will also mention a result which

can be considered as an analogy of Helton’s theorem [17]. Here we will give the definition

of the notion of the cluster point and state the main theorem in Section 4.

For an open interval I and a positive constant c > 0, we set

Nm(e, c ; I) = �{ (j, k) ∈ Nm(e, c) × N ; ek(m) − ej(m) ∈ I }.

Definition 4.2 A real number τ is said to be the cluster point of the set { ek(m) −
ej(m) ; (j, k) ∈ Nm(e, c) ×N, m ∈ Z } in the semi-classical sense at energy level e if, for

some constant c > 0,

lim
m→∞Nm(e, c ; I) = ∞

holds for any open interval I containing τ . We denote by s-Dσe the set of all cluster

points at the energy level e in the above sense.

Theorem 4.3 Assume that the conditions (H1) and (H2) are satisfied. Then the set

s-Dσe of all cluster points in the sense of Definition 4.2 is whole real line:

s-Dσe = R.

In Section 5, we will give some examples for the case where the reduced flow ϕλt on Σλ
e

is periodic.
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1 Review of ergodic theory

In this section, we will review briefly some aspects of the classical ergodic theory, and

collect several facts which will be used in the following sections.

1.1 Ergodicity and weak-mixing

Let (Σ, ϕt, ω) be a dynamical system on a compact manifold Σ, where ϕt is a flow

such that (x, t) �→ ϕt(x) is measurable and ω is an invariant probability measure. For

every square integrable function a ∈ L2(Σ) = L2(Σ, ω), we denote its space average by

〈 a 〉:
〈 a 〉 =

∫
Σ
a dω.

For every real number τ ∈ R and positive number t > 0, we set

at(τ) =
1

t

∫ t

0
e−iτsa◦ϕs ds (∈ L2(Σ)).

For τ = 0, we will write at instead of at(0), and we will call it the time average of a up to

time t > 0.

Theorem 1.1 (von Neumann mean ergodic theorem) Let H be a separable Hilbert

space, {Vt}t∈R a strongly continuous one-parameter group of unitary operators on H. Let

H0 be the closed subspace in H consisting of all the vectors invariant under Vt, P the

orthogonal projection onto H0. Then for every a ∈ H, we have

lim
t→∞

1

t

∫ t

0
Vsa ds = Pa, in H. (1.1)

For a proof of Theorem 1.1, we refer the reader to [7]. Applying Theorem 1.1 for H =

L2(Σ) and Vta = e−iτta◦ϕt, the limit ā(τ) := lim
t→∞ at(τ) exists in L2(Σ) for every a ∈ L2(Σ)

and τ ∈ R, and it satisfies ā(τ)◦ϕt = eiτtā(τ). For τ = 0, we will write ā instead of ā(0),

and call it the long time average of a. Clearly we have 〈 ā 〉 = 〈 a 〉 and 〈 ā(τ) 〉 = 0 for

τ 
= 0.

Definition 1.1 (1) The dynamical system (Σ, ϕt, ω) is said to be ergodic if, for every

a ∈ L2(Σ), we have ā = 〈 a 〉, a.e.

(2) The dynamical system (Σ, ϕt, ω) is said to have the weak-mixing property if, for

every a ∈ L2(Σ) and τ ∈ R, we have ā(τ) = 〈 ā(τ) 〉, a.e.

7



Remark 1.1 The dynamical system (Σ, ϕt, ω) is said to have the mixing property if

lim
t→∞

∫
(a◦ϕt)b dω =

∫
a dω

∫
b dω (1.2)

for all a, b ∈ L2(Σ). The mixing property implies weak-mixing property, and the weak-

mixing property implies ergodicity. Note that, if the invariant measure of an ergodic

system has positive measure for every non-empty open set, then the set of periodic points

has measure zero ([36]).

Lemma 1.1 (1) For every a ∈ L2(Σ) and τ ∈ R, we have the following.

(i) lim
t→∞〈 |at(τ)|2 〉 = 〈 |ā(τ)|2 〉,

(ii) 〈 |ā(τ)|2 〉 ≥ |〈 a 〉|2δτ,0, where δτ,0 = 1 if τ = 0, δτ,0 = 0 if τ 
= 0.

(2) The dynamical system (Σ, ϕt, ω) is ergodic if and only if we have

〈 |ā|2 〉 = |〈 a 〉|2, (1.3)

for every smooth function a ∈ C∞(Σ).

(3) The dynamical system (Σ, ϕt, ω) has weak-mixing property if and only if we have

〈 |ā(τ)|2 〉 = |〈 ā(τ) 〉|2, (1.4)

for every a ∈ C∞(Σ).

Proof. For a ∈ �L2(Σ), we denote the L2-norm by ‖a‖. Clearly we have ‖a‖2 = 〈 |a|2 〉.
Therefore the inequality |‖ā(τ)‖ − ‖at(τ)‖| ≤ ‖ā(τ) − at(τ)‖ implies (1), (i). For any

b ∈ L2(Σ), we obtain the following:

〈 |b|2 〉 − |〈 b 〉|2 = 〈 |b− 〈 b 〉|2 〉. (1.5)

Combining this for b = ā(τ) with the identity 〈 ā(τ) 〉 = 〈 a 〉δτ,0, we obtain (1), (ii). To

prove (2), we note that, by the equalities (1.5) and 〈 ā 〉 = 〈 a 〉, if (Σ, ϕt, ω) is ergodic

then (1.3) holds for every a ∈ L2(Σ).

Conversely, assume that (1.3) holds for every a ∈ C∞(Σ). Let b ∈ L2(Σ). One can

take a sequence bn ∈ C∞(Σ) such that ‖bn − b‖ → 0 as n → ∞. By (1.3) and (1.5), one

has ‖b̄n − 〈 bn 〉‖ = 0. Hence one obtains

‖b̄− 〈 b 〉‖ ≤ ‖b− bn‖ + |〈 bn 〉 − 〈 b 〉| ≤ 2‖b− bn‖ → 0 (n→ ∞).

Therefore b̄ = 〈 b 〉, a.e., and hence the dynamical system (Σ, ϕt, ω) is ergodic. One can

prove (3) in a similar way.
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1.2 Homogeneous Lebesgue spectrum

Let H be the orthogonal complement in L2(Σ) of the one-dimensional subspace of

the constant functions, and let Uta = a◦ϕt for a ∈ H. The operators {Ut} form a strongly

continuous one-parameter group of unitary operators. Let

Ut =
∫
eitx dE(x) (1.6)

be its spectral resolution.

Theorem 1.2 (Hellinger-Hahn) Let H be a separable Hilbert space and let E be an

spectral measure on H. Then there is a constant κ, 1 ≤ κ ≤ ∞, and an orthonormal

system {hn}κn=1 such that if we set

dµn(x) = d‖E(x)hn‖2, (1.7)

Hn =
{
a ∈ H ; a =

∫
R
f(x) dE(x)hn, f ∈ L2(R, µn)

}
, (1.8)

then the closed subspaces Hn are invariant under the unitary operators {Ut}, the Hilbert

space H decomposes into the direct sum of the subspaces Hn:

H =
κ⊕
n=1

Hn, (1.9)

and the measures µn satisfy:

µ1 � µ2 � µ3 � · · · , (1.10)

where, for two measures µ and ν, µ� ν means that ν is absolutely continuous with respect

to µ. Furthermore, this decomposition is unique in the sense that if another sequence {h′n}
satisfies (1.7)–(1.10), then the measure µ′

n associated with h′n is equivalent to the measure

µn for all n.

Definition 1.2 The dynamical system (Σ, ϕt, ω) is said to have the homogeneous

Lebesgue spectrum with multiplicity κ if the measures µn described in Theorem 1.2 are

equivalent to the Lebesgue measure on R for all n.

Note that, the above definition of homogeneous Lebesgue spectrum is equivalent to

the following, which is adopted as the definition in [23]: there are the subspaces Hn in H
(1 ≤ n ≤ κ) such that

H =
κ⊕

n=1

Hn, UtHn = Hn
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for all t ∈ R, and, for each n, there exists an isomorphism Φn of the subspace Hn onto

L2(R, dx) such that, for a ∈ Hn, we have

ΦnUta(x) = (Φna)(x− t).

Remark 1.2 Here we will give the definition of K-system (Kolmogorov system). Let F
be the complete σ-algebra obtained by the completion of the Borel σ-algebra with respect

to the measure ω. Then the dynamical system (Σ, ϕt, ω) is said to be a K-system if there

exists a complete σ-subalgebra F0 satisfying

(1) F0 ⊂ ϕtF0 for all t > 0,

(2)
∨
t∈R

ϕtF0 = F , where
∨
t∈R

ϕtF0 is the smallest σ-algebra containing ϕtF0 for all t ∈ R,

(3)
⋂
t∈R

ϕtF0 = F(ν), where F(ν) is the σ-subalgebra of the set of measure 0 or 1.

It is well-known ([23]) that a K-system has homogeneous Lebesgue spectrum, and a system

with homogeneous Lebesgue spectrum has mixing property.

1.3 CLT for transitive Anosov flows

In this subsection, we will assume that the map (p, t) �→ ϕt(p) is smooth. We will

also assume that the compact manifold Σ is endowed with a Riemannian metric and

the invariant measure ω is absolutely continuous with respect to the Riemannian volume

measure. Finally we will assume that dim Σ ≥ 3.

Definition 1.3 The flow ϕt is said to be an Anosov flow if the following are satisfied.

(1) The vector field X generating the flow ϕt does not vanish.

(2) For every point p ∈ Σ, the tangent space TpΣ splits into the direct sum

TpΣ = E0(p) ⊕ Ec(p) ⊕ Ee(p),

where E0(p) is the one-dimensional subspace spanned by Xp, dimEc(p) = k 
= 0,

dimEc(p) = k 
= 0, and the subspaces Ec and Ee satisfy that there are constants α,

β, γ > 0 independent of p ∈ Σ such that, for every p ∈ Σ and t > 0, we have the

following.

(i) Each v ∈ Ec(p) satisfies

‖dϕtv‖ ≤ αe−γt‖v‖, ‖dϕ−tv‖ ≥ βeγt‖v‖,
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(ii) Each v ∈ Ee(p) satisfies

‖dϕtv‖ ≥ βeγt‖v‖, ‖dϕ−tv‖ ≤ αe−γt‖v‖.

It is well-known ([1], [2]) that the constants k, l are independent of p ∈ Σ. It is

also well-known that the tangent distributions p �→ Ec(p), Ee(p) are continuous and

completely integrable, and hence these generate the foliations F c, F e whose leaves are

C1-manifolds.

Definition 1.4 The Anosov flow ϕt is said to be transitive if the leaves of the foliations

F c, F e are dense in Σ.

Remark 1.3 Though an Anosov flow is automatically ergodic ([1]), it does not necessar-

ily have weak-mixing property. However, it is known ([25]) that a transitive Anosov flow

with an invariant measure absolutely continuous with respect to a Riemannian volume

measure is a K-system, and hence has homogeneous Lebesgue spectrum.

For a real-valued function a ∈ L∞(Σ), let

ωt =


 t√

Dt(a)
(at − 〈 a 〉)


 ∗ ω (1.11)

be the push-forward measure on R of the measure ω, where Dt(a) denotes the variance

of a:

Dt(a) = t2〈 |at − 〈 a 〉|2 〉. (1.12)

Definition 1.5 A real-valued function a ∈ L∞(Σ) is said to obey the central limit theorem

(CLT) relative to the flow ϕt if the measure ωt on R converges (in the dual space of

the space of bounded continuous functions on R) weakly to the Gaussian distribution

(2π)−1/2e−x
2/2dx.

Equivalently, a real-valued function a ∈ L∞(Σ) obeys the CLT if and only if

lim
t→∞ω


z ∈ Σ ;

t(at(z) − 〈 a 〉)√
Dt(a)

< α


 =

1√
2π

∫ α

−∞
e−x

2/2 dx. (1.13)

In Section 2, we will use the following theorems.

Theorem 1.3 (Ratner [21]) Let ϕt be a transitive Anosov flow and let X be the vector

field generating the flow ϕt. Then, for every real-valued function a ∈ C∞(Σ), we have the

following.
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(i) If the equation a − 〈 a 〉 = Xb has no solution in L2(Σ), then there is a positive

constant σ = σa such that Dt(a) ∼ σat and the function a obeys the CLT.

(ii) If the equation a− 〈 a 〉 = Xb has a solution in L2(Σ), then Dt(a) = O(1).

Theorem 1.4 (Zelditch [41]) Let ϕt be a transitive Anosov flow. Then for every a ∈
C∞(Σ) and every positive integer k, we have

〈 |at − 〈 a 〉|2k 〉 = O(t−k). (1.14)

Remark 1.4 The geodesic flow on a compact Riemannian manifold of (possibly variable)

negative curvature is a transitive Anosov flow ([1]), and hence we can apply Theorems

1.3, 1.4 with the Liouville measure.
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2 Off-diagonal asymptotics in quantum ergodicity

In this section, we will consider Problem A in Introduction.

Before going to discuss this problem, we will describe the notion of quantum ergodicity

and quantum weak-mixing at infinite energy level introduced by Sunada [28] and Zelditch

[42], which are quantum analogies of Lemma 1.1.

2.1 Quantum ergodicity and weak-mixing

Let M be a compact connected Riemannian manifold without boundary and let Ĥ be

a first order self-adjoint non-negative elliptic pseudodifferential operator (ψDO for short)

on M with positive principal symbol H > 0. H is a smooth homogeneous function of

degree one on the punctured cotangent bundle T ∗M \ 0. Let ϕt be the Hamilton flow

generated by the Hamiltonian H and the canonical symplectic form ΩM . Let ω be the

Liouville measure on Σ := H−1(1). Since the flow ϕt can be restricted on Σ, we have the

classical dynamical system (Σ, ϕt, ω).

Let 0 ≤ e1 ≤ e2 ≤ · · · ↑ ∞ be the eigenvalues of Ĥ counting with the repetition

according to the multiplicity, and let N(λ) = �{j ∈ N ; ej ≤ λ}. Let A0 be the set of all

ψDO’s of order zero on M , which is considered as the ∗-algebra of quantum observables.

We denote by σ0(A) the principal symbol of A ∈ A0.

The following theorem is due to Sunada [28].

Theorem 2.1 (Sunada) The dynamical system (Σ, ϕt, ω) is ergodic if and only if the

following conditions hold. .

(1) For every A ∈ A0 and every orthonormal basis {ϕj}∞j=1 for L2(M) consisting of

eigenfunctions of Ĥ, we have

lim
λ→∞

N(λ)−1
∑
j,k

ej=ek≤λ

|〈Aϕj , ϕk 〉|2 =
∣∣∣∣
∫
Σ
σ0(A) dω

∣∣∣∣2 . (2.1)

(2) For every A, {ϕj} as above, we have

lim
δ→0

lim sup
λ→∞

N(λ)−1
∑
j

ej≤λ

∑
k

0<|ej−ek|<δ

|〈Aϕj , ϕk 〉|2 = 0. (2.2)

In [28], (2.1) and (2.2) are called near-diagonal and off-diagonal asymptotics, respec-

tively. Zelditch [42] obtained the following theorem by using the method of [28].
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Theorem 2.2 (Zelditch) The dynamical system (Σ, ϕt, ω) has weak-mixing property if

and only if the following conditions hold.

(1) For every A ∈ A0, τ ∈ R and every orthonormal basis {ϕj}∞j=1 for L2(M) consisting

of eigenfunctions of Ĥ, we have

lim
λ→∞

N(λ)−1
∑
j

ej≤λ

∑
k

ek=ej+τ

|〈Aϕj , ϕk 〉|2 =
∣∣∣∣
∫
Σ
σ0(A) dω

∣∣∣∣2 δτ,0. (2.3)

where δτ,0 = 0 if τ 
= 0, δτ,0 = 1 if τ = 0.

(2) For every A, τ and {ϕj} as above, we have

lim
δ→0

lim sup
λ→∞

N(λ)−1
∑
j

ej≤λ

∑
k

0<|ek−ej−τ |<δ

|〈Aϕj , ϕk 〉|2 = 0. (2.4)

Sunada introduced the notion of quantum ergodicity at infinite energy level and ob-

tained Theorem 2.1 by examining the relationship between this notion and classical er-

godicity. We will describe this notion briefly.

For a bounded operator A on L2(M), we define the bounded operator At(τ) (τ ∈ R,

t > 0) by

At(τ) =
1

t

∫ t

0
e−isτeisĤAe−isĤ ds. (2.5)

We will write At instead of At(0) and call it the time average of A up to time t > 0. The

bounded operator At(τ) converges weakly as t→ ∞ to the bounded operator Ā(τ) given

by

Ā(τ) =
∑
e,

e,e+τ∈Spec(Ĥ)

Pe+τAPe, (2.6)

where Pe is the orthogonal projection onto the eigenspace with the eigenvalue e ∈ Spec(Ĥ).

We will also write Ā instead of Ā(0) and call it the long time average of A. The quantum

space average 〈A 〉 of the bounded operator A is defined by

〈A 〉 = lim
λ→∞

N(λ)−1
∑

j

ej≤λ

〈Aϕj , ϕj 〉, (2.7)

if the limit in (2.7) exists. The statements (1) and (2) in the following lemma is well-

known and these are called Szegö limit formula and Egorov theorem, respectively. See

[10], [34] for the proof of the following lemma.

Lemma 2.1 For every quantum observable A ∈ A0, we have the following.
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(1) The space average 〈A 〉 of A exists and equals the space average 〈σ0(A) 〉 of its

principal symbol σ0(A) ∈ C∞(Σ).

(2) The bounded operator eitĤAe−itĤ , and hence At(τ), is a ψDO of order zero and their

principal symbol are given by Utσ0(A) and σ0(A)t(τ), respectively.

Now we will consider the triple (V, Ĥ,A0) as the quantum dynamical system associated

with the classical dynamical system (Σ, ϕt, ω), where V is the unit sphere in L2(M).

Definition 2.1 (Sunada, Zelditch) (1) The quantum dynamical system (V, Ĥ,A0)

is said to be quantum ergodic at infinite energy level if, for every zeroth order ψDO

A ∈ A0, the quantity 〈 Ā∗Ā 〉 exists and satisfies

〈 Ā∗Ā 〉 = |〈A 〉|2. (2.8)

(2) The quantum dynamical system (V, Ĥ,A0) is said to be quantum weak-mixing at

infinite energy level if, for every ψDO A ∈ A0 of order zero and every τ ∈ R, the

quantity 〈 Ā(τ)∗Ā(τ) 〉 exists and satisfies

〈 Ā(τ)∗Ā(τ) 〉 = |〈A 〉|2δτ,0. (2.9)

The following lemma is due to Sunada [28], which is used in the next subsection.

Lemma 2.2 the dynamical system (Σ, ϕt, ω) is ergodic if and only if the following two

conditions hold.

(1) The quantum dynamical system (V, Ĥ,A0) is quantum ergodic at infinite energy

level.

(2) For every quantum observable A ∈ A0, we have lim
t→∞〈A

∗
tAt 〉 = 〈 Ā∗Ā 〉.

Sunada [28] also obtained the following theorem.

Theorem 2.3 The quantum dynamical system (V, Ĥ,A0) is quantum ergodic at infinite

energy level if and only if for every orthonormal basis {ϕj} of eigenfunction of Ĥ there

exists a subsequence J ⊂ N such that

lim
λ→∞

N(λ)−1�{j ∈ J ; ej ≤ λ} = 1, (2.10)

and for every A ∈ A0 we have

lim
j∈J, j→∞

〈Aϕj , ϕj 〉 =
∫
Σ
σ0(A) dω. (2.11)

The results of Shnirelman [26], Zelditch [37] and Colin de Verdierè [6] follow from

Theorem 2.3 and Lemma 2.2.
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2.2 More on the off-diagonal asymptotics

Theorems 2.1, 2.2 shows that the ergodicity or weak-mixing property of classical

mechanics have an impact on the asymptotic behavior of the matrix elements 〈Aϕj , ϕk 〉
of an observable A ∈ A0. Zelditch [41] showed that, in case where the system (Σ, ϕt, ω)

has more chaotic property than ergodicity, the near-diagonal asymptotics (2.1) has a

logarithmic order. That is, he obtained the following.

Theorem 2.4 (Zelditch) Let M be a compact Riemannian manifold of negative curva-

ture, and let Ĥ be the square root of the Laplacian on M . Then, for every A ∈ A0 and

positive integer k, we have

N(λ)−1
∑
ej≤λ

|〈Aϕj , ϕj 〉 − 〈σ0(A) 〉|k = O((log λ)−k/2). (2.12)

By Theorems 2.1, 2.3, we know that the left hand side of (2.12) tends to 0 as λ→ ∞ if the

dynamical system (Σ, ϕt, ω) is ergodic. Zelditch used the moment estimates for transitive

Anosov flows (Theorems 1.3, 1.4) to prove this theorem. Our main theorems state that

the dynamical assumption on (Σ, ϕt, ω) also affects the off-diagonal asymptotics (2.2).

That is we have the following.

Theorem 2.5 Assume that the Hamilton flow ϕt on Σ is transitive Anosov. Then for

every ψDO A ∈ A0 of order zero, we have

lim sup
λ→∞

N(λ)−1
∑
j

ej≤λ

∑
k

0<|ej−ek|<δ

|〈Aϕj , ϕk 〉|2 = O(δ). (2.13)

Theorem 2.6 Assume that the dynamical system (Σ, ϕt, ω) has homogeneous Lebesgue

spectrum. Then, for every ψDO A ∈ A0 of order zero with 〈A 〉 = 0 there exists an

integrable function pA on R such that, for any a < b, we have

lim
λ→∞

N(λ)−1
∑
ej≤λ

∑
k

a<ek−ej<b

|〈Aϕj , ϕk 〉|2 =
∫ b

a
pA(λ) dλ. (2.14)

We note that, Theorem 2.6 has proved in [42] for Ĥ the square root of the Laplacian

on a compact hyperbolic manifolds. Zelditch has proved that, on a compact hyperbolic

manifold, one can take the function pA to be smooth. He has used the fact that the

correlation functions have an exponential decay. However the assumption of Theorem

2.6 is somewhat weak. Indeed, there is a metric on the two-dimensional sphere whose

geodesic flow is a K-system ([3]), and hence it has homogeneous Lebesgue spectrum.
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2.3 Proof of Theorem 2.5

We will give a proof of Theorem 2.5. We note that the Liouville measure ω is

equivalent to the Riemannian volume measure, and hence we can apply Theorem 1.4. We

also note that the dynamical system (Σ, ϕt, ω) is ergodic.

Let A ∈ A0 be a ψDO of order zero. We may assume that A is self-adjoint, and hence

its principal symbol σ0(A) is real. For each k ∈ N, we set

Rk(A, t) = 〈Akt 〉 − 〈A 〉k. (2.15)

Since 〈At 〉 = 〈A 〉, we have

Rk(A, t) =
k∑
r=2


 k

r


 〈 (At − 〈A 〉)r 〉〈A 〉k−r. (2.16)

By Lemma 2.1 and Theorem 1.4, if the exponent r is even then we obtain

〈 (At − 〈A 〉)r 〉 = 〈 (σ0(A)t − 〈σ0(A) 〉)r 〉 = O

((
1

t

)r/2)
. (2.17)

If r is odd then, by Cauchy-Schwarz inequality, we have

〈 (At − 〈A 〉)r 〉 ≤ 〈 (At − 〈A 〉)2r 〉1/2 = O

((
1

t

)r/2)
. (2.18)

Applying these estimates to the terms in the sum of the expression (2.16), we have

Rk(A, t) = O
(

1

t

)
(2.19)

for all k ∈ N. We use this estimate for k = 2. A direct calculation leads us to

Atϕj =
1

t

∑
k

ek 
=ej

eit(ek−ej) − 1

i(ek − ej)
〈Aϕj, ϕk 〉ϕk +

∑
k

ej=ek

〈Aϕj , ϕk 〉ϕk, (2.20)

and hence

〈A2
t 〉 = lim

λ→∞
N(λ)−1

∑
ej≤λ

∑
k

ej 
=ek

S(t(ek − ej))|〈Aϕj , ϕk 〉|2

+ lim
λ→∞

N(λ)−1
∑
ej≤λ

∑
k

ej=ek

|〈Aϕj , ϕk 〉|2, (2.21)

where, S(x) = (|eix − 1|/x)2 = (sin2 x/2)/(x/2)2. Note that the second term of (2.21)

equals 〈 Ā∗Ā 〉. Therefore, applying Lemma 2.2, we obtain

R2(A, t) = lim
λ→∞

N(λ)−1
∑
ej≤λ

∑
k

ej 
=ek

S(t(ek − ej))|〈Aϕj , ϕk 〉|2 (2.22)
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Now, we can take δ0 > 0 so that |x| < δ0 implies 1/2 < R(x). Then

lim sup
λ→∞

N(λ)−1
∑
ej≤λ

∑
k

0<|ek−ej |<δ0/t

|〈Aϕj , ϕk 〉|2 ≤ 2R2(A, t)

= O
((

1

t

))
,

which completes the proof of Theorem 2.5.

2.4 Proof of Theorem 2.6

Before proceeding to the proof of Theorem 2.6, we have to mention the spectral

measure lemma established by Zelditch [42], [43].

Let A be a bounded operator on L2(M). For every compactly supported smooth

function f ∈ C∞
0 (R) on R, we set

mA(f) := lim
λ→∞

N(λ)−1
∑
ej≤λ

∑
k

f(ek − ej) |〈Aϕj , ϕk 〉|2 , (2.23)

if the limit exists.

Lemma 2.3 Let A ∈ A0. Then the limit in (2.23) exists for all f ∈ C∞
0 (R).

Proof. If a bounded operator B is approximated by ψDO’s in the operator norm, then

the space average 〈B 〉 exists. Indeed, for a bounded operator B and a positive number

λ, we set

S(B;λ) = N(λ)−1
∑

j

ej≤λ

〈Bϕj , ϕj 〉. (2.24)

Then, by definition, we have 〈B 〉 = lim
λ→∞

S(B;λ) if the limit exists. By (2.24), we have

S(B;λ) ≤ ‖B‖. Assume thatBn ∈ A0 and ‖Bn−B‖ → 0. Then we have |〈Bn 〉−〈Bm 〉| ≤
‖Bn − Bm‖ → 0 as n,m→ ∞, and hence the limit c = lim

n→∞〈Bn 〉 exists. Therefore

|c− S(B;λ)| ≤ |c− 〈Bn 〉| + |〈Bn 〉 − S(Bn;λ)| + |S(Bn;λ) − S(B;λ)|
≤ |c− 〈Bn 〉| + |〈Bn 〉 − S(Bn;λ)| + ‖Bn − B‖ (2.25)

for all n ∈ N. Letting λ→ ∞ in (2.25), we obtain

lim sup
λ→∞

|c− S(B;λ)| ≤ |c− 〈Bn 〉| + ‖Bn −B‖. (2.26)

Since (2.26) holds for arbitrary n, we conclude that 〈B 〉 exists and equals c = lim
n→∞〈Bn 〉.

For A ∈ A0, f ∈ C∞
0 (R) and R > 0, we set

Af =
1

2π

∫ ∞

−∞
f̂(t)eitĤAe−itĤ dt, (2.27)
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ARf =
1

2π

∫ R

−R
f̂(t)eitĤAe−itĤ dt, (2.28)

where f̂ is the Fourier transform of f . By Lemma 2.1 (2), the operator ARf is a ψDO

of order zero for R > 0, and converges to the bounded operator Af as R → +∞ in the

operator norm. Therefore the quantity 〈A∗Af 〉 exists and equals lim
R→∞

〈A∗ARf 〉. By a

direct computation using the spectral decomposition for the operator eitĤ , we have

S(A∗Af ;λ) = N(λ)−1
∑
ej≤λ

∑
k

f(ek − ej) |〈Aϕj , ϕk 〉|2 , (2.29)

and hence 〈A∗Af 〉 = mA(f).

By Lemma 2.3, mA is well-defined as a positive linear functional on C∞
0 (R), and hence it

defines a Borel measure on R. We also denote this measure by mA. We note that, by the

inequality mA(f) ≤ ‖A‖2‖f‖∞ (f ∈ C∞
0 (R)), the measure mA is a finite measure.

There is another finite measure on R associated with a ψDO A ∈ A0. Let Ũt be the

one-parameter group of unitary operators on L2(Σ) defined by Ũta = a◦ϕt. Let

Ũt =
∫
eitxdẼ(x) (2.30)

be the spectral resolution for Ũt. Note that the one-parameter group of unitary operators

Ut defined in Section 1.2 is the restriction of Ũt to the closed subspace H which is the

orthogonal complement of the one-dimensional subspace of the constant functions. Thus

we have PŨt = UtP , where P is the orthogonal projection onto H: Pa = a − 〈 a 〉,
a ∈ L2(Σ). For every a ∈ L2(Σ), let µ̃a be the spectral measure associated with a and

Ẽ, that is µ̃a(Λ) = ‖Ẽ(Λ)a‖2 for every Borel set Λ ⊂ R. Since a constant function is an

eigenfunction of Ũt with eigenvalue 1, we have

µPa(Λ) = µ̃a(Λ) − |〈 a 〉|2δ0, (2.31)

where µPa(Λ) = ‖E(Λ)Pa‖2 is the spectral measure associated with Pa ∈ H and E, and

δ0 is the Dirac measure. The following lemma is called spectral measure lemma, due to

Zelditch [42], [43].

Lemma 2.4 (Zelditch) Let A ∈ A0 be a ψDO of order zero. Then we have

mA = µ̃σ0(A) = µPσ0(A) + |〈A 〉|2δ0 (2.32)
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Proof. By lemma 2.1, we have (Ũtσ0(A), σ0(A))L2(Σ) = 〈A∗eitĤAe−itĤ 〉. Therefore we

obtain

∫
f dµ̃σ0(A) =

1

2π

∫
f̂(t)(Ũtσ0(A), σ0(A))L2(Σ) dt

=
1

2π

∫
f̂(t)〈A∗eitĤAe−itĤ 〉 dt

= 〈A∗Af 〉
=

∫
f dmA,

for every f ∈ C∞
0 (R), which completes the proof.

Proof of Theorem 2.6 Let A ∈ A0 with 〈A 〉 = 〈σ0(A) 〉 = 0, and let hn, µn be the

orthonormal system and the measures described in the Hellinger-Hahn theorem (Theorem

1.2), respectively. By the decomposition (1.9), there are functions gn,A ∈ L2(µn) such that

σ0(A) =
∑
n

∫
gn,A(x) dE(x)hn. (2.33)

Then we have

µσ0(A)(Λ) =
∑
n

∫
χΛ(x)|gn,A(x)|2 dµn(x). (2.34)

Since {Ut} has homogeneous Lebesgue spectrum, the measure µn is equivalent to Lebesgue

measure, and hence, for each n, there is a function en ∈ L1(R, dx) such that en > 0 (dx-

a.e.) and dµn(x) = en(x)dx. Therefore we obtain

µσ0(A)(Λ) =
∑
n

∫
χΛ(x)|gn,A(x)|2en(x) dx. (2.35)

The above equation (2.35) implies that the measure µσ0(A) is absolutely continuous with

respect to Lebesgue measure. Combining this with Lemma 2.4, we conclude that the

measure dmA is absolutely continuous with respect to Lebesgue measure.

To deduce (2.14) from the assertion proved as above, we need to take care because

it is not trivial that one can replace f in (2.23) by the characteristic function χ of the

interval (a, b). However it can be shown as follows. Let 0 ≤ fn ≤ 1 be a smooth function

on R such that fn = 1 on the interval [a+ 1/n, b− 1/n] and fn = 0 on the outside of the

interval (a, b). By Lebesgue convergence theorem one has

∫
χdmA = lim

n→∞

∫
fn dmA. (2.36)

For a function f on R, set

SA(f, λ) = N(λ)−1
∑
ej≤λ

∑
k

f(ek − ej)|〈Aϕj , ϕk 〉|2. (2.37)
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Then one obtain

∣∣∣∣
∫
χdmA − SA(χ, λ)

∣∣∣∣
≤

∣∣∣∣
∫
χdmA −

∫
fn dmA

∣∣∣∣+
∣∣∣∣
∫
fn dmA − SA(fn, λ)

∣∣∣∣
+ |SA(fn, λ) − SA(χ, λ)| . (2.38)

By the typical choice of the function fn as above, one can easily deduce that

|SA(fn, λ) − SA(χ, λ)| ≤ N(λ)−1
∑
ej≤λ

∑
k

0<ek−ej−a<1/n

|〈Aϕj , ϕk 〉|2

+N(λ)−1
∑
ej≤λ

∑
k

−1/n<ek−ej−b<0

|〈Aϕj , ϕk 〉|2 . (2.39)

Note that the dynamical system with homogeneous Lebesgue spectrum has mixing, and

hence weak-mixing, property. So, after taking the lim sup in λ in the inequality (2.39),

one can apply quantum weak-mixing theorem (Theorem 2.2) to the right hand side of

(2.39). Thus one obtains that the lim sup in λ of the third term of (2.38) tends to zero

as n goes to infinity. Combining this and (2.36), one concludes that the left hand side of

(2.38) tends to zero as λ goes to infinity. From this, (2.14) follows.
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3 Quantum ergodicity at a finite energy level

This section is devoted to the discussion on Problem B in Introduction.

In Section 2.1, we have described the notion of quantum ergodicity at infinite energy

level. The classical system investigated in Section 2 is homogeneous Hamilton flow, that

is the flow which commutes with R+-action on the cotangent bundle. However, there are

natural classical systems which are not homogeneous. For example, the magnetic flow

under the uniform magnetic field on a compact Riemann surface with constant negative

curvature −1 has different behavior on different energy surfaces. (See [14], [29]. See also

Section 5.) This phenomenon arises from the effect of the magnetic field. Ergodicity of

such dynamical systems affects the semi-classical asymptotic behavior of the eigenfunc-

tions of corresponding quantum Hamiltonian ([18], [27], [39]).

Our purposes of this section are to formulate a notion of quantum ergodicity for the

quantum mechanics corresponding to the classical system such a magnetic flow by using

Sunada’s method described in Section 2, and investigate the relationship between classical

and quantum ergodicity. We will call the notion introduced in this section quantum

ergodicity at a finite energy level because we take the dependence of dynamical behavior

on the energy level into consideration.

We will give a brief account of the dynamical system discussed in this section. The

precise formulation of the dynamical system, which is the same as in [39], is described in

the following subsection.

We note that the magnetic flow is obtained by the reduction of the geodesic flow on

a compact S1-bundle with a connection 1-form and with a Riemannian metric which is

invariant under S1-action. (See Section 5 for the definition of the magnetic flow.) In this

case, the magnetic field is represented by the curvature 2-form of a connection form. Ac-

cordingly, we will consider the reduced dynamical system of the Hamilton flow generated

by the Hamiltonian which is invariant under the group action on the cotangent bundle

over a compact principal bundle. The corresponding quantum mechanics is generated by

a first order positive elliptic pseudodifferential operator (ψDO for short) which commutes

with the group action. However, as the case of classical mechanics, we need to consider

a reduced quantum mechanics. More precisely, we consider the operator restricted to a

ladder subspace associated with a fixed irreducible representation of the structure group

as a reduced quantum Hamiltonian. We will define the notion of quantum ergodicity

at a finite energy level for the quantum mechanics generated by the reduced Hamilto-

nian. To study the relationship between classical and quantum ergodicity, we will use

the semi-classical trace formula due to Guillemin–Uribe [14], [15] and Zelditch [39]. We
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will also describe the notion of quantum weak-mixing at a finite energy level, which is a

semi-classical analogy of Definition 2.1, (2).

3.1 Formulation of dynamical systems

Let π : P →M be a compact connected principal bundle over a compact Riemannian

manifold (M, 〈 , 〉M ) with structure group G, a compact connected Lie group. We fix a

connection 1-form Θ on P and an adjoint-invariant inner product 〈 , 〉G on the Lie algebra

G of the Lie group G. We define the Riemannian metric 〈 , 〉P by

〈u, v 〉P = 〈 dπ(u), dπ(v) 〉M + 〈Θ(u),Θ(v) 〉G , u, v ∈ TP. (3.1)

Let Ĥ be a first order self-adjoint non-negative elliptic ψDO on P commuting with G-

action and let H = σ1(Ĥ) be its principal symbol. Since Ĥ commutes with G-action,

H is a G-invariant smooth function on the punctured cotangent bundle T ∗P \ 0. We

will assume that the principal symbol H is positive. The (left) action of G on T ∗P is

Hamiltonian and its equivariant moment map Φ : T ∗P → G∗ is given by

〈Φ(p, ζ), A〉 = ζ(A∗
p), (p, ζ) ∈ T ∗P,A ∈ G, (3.2)

where G∗ is the dual space of the Lie algebra G of G. Let (πλ, Vλ) be an irreducible

representation of G with the highest weight λ in the positive Weyl chamber of a dual

Cartan subalgebra, and let Oλ be the coadjoint orbit through λ. Since the differential

map dΦ of the moment map Φ is surjective at each point, Φ−1(Oλ) is a submanifold in

T ∗P , and G acts freely on it. The leaves of the null-foliation of the G-invariant closed 2-

form ι∗λΩP −Φ∗ωλ on Φ−1(Oλ) are just the G-orbits, where ΩP is the canonical symplectic

form on T ∗P , ιλ : Φ−1(Oλ) ↪→ T ∗P \ 0 is the inclusion, and ωλ is the Kostant-Kirillov

symplectic form on Oλ. Thus it induces the symplectic form Ωλ on Xλ = Φ−1(Oλ)/G.

The symplectic manifold (Xλ,Ωλ) is called the reduced phase space. The G-invariant

Hamiltonian H defines the Hamiltonian Hλ on Xλ such that Hλ satisfies the relation

q∗λHλ = H on Φ−1(Oλ), where qλ : Φ−1(Oλ) → Xλ is the projection. Let ϕλt denotes the

Hamilton flow generated by (Hλ,Ωλ). The flow ϕλt can be restricted on the energy surface

Σλ
e = H−1

λ (e), which preserves the Liouville measure ωλe . Therefore, we have the classical

dynamical system CDλ
e = (Σλ

e , ϕ
λ
t , ω

λ
e ).

A quantum counterpart of the dynamical system CDλ
e will be described as follows. The

Lie group G acts on L2(P ), the Hilbert space of square integrable functions on P , by the

identity

Rgϕ(p) = ϕ(p.g), g ∈ G, p ∈ P, ϕ ∈ L2(P ). (3.3)
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This action breaks L2(P ) into a direct sum of Hilbert spaces,

L2(P ) =
⊕
µ

Lµ, (3.4)

where µ runs over the dominant integral weights and Lµ is the isotypical subspaces asso-

ciated with the irreducible representation (πµ, Vµ) corresponding to the dominant integral

weight µ. More precisely, the Hilbert space Lµ is the closure of the image of the evaluation

map, HomG(Vµ, C
∞(P )) ⊗ Vµ → L2(P ). The Hilbert space Lµ is also obtained by the

following way. Since the operator Ĥ is elliptic and the manifold P is compact, the Hilbert

space L2(P ) is the direct sum of finite dimensional eigenspaces of Ĥ. Since the operator

Ĥ commutes with G-action, G acts on each eigenspace, and hence each eigenspace is

decomposed into irreducible representations. Then the Hilbert space Lµ is the direct sum

of the representations which is equivalent to the irreducible representation corresponding

to µ. We set

Hλ =
∞⊕
m=1

Lmλ (⊂ L2(P )), (3.5)

and denote the unit sphere in Hλ by Vλ. The subspace Hλ is called the ladder space

associated with the irreducible representation λ ([13], [15]).

Now we set up the triple QDλ = (Vλ, Ĥλ,Aλ
0) as a quantum dynamical system where

Ĥλ is the restriction of Ĥ to Hλ, Aλ
0 is the ∗-algebra of operators on Hλ which are the

restriction of the elements in A0, the ∗-algebra of all ψDO of order zero commuting with

G-action, to Hλ. We will regard the ∗-algebra A0 as the algebra of quantum observables.

We will call the dynamical system QDλ the reduced quantum dynamical system.

3.2 Some properties of the dynamical system CDλ
e

Let ψt be the Hamilton flow generated by H and the canonical symplectic form ΩP

on T ∗P . The flow ψt commutes with G-action. We note that the reduced flow ϕλt can be

obtained from the Hamilton flow ψt.

Lemma 3.1 The flow ψt can be restricted on Φ−1(Oλ), and the following diagram is

commutative:

Φ−1(Oλ)
ψt−−−−−−→ Φ−1(Oλ)

qλ

�

�
qλ

Xλ

ϕλ
t−−−−−−→ Xλ

where qλ is the projection.
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Proof. First, we will show that the flow ψt can be restricted to Φ−1(Oλ). Let XH be

the Hamilton vector field on T ∗P \ 0 generated by (H,ΩP ). The differential map dΦz

at each point z ∈ T ∗P is surjective, and hence we have TzΦ
−1(Oλ) = dΦ−1

z (TΦ(z)Oλ) for

z ∈ Φ−1(Oλ). By the definition of the moment map, we have

〈 dΦz, A 〉 = i(A
z)ΩP

for every A ∈ G, where

A
z =
d

dt

∣∣∣∣∣
t=0

(exp tA)z,

and i(·) denotes the interior product. Since the Hamiltonian H is invariant under G-

action, we obtain

〈 dΦz(XH), A 〉 = ΩP (A
z, XH) = −(dH)(A
z) = 0,

for every A ∈ G. This implies dΦz(XH) = 0, and hence XH ∈ TzΦ
−1(Oλ). Therefore the

flow ψt can be restricted to Φ−1(Oλ).

Next, we will show that the diagram is commutative. Let u ∈ TzΦ
−1(Oλ)

(z ∈ Φ−1(Oλ)). By the identity q∗λHλ = H on Φ−1(Oλ), we have

q∗λ(i((qλ)∗XH)Ωλ)(u) = (q∗λΩλ)(XH , u)

= ΩP (XH , u) (since dΦz(XH) = 0)

= (q∗λdHλ)(u).

Since qλ is a submersion, we have i((qλ)∗XH)Ωλ = dHλ at z ∈ Φ−1(Oλ). Therefore we

obtain that (qλ)∗XH = XHλ
, where XHλ

is the Hamilton vector field on Xλ determined

by (Hλ,Ωλ). Hence we conclude that qλ◦ψt = ϕλt ◦qλ.

Next, we will consider the following condition.

(H1) The Hamilton vector field, XH , of H is not tangent to the G-orbit through any point

in Σ̃λ
e := Ze ∩ Φ−1(Oλ), where Ze = H−1(e) ⊂ T ∗P .

Note that, for example, the dynamical system generated by the Riemannian norm

function with respect to the fixed metric (see Section 3.1) satisfies the condition (H1) if

e > |λ|. The condition (H1) makes us to obtain the following lemmas.

Lemma 3.2 Suppose that the condition (H1) is satisfied. Then the subset Σ̃λ
e is a sub-

manifold in T ∗P , and hence Σ̃λ
e is a principal G-bundle over Σλ

e .
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Proof. Since the differential map dΦz at z ∈ Σ̃λ
e is surjective, we have TzΦ

−1(Oλ) =

dΦ−1
z (TΦ(z)Oλ). By the equivariance of Φ, we obtain

dΦ−1
z (TΦ(z)Oλ) = G(z) + G(z)⊥,

where G(z) = {A∗
z ∈ TzT

∗P ; A ∈ G} and “⊥” denotes the annihilator of G(z) with respect

to ΩP . Since H is G-invariant, we have G(z) ⊂ (XH)⊥ = TzZe. Therefore we obtain

TzZe + TzΦ
−1(Oλ) = (XH)⊥ + G(z)⊥,

and hence

(TzZe + TzΦ
−1(Oλ))

⊥ = (XH) ∩ G(z). (3.6)

By the assumption (H1), the right hand side of (3.6) is zero. So the submanifolds Ze and

Φ−1(Oλ) intersect transversally. Thus we conclude the assertion.

Lemma 3.3 For each smooth function a on Σλ
e , there exists a smooth function ã on

T ∗P \ 0 which is G-invariant, homogeneous of degree zero such that

q∗λa = ã on Σ̃λ
e , (3.7)

where qλ is the projection from Σ̃λ
e onto Σλ

e .

Proof. The function q∗λa is a G-invariant smooth function on Σ̃λ
e , and it can be extended

to a smooth function a0 on Ze. Averaging a0 on the G-orbits and extending to a smooth

function on T ∗P \ 0 of degree zero, we obtain a desired function ã.

Remark 3.1 We note that a G-invariant smooth function a on T ∗P \0 defines a smooth

function on Xλ. We will continue to denote it by a. If a is G-invariant on T ∗P , then

a◦ψt is also G-invariant, and hence, by Lemma 3.1, the function on Xλ induced by the

G-invariant function a◦ψt coincides with a◦ϕλt .

3.3 Statements of main theorems

Let e1(m) ≤ e2(m) ≤ · · · be the eigenvalues of the restriction of the operator Ĥ

to Lmλ, and let {νmj }j∈N be the orthonormal basis for Lmλ of the eigenfunctions of Ĥ:

Ĥνmj = ej(m)νmj . For a fixed constant c > 0, let

Nm(e, c) = {j ∈ N; |ej(m) −me| ≤ c},
Nm(e, c) = �Nm(e, c).

Then our first theorem can be stated as follows. (See Section 3.4 for the assumption

(H2).)
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Theorem 3.1 Assume that the dynamical system CDλ
e satisfies the conditions (H1), (H2).

Then the dynamical system CDλ
e is ergodic if and only if the following two conditions hold.

(1) For every A ∈ A0 and for every orthonormal basis {νmj }∞j,m=1 for Hλ consisting of

eigenfunctions of Ĥλ, we have

lim
m→∞Nm(e, c)−1

∑
j,k∈Nm(e,c)
ej(m)=ek(m)

∣∣∣〈Aνmj , νmk 〉
∣∣∣2 =

∣∣∣∣∣vol(Σλ
e )

−1
∫
Σλ

e

σ0(A) dωλe

∣∣∣∣∣
2

. (3.8)

(2) For every A, {νmj } as above, we have

lim
δ↓0

lim sup
m↑∞

Nm(e, c)−1
∑

j∈Nm(e,c)

∑
k

0<|ej(m)−ek(m)|<δ

∣∣∣〈Aνmj , νmk 〉
∣∣∣2 = 0. (3.9)

This theorem is a semi-classical analogy of Sunada’s theorem (Theorem 2.1).

Before going to state our second theorem, we refer to Zelditch’s result ([39]).

Theorem 3.2 (Zelditch) Assume that the dynamical system CDλ
e is ergodic. Then for

every orthonormal basis {νmj } and for every ψDO A of order zero, we have

lim
m→∞Nm(e, c)−1

∑
j∈Nm(e,c)

∣∣∣∣∣〈Aνmj , νmj 〉 −
∫
S̃λ

e

σ̃0(A) dµλe

∣∣∣∣∣ = 0. (3.10)

Remark 3.2 We will give a brief explanation for the integral in (3.10). For details,

see [12], [13], [15], [39]. Let (T ∗P )C(Oλ) be the space of the leaves of the null-foliation on

Φ−1(C(Oλ)) determined by the canonical symplectic form ΩP , where C(Oλ) is the cone

through the orbit Oλ, C(Oλ) = {rf ; f ∈ Oλ, r > 0}. Note that the orbit Oλ is integral,

that is, for f ∈ Oλ, there is a character χf : Gf → S1 (Gf is the stabilizer of f) such

that dχf (A) = 2πi〈 f,A 〉 for every A ∈ Gf (Gf is the Lie algebra of Gf ). Then the leaf

of the null-foliation through z ∈ Φ−1(C(Oλ)) is the orbit through z under the action of

the identity component of the kernel, kerχf , of χf . The function σ̃0(A) is the one on

(T ∗P )C(Oλ) obtained by integrating σ0(A) over the fibers.

The natural action of G on the symplectic manifold (T ∗P )C(Oλ) is Hamiltonian. Let

Ψ : (T ∗P )C(Oλ) → G∗ be the moment map of the above action, and let p = |Ψ|. Then the

Hamilton flow of p on (T ∗P )C(Oλ) is periodic with constant period, and hence it induces

an S1-action on (T ∗P )C(Oλ). This S1-action is obtained by regarding S1 as Gf/ kerχf .

The level surface p−1(|λ|) is an S1-bundle over the Kazhdan–Kostant–Sternberg reduction
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X

λ with respect to the orbit Oλ, which is the leaf-space of the null-foliation on Φ−1(Oλ)

of ΩP . The surface S̃λe in (3.10) is the intersection S̃λe = p−1(|λ|) ∩ H̃−1
λ (e) in (T ∗P )C(Oλ),

where H̃λ is the function on (T ∗P )C(Oλ) induced by G-invariant Hamiltonian H on T ∗P .

The measure µλe in (3.10) is the normalized Liouville measure on S̃λe .

Remark 3.3 In case where the function σ0(A) is invariant under the action of G, the

integral in the right hand side of (3.10) is reduced to the integral over Σλ
e ⊂ Xλ of the

function induced by σ0(A). We explain this as follows.

The level surface S̃λe is an S1-bundle over the level surface Sλe = (H

λ)

−1(e) in X

λ,

where the function H

λ is the one on X


λ induced by H. Note that X

λ is symplectically

diffeomorphic to the product X

λ = Xλ×Oλ ([12]), and the action of G on X


λ is interpreted

as the action only on the second component of the product. Since H

λ is G-invariant, we

have Sλe = Σλ
e ×Oλ. Therefore the integral in (3.10) is reduced to the integral over Σλ

e .

To state our second theorem, which relates Theorem 3.1 to Zelditch’s theorem (The-

orem 3.2), we need to prepare some notation. For every quantum observable A ∈ A0, we

define the quantum space average 〈A 〉λe of A by

〈A 〉λe = lim
m→∞Nm(e, c)−1

∑
j∈Nm(e,c)

〈Aνmj , νmj 〉. (3.11)

The existence of the above limit and the independence of the choice of the constant c are

guaranteed by the semi-classical trace formula due to V. Guillemin-A. Uribe ([14], [15])

and S. Zelditch ([39]) under the assumption (H2). (See Theorem 3.4 in Section 3.4.) We

also define the quantum time average Ā of A ∈ A0 by

Ā = w-lim
t→∞

1

t

∫ t

0
eisĤAe−isĤ ds. (3.12)

Now we can state our second theorem as follows.

Theorem 3.3 Suppose that the condition (H2) is satisfied. Then the following three

conditions are equivalent.

(S) For every A ∈ A0, we have

lim
m→∞Nm(e, c)−1

∑
j∈Nm(e,c)

‖(Ā− 〈A 〉λe )νmj ‖2 = 0, (3.13)

where ‖ · ‖ is the L2-norm and {νmj }j,m is an orthonormal basis for Hλ consisting

of eigenfunctions of Ĥλ.
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(Z) For every A ∈ A0 and for every orthonormal basis {νmj }j,m for Hλ consisting of

eigenfunctions of Ĥλ, we have

lim
m→∞Nm(e, c)−1

∑
j∈Nm(e,c)

∣∣∣∣∣〈Aνmj , νmj 〉 − vol(Σλ
e )

−1
∫
Σλ

e

σ0(A) dωλe

∣∣∣∣∣ = 0. (3.14)

(C) For every A, {νmj } as in (Z), there exists a family {Jm}m∈N of subsets in Nm(e, c)

satisfying

lim
m→∞

�Jm
Nm(e, c)

= 1 (3.15)

such that

lim
m→∞ max

j∈Jm

∣∣∣∣∣〈Aνmj , νmj 〉 − vol(Σλ
e )

−1
∫
Σλ

e

σ0(A) dωλe

∣∣∣∣∣ = 0. (3.16)

We note that the conditions (1) in Theorem 1 and (S) in Theorem 3.3 are equivalent

to quantum ergodicity of QDλ at energy level e defined in Section 3.4. (See Lemma 3.5.)

Note also that the conditions (Z) and (C) in Theorem 3.3 are equivalent without assuming

the condition (H2). (See Proposition 3.4 in Section 3.6.) The condition (C) in Theorem

3.3 is a semi-classical analogy of the convergence theorem (Theorem 2.3).

3.4 Quantum ergodicity at a finite energy level

This subsection is devoted to defining the notion of quantum ergodicity for QDλ at

energy level e > 0, following the method in [28]. Let A be a bounded operator on L2(P )

which commutes with G-action. Then the quantum time average of A is defined by

Ā = w-lim
t→∞ At, At =

1

t

∫ t

0
eisĤAe−isĤds. (3.17)

The above weak limit exists, and the bounded operators At, Ā commute with G-action.

Furthermore the operators Ā and Ĥ commute. By the spectral theorem, we have

Ĥ =
∑
µ

∑
e(µ)

e(µ)Pe(µ), eitĤ =
∑
µ

∑
e(µ)

eite(µ)Pe(µ), (3.18)

where µ runs over irreducible representations of G, e(µ) runs over eigenvalues of the

restriction of Ĥ to Lµ, and Pe(µ) is the projection onto the eigenspace with the eigenvalue

e(µ). Using the expression (3.18), we obtain that the time average Ā of A has the form

Ā =
∑
µ

∑
e(µ)

Pe(µ)APe(µ). (3.19)
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The quantum space average of A is defined by

〈A 〉λe = lim
m→∞Nm(e, c)−1

∑
j∈Nm(e,c)

〈Aνmj , νmj 〉, (3.20)

if the above limit exists, where Nm(e, c), Nm(e, c) and νmj are described in Section 3.3.

Note that 〈A 〉λe = 〈 Ā 〉λe if the left hand side exists. To guarantee the existence of the

space average of A ∈ A0, we need the following condition.

(H2) The set of periodic points of ϕλt on Σλ
e has Liouville measure zero.

Under the condition (H2), we have the following semi-classical asymptotic formula due to

Guillemin-Uribe ([14], [15]) and Zelditch ([39]).

Theorem 3.4 (Guillemin-Uribe, Zelditch) Suppose that the condition (H2) is satis-

fied. Then for every A ∈ A0 we have the following formula.

∑
j∈Nm(e,c)

〈Aνmj , νmj 〉 = 2c
(
m

2π

)n+d−1∫
Σλ

e

σ0(A)dωλe + o(mn+d−1), (3.21)

where n = dimM and 2d = dimOλ.

We refer to [5], [14], [15] and [39] for the proof of this formula.

Next, we will prepare some notation on the classical mechanics CDλ
e . For each L2-

function a ∈ L2(Σλ
e ), let at be the time average of a up to time t > 0:

at =
1

t

∫ t

0
a◦ϕλs ds,

and let 〈 a 〉λe be the space average of a:

〈 a 〉λe = vol(Σλ
e )−1

∫
Σλ

e

a dωλe .

By Theorem 1.1, the long time average ā = lim
t→∞ at exists in L2(Σλ

e ). The following lemma

is the direct consequence of Egorov’s theorem (Lemma 2.1, (2)) and Theorem 3.4.

Lemma 3.4 (1) For every A ∈ A0, we have eitĤAe−itĤ ∈ A0, and hence At ∈ A0. The

principal symbols of the operators eitĤAe−itĤ and At are given by σ0(A)◦ψt and

σ0(At) =
1

t

∫ t

0
σ0(A)◦ψs ds, (3.22)

respectively, where ψt is the Hamilton flow on T ∗P .

(2) If the condition (H2) is fulfilled, then for every A ∈ A0 we have 〈A 〉λe = 〈σ0(A) 〉λe .
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Now we will define quantum ergodicity at a finite energy level, which is an analogy of

Definition 2.1, (1).

Definition 3.1 The reduced quantum dynamical system QDλ is said to be quantum er-

godic at energy level e if, for every observable A ∈ A0, the space average 〈 Ā∗Ā 〉λe of the

operator Ā∗Ā exists and satisfy

〈 Ā∗Ā 〉λe = |〈A 〉λe |2. (3.23)

Lemma 3.5 Assume that the condition (H2) is satisfied. Then the reduced quantum

mechanics QDλ is quantum ergodic at energy level e if and only if the condition (S) in the

statement of Theorem 3.3 holds.

Proof. Note that 〈 Ā∗Ā 〉λe exists and satisfies (3.23) if and only if the following is satisfied:

〈 (Ā− 〈A 〉λe )∗(Ā− 〈A 〉λe ) 〉λe = 0, (3.24)

and, by the definition of the quantum space average, (3.24) holds in and only if (3.13) in

the condition (S) holds.

Proposition 3.1 Assume that the condition (H2) is satisfied. Then QDλ is quantum

ergodic at energy level e if and only if the condition (1) in Theorem 3.1 holds.

Proof. Let A ∈ A0 be a zeroth order ψDO commuting with G-action and let {νmj } be

an orthonormal basis of eigenfunctions for Hλ. Since the bounded operator Ā commutes

with Ĥ and G-action, Āνmj is an eigenfunction of Ĥ with eigenvalue ej(m). Therefore, by

(3.19), we have

Āνmj =
∑
k

ek(m)=ej(m)

〈Aνmj , νmk 〉νmk , (3.25)

and hence we obtain

〈 Ā∗Ā 〉λe = lim
m→∞Nm(e, c)−1

∑
j∈Nm(e,c)

∑
k

ek(m)=ej(m)

|〈Aνmj , νmk 〉|2. (3.26)

Thus the assertion follows from Lemma 3.4, (2) and Definition 3.1.

In order to prove Theorem 3.1, we shall prepare the following proposition.
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Proposition 3.2 Assume that the condition (H2) is satisfied. Then every quantum ob-

servable A ∈ A0 satisfies

lim
t→∞ 〈A∗

tAt 〉λe = 〈 Ā∗Ā 〉λe (3.27)

if and only if (3.9) in the condition (2) of Theorem 3.1 holds.

Proof. This proposition is obtained by the similar way to the proof of Lemma 2-2 in

[28]. However, we will recall it just to make sure. Note that, by the assumption (H2) and

Lemmas 3.4, 1.1, lim
t→∞ 〈A∗

tAt 〉λe exists. A direct computation leads us to

Atν
m
j =

1

t

∑
k

ek(m) 
=ej(m)

(eit(ek(m)−ej(m)) − 1)

i(ek(m) − ej(m))
〈Aνmj , νmk 〉νmk + Āνmj , (3.28)

and hence

〈A∗
tAtν

m
j , ν

m
j 〉 =

1

t2
∑

k

ek(m) 
=ej(m)

|eit(ek(m)−ej(m)) − 1|2
|ek(m) − ej(m)|2 |〈Aνmj , νmk 〉|2

+〈 Ā∗Āνmj , ν
m
j 〉. (3.29)

We set S(x) = x−2|eix − 1|2 = 2x−2(1 − cos x) and

St = lim sup
m↑∞

Nm(e, c)−1
∑

j∈Nm(e,c)

∑
k

ej(m) 
=ek(m)

S(t(ej(m) − ek(m))) |〈Amνmj , νmk 〉|2. (3.30)

We observe that (3.27) holds if and only if

lim
t→∞St = 0. (3.31)

Indeed, under the assumption (3.27), (3.31) follows directly from (3.29). Conversely,

assume that (3.31) holds. Since 〈A∗
tA

∗
t 〉λe exists, the existence of 〈 Ā∗Ā 〉λe follows from

(3.29), and hence we have

〈A∗
tA

∗
t 〉λe = St + 〈 Ā∗Ā 〉λe (3.32)

By taking t→ ∞ in (3.32), we obtain (3.27).

Note that there exists α > 0 such that S(x) ≥ 1/2 if |x| < α. Then we have

St ≥ lim sup
m↑∞

Nm(e, c)−1 ×
∑

j∈Nm(e,c)

∑
k

0<|ej(m)−ek(m)|≤α/t

S(t(ej(m) − ek(m))) |〈Aνmj , νmk 〉|2

≥ 1

2
lim sup
m↑∞

Nm(e, c)−1
∑

j∈Nm(e,c)

∑
k

0<|ej(m)−ek(m)|≤α/t

|〈Aνmj , νmk 〉|2. (3.33)
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Therefore (3.31) implies (3.9).

Conversely, we will assume (3.9). For any ε > 0, there exists T > 0 such that S(x) < ε

if |x| > T . Then we have

Nm(e, c)−1
∑

j∈Nm(e,c)

∑
k

ej(m) 
=ek(m)

S(t(ej(m) − ek(m))) |〈Aνmj , νmk 〉|2

≤ εNm(e, c)−1
∑

j∈Nm(e,c)

∑
k

|ej(m)−ek(m)|>T/t

|〈Aνmj , νmk 〉|2

+Nm(e, c)−1
∑

j∈Nm(e,c)

∑
k

0<|ej(m)−ek(m)|≤T/t

|〈Aνmj , νmk 〉|2

≤ ε‖A‖2 +Nm(e, c)−1
∑

j∈Nm(e,c)

∑
k

0<|ej(m)−ek(m)|≤T/t

|〈Aνmj , νmk 〉|2. (3.34)

Therefore we obtain

St ≤ ε‖A‖2 + lim sup
m↑∞

Nm(e, c)−1
∑

j∈Nm(e,c)

∑
k

0<|ej(m)−ek(m)|≤T/t

|〈Aνmj , νmk 〉|2. (3.35)

Letting t → ∞ in (3.35), we have lim sup
t→∞

St ≤ ε‖A‖2. Since ε > 0 is arbitrary, we

conclude that lim
t→∞St = 0, and hence (3.27).

3.5 Proof of Theorem 3.1

In the preceding subsection, we have defined quantum ergodicity of the reduced

quantum dynamical system QDλ at a finite energy level. This notion plays an important

role in the proof of Theorem 3.1 (stated in Section 3.3). Indeed, in view of Propositions

3.1, 3.2, we only need to prove the following proposition for the proof of Theorem 3.1.

Proposition 3.3 Assume that the conditions (H1) and (H2) are fulfilled. Then the dy-

namical system CDλ
e is ergodic if and only if the following two conditions hold:

(1) The reduced quantum dynamical system QDλ is quantum ergodic at energy level e.

(2) For every observable A ∈ A0, we have (3.27) in Proposition 3.2.

Proof. We take an arbitrary A ∈ A0. Then we have

|〈A 〉|2 = |〈σ0(A) 〉| (Lemma 3.4, (2))

= 〈 |σ0(A)|2 〉 (ergodicity)
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= lim
t→∞〈 |σ0(A)t|2 〉 (Lemma 1.1, (1), (i))

= lim
t→∞〈σ0(A∗

tAt) 〉 (Lemma 3.4, (1))

= lim
t→∞〈A

∗
tAt 〉 (Lemma 3.4, (2)).

On the one hand, by (3.29), we have 〈A∗
tAtν

m
j , ν

m
j 〉 ≥ 〈 Ā∗Āνmj , ν

m
j 〉, and hence

〈A∗
tAt 〉 ≥ lim sup

m↑∞
Nm(e, c)−1

∑
j∈Nm(e,c)

〈 Ā∗Āνmj , ν
m
j 〉.

On the other hand,

0 ≤ lim inf
m↑∞

Nm(e, c)−1
∑

j∈Nm(e,c)

‖(Ā− 〈A 〉)νmj ‖2

= lim inf
m↑∞

Nm(e, c)−1
∑

j∈Nm(e,c)

〈 Ā∗Āνmj , ν
m
j 〉 − |〈A 〉|2.

Therefore we have

|〈A 〉|2 = lim
t→∞ 〈A∗

tAt 〉
≥ lim sup

m↑∞
Nm(e, c)−1

∑
j∈Nm(e,c)

〈 Ā∗Āνmj , ν
m
j 〉

≥ lim inf
m↑∞

Nm(e, c)−1
∑

j∈Nm(e,c)

〈 Ā∗Āνmj , ν
m
j 〉

≥ |〈A 〉|2.

This implies that 〈 Ā∗Ā 〉 exists and

|〈A 〉|2 = lim
t→∞〈A

∗
tAt 〉 = 〈 Ā∗Ā 〉.

We will prove the converse. Let A ∈ A0. Then we have

|〈A 〉|2 = |〈σ0(A) 〉|2 ( Lemma 3.4, (2))

≤ 〈 |σ0(A)|2 〉 ( Lemma 1.1, (1), (ii))

= lim
t→∞ 〈 |σ0(A)t|2 〉 ( Lemma 1.1, (1), (i))

= lim
t→∞ 〈σ0(A

∗
tAt) 〉 ( Lemma 3.4, (1))

= lim
t→∞ 〈A∗

tAt 〉 ( Lemma 3.4, (2))

= 〈 Ā∗Ā 〉 ( Assumption (1) )

= |〈A 〉|2 ( Assumption (2) ).

Thus for every smooth function σ0(A) which is the principal symbol of A ∈ A0, the

equation (1.3) in Lemma 1.1 (2) holds. Now, by Lemma 3.3, for every a ∈ C∞(Σλ
e ),
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there exists a smooth function ã on T ∗P \ 0 which is G-invariant, homogeneous of degree

zero and q∗λa = ã on Σ̃λ
e . Let A0 be the ψDO of order zero whose principal symbol is

ã. Then the operator A =
∫
G gA0g

−1 dg is in A0 whose principal symbol is ã, and hence

〈 |σ0(A)|2 〉 = 〈 |ā|2 〉. Therefore the dynamical system CDλ
e is ergodic.

3.6 Proof of Theorem 3.3

Now we will proceed to the proof of Theorem 3.3. For this sake, we will define

auxiliary notions.

Definition 3.2 (1) A family { Sm ; Sm ⊂ σm(e, c) } of subsets in

σm(e, c) = {λ ∈ σ(Ĥ|Lmλ
) ; |λ−me| ≤ c } is said to satisfy the condition (D1) if it

satisfies

lim
m→∞Nm(e, c)−1

∑
λ∈Sm

(dimVλ) = 1, (3.36)

where Vλ is the eigenspace of an eigenvalue λ of Ĥ|Lmλ
.

(2) A family { Jm ; Jm ⊂ Nm(e, c) } of subsets in

Nm(e, c) = { j ∈ N ; ej(m) ∈ σm(e, c) } is said to satisfy the condition (D2) if we

have

lim
m→∞Nm(e, c)−1�Jm = 1. (3.37)

Let x = {xm}m∈Z be a family of sequences xm = {xmj }j∈Nm(e,c) of non-negative num-

bers such that 0 ≤ xmj ≤ K for all m, j, for some constant K > 0. For each λ ∈ σm(e, c),

we set

xmλ = (dimVλ)
−1

∑
j

ej(m)=λ

xmj , (3.38)

so that

Nm(e, c)−1
∑

j∈Nm(e,c)

xmj = Nm(e, c)−1
∑

λ∈σm(e,c)

(dimVλ)xmλ . (3.39)

Lemma 3.6 Let x = {xm}m∈Z be a family of sequences xm = {xmj }j∈Nm(e,c) as above.

Then x = {xm}m∈Z satisfies

lim
m→∞Nm(e, c)−1

∑
λ∈σm(e,c)

(dimVλ)x
m
λ = 0, (3.40)

if and only if there exists a family { Sm ; Sm ⊂ σm(e, c) } satisfying the condition (D1)

such that

lim
m→∞ max

λ∈Sm

xmλ = 0. (3.41)
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Proof. Since “ if ” part is obvious, we will only give a proof of “ only if ” part. Assume

that x = {xm}m∈Z satisfies (3.40). Then one can find a sequence {lm} of natural numbers

which is monotone increasing and goes to infinity as m→ ∞ such that

Nm(e, c)−1
∑

λ∈σm(e,c)

(dimVλ) x
m
λ <

K

2lm

for every m ∈ N. We define

Sm = {λ ∈ σm(e, c) ; xmλ <
1

lm
}.

It is clear that Sm satisfies (3.41). Furthermore {Sm} satisfies (D1). Indeed we have

K

2lm
> Nm(e, c)−1

∑
λ∈σm(e,c)

(dimVλ)xmλ

≥ {lmNm(e, c)}−1
∑

λ∈σm(e,c)\Sm

(dimVλ),

and hence

1 −Nm(e, c)−1
∑
λ∈Sm

(dimVλ) < K
lm
2lm

.

This implies (3.36).

Lemma 3.7 Let x = {xm}m∈Z be a family of sequences xm = {xmj }j∈Nm(e,c) of non-

negative numbers as above. Then the following conditions are equivalent.

(1) There exists a family {Sm}m satisfying (D1) such that it satisfies (3.41).

(2) There exists a family {Jm}m satisfying (D2) such that

lim
m↑∞

max
j∈Jm

xmj = 0. (3.42)

Proof. First, we will assume the condition (1). Then one can find a sequence {lm} of

natural numbers which is monotone increasing and goes to infinity as m → ∞ such that

for all λ ∈ Sm
xmλ = (dimVλ)

−1
∑

j

ej(m)=λ

xmj <
K

2lm
.

We define Jm ⊂ Nm(e, c) by

Jm = { j ∈ Nm(e, c) ; ej(m) ∈ Sm and xmj <
1

lm
}.
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This family clearly satisfies (3.42). Note that we have

1 −Nm(e, c)−1�Jm

= Nm(e, c)−1
∑
λ∈Sm

∑
j∈Nm(e,c)\Jm

ej(m)=λ

1 + Nm(e, c)−1
∑

λ∈σm(e,c)\Sm

∑
j

ej(m)=λ

1

= I + II (say).

Since {Sm} satisfies the condition (D1), II goes to zero as m→ ∞. On the other hand,

I = Nm(e, c)−1
∑
λ∈Sm

(dimVλ)S
m
λ ,

where we set

Smλ = (dimVλ)
−1

∑
j∈Nm(e,c)\Jm

ej(m)=λ

1.

If ej(m) = λ ∈ Sm and j 
∈ Jm, then xmj ≥ l−1
m . Thus, for λ ∈ Sm, we have

K

2lm
≥ (dimVλ)

−1
∑

j∈Nm(e,c)\Jm

ej(m)=λ

xmj ≥ l−1
m Smλ .

This implies that I < Klm/2
lm → 0 (m→ ∞). Hence the family {Jm} satisfies (D2).

Next, we shall prove the converse. In view of Lemma 3.6, it suffices to prove that the

condition (2) implies (3.40). Combining (3.39) and the assumption (2), we have

Nm(e, c)−1
∑

λ∈σm(e,c)

(dimVλ)x
m
λ ≤ Nm(e, c)−1

∑
j∈Jm

xmj +K
[
1 −Nm(e, c)−1�Jm

]

≤ max
j∈Jm

xmj +K
[
1 −Nm(e, c)−1�Jm

]
.

Letting m→ ∞ in the above inequality, the condition (3.40) follows.

Proposition 3.4 The conditions (Z) and (C) in the statement of Theorem 3.3 are equiv-

alent.

Proof. We take an A ∈ A0 and set

xmj = |〈Aνmj , νmj 〉 − 〈σ0(A) 〉λe |

for j ∈ Nm(e, c). Note that 0 ≤ xmj ≤ ‖A‖ + |〈σ0(A) 〉λe |2. Hence, by Lemmas 3.6, 3.7 we

conclude the assertion.

The conditions (Z) and (C) are equivalent without assuming (H2). Next we will prove

the equivalence of (S) and (C). For this sake, we prepare the following lemma.
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Lemma 3.8 Consider a family { Jm ; Jm ⊂ Nm(e, c) }, and set

Jm(λ) = { j ∈ Jm ; ej(m) = λ }. Then {Jm}m satisfies (D2) if and only if there exists a

family {Sm ; Sm ⊂ σm(e, c) } satisfying (D1) such that

lim
m↑∞

max
λ∈Sm

(dimVλ)
−1�Jm(λ) = 1. (3.43)

Proof. Set

xmj =


 0 if j ∈ Jm

1 if j ∈ Nm(e, c) \ Jm.
Then for all λ ∈ σm(e, c), we have xmλ = 1 − (dimVλ)

−1�Jm(λ). Therefore

1 −Nm(e, c)−1�Jm = Nm(e, c)−1
∑

λ∈σm(e,c)

(dimVλ)x
m
λ .

Hence by Lemma 3.7, {Jm}m satisfies (D2) if and only if there exists a family {Sm}m
satisfying (D1) such that

lim
m→∞ min

λ∈Sm

xmλ ≤ lim
m→∞ max

λ∈Sm

xmλ = 0.

Since min
λ∈Sm

xmλ = 1 − max
λ∈Sm

(dimVλ)
−1�Jm(λ), we conclude the assertion.

Finally, we will prove the following proposition, which completes the proof of Theorem

3.3.

Proposition 3.5 Assume that (H2) is satisfied. Then the conditions (S) and (C) in

Theorem 3.3 are equivalent.

Proof. We will assume that the condition (S) holds. Note that 〈A 〉λe = 〈σ0(A) 〉λe by

Lemma 3.4, (2). Therefore by setting xmj = ‖(Ā − 〈A 〉λe )νmj ‖, the condition (C) follows

from Lemmas 3.6, 3.7 and the inequality

|〈Aνmj , νmj 〉 − 〈σ0(A) 〉λe | ≤ ‖(Ā− 〈A 〉λe )νmj ‖.

We will prove the converse. We may assume, without loss of generality, that A ∈ A0

is self-adjoint. Since the time average Ā commutes with Ĥ and G-action, we can take an

orthonormal basis {νmj } for Lmλ consisting of eigenfunctions of Ĥ such that Āνmj = µmj ν
m
j

for some µmj ∈ R. Note that 〈 Āνmj , νmj 〉 = 〈Aνmj , νmj 〉. Then we have

‖(Ā− 〈A 〉λe )νmj ‖2 = |µmj − 〈A 〉λe |2 = |〈Aνmj , νmj 〉 − 〈σ0(A) 〉λe |2. (3.44)
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Let {Jm}m be a family described in the condition (C). By Lemma 3.8, we can find a

family Sm satisfying (D1) such that (3.43) holds. In view of Lemma 3.6, we only need to

prove that this family {Sm} satisfies

lim
m↑∞

max
λ∈Sm

(dimVλ)
−1

∑
j

ej(m)=λ

‖(Ā− 〈A 〉λe )νmj ‖2 = 0. (3.45)

By (3.43), for arbitrary ε > 0 we can find a positive number N1 such that m ≥ N1 implies

(dimVλ)−1[(dimVλ) − �Jm(λ)] < ε for all λ ∈ Sm. By the condition (C) and (3.44), there

is a positive number N2 such that m ≥ N2 implies ‖(Ā− 〈A 〉λe )νmj ‖2 < ε for all j ∈ Jm.

Therefore if m ≥ max{N1, N2} then for all λ ∈ Sm we have

(dimVλ)
−1

∑
j

ej(m)=λ

‖(Ā− 〈A 〉λe )νmj ‖2

= (dimVλ)
−1

∑
j∈Jm

ej(m)=λ

‖(Ā− 〈A 〉λe )νmj ‖2

+(dimVλ)
−1

∑
j∈Nm(e,c)\Jm

ej(m)=λ

‖(Ā− 〈A 〉λe )νmj ‖2

≤ (1 +K)ε,

where K = ‖A‖ + |〈A 〉λe |2. Since ε > 0 is arbitrary, we obtain (3.45).

3.7 Quantum weak-mixing at a finite energy level

Theorem 3.1 says that ergodicity of classical dynamical system CDλ
e is related to the

semi-classical asymptotic behavior of near-diagonal components of quantum observables.

Thus it is natural to ask which property of classical mechanics affects the asymptotic

behavior of the components far from the diagonal. For this problem, Zelditch [42] showed

that classical weak-mixing is equivalent to the notion of quantum weak-mixing (see Section

2.2) plus an additional condition, and he obtained Theorem 2.2.

In this section, we will discuss quantum weak-mixing of QDλ at a finite energy level.

We will begin with recalling some notation in Section 1.1.

For every τ ∈ R and every a ∈ L2(Σλ
e ), we define at(τ) ∈ L2(Σλ

e ) by

at(τ) =
1

t

∫ t

0
e−iτsa◦ϕλs ds.

By von Neumann’s ergodic theorem (Theorem 1.1), the function at(τ) converges in L2-

sense to the function ā(τ) ∈ L2(Σλ
e ) satisfying ā(τ)◦ϕλt = eiτtā(τ) as t → ∞. The
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dynamical system CDλ
e is said to be weak-mixing if

ā(τ) = 〈 a 〉λe δτ,0 , a.e.,

or equivalently

〈 |ā(τ)|2 〉λe = |〈 ā(τ) 〉λe |2

for all a ∈ C∞(Σλ
e ). (See Lemma 1.1, (3).)

We will describe a quantum analogue of this notion. (See Section 2.1 for the high

energy case.) For every quantum observable A ∈ A0 and for every τ ∈ R, we define the

bounded operator Ā(τ) by

Ā(τ) = w-lim
t→∞ At(τ), At(τ) =

1

t

∫ t

0
e−iτseisĤAe−isĤ ds.

The bounded operator Ā(τ) commutes with G-action and has the following form

Ā(τ) =
∑
µ

∑
e(µ)∈σ(Ĥ|Lµ )

Pe(µ)+τAPe(µ).

By Egorov’s theorem (Lemma 3.4, (1)), the operator At(τ) is in A0 and its principal

symbol is given by

σ0(At(τ)) =
1

t

∫ t

0
e−iτsσ0(A)◦ψs ds.

Definition 3.3 The reduced quantum dynamical system QDλ is said to be quantum weak-

mixing at energy level e > 0 if for every observable A ∈ A0 and every τ ∈ R,

〈 Ā(τ)∗Ā(τ) 〉λe and 〈A 〉λe exist and satisfy

〈 Ā(τ)∗Ā(τ) 〉λe = |〈A 〉λe |2δτ,0 ,

or equivalently,

〈 Ā(τ)∗Ā(τ) 〉λe = |〈 Ā(τ) 〉λe |2.

The following proposition and theorem can be obtained by a method similar to the

proofs of Proposition 3.3 and Theorem 3.1, respectively.

Proposition 3.6 Assume that the conditions (H1) and (H2) are fulfilled. Then the clas-

sical dynamical system CDλ
e is weak-mixing if and only if the following two conditions

hold.

(1) The reduced quantum dynamical system QDλ is quantum weak-mixing

at energy level e.
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(2) For every observable A ∈ A0 and for every τ ∈ R, we have

lim
t→∞〈At(τ)∗At(τ) 〉λe = 〈 Ā(τ)∗Ā(τ) 〉λe .

Theorem 3.5 Assume that the conditions (H1) and (H2) are fulfilled. Then the classical

dynamical system CDλ
e is weak-mixing if and only if the following two conditions hold.

(1) For every A ∈ A0, τ ∈ R and orthonormal basis {νmj }∞j,m=1 for Hλ consisting of

eigenfunctions of Ĥλ, we have

lim
m↑∞

Nm(e, c)−1
∑

j∈Nm(e,c)

∑
k

ek(m)=ej(m)+τ

∣∣∣〈Aνmj , νmk 〉∣∣∣2

=

∣∣∣∣∣vol(Σλ
e )−1

∫
Σλ

e

σ0(A) dωλe

∣∣∣∣∣
2

δτ,0.

(2) For every A, τ and {νmj }∞j,m=1 as above, we have

lim
δ↓0

lim sup
m↑∞

Nm(e, c)−1
∑

j∈Nm(e,c)

∑
k

0<|ek(m)−ej(m)−τ |<δ

∣∣∣〈Aνmj , νmk 〉∣∣∣2 = 0.
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4 A semi-classical analogy of Helton’s theorem

In this section, we will discuss Problem C in Introduction.

The theorem of Helton–Guillemin [17], [11] gives a necessary and sufficient condition

in terms of the cluster points for the differences of eigenvalues of the Laplacian on a

compact Riemannian manifold in order that the geodesic flow is periodic. The purpose

of this section is to investigate the relationship between the structure of the set of cluster

points in a certain semi-classical sense for the differences of eigenvalues of the reduced

quantum Hamiltonian Ĥλ and periodicity of the reduced Hamilton flow ϕλt described in

Section 3.1.

4.1 Helton’s theorem

Let M be a compact Riemannian manifold and let Ĥ be a first order self-adjoint

non-negative elliptic pseudodifferential operator on M . We denote the eigenvalues of the

operator Ĥ by e1 ≤ e2 ≤ e3 ≤ · · ·. For a positive real number λ and an open interval I,

we set

N (λ) = {j ∈ N ; ej ≤ λ},
N(λ; I) = �{(j, k) ∈ N (λ) × N ; ek − ej ∈ I}.

Definition 4.1 A real number τ is said to be a cluster point of the set {ek − ej} if

lim
λ→∞

N(λ; I) = ∞ (4.1)

holds for any open interval I containing τ . We denote the set of all cluster points by

Dσ(Ĥ).

Remark 4.1 Note that the notion of the cluster point in the sense of Definition 4.1

is differ from that of the accumulate point in the usual sense. Indeed, zero is always a

cluster point in the sense of Definition 4.1. However, let M be the standard sphere of

dimension n and Ĥ be the square root of the Laplacian with respect to the standard

metric. The eigenvalues of Ĥ are given by
√
p(p+ n− 1) with p non-negative integers.

Then the inequality

|
√
p(p+ n− 1) −

√
q(q + n− 1)| ≥ |p− q|

shows that zero is not an accumulate point of the set {ek − ej}.

With Definition 4.1, Helton’s theorem [17] (see also [11]), which is well-known in

spectral geometry, can be stated as follows.
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Theorem 4.1 (Helton) If the Hamilton flow generated by the principal symbol of Ĥ is

not periodic, then we have Dσ(Ĥ) = R.

Theorem 4.2 (Helton-Guillemin) Let Ĥ be the positive square root of the Laplacian

on M . Then the geodesic flow is periodic if and only if there exists a positive constant

T such that Dσ(Ĥ) = {2πn

T
; n ∈ Z}. In this case, the positive constant T is the least

common period of the periodic geodesic flow.

Remark 4.2 The cause of the restriction of the operator Ĥ to the Laplacian in Theorem

4.2 is the fact that the periodic geodesic flow has the common period ([35]) though the

periodic Hamilton flow does not necessarily have the common period.

The notion of the cluster point defined in the following subsection (Definition 4.2) is a

semi-classical analogy of Definition 4.1. The set of cluster points in the sense of Definition

4.2 depends on the energy level. However, it is natural since the dynamical behavior of

the reduced flow ϕλt depend on the energy level.

Unfortunately, our main theorem stated in Section 4.2 does not completely clarify the

relation between the structure of the set of the cluster point in the sense of Definition

4.2 and periodicity of the reduced flow ϕλt . Particularly, in case where the flow ϕλt has

quite different behavior on different energy surfaces, such as a magnetic flow on a compact

Riemann surface with constant negative curvature −1 (see Section 5), it is not made clear

to what extent the structure of the set of the cluster points in the sense of Definition 4.2

depends on the energy level.

However, as we will see some examples in the next section, the structure of the set of

the cluster points in the sense of Definition 4.2 will be closely related to the periodicity

of the dynamical system CDλ
e .

4.2 Cluster points in the semi-classical sense

As described in Section 3, for each integer m, let e1(m) ≤ e2(m) ≤ e3(m) ≤ · · · be

the eigenvalues of the operator Ĥλ on Lmλ. We fix e > 0 as an energy level. For an open

interval I, we set

Nm(e, c) = { j ∈ N ; |ej(m) −me| ≤ c },
Nm(e, c ; I) = �{ (j, k) ∈ Nm(e, c) × N ; ek(m) − ej(m) ∈ I },

where c > 0 is a positive constant.
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Definition 4.2 A real number τ is said to be a cluster point of the set

{ ek(m) − ej(m) ; (j, k) ∈ Nm(e, c) × N, m ∈ Z } in the semi-classical sense at energy

level e if, for some constant c > 0,

lim
m→∞Nm(e, c ; I) = ∞ (4.2)

holds for any open interval I containing τ . We denote by s-Dσe the set of all cluster

points at the energy level e in the above sense.

We will investigate the relation between the structure of the set s-Dσe and the peri-

odicity of the reduced flow ϕλt on Σλ
e . Note that, if the operator Ĥ is the Laplacian on

P with respect to a Riemannian metric, then Theorem 4.2 can be applied for the set of

cluster points Dσ(Ĥ) in the sense of Definition 4.1.

Lemma 4.1 For every e, the set s-Dσe of cluster points in the sense of Definition 4.2 is

a subset of the set Dσ(Ĥ) of cluster points in the sense of Definition 4.1.

Proof. Set λm = me + 1. Then for any open interval I we have Nm(e; I) ≤ N(λm; I).

Note that the number N(λ; I) is monotone increasing in λ. Hence the lemma follows.

Corollary Let Ĥ be the square root of the Laplacian on P with respect to the Riemannian

metric described in Section 3.1. Suppose that the geodesic flow ψt on the cotangent bundle

T ∗P \ 0 is periodic with period T > 0. Then s-Dσe ⊂ 2π

T
Z.

Our main theorem of this section is the following. (See Sections 3.2, 3.4 for the

conditions (H1), (H2), respectively.)

Theorem 4.3 Assume that the conditions (H1) and (H2) are satisfied. Then the set

s-Dσe of all cluster points in the sense of Definition 4.2 is whole real line:

s-Dσe = R.

By Theorem 4.3, we obtain the following.

Corollary Assume that the conditions (H1) and (H2) are satisfied. Then for every real

number τ , there are sequences ml, jl, kl ∈ N with ml ↑ ∞ such that we have

ejl(ml)

ml

→ e and ekl
(ml) − ejl(ml) → τ (l → ∞).
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4.3 Proof of Theorem 4.3

To begin with, we will recall the notation in Section 3. For e > 0, we set Σλ
e =

H−1
λ (e) ⊂ Xλ where Hλ is the reduced Hamiltonian. Let L2(Σλ

e ) be the Hilbert space

of L2-functions on Σλ
e with respect to the normalized Liouville measure, dωλe , and let

U e
t be the one-parameter family of unitary operators on L2(Σλ

e ) defined by U e
t a = a◦ϕλt ,

a ∈ �L2(Σλ
e ). Let

U e
t =

∫
eitx dEe(x) (4.3)

be the spectral resolution of U e
t . (We have written the above spectral measure by Ẽ in

Section 1. However, in this subsection, we will write it Ee for simplicity.) We set

Sλe =
∫
x dEe(x). (4.4)

The self-adjoint operator Sλe is an L2-extension of the restriction on Σλ
e of −√−1 times

the Hamilton vector field.

Lemma 4.2 If the reduced flow ϕλt is not periodic on Σλ
e , then the spectrum Spec(Sλe ) of

the self-adjoint operator Sλe is whole real line.

Proof. The following proof is due to Guillemin [11]. However we will repeat it to make

sure. Suppose that the orbit of the flow ϕλt through z0 ∈ Σλ
e is not periodic. Consider the

bounded operator

f(Sλe )a =
∫
f(x) dEe(x)a =

1

2π

∫
f̂(t)Uλ

t a dt, a ∈ L2(Σλ
e ), (4.5)

for f ∈ C∞
0 (R), where f̂ is the Fourier transform of f . We will show that, f(Sλe ) = 0

implies f = 0. This claim concludes Spec(Sλe ) = R.

First we note that, by (4.5), for every continuous function a, the function f(Sλe )a is

also continuous and its value at z ∈ Σλ
e is given by

f(Sλe )a(z) =
1

2π

∫
f̂(t)Uλ

t a(z) dt. (4.6)

Second we claim that, for large K > 0 and g ∈ C∞
0 (R) with supp g ⊂ (−K,K),

there are smooth functions aK ∈ C∞(Σλ
e ) and gK ∈ C∞(R) such that these are satisfy

aK(ϕλt z0) = g(t) + gK(t), ‖gK‖∞ ≤ 2‖g‖∞ and supp gK ∩ [−K,K] = ∅.

Indeed, let

γK = {ϕλt z0 ; t ∈ [−K,K]}.
Since the Hamilton vector field XHλ

generating the flow ϕλt is non-vanishing, the segment

γK is diffeomorphic to the interval [−K,K]. Let ΓK be a tubular neighborhood of γK
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such that ΓK is diffeomorphic to [−K,K] × D with γK ∼= [−K,K] × {0}, where D is

sufficiently small disk of dimension dim Σλ
e − 1. We will take a function ρ ∈ C∞

0 (D) with

0 ≤ ρ ≤ 1, ρ(0) = 1. Set

a0(s, x) = g(s)ρ(x), (s, x) ∈ [−K,K] ×D,

which is a compactly supported smooth function on ΓK , and extend a0 to the smooth

function aK on Σλ
e which is zero on the outside of ΓK . If we set gK(t) = aK(ϕλt z0) − g(t),

then we have gK(t) = 0 for |t| ≤ K, and hence supp gK ∩ [−K,K] = ∅. Furthermore we

obtain

|gK(t)| = |aK(ϕλt z0) − g(t)| ≤ 2|g(t)|
for all t ∈ R, since |a(z)| ≤ |g(s)| for z = (s, x) ∈ ΓK ∼= [−K,K]×D. Then the functions

aK , gK have the required properties.

Now, suppose that f ∈ C∞
0 (R) satisfies f(Sλe ) = 0. By (4.6), for every a ∈ C∞(Σλ

e ),

g ∈ C∞
0 (R) and K > 0, we have

0 = f(Sλe )aK(z0) =
1

2π

∫
f̂(t)g(t) dt +

1

2π

∫
R\[−K,K]

f̂(t)gK(t) dt. (4.7)

The second term in the right hand side of (4.7) tends to zero as K → ∞ by the inequality

∣∣∣∣∣
∫
R\[−K,K]

f̂(t)gK(t) dt

∣∣∣∣∣ ≤ 2‖g‖∞
∫
R\[−K,K]

|f̂(t)| dt.

Therefore we obtain ∫
f̂(t)g(t) dt = 0

for arbitrary g ∈ C∞
0 (R), which implies f = 0.

Before proceeding the proof of the main theorem, we need to give an account of the

spectral measure lemma. For a function a ∈ L2(Σλ
e ), we denote by dµa the spectral

measure corresponding to a, that is µa(Λ) = ‖Ee(Λ)a‖2 for Borel subset Λ ⊂ R. Let

{νmj }j,m∈N be an orthonormal basis for Hλ consisting of eigenfunctions of the operator

Ĥλ. We set

〈A 〉λe = lim
m→∞Nm(e, c)−1

∑
j∈Nm(e,c)

〈Aνmj , νmj 〉, (4.8)

where Nm(e, c) = �Nm(e, c).

By Theorem 3.4, we have 〈A 〉λe =
∫
Σλ

e
σ0(A) dωλe if the condition (H2) is satisfied. We

set

mλ
A(f) := lim

m→∞Nm(e, c)−1
∑

j∈Nm(e)

∑
k

f(ek(m) − ej(m))|〈Aνmj , νmk 〉|2 (4.9)
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By Theorem 3.4, the existence of the limit in (4.9) can be proved by the same fashion as

the proof of Lemma 2.2.

The functional mλ
A on C∞

0 (R) defines a measure on R. We will also denote this

measure by dmλ
A.

Lemma 4.3 (Zelditch) Assume that the condition (H2) holds. Then for every pseu-

dodifferential operator A of order zero on P commuting with the action of G, we have

dmλ
A = dµσ0(A).

This lemma can be proved by a method similar to the proof of Lemma 2.3.

We will prove the following proposition, which completes the proof of Theorem 4.3.

Proposition 4.1 Assume that the conditions (H1) and (H2) are satisfied. Then the

spectrum Spec(Sλe ) of the self-adjoint operator Sλe is contained in s-Dσe.

Proof. Let τ be not in s-Dσe. Then, for every positive constant c > 0, one can take a

sequence ml of positive integers and an open interval I containing τ such that ml ↑ ∞
as l → ∞ and Nml

(e, c ; I) ≤ C for some constant C > 0. For any smooth function

f on R with compact support containing the open interval I, we consider the bounded

operator f(Sλe ). Let A be a pseudodifferential operator on P of order zero commuting

with G-action, and let a be the smooth function on Σλ
e induced by the principal symbol

of A. On the one hand, by Lemma 4.3, we have

(f(Sλe )a, a)L2(Σλ
e ) =

∫
f dµa

=
∫
f dmλ

A

= lim
m→∞Sm(A, f)

= lim
l→∞

Sml
(A, f),

where

Sm(A, f) = Nm(e, c)−1
∑

j∈Nm(e,c)

∑
k∈N

f(ek(m) − ej(m))|〈Aνmj , νmk 〉|2.

On the other hand,

|Sml
(A, f)| ≤ ‖A‖2 sup

x∈R
|f(x)|2Nml

(e, c ; I)

Nml
(e, c)

≤ C‖A‖2 sup
x∈R

|f(x)|2Nml
(e, c)−1. (4.10)

Since Nml
(e, c) → ∞ as l → ∞, the last term in (4.10) tends to zero as l → ∞. Thus

we have (f(Sλe )a, a)L2(Σλ
e ) = 0. For every smooth function, a, on Σλ

e , there exists a

47



pseudodifferential operator A on P of order zero commuting with the action of G such

that the function on Σλ
e induced by the principal symbol of A coincides with a (see Lemma

3.3). Hence we obtain (f(Sλe )a, a)L2(Σλ
e ) = 0 for every smooth function a on Σλ

e . By the

polarization identity

(f(Sλe )a, b)L2(Σλ
e ) =

1

4

3∑
n=0

in(f(Sλe )(a+ inb), a+ inb)L2(Σλ
e ) = 0,

we have f(Sλe ) = 0. Since f is arbitrary as far as its support is contained in the open

interval I, we conclude that τ is not in the spectrum of Sλe , which completes the proof of

this proposition.
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5 Examples for the circle bundle case

Here we will discuss the circle bundle case, that is the case where G = S1. This case is

particularly important since there are interesting examples. In Section 5.1, we will recall

the definition of the reduced quantum and classical dynamical system for this case. We

will give some examples in Section 5.2.

5.1 Magnetic Schrödinger operator

Let π : P → M be a principal S1-bundle over a compact Riemannian manifold

(M, 〈 , 〉M) and let Θ be a connection 1-form on P . Let B be the curvature 2-form of Θ.

Note that B is a closed 2-form on M . We fix a strictly positive function V on M . Then

the metric 〈 , 〉P on P , defined by the identity

〈u, v 〉P = 〈 dπ(u), dπ(v) 〉M + V −2Θ(u)Θ(v) u, v ∈ TP, (5.1)

is invariant under the action of S1. Now we consider the first order self-adjoint non-

negative elliptic ψDO Ĥ on P defined by

Ĥ =
√
D∗D − V 2∂2

θ , (5.2)

where D is the covariant exterior differentiation with respect to the connection Θ, and

∂θ is the infinitesimal generator of S1-action. The operator Ĥ commutes with S1-action.

Note that the principal symbol H̃ of Ĥ is the Riemannian norm function on T ∗P \ 0, and

hence corresponding Hamilton flow ψt is the geodesic flow. The S1-action on P lifts to

the Hamiltonian (left) action on T ∗P :

z(p, ζ) = (pz−1, z∗ζ), z ∈ S1, (p, ζ) ∈ T ∗P, (5.3)

and its moment map is given by

Φ : T ∗P → R, Φ(p, ζ) = ζ(∂θ). (5.4)

We take the irreducible representation λ = 1 ∈ R of S1, that is the multiplication by

elements of S1. Then the corresponding reduced phase space (X1,Ω1), X1 = Φ−1(1)/S1 is

symplectically diffeomorphic to (T ∗M,ΩM−π∗
MB), where ΩM is the canonical symplectic

form on T ∗M . The Hamiltonian H on X1 = T ∗M , which is induced by H̃ , is of the form

H(x, ξ) =
√
‖ξ‖2 + V (x). (5.5)

The reduced flow ϕt is generated by (H,ΩM −π∗
MB) and it is called electro-magnetic flow

associated with the magnetic field B and the electric potential V . Let ωe be the Liouville
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measure on Σe = H−1(e) (e > maxV ). Then the dynamical system CDe formulated in

Section 3 is the triple (Σe, ϕt, ωe).

If we set (x(t), ξ(t)) = ϕt(x0, ξ0) for (x0, ξ0) ∈ Σe, then the curve x(t) on M satisfies

the equation
D

dt

dx

dt
=

1

e
J(
dx

dt
) − 1

2e2
grad (V 2), (5.6)

with the initial conditions

x(0) = x0,
dx

dt
(0) =

1

e
ξ0, (5.7)

where D/dt is the covariant differentiation associated with the given metric on M , J :

TM → TM is the skew symmetric operator characterized by the identity

Bx(u, v) = 〈u, J(v) 〉. (5.8)

Note that, in (5.7), we have identified T ∗M with TM by the Riemannian metric 〈 , 〉M .

Next We will recall the formulation of the reduced quantum dynamical system QD

described in Section 3.1.

The action of S1 on L2(P ) breaks it into the following direct sum of Hilbert spaces:

L2(P ) =
⊕
m∈Z

Lm, (5.9)

where the closed subspace Lm is defined by

Lm = { f ∈ L2(P ) ; f(pz) = z−mf(p) z ∈ S1, p ∈ P}. (5.10)

Now, for every integer m ∈ Z, we define the magnetic Schrödinger operator Ĥm by

the restriction of the operator Ĥ to the subspace Lm.

We will give another description of the magnetic Schrödinger operator Ĥm. For ev-

ery integer m ∈ Z, let Lm → M be the Hermitian line bundle associated with P via

the character z �→ zm of the group S1. Then there is a natural unitary isomorphism

L2(M,Lm) ∼= Lm from the Hilbert space L2(M,Lm) of L2-sections of Lm onto the Hilbert

space Lm. By this unitary isomorphism, the operator Ĥ2
m is unitarily equivalent to the

second order positive elliptic operator

(∇∗
m∇m) +m2V 2, (5.11)

where V = ‖∂/∂θ‖−1 and ∇m is the connection on the line bundle Lm induced by Θ. The

elliptic operator ∇∗
m∇m is locally expressed by the following form:

∇∗
m∇m = − 1√

G

n∑
i,j=1

(
∂

∂xi
+m

√−1Ai

)
gij

√
G

(
∂

∂xj
+m

√−1Aj

)
, (5.12)
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where G is the determinant of the matrix (gij) of the component of the Riemannian metric

on M , (gij) = (gij)
−1 and A =

∑
i

Aidx
i is the pull-back of the connection 1-form Θ by a

local section of π : P →M , and hence it satisfies dA = B. The local 1-form A represents

a vector potential of the magnetic field B.

5.2 Examples

Example 1 Let M be a Riemann surface with constant negative curvature −1 and let

B be the volume form on M . Then, by Gauss-Bonnet theorem, the integral of (2π)−1

times the volume form B is an integer, and hence there exists a principal S1-bundle P

and a connection 1-form Θ whose curvature form is B. We take V ≡ 1. Then, for e > 1,

the Liouville measure ωe on the energy surface Σe = H−1(e) is given by the direct product

of the canonical measure on the unit sphere and the volume measure dVM on M up to

constant multiple. For an integer m, let {νmj } be an orthonormal basis of eigenfunctions

of the Magnetic Schrödinger operator Ĥm for the Hilbert space Lm. Let f be a smooth

function on M and Af ∈ A0 be the multiplication operator by the lift of f on P . The

principal symbol of Af is given by the lift of f . Therefore we have

〈Afνmj , νmj 〉 =
∫
M
f |νmj |2 dVM , (5.13)

〈σ0(Af ) 〉 = vol(M)−1
∫
M
f dVM . (5.14)

It is well-known ([29]) that the dynamical system (Σe, ϕt, ωe) is ergodic if e ≥ √
2, periodic

if 1 < e <
√

2. Therefore we obtain the following corollary of Theorems 3.1, 3.3.

Corollary Let M be a compact Riemann surface with constant negative curvature −1, B

the volume 2-form and e ≥ √
2. Then for every orthonormal basis {νmj } of eigenfunctions

of Ĥ, there exists a family {Jm} of subsets in Nm(e, c) satisfying

lim
m→∞

�Jm
Nm(e, c)

= 1 (5.15)

such that for all f ∈ C∞(M) we have

lim
m→∞ max

j∈Jm

∣∣∣∣
∫
M
f |νmj |2dVM − vol(M)−1

∫
M
f dVM

∣∣∣∣ = 0. (5.16)

Proof. In view of Theorems 3.1 and 3.3, we only need to prove that a family {Jm} can

be taken independently of the choice of a smooth function f . For this sake, let {ϕp} be

an orthonormal basis for L2(M) consisting of eigenfunctions of the Laplacian. For every

l ∈ N, let {Jm(l)} be a family satisfying (5.15), (5.16) for all f = ϕp with p ≤ l. We may
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assume Jm(l + 1) ⊂ Jm(l) for all l. We can find a sequence {lm}m∈N of natural numbers

which is monotone increasing and tends to infinity as m goes to infinity such that

1 − 1

2lm
≤ �Jm(lm)

Nm(e, c)
. (5.17)

We set Jm = Jm(lm). We will show that the family {Jm}, Jm ⊂ Nm(e, c) is a required

one. In view of (5.17), (5.15) is obvious. We will write

Amj (f) =
∫
M
f |νmj |2dVM − vol(M)−1

∫
M
f dVM ,

for each smooth function f ∈ C∞(M). Since lim
m→∞ max

j∈Jm(l)
|Amj (ϕp)| = 0, for p ≤ l and

lm ↑ ∞ as m→ ∞, we have

lim
m→∞ max

j∈Jm

|Amj (ϕp)| = 0 (5.18)

for all p ∈ N. For every smooth function f , and every positive integer n, we set fn =
n∑
p=1

〈 f, ϕp 〉ϕp, which converges to f in L2(M) as n → ∞. Note that, since {ϕp} is an

orthonormal basis of eigenfunctions, the function fn is also smooth and converges to f

uniformly on M . Therefore, for any ε > 0, we can take n ∈ N so that ‖f − fn‖∞ < ε.

Then, for every j ∈ Jm, we have

|Amj (f)| ≤
∫
M
|f − fn||νmj |2dVM + |Amj (fn)| + vol(M)−1

∫
M
|f − fn|dVM

≤ 2‖f − fn‖∞ +
n∑
p=1

|〈 f, ϕp 〉||Amj (ϕp)|

≤ 2ε+ ‖f‖L2


 n∑
p=1

|Amj (ϕp)|2



1/2

,

and hence

max
j∈Jm

|Amj (f)| ≤ 2ε+ ‖f‖L2


 n∑
p=1

max
j∈Jm

|Amj (ϕp)|2



1/2

. (5.19)

By (5.18), we obtain

lim sup
m→∞

max
j∈Jm

|Amj (f)| ≤ 2ε.

Since ε > 0 is arbitrary, the family {Jm} satisfies (5.16) for every f ∈ C∞(M).

Example 2 The Hopf fibration S3 → S2. Let P = S3 = SU(2) and M = S2. We fix

the inner product 〈A,B 〉su(2) = 2Tr(B∗A) on the Lie algebra su(2) of SU(2). Then

e1 =
1

2


 i 0

0 −i


 , e2 =

1

2


 0 1

−1 0


 , e3 =

1

2


 0 i

i 0



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form an orthonormal basis which satisfy the relation

[e1, e2] = e3, [e2, e3] = e1, [e3, e1] = e2.

We consider M as the adjoint orbit through e1, and hence it equipped with the metric

〈 , 〉M which is isometric to the standard 2-sphere with radius 1. The natural projection

π : P →M is an S1-bundle. Let Θ be the connection 1-form on P defined by

Θ(A) =
1

2
〈A, e1 〉E, A ∈ su(2),

where E = 2e1. We regard R ·E as the Lie algebra of S1. Note that the curvature form of

the connection Θ equals (1/2) times the volume form on M . For positive constant V > 0,

we define the metric 〈 , 〉P,V by

〈 , 〉P,V = π∗〈 , 〉M +
1

4V 2
〈Θ,Θ 〉su(2).

Especially, the Riemannian manifold (P, 〈 , 〉P,1/2) is isometric to the standard 3-sphere

with radius 2.

Lemma 5.1 For every e > V , the magnetic flow ϕt on Σe is periodic with period T (e) =

2π

√
e2

e2 − d
where d = V 2 − 1/4.

Proof. We will show that the solution curve of the equation (5.6), (5.7) is periodic with

with period T (e). The magnetic field B is (1/2) times the volume form on S2. Thus B

is of the form

Bx(u, v) =
1

2
〈u× v, x 〉,

where 〈 , 〉 is the canonical metric on R3 ∼= su(2), and we regard TS2 as

TS2 = {(x, u) ∈ R3 × R3 ; |x| = 1, 〈x, u 〉 = 0}.

Therefore the map J : TS2 → TS2 defined in (5.8) is given by J(v) = (1/2)v × x. Since

V is constant, the equation (5.6) comes into the following form:

D

dt
ẋ =

1

2e
ẋ× x. (5.20)

Note that the covariant differentiation of ẋ is obtained by the projection of ẍ onto the

subspace perpendicular to x. Thus we have

D

dt
ẋ = ẍ− 〈 ẍ, x 〉x.
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Since |ẋ(t)| is constant, we have 〈 ẍ, x 〉 = −α2, where we set α = |ẋ(0)| = (1/e)‖ξ‖.

Clearly we have

α =

√
e2 − V 2

e2
. (5.21)

Therefore the equation (5.20) is written as

ẍ =
1

2e
ẋ× x− α2x. (5.22)

We will seek for a solution of the form

x(t) = a cos(ct)e1 + a sin(ct)e2 + be3. (5.23)

Substituting (5.23) into (5.22), we obtain that, if

a =

√
e2 − V 2

e2 − d
, b = − 1

2
√
e2 − d

, c =

√
e2 − d

e2
,

then (5.23) is a solution of (5.22). Since the isometry group of S2 acts transitively on

Σe, every solution of (5.22) is an isometric image of (5.23). Clearly the solution (5.23) is

periodic with period 2π/c = T (e).

Remark 5.1 Lemma 5.1 is essentially obtained by Sunada [30].

It is easy to see that, the eigenvalues of the magnetic Schrödinger operator ĤV
m are

given by

λVp (m) =
1

2

√
(2p+ |m| + 1)2 + 4dm2 − 1, p = 0, 1, 2, . . . ,

and the multiplicity of λVp (m) equals 2p+ |m| + 1. (See, for instance, [19].) Then we will

claim the following.

Proposition 5.1 We have s-Dσe =
2π

T (e)
Z for all e > V .

Proof. We note that, for e > V , |λVp (m) −me| ≤ c if and only if

C−(m) ≤ p ≤ C+(m), (5.24)

where we set

C±(m) =

√
4(em± c)2 − 4dm2 + 1 −m− 1

2
. (5.25)

It is easy to see that

C+(m) − C−(m) ≥ 2cem√
4(e2 − d)m2 + 4c2 + 1

.
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We take constants m0 > 0 and c > 0 such that e2m2
0 − 1 > 0 and

c >

√√√√4(e2 − d)m2
0 + 1

4(e2m2
0 − 1)

.

Then we have C+(m) − C−(m) > 1 for every m > m0, and hence we can take a positive

integer qm satisfying (5.24) for every m > m0.

For an integer d, we set pm = qm + d. Then we have

λVpm
(m) − λVqm(m) → 2π

T (e)
d

as m→ ∞. Therefore (2π/T (e))Z ⊂ s-Dσe.

Conversely, let τ ∈ s-Dσe and let I = (a, b) be an open interval containing τ such that

b − a < 2π/T (e). Then, for every positive integer m, there are positive integers qm, pm

such that qm satisfies (5.1) and a < λVpm
(m) − λVqm(m) < b. Let dm = pm − qm. We will

assume that τ > 0, and hence a > 0, dm > 0. By the inequality

λVp+1(m) − λVp (m) >
1

1 + 2
√
d

(if d ≤ 0 then the right hand side of this inequality can be replaced by 1), we have

b > λVpm
(m) − λVqm(m) >

dm

1 + 2
√
d
> 0.

Note that dm is a positive integer. Therefore, by taking a subsequence of {dm} if necessary,

we can assume that there is an integer d such that dm = d for sufficiently large m. Then,

by the same argument as above, we obtain that λVpm
(m) − λVqm(m) → (2π/T (e))d as

m → ∞. Thus by b − a < 2π/T (e), we conclude that {(2π/T (e))d} = I ∩ (2π/T (e))Z,

and hence τ = (2π/T (e))d. We can prove it in a similar fashion for τ < 0. Since the open

interval I is arbitrary as far as it contains τ , we conclude that τ = (2π/T (e))d, which

completes the proof.

Example 3 Let Hred
1 be the reduced Heisenberg group of dimension 3 (see [9]). The

group multiplication of Hred
1 = R2 × S1 is defined by the identity

(x, y, e2πit) · (x′, y′, e2πit
′
) = (x+ x′, y + y′, e2πi(t+t

′+(1/2)(x′y−xy′))).

Let Γ be the lattice Γ = {(k, n, eπikn) ∈ Hred
1 ; k, n ∈ Z}. Then the nilmanifold P =

Hred
1 /Γ is an S1-bundle over the flat torus T2 = R2/Z2. We fix the connection 1-form

Θ = 2π(dt+
1

2
(xdy − ydx))

on P , whose curvature 2-form is 2π times the volume form on T2. We fix the invariant

metric on P obtained by setting V = 2π in (5.1).
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Lemma 5.2 For every e > 2π, the magnetic flow ϕt on Σe is periodic with period e.

This lemma can be proved by solving directly the equation (5.6).

It is not hard to see that the eigenvalues of the magnetic Schrödinger operator Ĥm are

given by

λp(m) =
√

2π|m|(2p+ 1) + 4π2m2, p = 0, 1, 2, . . . ,

and the multiplicity of λp(m) is equal to |m|. (See [16].)

Proposition 5.2 For every e > 2π, we have s-Dσe =
2π

e
Z.

Proof. Note that |λp(m) −me| ≤ c if and only if

C−(m) ≤ p ≤ C+(m), (5.26)

where we set

C±(m) =
(me± c)2

4πm
− 2πm+ 1

2
.

We also note that for non-negative integers p, q, we have

λp(m) − λq(m) =
2
√

2π(p− q)√
(2p+ 1)/m+ 2π +

√
(2q + 1)/m+ 2π

(5.27)

Since C+(m) − C−(m) = ce/π, if we take a constant c > 0 such that c > π/e, then for

every positive integer m we can take a positive integer qm satisfying (5.26). For arbitrary

integer d, let pm = qm + d. Then, by (5.27), we have

λpm(m) − λqm(m) → 2π

e
d,

and hence
2π

e
d ∈ s-Dσe.

Conversely, let τ ∈ s-Dσ and I = (a, b) be an open interval containing τ . Let pm, qm

be two non-negative integers such that qm satisfies (5.26) and λpm(m) − λqm(m) ∈ I. We

set rm = (2qm + 1)/m+ 2π and dm = pm − qm. Then λpm(m) − λqm(m) ∈ I if and only if

a

2

√
rm
2π

<
dm√

1 + 2dm/mrm + 1
<
b

2

√
rm
2π
. (5.28)

Assume that τ > 0, and hence a > 0. Note that
√
rm/2π → e2/2π as m → ∞ and

dm ∈ Z. Then, by the inequality (5.28), we have a < (2π/e)dm < b for sufficiently large

m. Therefore if we take b−a sufficiently small, then there is an integer d such that dm = d

for sufficiently large m. By the same argument as in Example 2, we have τ = (2π/e)d.

We can prove it by the same way in case where τ < 0.

Examples 2, 3 suggest that, if the magnetic flow ϕλt is periodic on Σλ
e with period T (e),

then s-Dσe = (2π/T (e))Z. However, it has not been proved yet.
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Appendix: Weak limits of eigenfunctions

Throughout this section, we will follow the notation of Section 2. In Section 2,

we have mentioned quantum ergodicity. Ergodicity of the classical dynamical system

(Σ, ϕt, ω) affects the asymptotic behavior of eigenfunctions ϕj in the high energy level.

Especially, Theorem 2.3 says that, if the dynamical system (Σ, ϕt, ω) is ergodic then, for

every orthonormal basis {ϕj} of eigenfunctions of Ĥ, there exists a subsequence of full

density such that it converges weakly to the Liouville measure. Then it is natural to ask

whether the sequence {ϕj} converges without taking a subsequence. Though there are

several results on this problem ([22], [44]), it seems very hard to solve it completely. Here

we will give some generalities on the weak limit points of the eigenfunctions, which are

called quantum limits, and some results obtained by using the methods in this article.

A.1 C∗-algebra A and its properties

Let A be the closure of the algebra A0 with respect to the operator norm. A is a

C∗-subalgebra of the algebra of all bounded operators on L2(M).

Lemma A.1 There exists a unique ∗-homomorphism σ : A → C(Σ) from A onto the

commutative C∗-algebra C(Σ) of all continuous functions on Σ such that the restriction

σ|A0
of σ to A0 coincides with the principal symbol map σ0.

Proof. For every A ∈ A, we can choose a sequence An ∈ A0 such that ‖A−An‖ → 0 as

n→ ∞. Note that the sequence {σ0(An)}n∈N in C(Σ) converges to a continuous function.

Indeed, by the formula (see [34])

‖σ0(An)‖∞ = inf
K: compact

‖An +K‖, (A.1)

we have

‖σ0(An) − σ0(Am)‖∞ ≤ ‖An − Am‖ → ∞ (n,m→ ∞).

We define

σ(A) = lim
n→∞ σ0(An). (A.2)

Let Bn ∈ A0 be another sequence such that ‖A − Bn‖ → 0. Let b = lim
n→∞σ0(Bn). Then

we have

‖σ(A) − b‖∞ ≤ ‖σ(A) − σ0(An)‖∞ + ‖An − Bn‖ + ‖b− σ0(Bn)‖∞ → 0,

and hence the limit in (A.2) is independent of the choice of the sequence An ∈ A0 as

far as it converges to A. Since the principal symbol map σ0 is a ∗-homomorphism, the
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map σ is also a ∗-homomorphism. Clearly we have σ|A0
= σ0. To show the surjectivity

of σ, we note that σ0 is surjective onto the ∗-subalgebra C∞(Σ), and hence the image of

σ is dense in C(Σ). It is well-known (see Proposition 2.3.1 in [4]) that the image of a

∗-homomorphism from a C∗-algebra to another is closed. Thus the image of σ is closed,

and hence the assertion follows.

Before going to discuss the weak limits of eigenfunctions, we will mention some proper-

ties of the C∗-algebra A. Let K be the C∗-algebra of all compact operators on L2(M). Let

A ∈ K. Then, for any ε > 0, we can take a finite-rank operator B such that ‖A−B‖ < ε.

Let {en}Nn=1 be an orthonormal basis for the image of B (N = dim ImB). The operator

B is an integral operator with the kernel

K(x, y) =
N∑
n=1

en(x)B∗en(y) ∈ L2(M ×M).

We take L ∈ C∞(M × M) such that ‖K − L‖L2(M×M) < ε. We denote by TL the

integral operator with the kernel L. The operator TL is a smoothing operator, and hence

TL ∈ A0 ⊂ A with σ(TL) = 0. Furthermore we have

‖A− TL‖ ≤ ‖A−B‖ + ‖B − TL‖ ≤ ‖A−B‖ + ‖K − L‖L2(M×M) ≤ 2ε.

Since TL is a compact operator, so is A. Thus we obtain

K ⊂ σ−1(0) ⊂ A. (A.3)

(A.3) makes us to obtain the following proposition.

Proposition A.1 The following sequence is exact:

0 −→ K i−→ A σ−→ C(Σ) −→ 0, (A.4)

where i : K → A is the inclusion.

Proof. Let A ∈ A with σ(A) = 0. Then one can take a sequence An ∈ A0 such that

‖A− An‖ → 0. Since σ is continuous, we have

‖σ0(An)‖∞ → 0. (A.5)

By (A.1), for each n, there is a compact operator Kn ∈ K such that

‖σ(An)‖∞ ≤ ‖An −Kn‖ ≤ ‖σ(An)‖∞ +
1

n
→ 0. (A.6)
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From (A.6), it follows that

‖A−Kn‖ ≤ ‖A− An‖ + ‖An −Kn‖ → 0.

Since Kn ∈ K, we have A ∈ K, and hence σ−1(0) = K. Therefore the sequence (A.4) is

exact.

Lemma A.2 The C∗-algebra A is separable.

Proof. Let {an}n∈N be a countable dense set in C(Σ), and let An ∈ σ−1(an). Note that

the C∗-algebra K of all compact operators is separable. Thus we can take a countable

dense set {Km}n∈N in K. Set Bm,n = An + Km. We will show that the countable set

{Bm,n}m,n∈N is dense in A. Let A ∈ A. For arbitrary ε > 0, there is a positive number n

such that

‖σ(A− An)‖∞ = inf
K: compact

‖A− An +K‖ < ε.

Let K be a compact operator such that ‖A−An +K‖ < ε. Then we can take a positive

number m such that ‖K +Km‖ < ε. Therefore we obtain

‖A−Bm,n‖ < ‖A− An +K‖ + ‖K +Km‖ < 2ε.

This shows that the countable set {Bm,n}m,n∈N is dense in A.

A.2 Quantum limits

Let {ϕj} be an orthonormal basis of eigenfunction of the operator Ĥ. We will con-

sider ϕj as a vector state on the C∗-algebra A defined by ϕj(A) = 〈Aϕj , ϕj 〉, A ∈ A.

Since {ϕj} is bounded in A∗, it is relatively compact with respect to the weak∗-topology.

Combining this with Lemma A.2, we can find a convergent subsequence of {ϕj} in the

weak∗-topology.

Lemma A.3 Let {ϕj}j∈J (J ⊂ N) be a convergent subsequence of the fixed orthonormal

basis of eigenfunctions in the weak∗-topology. Then there exists a measure µJ on Σ which

is invariant under the Hamilton flow ϕt such that

lim
J�j→∞

ϕj(A) =
∫
Σ
σ(A) dµJ , (A.7)

for every A ∈ A.
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Proof. First, we note that the orthonormal basis {ϕj} converges weakly to zero, and a

compact operators map a weakly convergent sequence to a strongly convergent one. Thus

the limit w∗-lim
J�j→∞

ϕj is constant on each fiber of the exact sequence (A.4). In view of the

surjectivity of σ, it defines a linear functional µJ on C(Σ) by the identity

µJ(σ(A)) = lim
J�j→∞

ϕj(A).

Next, we will show the positivity of the linear functional µJ . Let a ∈ C∞(Σ) is non-

negative. Then we can take an operator Op(a) ∈ σ−1(a) ⊂ A0 such that Op(a) ≥ 0. (See

[6] or Chapter VII in [34].) Thus we obtain

µJ(a) = lim
J�j→∞

ϕj(Op(a)) ≥ 0.

This shows that the linear functional µJ is positive, and hence it defines a Borel measure on

Σ. Finally, we will prove the invariance of the measure µJ . We define the ∗-automorphism

αt : A → A by αtA = eitĤAe−itĤ , A ∈ A. By Egorov’s theorem (Lemma 2.1, (2)), we

have

σ(αtA) = σ(A)◦ϕt, (A.8)

for every A ∈ A. Let a ∈ C(Σ) and A ∈ σ−1(a). Then, by (A.8), we obtain

µJ(a◦ϕt) = lim
J�j→∞

ϕj(αtA) = lim
J�j→∞

ϕj(A) = µJ(a).

This shows that the measure µJ is invariant.

Definition A.1 The invariant measure µJ which is a weak∗-limit of a subsequence

{ϕj}j∈J is called a quantum limit with respect to the subsequence J ⊂ N. We will denote

by Q the set of all quantum limits.

Note that Q is a subset of the set MI(Σ) of all invariant probability measures.

Remark A.1 Let µJ ∈ Q be a quantum limit with respect to a subsequence J ∈ N.

Let πM : Σ → M be the projection. For a smooth function f ∈ C∞(M), we will denote

by Af ∈ A the multiplication operator by f . Then we have∫
M
f |ϕj |2 dVM = ϕj(Af ) →

∫
Σ
π∗
Mf dµJ =

∫
M
f d(πM)∗µJ , (A.9)

as J � j → ∞. Therefore the measure (πM)∗µJ on M is the weak limit of the measures

{|ϕj|2dVM}j∈J . We also note that, if the dynamical system (Σ, ϕt, ω) with ω the normal-

ized Liouville measure is ergodic, then by Theorem 2.3 we have ω ∈ Q with respect to a

subsequence J ⊂ N of full-density.
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A.3 Ergodicity of quantum limits

Let µJ ∈ Q be a quantum limit with respect to a subsequence J ⊂ N. Then

we have the dynamical system (Σ, ϕt, µJ). The following theorem gives a condition for

the ergodicity of (Σ, ϕt, µJ) in terms of asymptotic properties of eigenfunctions. In the

following, we will denote by µJ(a) the integral of a ∈ L2(µJ) by the measure µJ .

Proposition A.2 Let µJ ∈ Q be a quantum limit with respect to J = {jk} ⊂ N. Then

the dynamical system (Σ, ϕt, µJ) is ergodic if and only if the following two conditions hold.

(1) For every A ∈ A, we have

lim
k→∞

∑
j

ej=ejk

|〈Aϕjk , ϕj 〉|2 = |µJ(σ(A))|2. (A.10)

(2) For every A ∈ A, we have

lim
δ→0

lim sup
k→∞

∑
j

0<|ej−ejk
|<δ

|〈Aϕjk , ϕj 〉|2 = 0. (A.11)

Proposition A.3 The dynamical system (Σ, ϕt, µJ) has weak-mixing property if and only

if the following two conditions hold.

(1) For every A ∈ A and τ ∈ R, we have

lim
k→∞

∑
j

ej=ejk
+τ

|〈Aϕjk , ϕj 〉|2 = |µJ(σ(A))|2δτ,0. (A.12)

(2) For every A ∈ A and τ ∈ R, we have

lim
δ→0

lim sup
k→∞

∑
j

0<|ej−ejk
−τ |<δ

|〈Aϕjk , ϕj 〉|2 = 0. (A.13)

Proof. We will give a proof only for Proposition A.3. Suppose that the dynamical system

(Σ, ϕt, µJ) has weak mixing property. Let A ∈ A and τ ∈ R. Then we have

|µJ(σ(A))|2δτ,0 = |µJ(σ(A)(τ))|2

= µJ(|σ(A)(τ)|2) (weak-mixing property)

= lim
t→∞µJ(σ(At(τ)∗At(τ))). (A.14)
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By the definition of At(τ) (see Section 2.1), we have

At(τ)ϕl =
1

t

∑
j

ej 
=el+τ

eit(ej−el−τ) − 1

i(ej − el − τ)
〈Aϕl, ϕj 〉ϕj +

∑
j

ej=el+τ

〈Aϕl, ϕj 〉ϕj. (A.15)

This implies

‖At(τ)ϕjk‖2 =
∑

j

ej 
=ejk
+τ

S(t(ej − ejk − τ))|〈Aϕjk , ϕj 〉|2 + ‖Ā(τ)ϕjk‖2 (A.16)

≥ ‖Ā(τ)ϕjk‖2, (A.17)

where Ā(τ) is the operator defined by

Ā(τ) =
∑
e,

e,e+τ∈Spec(Ĥ)

Pe+τAPe,

and S(x) = (|eix − 1|/x)2. Note that the bounded operator Ā(τ) is not necessarily an

element of A. From (A.17), it follows that

µJ(σ(At(τ)∗At(τ))) = lim
k→∞

‖At(τ)ϕjk‖2 ≥ lim sup
k→∞

‖Ā(τ)ϕjk‖2. (A.18)

On the other hand, we have

0 ≤ lim inf
k→∞

‖(Ā(τ) − µJ(σ(A)(τ)))ϕjk‖2

= lim inf
k→∞

‖Ā(τ)ϕjk‖2 − |µJ(σ(A)(τ))|2. (A.19)

Therefore we obtain

|µJ(σ(A)(τ))|2 = lim
k→∞

‖Ā(τ)ϕjk‖2 = lim
t→∞µJ(σ(At(τ)∗At(τ))). (A.20)

Since

lim
k→∞

‖Ā(τ)ϕjk‖2 = lim
k→∞

∑
j

ej=ejk
+τ

|〈Aϕjk , ϕj 〉|2,

we conclude (A.12). Furthermore, by (A.20) and (A.16), we have

lim
t→∞ lim sup

k→∞

∑
j

ej 
=ejk
+τ

S(t(ej − ejk − τ))|〈Aϕjk , ϕj 〉|2 = 0. (A.21)

By the same argument as in the proof of Proposition 3.2, we conclude (A.13).

Conversely, we will assume (A.12) and (A.13). We set

Sjk(t, A) =
∑

j

ej 
=ejk
+τ

S(t(ej − ejk − τ))|〈Aϕjk , ϕj 〉|2
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From the assumption (A.12), it follows that

lim
k→∞

‖Ā(τ)ϕjk‖2 = |µJ(σ(A)(τ))|2.

By (A.13) and the same argument as in the proof of Proposition 3.2, we obtain (A.21).

Combining (A.16) with lim
k→∞

‖At(τ)ϕjk‖2 = µJ(|σ(A)t(τ)|2), we have

lim
k→∞

Sjk(t, A) = µJ(|σt(τ)|2) − |µJ(σ(A)(τ))|2

Letting t→ ∞, we conclude

µJ(|σ(A)(τ)|2) = |µJ(σ(A)(τ))|2.

Since σ is surjective, the dynamical system (Σ, ϕt, µJ) has weak-mixing property.

A.4 Cluster points and quantum limits

Let µJ ∈ Q be a quantum limit with respect to a subsequence J = {jk} ⊂ N. For a

bounded open interval I ⊂ R, we set

NJ(I) = {(j, jk) ∈ N × J ; ej − ejk ∈ I},
NJ(I) = �NJ(I).

Definition A.2 A real number τ ∈ R is said to be a cluster point with respect to the

subsequence J ⊂ N if NJ(I) = +∞ for every bounded open interval I containing τ . We

will denote by DσJ(Ĥ) the set of all cluster points with respect to J .

Let L2(µJ) = L2(Σ, µJ) be the Hilbert space of L2-functions with respect to the

measure µJ . Note that, since µJ is a finite measure, C(Σ), and hence C∞(Σ), is dense in

L2(µJ). Let UJ
t be the strongly continuous one-parameter group of unitary operators on

L2(µJ) defined by UJ
t a = a◦ϕt, a ∈ L2(µJ), and let

UJ
t =

∫
eitx dEJ(x)

be its spectral resolution. We define the self-adjoint operator SJ on L2(µJ) by

SJ =
∫
x dEJ(x).

We will denote by 〈 ·, · 〉J the L2-inner product on L2(µJ). The following proposition is

an analogy of Proposition 4.1.
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Proposition A.4 We have Spec(SJ) ⊂ DσJ(Ĥ).

Proof. For a ∈ C(Σ) we take an operator A ∈ σ−1(a) ⊂ A. For every f ∈ C∞
0 (R), we

have

f(SJ)a =
1

2π

∫
f̂(t)UJ

t a dt = σ(Af ),

where Af ∈ A is the operator defined by (see Section 2.5)

Af =
1

2π

∫ ∞

−∞
f̂(t)eitĤAe−itĤ dt

with f̂ the Fourier transform of f .

Now, let τ is not in DσJ(Ĥ). Then we can choose an open interval I such that NJ(I)

is finite. Let f ∈ C∞
0 (I). A direct calculation by using the spectral decomposition for the

operator eitĤ leads us to obtain that

〈 f(SJ)a, a 〉J = lim
k→∞

ϕjk(A∗Af ) = lim
k→∞

∑
j

f(ej − ejk)|〈Aϕjk , ϕj 〉|2. (A.22)

Note that ejk → ∞ as k → ∞. By the assumption NJ(I) <∞, if we take k large enough,

then ej − ejk is not contained in I for every j ∈ N. Since the support of f is contained

in I, the right hand side of (A.22) equals zero. This implies that f(SJ) = 0 as far as

the support of f is contained in the open interval I, and hence it concludes that τ is not

contained in Spec(SJ).
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