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1. INTRODUCTION

It is one of the profound problems in differential geometry to classify and construct
harmonic maps from a Riemann surface M into a compact Lie group G or a symmetric
space G /K. These objects are related with many fundamental examples in differential
geometry, in particular, with minimal surfaces, which have been studied for a long
time by geometers. In the late 1970’s, such harmonic maps also appeared as non-
linear sigma models or chiral models in mathematical physics. Since then, in the
study of harmonic maps, many interesting results have been established but major
open problems still remain. For example, when the genus of a Riemann surface M is
greater than 1, the classification of such harmonic maps is not obtained yet.

When M is the Riemann sphere, the well-established twistor theory of harmonic
maps is useful to describe harmonic maps of M into G/K. In fact, this idea was first
used by Calabi [11], [12] in his study of minimal 2-spheres in S™. Moreover, harmonic
maps of a two-sphere into a complex Grassmann manifold have been studied and
classified in [3], [30] and [31].

In this case, any harmonic map is covered by a horizontal holomorphic map into
an auxiliary complex manifold, a twistor space, and the study of such harmonic maps
is therefore reduced to a problem in algebraic geometry. In this sense, the case of
genus 0 has been accomplished.

In general, each harmonic map of a Riemann surface M into a sphere S™ or a
complex projective space CP" has a sequence of invariants, which are given as holo-
morphic differentials on M measuring the lack of orthogonality of iterated derivatives
of the map. In particular, when all these invariants vanish, such harmonic map is ob-
tained from a holomorphic curve in a twistor space. These harmonic maps are called
isotropic. Since every holomorphic differential on the Riemann sphere vanishes, any
harmonic 2-sphere in S™ or CP" is isotropic.

For the case of harmonic tori in a sphere S™ or a complex projective space CP",



we have the following two possibilities:

(1) All invariants vanish, that is, the harmonic torus is isotropic.

(2) The harmonic torus is not isotropic.

In the former case, such torus is again covered by a holomorphic curve in a twistor
space. In the latter case, these harmonic tori are called non-isotropic. In 1995
Burstall [1] proved that any non-isotropic harmonic torus in a sphere or a complex
projective space is covered by a primitive harmonic map of finite type into a certain
generalized flag manifold. Subsequently, Udagawa [28] generalized Burstall’s result
to those harmonic tori into a complex Grassmann manifold Go(C*) of 2-dimensional
complex linear subspaces in C* and also constructed, by using a Symes formula,
weakly conformal non-superminimal harmonic maps from the complex line to G5(C*).
Employing these facts, as well as algebro-geometric methods, McIntosh proved that
every non-isotropic harmonic torus in a complex projective space corresponds to a
map constructed from a triplet (X, m, £), consisting of an auxiliary algebraic curve
X, and a rational function 7 and a line bundle £ on X. Such triplet is called a
spectral data. Thus Mclntosh realized the moduli space of non-isotropic harmonic
tori in complex projective spaces as a subset of the moduli space of these spectral
data.

Therefore it seems natural to ask the following: Which spectral data corresponds
to a harmonic torus in a complex projective space?

In this thesis, we give a partial answer to this problem. More precisely, we prove
a criterion on the periodicity of harmonic maps constructed from the spectral data
whose spectral curves are smooth rational or elliptic curves.

Before describing the plan of this thesis, we now review briefly McIntosh’s results
and state our main theorems.

MeclIntosh [17], [18] has constructed a significant correspondence between the follow-
ing two spaces: the space of non-isotropic, linearly full harmonic maps ¢: R? — CP"

of finite type, up to isometries, and that of triplets (X, r, L) consisting of a real,
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complete, connected algebraic curve X (which we call the spectral curve for v), a
rational function 7 on X and a line bundle £ over X, which are required to satisfy
certain conditions.

This correspondence yields a harmonic map from a spectral data in the following
fashion. Take a spectral data (X, 7, £). On the Jacobian variety J(X) of the spectral
curve X, we consider a real 2-dimensional linear flow L: R? — J(X),z — L(z). Then
we know that each line bundle contained in this flow has the following properties.
Denoting by H°(X, £ ® L(z)) the space of global holomorphic sections of £ ® L(z),
we see that the dimension of H°(X, L& L(z)) is n+1 if the degree of misn+1. Let R
be the ramification divisor of 7. Then, since (£L® L(2)) ® p% (£ @ L(z)) is isomorphic
to the divisor line bundle Ox(R), each line bundle £ ® L(z) has a natural bilinear
form h via a trace map H°(X,Ox(R)) — HY(P!,Op) = C, which is induced from
7. Thus we obtain a vector bundle W of rank n + 1 over R? with the fiber metric A,
where the fiber of W at z € R? is given by H°(X, L ® L(z)).

Next, we consider subbundles Wy, ... ,W,,_,, and a connection V of W, which

enjoy the following property: The rank of W; is ¢ + 1 and
WO c---C Wn—m C VV; v@/@zm C VVH—L

Then these subbundles satisfy the weak form of Griffiths transversality, which is
almost the condition for the corresponding map to be harmonic (primitive harmonic).
For each z € R?, by using the above connection, we can identify the fiber of Wy at 2
with a complex line in the (n+ 1)-dimensional complex vector space H°(X, L& L(0)).
In this way, we get a desired harmonic map 1: R? — CP™.

With these understood, for spectral data with rational spectral curves, we shall

prove the following

Theorem 9. Let X be the smooth rational curve P'. Then (X, 7, L) is a spectral

data if and only if the following conditions are satisfied:

(1) (X, px) is real isomorphic to (P',p). By an affine coordinate \ of P!, p is
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given by A+ 1/X and 7 is expressed as

A= P M- Q;
T(A) = apA™ ! Hf;}n( ) , Ph=0, o= H]n__lm( Qi)
Hj:l ()‘ - Q]) Hj:l (1 - PJ)
for somem andn with1 < m <n—1. Here P, € X® ={ € X |0 < |\| < 1}
and Q; = 1/P; for any 1 < j <n—m.

(2) L is a line bundle of degree n.

Theorem 10. Choosing a complex coordinate on the source suitably, the harmonic

map W: R? — CP™ corresponding to the above spectral data (X,, 7, L) is given by
s =2V Ty [Bol2) : Uy (2) o0 Wa(2)]

where V;(z) is a function defined by

[ (i — By)

[[="(m — Rj)

Here {no, ..., n.} is the inverse image m—'(1) of 1 by m and R, = Y Rjisa

divisor given by the intersection of X° with R, that is, R, = X° N R.

(1.1) Wy(z2) = exp (1, 'z — ;) -

As for spectral data with elliptic spectral curves, we shall prove

Theorem 12. Let X be a smooth elliptic curve. Then (X, m, L) is a spectral data if

and only if the following conditions are satisfied:

(1) X is an elliptic curve X, = C/(Z & Zt), where T is a pure imaginary number
V=1t with t > 0. px is an anti-holomorhic involution induced by the usual
conjugation of C. Regarded as a doubly periodic meromorphic function on C,

T 1S expressed as

001(u — P)" T I 0(u— Py) - 01 (1 — P — W)
Or(u— Qo)™ [[52)" 0i(u — Q)

for somem andn with1 <m<n—1. Here € X° ={r € X |0 <Imx <

Im7/2 (mod Im7Z)} and Q; = P, (mod Z & Z1) for any 0 < i < n—m;

W=m+DP+Y " "P—(m+1)Qo— > "Qi; PBh#P, fori #0; W

belongs to Z & Zt; and C' is the unique constant such that 7(0) = 1.

m(u) =

6



(2) Let r : Pic"™(X) — Pic’(X) be a map defined by F — F @ Ox(—R.,), where
R, = Z?:o R; is a divisor of degree n + 1 given by the intersection of X*°
with R, that is, R, = X° N R. Then, L is an element of the inverse image of
(Z & \/—_HR) /(Z & T7Z) by the composition J or. Here J is a biholomorphic
map from Pic"™(X) to J(X).

Theorem 13. Choosing a complex coordinate on the source suitably, the harmonic
map V: R? — CP™ corresponding to the above spectral data (X,, m, L = Ox(D)) is
given by

2=ty o W) Wy (2) s W(2)]
where V;(2) is a function defined by

Wi(2) =pi exp (2[Gu(ni — Fo) — Ami] = Z[Cuw(mi — Qo) — Anil)

010 = Po)™ [Ty 01 (i = Py)0r (i +mPo = 355" Py = D — 2+ 2)
H?:o 01(m — R;)

Here (, is Weierstrass’s zeta function, {ng, ... , n,} is the inverse image 7 (1) of

1 by m, p; is a constant given by p; = exp (2my/—=1(D — Ry)Imn;/t), and A is a

(1.2)

constant depending only on the complex structure of X.

Next, we review McIntosh’s construction of spectral data from these harmonic
maps. To this end, we need a recent work of Burstall and Pedit [5] on dressing orbits
of harmonic maps, who studied an action of a certain loop group on the space of
primitive harmonic maps of R? into a k-symmetric space. Using their results and the
fact that a flag manifold F"(CP™) is a rank one (r + 2)-symmetric space, McIntosh
proved that possibly after an isometry, every primitive lift of finite type lies in a
single dressing orbit O,. A distinctive feature of these orbits O, is that they admit
a hierarchy of commuting flows (conservation laws). We show that this hierarchy can
be used to characterize those harmonic maps of finite type, that is, a harmonic map
in O, is of finite type if and only if its orbit under the hierarchy is finite-dimensional.

Moreover, on this orbit, there exists a dynamical system whose flows are generated
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by the action of an abelian Lie subalgebra €x of the loop algebra. In terms of this
subalgbra, a harmonic map of finite type is described as a map with finite dimensional
Cr-orbit. The stabilizer of such a point determines a maximal abelian subalgebra R
of the Lie algebra of polynomial Killing fields for the map. Then fR is a commutative
one-dimensional unital C-algebra and the spectrum SpecfR of R is an affine curve
whose completion by smooth points yields X. Since the Killing fields are elements of
the loop algebra, R comes equipped with a representation, which provides X with L.
Furthermore, the tangent space to the €r-orbit is identified with the tangent space
to a real subgroup Jg(X) of J(X), whose dimension gives the arithmetic genus of X.

In connection with the periodicity, McIntosh observed that the harmonic map of
R? into a complex projective space CP" associated to a spectral data (X, =, L) is
doubly periodic if and only if a certain homomorphism from R? to a generalized
Jacobian J(X,) is doubly periodic. However, generally it is hard to compute this
homomorphism. In the case of spectral data with spectral curves of genus 0 or 1, we

shall explicitly construct these homomorphisms and prove the following

Theorem 11. Let ¥: R?2 — CP" be the harmonic map in Theorem 10. Then ¥ is
doubly periodic with periods vy, vo € C if and only if the set

(1.3) V= %(R@\/—_IZ)

1<isn
contains the 2-dimensional lattice M = Zvy ® Zvy, where By, ..., B, are complex
numbers defined by 3; = n; ' —nyt.

For the case of an elliptic spectral curve X, we shall also prove the following

Theorem 14. The harmonic map V: R> — CP" in Theorem 13 is doubly periodic
with periods vy, vy € C if and only if the set V = (<<, Vi contains the 2-dimensional

lattice M = Zwy ® Zvg, where Vy, ..., V,, are the sets defined by

w87 (R®V=1Z) if 6 #0,

C otherwise.

V=



Here By, B1, ..., Bn are complex numbers defined by

Bo=—=2m/t, Bi=[Cw(mo— Po) = Cuw(ni — Po) = B(no—m;)7"'] (1<

A

Now we summarize the content of each section.

In Section 2, we recall the definition of the spectral data, and review, with a slight
improvement, McIntosh’s construction of harmonic maps in terms of these spectral
data.

In Sections 3 and 4, we shall review fundamental results obtained by McIntosh. The
harmonicity of the maps constructed in the previous sections is shown in Section 3.
We also describe in Section 4 the construction of spectral data conversely from non-
isotropic harmonic tori in complex projective spaces.

In Section 5, we discuss the properties of spectral data whose spectral curves are
compact connected Riemann surfaces.

In Section 6, all spectral data with smooth rational or elliptic spectral curves
are classified (Theorems 9 and 12), and corresponding harmonic maps are explicitly
constructed (Theorems 10 and 13). Moreover, we prove a necessary and sufficient
condition for a constructed harmonic map to be doubly periodic (Theorems 11 and
14). We also construct some examples of harmonic tori by using the method developed
in this section. In Sections 6.3 and 6.4, the proofs of Theorems 9 and 12 are given
respectively. Sections 6.5 and 6.6 are devoted to proving Theorems 10 and 13. Finally,
in Section 6.7 we introduce certain homomorphisms into generalized Jacobians of

spectral curves and prove Theorem 14.



2. CONSTRUCTION OF HARMONIC MAPS INTO COMPLEX PROJECTIVE SPACES

FROM SPECTRAL DATA

2.1. Spectral data. Let P! be the smooth rational curve and A an affine coordinate
on it. Let p be an anti-holomorphic involution on P! defined by A +— 1/X. Then the
fixed point set of p consists of the equator S defined by {\ € P! | |\| = 1}.

First we recall the definition of a spectral data introduced by McIntosh (cf. §2.1
in [18]).

Definition 1. A spectral data is a triplet (X, m, L) of isomorphism classes which

satisfies the following conditions:

(1) X is a complete, connected, algebraic curve of arithmetic genus p, with a real
volution px .

(2) 7 is a meromorphic function on X of degree N = n+1 satisfying mopx = 1/7,
with a distinguished zero Py of degree m~+1 (m 2 1) and a pole Py, = px(Fp).
We regard X as a covering of degree n + 1 of the rational curve P! via .

(3) L is a line bundle over X of degree p 4+ n satisfying
(2.1) LR px.L = Ox(R),

where R is the ramification divisor for m. By identifying L with a divisor line
bundle Ox (D), we can find a meromorphic function f on X which satisfies
the following conditions:

(a) The divisor (f) of f is given by D + p.xD — R and p% f = f.

(b) Let Xg be the preimage of S* by w. Then f is non-negative on Xg.

(4) 7 has no branch points on S* and px fizes every point of Xg.

Two triplets are the same if there exists a biholomorphic map between spectral curves
which carries the real structure, the meromorphic function and the isomorphism class

of the line bundle each other.
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When X is a compact conneted Riemann surface, the above definition of spectral

data becomes simpler.

Theorem 1. Let X be a compact conneted Riemann surface. A triplet (X, m, L) is

a spectral data if and only if it satisfies the following conditions:

(1)

X 1s a compact connected Riemann surface of genus p, with real involution
px. The set X\ X? consists of two connected components XN, X9 where X°
15 the fized points of px. Moreover, X? decomposes into the disjoint union
Xr = H;’ff) St with S} = S, that is, v(X) copies of a loop.

w18 a meromorphic function on X of degree N = n+ 1, which satisfies either
that all poles are contained in X~ and all zeros are contained in X*°, or that
all poles are contained in X° and all zeros are contained in X. Moreover,
7 has a zero Py of order 2 2 and a point x € X? such that |w(x)| = 1, and
the set of poles coincides with the image of the set of zeros by px.

L is a line bundle over X of degree p + n satisfying
D+pX*<D>gR7 6(£) :07

where R is the ramification divisor for m, D is a divisor such that L = Ox (D),

and 6(L) is a number defined as follows:

0(L) = v(X) —[t{si € A g(si)/g(s1) > 0} —#t{si € A g(s:)/g(s1) <O},

where g is a meromorphic function with the divisor (g) = D + px.D — R and
A is the set of points s1, Sa, ... , Sy(x) such that s; € S} and g(s;) # 0, 0.

(The proof of this theorem will be given in Section 5.)

2.2. Construction of harmonic maps into complex projective spaces. By

applying McIntosh’s method of constructing harmonic maps in terms of spectral

data, we shall construct harmonic maps which correspond to spectral data having

smooth rational or elliptic spectral curves. We also prove Theorems 10 and 13 in this

section.
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From now on, for a Riemann surface X and a sheaf F on X, we denote by H* (X, F)
and H'(Y,F) the i-th cohomology of the sheaf of holomorphic sections of F and its
restriction to an open subset Y of X, respectively. We also denote the dimension
of H(X,F) by hi(X,F). Let (X,m, L) be a spectral data as in Definition 1. By
identifying £ with a divisor line bundle Ox (D), we equip H°(X, L) with a positive
definite Hermitian form h as follows.

For given u,v € H°(X, L), we define a rational function h(u,v) on P! by

(2.2) h(u,v)(p) = Y fl@)u()(vo px)(x),
(p)

zemx—1

where p is a point of P!. Then it is known that h(u,v) is a constant function and the

following holds.

Theorem 2. ([18]) The Hermitian form h is positive definite on H°(X, L). Moreover,

m.L is a trivial vector bundle of rank (n+ 1) over P!, where n+ 1 is the degree of .

Let 7= 1(1) = {no,... ,mn}, the inverse image of 1 by 7, and 6;(0 < i < n) a local
trivialization for £ over a neighbourhood of n;. Using these local trivializations, the
Hermitian form / in (2.2) has also the following expression. For u € H(X, L), let
Ug, - - - , Uy be the complex numbers defined by u(n;) = w;0;(n;). For v € H*(X, L),

we define the complex numbers vy, ... , v, in a similar way. Then (2.2) becomes

(2.3) h(u,v) = Zaiuiv_ia
i=0

where ay, . .. ,a, are positive real numbers depending only on the choice of 6y, ... ,8,.

Next we construct a line bundle L(z) with a complex parameter z. Let U(F)
be a neighbourhood of Py and U(P4) a neighbourhood of P,, defined by U(P) =
px(U(FR)). Let ¢ be a meromorphic function on U(Py) UU(Py) satisfying 7 = (™!
and ¢ o px = 1/{. We fix an open cover X, U X of X, where X, = X \ {P, Py}
and X; = U(FPy)UU(Px). Let L(2) be the unique line bundle with local trivializations

12



0% and 67 over X4 and X respectively, such that
(2.4) 07 = exp(2¢t — 20) 05 on XN X

Let Ly be an ideal sheaf of £ defined by Ly = L(—mP, — Ey), where Ej is the
restriction of the zero divisor of m to X4, thatis, By = P+ P, +---+ P,_,,. Then
it is known that H°(X, Ly ® L(z)) is a one-dimensional complex vector space. For
each z € C, fix a non-zero global section 7 of Ly ® L(z). Then 7 ® 65! belongs to
H°(X 4, L) and we can find holomorphic functions g, ... ,%? over P\ {0,000} such
that

(2.5) TAa® 03 = (Y5 om)ag + -+ + (Y5 0o,
where {0y, ... ,0,} is an orthonormal basis of H%(X, £) with respect to the Hermitian
form h.

Now we are going to construct a harmonic map corresponding to the spectral data
(X, m, L). Let ¢: R? — CP™ be a map defined by

c= otV Iy e W) )

Then it is known that 1 is a harmonic map corresponding to the spectral data
(X, 7, £). This construction is due to McIntosh, which is described in detail in [17]
and [18]. However, in general it seems difficult to compute ¢, ... ,¥Z.

We shall now present a method which determines the values of ¥§(A),... ,¥Z()\)
at A = 1. We define a complex (n + 1) x (n + 1) matrix M = (M,;) by

(2.6) M;; 0:(n;) = o (mi).

Let ¢ be complex numbers defined by

(2.7) T @047 (n;) =t 0;(n;).

Substituting (2.6) and (2.7) to (2.5), we obtain

(2.8) (G- tn) = ME(W5(1), .. Pn(1)).

13



Lemma 1. The determinant of M does not vanish.

Proof. Since {0y, ... ,0,} is an orthonormal basis with respect to h, we have h(o;, 0;) =

d;;. From this and the identity (2.3), it is easy to see that the following identity holds:
M diag(ag, ... ,an)M* = I,

where diag(ao, . . . , a,) denotes the diagonal matrix with diagonal components ay, . . . ,

a,, and I,,; is the unit matrix of degree n + 1. In particular, we see that the

determinant of M does not vanish. 0
Hence the inverse matrix M~ of M exists, and ¥¢(1),... ,9Z(1) are determined

as

(2.9) (W), i (1) = MU, )

Moreover, it is known that the components of the matrix M and ¢§,... ,tZ can be

expressed by using theta functions and Baker-Akhizer functions (cf. [16]).

Constructing a special orthonormal basis, the above formula takes a much simpler
form. In fact, for 0 < i < n, take a non-zero element o; € HO(X, L(—ng— -+ — 11 —
Mit1 — -+ — Mn)). Rescaling o;, we obtain an orthonormal basis {o;} of £, that is,
h(c;, ;) = 6;;. Then the matrix M is diagonal and M;; is given by

g;
M = —
0;

i
Therefore the right hand side of the equation (2.9) becomes
(2.10)

TRHO A(Z)fl

9

T 9,4(2’)71

On

yeee
u=n1

. <T ® 04(2)"

0o

U=77n>

Let ¥(z, Z, u) be a function on X such that ¢(z, z, u)04(2) is an element of H°(X, Lo®
L(z)). Setting 7 = (2, z, u)f4(z) and substituting 7 into (2.10), we get
QZJ(Z’ 27 u)

g;

u=1o o1

(2.11) $i(1) =

for 0 < i< n.

U=1y;

Before closing this subsection, we prove the following lemma for later use.
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Lemma 2. Given a function ¢(z, zZ, u) on X with the parameter z, let U and V' be
neighbourhoods of the set of the points { Py, Px} which satisfy the following condi-
tions:
(1) {Ry, Px}CUCV C Xy.
(2) ¢(z, z, u) is a holomorphic section of Ox (M) on X \ U for any z € C, where
M is a divisor on X \ V.
(3) ¢(z, z, u) exp(—2z(! + 2(¢) is a holomorphic section of Ox(N) on V for any
z € C, where N is a divisor on U.
Then ¢(z, z, u)0a(z) belongs to H'(X, F® L(z)) for any z € C, where F = Ox (M +
N).

Proof. From the condition (2), ¢(z, z, u)®604(z) clearly belongs to H*(X\U, Ox(M)®
L(z)) = HY(X \ U, F @ L(z)). It suffices to show that ¢(z, z, u) ® 04(z) be-
longs to H°(V, Ox(N) ® L(z)) = H°(V, F ® L(z)). By using (2.4), we see that
(2, Z, u) @ 0a4(2) = ¢(z, z, u) exp(—2(' + 2¢) ® 6;(z) on V(C X;). On the other
hand, from the condition (3) it follows that ¢(z, z, u) exp(—z( ™! + 2() is an ele-
ment of H°(V,F) and hence ¢(z, z, u) @ 04(z) belongs to H(V, F @ L(z)). Thus
&(z, Z, u)f4(z) is a global holomorphic section of F ® L(z) on X. O
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3. PROOF OF THE HARMONICITY OF CORRESPONDING MAPS

In this section, we shall prove the harmonicity of those maps constructed in the
previous section. For this purpose, we shall show that a primitive map from a Rie-
mann surface M into a certain flag bundle F"(CP™) over CP" is harmonic. Moreover,
a map from M to CP™ obtained as the projection of the above map is also harmonic.
Since the maps constructed in the previous section conicide with such projections,

this completes the proof.

3.1. Primitive maps. First, we will recall the definition of primitive maps. Let
pr: F'(CP") — CP"™ donote the bundle of flags in the holomorphic tangent bundle
TOCP" with fiber

Er(CpP")={w C-- Cw, C TY'CP" | dimw; = j}.

Let U; denote the unitary group of degree i. For convenience, set m = r + 1. We

denote by G and H the groups U, .1 and U; X - -- x Uy xU,,_,,, respectively. Then,
—_——

m~+1 times

we can represent F"(CP™) = G/H as a homogeneous space. Denote by g and b the
Lie algebras of G and H, respectively. Then we have the canonical decomposition
g=bh+m.

It is known that F"(CP™) have the structure of (r+2)-symmetric space in the sense
of Kowalski [15]. In fact, let v be an automorphism on G defined by g — Ad(o)g with
o the diagonal matrix diag(1,w, ... ,w ™ w1 ... w1 for w = exp(2myv/—1/(r+
2)). Let 7 be the automorphism indueced by v of order (r + 2) on G/H which gives
the (r + 2)-symmetric structure on G/H. Let g; be the w'- eigenspace of 7, where
w = exp(2my/—1/(r + 2)). Then we have

r+1

h :Zgia b* =go, m" :Zgi’
i=0 =1
9-i=0i, 9,95 C gty

The map g — T..(G/H) given by & — d/dt |;— exp t{ - x restricts to an isomorphism
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Ad(g)-m — Ty(G/H). We denote its inverse map by 5 : T,,(G/H) — Ad(g)-m C g
and we may regard (3 as a g-valued 1-form on GG/ H, which is called the Maurer-Cartan
form for G/H. Denote by [g;] the vector bundle over G/H, for which the fiber at
r=g-0€ G/H is given by Ad(g)g;.

Definition 2. The map ¢: C — F"(CP") is said to be primitive if (¢*3)(0/0z) is
[g9_1]-valued, where (3 is the Maurer-Cartan form for G/H.

3.2. A parallel transport. In order to construct a desired map from R? and a
connection for a line bundle over R?, we need to define a parallel transport of a
section of £ to that of a line bundle over R?. Let J(X) denote the Jacobian variety
of the spectral curve X, i.e., J(X) = HY(X,0)/H'(X,Z), which is a p-dimensional
complex torus, p being the genus of X, and defined by the long exact sequence induced
from the short exact sequence

0—7Z—0Z20"—0.

The set of all line bundles L € J(X) which satisfy px,L = L~! forms a subgroup
of J(X) by tensor product. We denote by Jr(X) the connected component of the
identity of this subgroup (the identity is given by trivial line bundles). Then, it is
known that Jg(X) is a p-dimensional real torus. For any L € Jg(X), we see that a
line bundle £ ® L satisfies (£ ® L) ® px.(£L ® L) = Ox(R). In this case, we say that
L ® L is real. Note that when we replace £ by L ® L for L € Jg(X), we see that f
is still non-negative on the preimage Xy of the equator S!. In fact, f is independent
of L. Since deg(L ® L) = deg(L) = n + p, it follows from Theorem 2 that 7.(L ® L)
is a trivial bundle of rank n+ 1 and h°(X, L ® L) = n + 1.

Now, consider a complex vector bundle H°(X) + Jg(X) for which the fiber at
L € Jr(X) is given by a (n + 1)-dimensional complex vector space H°(X,L ® L).
Recall that X = X4 U X;. A given line bundle L € J(X) can be trivialized over X4

or X;. We denote by 64 and 6; its trivializing sections over X4 and X, respectively,

17



ie.,
9A 91
[ Y
L|XA:XAX<C, L|XI:X[><(C.

Over X4 N X, we have a transition relation 6; = e®@4. Thus, for L € Jgr(X),
we have a 1-cocycle (e, X4, X;). Conversely, each 1-cocycle (e*, X4, X;) defines a
line bundle L with e® as a transition function. Then, consider a map L : G =
HY(X 4N X;7,0x) — J(X) defined by a — L(a), where L(a) denotes a line bundle

with a transition function e®. Set
gr ={a € G| px.a = —a}.

Then, we see that Im(L |g,) = Jr(X).
Now, fix a trivializing section 6 for £ over X such that Tr(f - § ® px.#) = 1. Here
Tr is the trace homomorphism, which sends each element of H°(X, Ox(R)) to those

of H'(P!,Op). For a € Gg, set 0, = 0 @ 07, which gives a trivializing section for
L ® L(a) over X;. We now want to define a map

Lot H' (X4, L® L(a)) — H(Xa, L).
Lemma 3. For o, € H*(X4, L ® L(a)), define 1,(c,) by
ta(0a) = (040, 1)0.
Then, we have 1,(0,) € H* (X4, L).

Proof. Let T be a trivializing section of £ over X 4. We may write § = e“7. Hence we

have 6, = e*™°7 ® 4. Now, we calculate

La(04) = e*(0,0,1)0
(3.1) B B B
=e 0,(TR04) 0 =0,(TR04) T,

where o,(7 ® 0,)~" is a holomorphic function over X4 and 7 is a trivializing section
of £ over X 4. Therefore we have 1,(0,) € H*(Xy4, L). O
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In fact, ¢4 : H(X4, L ® L(a)) — H°(X4, L) is an isomorphism. The injectivity
of 14 is obvious. To show the surjectivity of 4, take an arbitrary o € H°(Xy4, £).
Then, we may write 0 = br for some b € H°(X 4, 0). Choose o, = b(T ® 04). Then
we have t,(0,) = br = 0 by (3.1), proving the surjectivity of ¢,.

Let L*H°(X) — Gg deonte the pull-back bundle of the bundle H°(X) — Jg(X)
by L : Gg — Jr(X). Let {79, -+ ,7,} be an orthonormal frame of global sections
of £, and denote by B the algebra of holomorphic maps A — C. Then we have
H°(X 4, L) = Span{rg, -+, Tu}|x,, since H°(X 4, L) is a free B-module of rank (n+1)
by the fact that H(X4, L) = H°(A, m,L) and 7, L is a trivial bundle of rank (n+ 1).
Any element of H%(X 4, £) is expressed as Y 0;(A)7;. Define an evaluation map ev; :
HY(X 4, L) — HYX,L)by > 0;(N)7; — > 0,(1)7;, where 0;(1) is the value of o;()\)
at A = 1. Then the composition evy o ¢4 |go(x corn@): H(X,L® L(a)) — H°(X, L)
gives rise to an isomorphism. Indeed, clearly it is surjective by its construction and
is injective by the fact that h°(X, L ® L(a)) = h°(X, L) =n + 1.

Lemma 4. Let 01,00 € H*(X, L ® L(a)), and set s; = i4(0;) for j = 1,2. Then

h(s1,s9) is constant.

Proof. For simplicity, set L(a) = L ® L(a).

We first note that the map ¢, : H%(X4, L(a)) — H°(X4, L) induces an iso-
morphism , @ H'(X 4, £(a) @ px.L(a)) — H(X4a, L ® px.L). In fact, r,(c) =
(0, ® px+0,)"'0 @ px.0, because the transition functions e® for L(a) and e~ for
m cancel out each other. Set s19 = K,(01 ® Px»02). We claim that s5 is a
globally defined holomorphic section of £ ® px,£L. Indeed, s5 is holomorphic over
X 4. In order to see that it is also holomorphic over X, set f; = 0,0, for j = 1,2,

which is a holomorphic function on X;. Then we have

S12 = 01 ® IOX*OZ(Qa X pX*ea)_le ® PX*9
= fle@pX*(f29)7

19



which shows that si5 is also holomorphic over X7, since € is a holomorphic frame
field over X;. Thus, s15 is a globally holomorphic section as claimed.

Now we have
h(s1,82) = h(ta(01), ta(02))
= Tr(f - 1a(01) ® pxata(02))
= Tr(f - Ka(o1 ® Pxx02)) = Tr(f - 512).
Since Tr(f-s;2) € HO(P!, O) (notice that f-s12 € H*(X, Ox(R))), we see that h(sy, s2)

is constant. O

3.3. Ideal sheaves on spectral curves. Define a map a : R> — Gg by z +—
a(z,z) = 2" — z(, where ( is considered only on X4 N (Uy U Uy,), Uy (resp. Uy)
being a connected component of Xy (resp. X.,) which contains Py (resp. Qo). Then
L(a) = L(2¢"!' — () is a 2-parameter subgroup of Jg(X). We have the following
diagram:

L(a)*H*(X) — L*H°(X) — H°(X) D> H°(X,L® L)

l l l

R % Gz -5 Rk(X)3L

We also write L(a)*H®(X) as H°(X) if there is no confusion. Fix a h-orthonormal
basis {r;} for H°(X, L) so that (H°(X,L),h) — (C"*1 () is an isometry. We
want to decompose the vector bundle H°(X) — R? into line subbundles which are
orthogonal to each other. To this end, we first define the following line bundles,
whose sheaves of germs of holomorphic sections are subsheaves of the sheaf of germs

of holomorphic sections for L :

(3.2)
Lj=L®Ox(—(m—j)Py—jQo— Y P) forj=01,--- m—1
i=1
L =L Ox(—mQy).

Lemma 5. For j =0,1,--- ,m, each L; is non-special, i.e., h*(X, L;) = 0.
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Proof. Set T; = L @ Ox(jPy — jQo) for j =0,1,--- ,m. Note that Z; is a real line
bundle, i.e., it satisfies Z; ® px.Z; = Ox(R). It follows from Lemma 2 that m.Z; is a
trivial bundle of rank n + 1. Define F; by F; = Z; @ Ox(—(m + 1)Py — Y- " P,).
Then we obtain

Li(—Fp) forj=0,---,m—1,
E - n—m
Lon(—FPy — Z P,) forj=m.
L i=1

Note that deg(F;) =p—1for j =0,1,--- ,m.

In general, for any non-special line bundle L we know that H%(X, L(—P)) & {s €
H°(X,L) | s(P) =0}, where L(D) = L ® Ox(D) for a divisor D on X. In fact, if
we fix a meromorphic section 7 with the divisor (7) = (—P), then taking the tensor
product of each element with 7 or 77! gives an isomorphism. Now, suppose that F;
has a non-trivial global section. Then there is a global section of m,Z; which vanishes
at A = 0, since any global holomorphic section of F; gives rise to a global holomorphic
section of Z; with divisor (m+1)Py+ > P;. However, since m,Z; is a trivial bundle, it
must be identically zero. Thus, we see that h°(X, F;) = 0. Now, the Riemann-Roch
formula implies that h' (X, F;) = 0, because deg(F;) =p—1 for j =0,1,--- ,m.

In general, for any line bundle L and any point P € X, h'(X,L) = 0 implies
that h'(X, L(P)) = 0. Indeed, it follows from the Serre duality theorem that 0 =
(X, L) =h(X, Q@ L), where Q3 is the holomorphic cotangent bundle (= the
canonical bundle) of X. Again, it follows from the Serre duality that h'(X, L(P)) =
hO(X, 05" ® L~ (—P)). Therefore, if there is a non-trivial element of H'(X, L(P)),
then there is a global section of Q;O ® L~! vanishing at P. However, it must be
identically zero, because h%(X,Q’ ® L=1) = 0.

To complete of the proof, it suffices to notice that £; = F;(F) for j =0,1,---m—1
and L, = F.(Py + >_ P;), and then apply the general theory above to these line

bundles once or successively. O
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Corollary 1. Given any a € Gg, we have h*(X,L; ® L(a)) =0 for j =0,1,--- ,m.

Proof. We only need to replace £ by £ ® L(a) in the definition of Z; in the proof of
Lemma 5. U

Corollary 1, together with the Riemann-Roch theorem, yields that

1 for j=0,1,--- ,m—1,
W(X,L; ® L(a)) =
n+1-—m for j=m.
Then, obviously we obtain:
HY(X,L® L(a)) = @ HY(X,L; ® L(a)) (h-orthogonal sum)
5=0

Define a map 7' : H%(X4, L) — C™*! by the composition of {r;} , which identifies
H°(X, L) with C""! and the map ev;. We thus have the following diagram:

evy {m}
HY(X 4, L) — HYX, L) —— C"

H(X 4, L® L(a)) D H'(X, L ® L(a)) = é H(X,L; ® L(a)).

J=0

Define line subbundles /; of the trivial bundle R* x C"™! by
lj =7"01,(H* X, L; ® L(a)) for j=0,1,--- ,m.

Then it follows that R* x C"*! = @', which is an orthogonal direct sum with

respect to the inner product ( , ) on C**!. To see this, it suffices to prove the following

Lemma 6. For z € R? and j =0,1,--- ,m, let 0; € H*(L; ® L(a)). Set s; = 1,(0;).
Then h(sj,si) =0 for j # k.

Proof. From Lemma 4 we know that h(s;,s;) is constant. Therefore, it suffices to
show that when j # k, h(s;, s) is zero at some point of P'. Setting f; = 0;0,, we

see that f; is a holomorphic function over X; and s; = ¢(0;60,')0 = e f;6. Since o;
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is a global holomorphic section of L& L(a), which has a divisor (m—j)FPo+7jQo+>_ P;

for j =0,---,m — 1 or a divisor mQ) for j = m, it follows that f; has a divisor
(m—j)Po—Fon-i-ZPi for j=0,1,---,m—1,
mQo for j=m.

Set i = f -0 ® px.0fjpx«fe- Then we have h(s;,s) = Tr(rj). Recall that X; =
Xo U Xo. Denote by Uy (resp. Us) a connected component of Xy (resp. X)) which
contains Py (resp. Qy). Recall that there are no branch points on Xy and X, except
Py and Q. Since f-0® px.0 is a meromorphic function with a divisor (—R), it then
follows that

¢™ in Uy,
[-0®px.0=< " in Ug,
1 elsewhere in  X7.
Therefore, rj; has a divisor
(3.3)
(k‘—j)Po—l-(j—k‘)Qo-i-ZPi—i-ZQi for j,k=0,1,--- ,m—1,
(m—j)PoqL(j—m)Qo—i—ZPi for k=m;j=0,1,--- ,m—1.
Note that 771(0) = {(m + 1)Py, P1, -+ , Py} and 71 (00) = {(m + 1)Q, Q1, - - - ,

Qn—m}, where (m + 1)Py (resp. (m + 1)Qy) stands for the point Py (resp. (p) with
multiplicity (m 4+ 1). This, together with (3.3), yields that if j, k < m, then
TI'(I'jk) = Z Tk = when k > Js
m=1(0)

Tr(ry) = Z rjy =0 when j>Kk,

71 (c0)

and if j < k = m, then

7 1(0)

proving our assertion. O
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Lemma 7. Let 0 : R? — H%(X) be a smooth section for which o(z,Z) is a globally
holomorphic section of F & L(a) for some ideal sheaf F of L. Let D be the covari-
ant differentiation on H°(X) induced by the parallel transport of the vector bundle
H°(X) — R?. Then, Dys90 (resp. Dyaz0) is a globally defined holomorphic section
of F(Fy) ® L(a) (resp. F(Qo) ® L(a)).

Remark. Each L£; is an ideal sheaf of L.
Proof. We can define a connection D on the bundle H°(X) by
Dyo =11 (Z14(0)),

where o is a section of the bundle H°(X) — R? and Z is an arbitrary vector field on
R?. Setting s = 1,(0) and f = 06,', we see that s = ¢*ff : R* — HY(X4, L) and

a )

f:R* — HY%X;, F®L™1). Recall that a = 2("! — z(. Then we obtain

0 0 0

a—j = (e fO + a—‘ze‘le = (C_lf + 8—JZC> e"0 € H(X 4, F(Ry)),

0s 0 9

O = e+ ey = (—cf + a_f) e0 € H°(Xa, F(Qo)).
Thus, it follows from the definition of D that

of

Dajare = (¢ + 51) 60 € HOCOLF(R) & L(a),

Dyjoz0 = (—Cf + Z—J;> 0. € H°(X1, F(Qo) ® L(a)).

Since 0s/0z is holomorphic over X4, so is Dy/s.0 over X 4. In consequence, Dy/g.0 is
holomorphic over X = X4 U X; and defines a global holomorphic section of F(Fy) ®
L(a).

The proof for the case of Dy gz0 is similar. O

Let 0g, 04, ,0, be global holomolphic sections of the bundle H°(X) — R?, for
which H°(X, £; ® L(a)) = Span{o;} for j =0,1,--- ,m—1and H*(X, L, ® L(a)) =
Span{om, - ,0n}. Set s; = 1,(0;) for j = 0,1,--- ,n. Then, {sg,---,s,} defines
a free system of generators for H°(X4, £). Recall that B denotes the algebra of
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holomorphic maps A — C. Let V; and V,,, be B-modules generated, respectively, by

sj and sp,, -+, 8,, where j =0,1,--- ,m — 1. We then have
HO(XAaE) = Z‘/Jv
§=0

which is a h-orthogonal direct sum by Lemma 6. We denote by I1; : H(X 4, L) — V;

the h-orthogonal projection onto V.
Lemma 8. Fach map s; : R* — H°(X 4, L) satisfies

0s; :
a—;e‘é@‘/}-i-l for J:O717"'7m_17

0
%va@% for k=m,--- n,

and

I <%) 40  for j=0,1,---,m—1,
0z

325m_1
IT 0.
(Do) #
Proof. As in the proof of Lemma 7, write s; = e*f;0 with f; = 0,0
HY(X,L; ® L(a)).

[Casel: j =0,1, - ,m—2] By Lemma 7 we have Dy 9.0; € H*(X, L;(FPy)®L(a)).
Recall that if L is non-special, then so is L(P) for any point P € X. Therefore we see

-1
a )

where 0, €

that £;(F) ® L(a) is non-special by Corollary 1. Then it follows from the Riemann-
Roch formula that h°(X, £;(P) ® L(a)) = 2.

Now, obviously, H°(X, L;(P,) ® L(a)) is generated by o; and o1, since £; =
Li(Py) @ Ox(—Fy) and L1 = Lj(Py) ® Ox(—Qy), which show that £; and L£;;; are

subsheaves of £;(Fy). Therefore we obtain

0s;

5. ViV
Moreover, since ¢, *(9s;/0z) = (' f;+ 0f;/02)0, and (' f;0, = ("'o; cannot be an
element of H(X, £; ® L(a)), we must have II;,(9ds;/0z) # 0.

25



[Case2: j = m—1] Asin Case 1, we have 9s,,,_1/0z € V1 @ Vin, 15,1 (08mm-1/02) €
H(X, L, 1(Py) ® L(a)) and 11,,(9s,,_1/0z) # 0. In this case, although £,, is not
a subsheaf of £, 1(Fp), it is enough to consider L,,(— > P;), which is a subsheaf of
L.

Next, we show Ily(0?s,,_1/0z%) # 0. We have

= (025"“1> - (c—2fm_1 gt Oty agfm‘l) 0,

072 022
€ H' (X, L,,_1(2P) ® L(a)).

Notice that £,, 1(2P) = L(Py— (m —1)Qo— >_ P;) and h°(X, L,,_1(2P) ® L(a)) =
3 by the Riemann-Roch formula. Hence, H°(X, L,, ;(2P) ® L(a)) has a section
induced from a meromorphic section of £ ® L(a), which has a pole of order 1 at F.
Indeed, (™2 f,,_10, gives rise to such a section. We observe that £, 1, Ln(— > P;)
and L(Py—(m+1)Qo—>_ P,;) are subsheaves of £,,,_1(2F). Since Aoy is a section of
L(Py—(m+1)Qo—>_ P;) (note that (A\) = (m+1)FPy—(m+1)Qo on UyUU), it follows
that £, 1(2P,) is generated by 0., 1,0, -0, and A"loy. Among them, \~loy is
the only one which has a pole of order 1 at Py. This implies that [To(9%s,,_1/02?) # 0.

[Case 3 : k =m,---,n] Similarly, we have ;1(9s;,/0z) € H*(X, L,,(Py) ® L(a))
and h°(X, L,,(Py)® L(a)) = n—m+2. In this case, £,, and L(Py—(m+1)Qo—>_ P,)
are subsheaves of L,,(FP), and L,,(P) is generated by o,,, -+ ,0, and A"'g. Thus
we have 0s,/0z € V,,, @ V. O

Now, we are in a position to prove the following theorem.

Theorem 3. Let ly, - ,l,,(m > 2) be the subbundles of R? x C"*! constructed above.
Then ly determines a harmonic map 1)y : R* — CP™ of isotropy order m, where the

isotropy order m is defined by
m = max{j: all line bundles Vy,...,V; are mutually orthogonal}.

Here Vy = ly and fori = 1, under the orthogonal projection 7~ ; : C"** — VL, onto

the orthogonal bundle V£, of Vi_1, V; is a line bundle defined by V; = mi-, (0Vi_1/02).
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Note that this theorem implies the harmonicity of the map associated with (X, 7, £),

which is constructed in the previous section, since it is equal to 1y by definition.

Proof of Theorem 3. Recall the map 7 : H°(X4, L) — C""1. We see that

1

7H(V;) = ;. Obviously, the map 7! and the differentiation 9/9z commute. Denote

by m; : C"*' — [; the orthogonal projection onto [;. Then we observe that 7' oIl; =
7Tj @) ’7'1.

It then follows from Lemma 8 that

(0
@lelj@lj—&—l for ij,l,---,m,
0l .
(34) Tj+1 % 7&0 for J :Oalv"' , M — 17
0Pl_y
where we use the convention that .1 = lop. Thus, a map ¢ = (lo,l1, -+ , 1) :

R? — FT(CP") is a primitive map. In fact, the complexification of the tangent
bundle of F"(CP") is given by TC(F"(CP")) = @, Hom(l1;). On the other
hand, (¢*3)(0/0z) takes values in ;" , Hom(l;,li11) with l,,41 = lp by (3.4). Recall
that F"(CP™) has the structure of (m + 1)-symmetric space such that (I;), is a w’-
eigenspace of the automorphism 7, of order (m+1), where w = exp(2mv/—1/(m+1)).
Then we have [Gi] = @], Hom(l;,1ir) with l,,41 = lo. In consequence, we see that
1) is a primitive map.

Now, if m > 2, then ¢ = 7o : R2 — CP" is a harmonic map, where 7 :
FT(CP") — CP" is the homogeneous projection.

When m = 1, we have a map ¢ : R — F!(CP") = CP". Since the condition of
the primitivity of ¢ is meaningless in this case, the above argument is not applicable.
However, we can show that 1 is also harmonic by calculating a holomorphic section

of [y and investigating the divisor of this section. O
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4. RECONSTRUCTION OF SPECTRAL CURVES FROM HARMONIC TORI

In this section, we shall recover the spectral data (X,m, L) from a given non-
isotropic harmonic torus v: T? — CP™. Throughout this section, it is convenient to

work with G = U1, H=U; X -+ x Uy XU,_,_1 and g = U, 1. Here 0 < r < n—1.
—_——

r+2times

4.1. Extended frames and loop groups. First we recall the following

Theorem 4 ([1]). Every non-isotropic weakly conformal harmonic map 1o of a Rie-

mann surface M into CP™ of isotropy order r + 1 is covered by a unique bprimitive

map M — F"(CP™)=G/H.

Thus there exists a unique primitive lift ¢: 7% — G/H for 1 (if 1 is non-
conformal, we set 1) = 1)p; ‘primitive’ will simply mean ‘harmonic’ for m = 1). We
may frame this by ®: R? — G over the universal cover R? — T2 of T2 and normalize
the frame so that ®(0) = Id.

Set a« = ®~1d®, which is the pull back of the Maurer-Cartan form by ®, and write

a = ay + Qy,
according to the reductive decomposition g = b @ p. If we define
ae = C‘la; +ap + Coz;/, (e,
then we get
1
dOzC + §[C¥< VAN O‘C] = 0.

Moreover, since a; takes values in g_;, this map a;: C* x R? — g® is v-equivariant
in ¢, i.e., v(o¢) = ¢ (here w is a primitive (m + 1)-st root of unity). It follows that

we can integrate a¢ to find an extended frame ®;: C* x R? — GT which satisfies

Oég = (I)Eldq)g
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Moreover, we may always choose the integration constants so that ®. is v-equivariant
and @, = (IDE, where { denotes Hermitian transpose. We are going to view ®. as a
map from R? into a certain loop group, defined as follows.

Let C = C. be the union of circles C; and C, in the (-plane of radii ¢ and e!
respectively, where 0 < € < 1. Define

AL(G,v) = {g: € — G° | g is real-analytic, #(g(C)) = g(w()}

and write g; = g|¢, for i = 1,2. We also denote the Lie algebra of A% (G, v) by
A% (g€, v). For a subgroup K of G® and the Lie algebra € of K, we define A% (K, v)
and A% (k,v) in a similar way. On this group AL (GE, v) there is an anti-holomorphic

involution given by

We will denote the fixed point subgroup of this involution by A¢(G,v), which is the
group (for any choice of €) that ®, takes values in. We also write A(G,v) for A(G,v)
if there is no confusion.

A crucial fact about this subgroup is that it admits an ‘Iwasawa decomposition’ in
the following sense. First recall that H® has an Iwasawa decomposition, which we will
write as H® = H By, inherited from G®. Here By is a subgroup of upper triangular
matrices with positive real diagonal entries and By = exp(by), where h¢ = b @ by is
the corresponding Lie algebra decomposition. Next, we view C' as a pair of circles
on the (-sphere P so that C' is the common boundary for a closed annulus £ and a
union [ of closed discs I = {¢ € P¢ | [¢| < €} and I /. = {¢ € P¢ | |¢| > 1/e}. Then
we can define the following three subgroups of A(G,v):

AS, = {g € A°(G,v) | boundary of a holomorphic map ¢g: E — G©},
AS = {g € A°(G,v) | boundary of a holomorphic map g: I — G with g(0) = Id},

B ={(b,b)|b € By}
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For simplicity, we also denote A% and A by Ag and Ay, respectively. Then it follows
from a result in [19], [20] that every element g € A(G,v) has a unique factorization
g = ubn where u € Ag, b € B and n € A;. We will refer to this as the Iwasawa
decomposition for A(G,v).

The corresponding Lie algebra decomposition is denoted by
A(g,v) = Ag(g,v) ® b @ Aj(g,v).

When there is no confusion, we shall often drop superscript e.

4.2. The dressing orbit of a vacuum solution. One of the results we will need
from [5] is that, up to isometries, every non-isotropic harmonic torus possesses an
extended frame belonging to a particular class which we will now describe. In the
terminology of [5], these are the extended frames which lie in the dressing orbit of a
vacuum solution.

For any positive integer k, let Ay C Ag(g,v) denote the subspace of Laurent
polynomials in ¢ of degree < k. We define

A“=M@b®A(gv) C Ag,v).

We also write A for A¢. Let A;p = Aj 5 denote the subgroup of A°(G,v) generated
by the subgroup B and A;. Then A; p acts on the subspace A as an adjoint action.
For a given (£,€) € A, define

e(€) = exp|(2€, 2¢)),

which gives rise to a 2-parameter subgroup of A(G, ). Using the Iwasawa decompo-

sition in A(G,v), we write

and observe that ®(£) equals the identity at z = 0.
It can be shown quite readily that ®(£) is the extended frame for some primitive

harmonic map of R? into G/H. In fact, if we use F to denote the set of all normalized
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extended frames (i.e., those with ®;(0) = Id) for primitive harmonic maps R* —
G/H, then we have defined a map ®: A — F. Now, following [5], we observe that,
for any g € Ay g,

P(Adg) = gi®(¢),

where gf®(¢) is the Ap-factor in the Iwasawa decomposition of g®(¢). It is not hard
to show that the latter defines an action of A; p on F, called the dressing action, and
the equation shows that ¢ intertwines the two actions.

Now let H denote the space of all primitive maps R? — G//H based by ¢(0) = H.
Then H = F/C>(R? H), i.e., the space of based primitive maps is the quotient of
F by the group of gauge transformations. From [5] we know that the dressing action
descends to H; we will denote the gauge equivalence class of ®(&) by [®(£)] and then
GHB(€)] = [g8®(€)]. The orbit O = {g£[0(€)] | g € Ars} C H is called the dressing
orbit of [®(&)]. One of the principal results of [5] is the following

Theorem 5 ([5]). Let (&,€) € A and write € = (7Y + & +C& + P&+ When

&1 is semisimple, we can find (possibly after shrinking €) an element g € Arp for

which [B(€)] = gl®(CE-1).

The proof of this theorem needs the following lemmas. Concerning the adjoint and

dressing actions of A, we have
Lemma 9 ([5]). For g € AS and n € A,
[P(Adgn)] = e[®(n)].

Lemma 10 ([5]). Let u,n € Ac. Then [®(u)] = [®(n)] if and only if (Cn)(0) =
(€n)(0) and

(4.1) (adn)"u € Aj(g,v),
for alln = 1.

31



Proof. [®(n)] = [®(n)] if and only if ®(u) = ®(n)k for some k € C*(R? H). Using
the definitions of ®(p) and ®(n), it is straightforward to see that this is the case

precisely when
e(z) == exp(—zp) exp(zn) € A
for z € R?. This, in turn, is the same as demanding that
e tde = (—Adexp(—zn)u + n)dz
be AS(g, v)-valued, that is,
ey — 1 € Ag(g,v)

for all z € R%. Expanding this last relation in powers of z and comparing coefficients

proves the lemma. Il

Let A be an element of g_; such thah [A, A] = 0. Set n4 = ("*A. Then applying

this to the case where n = 14, we have the following proposition.

Proposition 1 ([5]). [®(u)] = [®(na)] if and only if ((i)(0) = A and [p, A] = 0.

Proof. Write p = an_l (", on Ce. Comparing coefficients of ¢ in (4.1) gives
(adA) ty—1 =0

for all n = 1. However, since A is semisimple, ker(adA)" = ker(adA). Hence [u, A] =
0 as required. O

Moreover we have

Proposition 2 ([5]). For u € A and g € A7 g, [®(n)] = gi[®(na)] € Oa if and only
i (C)(0) = Adg(0)A and

[k, AdgA] = 0.
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Proof. By Lemma 9, [®(u1)] = g#[®(n4)] if and only if [®(Adg )] = [®(na)]. From

Proposition 1, we see that this is the case precisely when
(CAdg™ ) (0) = A
and
[Adg'u, A] = 0.
Hence the result follows. 0

Now we are in a position to prove Theorem 5.

Proof of Theorem 5. First we can find A € AdBn_; such that [4, 4] = 0, and,
after dressing by an element of B, we may assume that n_; = A. By Proposition 4.3,

it now suffices to find g € Af g, for some 0 < e = ¢, such that
Adg(0)A = A, [A,Adgn] =0.

We shall construct ¢ via the inverse function thorem.

Since A is semisimple,
g® =keradA @ [A, g%,
and we define ¢: keradA @ [A, g*] — g© by
¢(x,y) = Ad exp(y)x.
Observe that ¢ is equivariant in the following sense:
(4.2) wrp(x,y) = p(wre, vy)
for all (z,y) € keradA @ [A, g%].
Differentiating ¢ at (A, 0) gives
d(a,0@(v, w) = v + [w, A]

for (v,w) € keradA @& [A, g, so that d(a )¢ is an isomorphism. By the holomorphic

inverse function theorem there are open neighbourhoods Q; of (A, 0) and 5 of A such
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that ¢: €3 — s is a biholomorphism. Moreover, since (A,0) is fixed by the linear
automorphism 7' (z,y) — (wvx,vy) of order (r+2), we may assume, shringking €2,
if necessary, that 2 is T-stable.

Let (¢1,12) = ¢~1: Qy — ) so that, for y € s,

x = Ad(exp(¥a(x)))¥1(x),

or, equivalently,
(4.3) Adexp(—9(x))x = Y1 € keradA.

From (4.2) and the T-stability of €21, we observe that 1), has the following equivariant
property:

Pa(wrx) = viba(x)

for all xy € Q.

Since n € AE,, ¢n is holomorphic on [ with (¢(n)(0) = A. Hence we can find
0 < e < ¢ such that C.U I, C (¢n)~*(Qy). We may therefore define g: C; U I, — G©
by

9(¢) = exp(—12(¢n(C)))-
By construction, g is holomorphic on I, and g(0) = exp(—t(A)) = —1 € B so that
Adg(0)A = A.
Moreover, from (4.3), for ¢ € C} we have
Adg(¢)n(¢) = ¢ Adexp(—2(¢n(¢)))¢n(¢) = ¢ (¢n(¢)) € keradA
so that
[A, Adgn] =0

on C}. Hence g will define our desired element of Aj 5 so long as it satisfies the

equivariant condition g(w() = vg(¢). For this, recall that n(w¢) = vn(¢) so that,
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using (4.4),

g(w¢) = exp(—va(wln(w())) = exp(—1h2(Yr(n(()))
= exp(—v12(¢n(¢))) = vg(¢)

as required. This completes the proof. Il

Our aim for the rest of this subsection is to prove:

Theorem 6. Each primitive lift 1: T? — G/H admits, possibly up to an isometry,
an extended frame @ given by ®; = giP(C"A), where g € Arp and A € g1 is a

non-zero semisimple element fized a priori.

This is actually a fact about primitive maps of finite type, in the sense of [1], [4],
which includes all tori worked out by Burstall [1]. The proof relies on the following

results.

Lemma 11 ([4]). Each primitive map v of finite type admits an element (£,€) € A
for which ®(&) is an extended frame.

Lemma 12 ([29]). G/H is a rank one m+1-symmetric space, that is, every semisim-
ple element of g_, is Ad(H®)-conjugate to some scalar multiple of a fived non-zero

semusimple A € g_.

Lemma 13 ([5]). Let ¢ € A(G,v) be extended holomorphically into I and de-
fine gt ®(&) to be the Agp-component of g®(§) in its Twasawa decomposition. Then
O (Adgé) = gt P(E)k for some k: R2 — H.

Proof. This lemma follows immediately from Lemma 9. O

Now we can prove Theorem 6. Fix a non-zero seimisimple A € g_;. By Lemma 11,
1 has an extended frame ®(¢), which is, by Theorem 5, gauge equivalent to g ®(¢ 1)
for some § € A;p. By Lemma 12 there is some h € H® for which £ ; = AdhA, so
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that ®(Ad(gh)¢™1'A) is an extended frame for ¢). By Lemma 13 this is gauge equiv-
alent to the frame (gh)#®(¢"'A). Finally, we may write gh = kg for some k € H,
g € A1 p, so that

(kg)§@(¢T'A) = k(g2 ®(¢C'A))

yields an extended frame for v». Thus gf ®(("'A) is an extended frame for the map
obtained, up to an isometry of G/H determined by k, from ¢ (indeed this isometry
preserves the base point 1(0)).

4.2.1. A and its centralizer. Now we fix an element A € g_; as follows. Let 9,
denote the column vector (0,...,1,...,0), where the ‘1’ lies in the j-th column
with 0 £ j < n. Take CP™ to be the G-orbit of the line (). Then F"(CP™) is the
G-orbit of the flag

(60) C (89,01) C (6o, ... ,6,) C C"F

which is isomorphic to G/H, where H is the fixed point subgroup of the automor-

1 —m

phism v: g — Adog with o the diagonal matrix diag(1,w™",... ,w

—m

yw L wT™)
for m = r + 1 and w = exp(27i/(m + 1)). Thus we may fix A to be the following

matrix of rank m + 1

0

Later on we will need to work with the centralizer 3 of A in g€ and its center ¢. It is

not hard to see that ¢ = ¢, @ (Id), where
¢, = (A, A2, AT,

It is worth noting that ¢ is a reductive Lie algebra, whose single semisimple component

is a subalgebra of go. It will be useful to observe that each element of 3 has a
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block decomposition according to the splitting 3 = ¢, @ 3., where 3. = gl,_,, is the
subalgebra of matrices of rank n — m, whose non-zero entries occupy the bottom

right-hand corner.

4.2.2. Higher flows in Oy. For simplicity (and consistency with the previous work) we
will write ®° for ®(("'A). As a result of Theorem 6, we see that every primitive map
of finite type R?* — G/H is, possibly up to an isometry, found in the dressing orbit of
the vacuum solution [®®]. From Theorem 6 we know that this orbit O, is isomorphic
to A7 p/I'1 g, where I'; g is the stabilizer of ¢~'A for the adjoint action of A . Let
[g] denote the coset gI'; 5. Then this isomorphism is given by [g] — g [®©)].

We will now describe the action of an abelian Lie subgroup of A(G, v) on this orbit,
whose 1-parameter subgroups generate the so-called ‘higher flows’” (the terminology
comes from soliton theory, from which the idea of dressing actions originated). These
matters will be of use later on.

Observe that A(c,v) is the center of the centralizer for ("'A in A(g,v). Let €g
denote the subalgebra of finite order elements of A(c,v) (that is, those whose pro-
jections to Ag(g,v) are Laurent polynomials). The abelian Lie group exp(€g) has
a right action on Ay p/T'; g, which is defined by expalg| = [(gexp(a));], where (-);
denotes the A; p factor in the Iwasawa decomposition. Note that, in particular, the
subgroup exp(€g) NI’y g acts trivially.

We now examine the action of the 2-parameter subgroup exp(m), where
m = {w¢'A +wC¢A | w € C}.

Clearly, the exp(m)-orbit of [g] can be written as {[(9®®(w));] | w € C}. The

corresponding points in O, have extended frames of the form

(4.4) (92O (w))r 30O (2) = (92 (w))5' 1€ (2 + w)

= D (w) Dz + w)

for ®¢(2) = g#®(2). The right-hand side is clearly an extended frame for the
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primitive map ¥* defined by ¥“(z) = ®;(w) ' (z + w). Thus the corresponding
exp(m)-orbit in O, is nothing but the set of all primitive maps obtained from v by

the translation z — 2z 4+ w.

4.3. Affine schemes corresponding to rings of polynomial Killing fields.
The key to recovering the spectral curve is to understand the Lie algebras of formal
and polynomial Killing fields. These give us those local deformations of an extended
frame, which correspond to moving along the Jacobi variety of the spectral curve.
Hence we will see that we can recover the tangent space H'(X,Ox) to the Jacobi
variety from the formal Killing fields and that polynomial Killing fields will give us
the the coordinate ring H°(X 4, O) of an affine open subset X4 C X. (For more
details, we refer the reader to the appendix of [21]. However, since in general the Lie
algebra of polynomial Killing fields is not abelian, the theory requires more care.)
By Theorem 6 our primitive lift possesses an extended frame & of the form g )

for some g € Ar . This means that there is a map x: R* — A; p for which
(4.5) g®® =@, y.

Observe that x(0) = g. From now on, for convenience, let us drop the subscript ‘¢’
from a¢, etc. By a real Killing field for « = ®7'd® we mean a map n: R? — A(g,v)
such that

(1) dn = [, 0], and
(2) n has finite order.

Recall that an element 7 of A(g, v/) is said to have finite order when its projection ng
to Ag(g,v) is a Laurent polynomial in ¢ (and more generally, an element of Ac(g®, v)
will be said to have finite order if it extends meromorphically into I, where it has at
worst poles). A real polynomial Killing field is a real formal Killing field n for which
n = ng. To define the space of all formal or polynomial Killing fields we take the

complexification of the space of real ones; this gives us maps with values in Ac(g, v).
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Let 3 = {finite order a € Ac(g%, v) | [a, A] = 0} and observe that this is identical
with the subset of A¢(3,v) consisting of only the finite order elements. Denote 3 N
Alg,v) by 3r. We are interested in the subalgebra 3% = {a € 3z | (Adga)p =
Adga} and its complexification 37 C 3. The following lemma is derived from a

lemma in the appendix of [21].

Lemma 14. The map Adyx: 3 — {formal Killing fields} is an isomorphism of Lie
algebras. It identifies 37" with {polynomial Killing fields}.

In the general case, however, 3 is not abelian and, as we have seen above, the Lie

group acting on the dressing orbit Oy of ®© is the center exp(€r) of exp(3z). We

will regard this as an action of € and let Q:Eg] denote the stabilizer of [g] for this

action; it is not hard to see that this coincides with (€ N 3R5) & 3’1?[. Then the

following result is proved in [5].

Lemma 15 ([5]). g#®© is an extended frame for a primitive map of finite type if

and only if Q:R/Q:Bg] is finite dimensional.

It follows that v is of finite type precisely when ¢/ is finite dimensional. Owing
to this we are interested in the vector space &(z) of polynomial Killing fields, which

is given by the complexification of
Sr(2) = {(Adx(z) o) | c € €},

Lemma 16. For each z, &(z) is a space of commuting elements of Ag(g®,v), each

of which is semisimple-valued on the unit circle.

Proof. Let ¢1, ¢ € Q:Eg]. Then by the definition Ady ™' (Ady ¢;)g € 3r. So
[Adx ci, (Adx ¢)e] = 0 = [Adx ¢, (Adx )il
since each c¢; is central. From this we obtain

[(Adx c1)g, (Adx ca)r] = —[Adx cir, (Adx ca)i]
= [AdX C11, (AdX C2)1]7
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which implies that each side is identically zero. Therefore the elements of Gg(2)
(and hence of &(z)) commute. By definition, if £ € &(z), so does its conjugate
€= —¢&(CYHT. Hence [£,€] = 0. Conversely, on |[¢| = 1 we see that ¢ is normal and

therefore semisimple. O

Now, let 2R(z) denote the C-algebra generated by &(z), and let % = 9R(0). Observe
that & contains the C-algebra B = C[A'Id, AId], where A = ("™"!. Hence R is a

commutative unital C-algebra without nilpotents, and also is a B-module.
Lemma 17. R is a torsion free, finitely generated B-module.

Proof. 1t is obvious that R is torsion free. To see that R is finitely generated as a

B-module, we observe that
M = {v: C — C"™ | v extends to a Laurent polynomial on C* and v(w(¢) = ov({)}

is a B-module of rank (n+1) and also is a faithful SR-module, where the multiplication

is defined by that of matrices on column vectors. O

Let us define 4 = Adg™' MR, which is an abelian subalgebra of A(3,v). Using the
splitting 3 = ¢. & 3., we may write each a € i as a = ag + a,, where ay takes values
in ¢, and a, takes values in 3,. Note that a, is a function of (™*!, since 3, C go. For

a, b € Y we have
ab = agbg + aebe.

We will also define W (z) = x~' M so that W(z) is a faithful #~-module (of boundaries

of meromorphic maps from I to C"*!, each component of which has finite order).
Finally, let us observe that for {(z) € P(z) there exists a € Y such that £(z) =

Adx(z)a = Ad®(z)"1£(0), using g = x(0). Therefore R(z) = Ad®!(z) R, which is

a property we will find useful later.
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4.4. Construction of Valuations. By the previous remarks we have a commutative
unital C-algebra R and therefore an affine variety Spec(R). Our aim is to show that,
when )y is linearly full (i.e., its image does not lie in a hyperplane of CP"), this is an
affine algebraic curve whose completion X by non-singular points has the properties
required to be the spectral curve. That is, we shall show that X admits a rational
function 7 of the right type and a line bundle (or rank 1 torsion free coherent sheaf)
L from which we recover ¢y. In this subsection, we will discuss the construction over
the affine curve and show that if 1)y is full, then the curve must be connected. This
will allow us to complete the construction over X in the following subsection.

As a corollary of Lemma 17, we see that R is an integral extension of B, therefore

Spec(fR) is an affine curve and the inclusion B — R is dual to a finite morphism

7: Spec(R) — Spec(B) = C*.

Since ‘B is a principal ideal domain, R is actually a free 8-module and its rank &
equals the degree of 7. Since M has rank n + 1 over B, we see that £ < n+ 1. Now
let X denote the completion of X4 = Spec(2R) by smooth points.

Proposition 3. The curve X is real and admits a rational function m: X — P! with

a zero Py of degree m + 1. Thus w has k = m + 1.

Proof. The algebra 9 possesses the involution & — &, which is dual to a real involution
on Spec(fR) and extends to X. Now we must show that the fiber of the morphism 7
over A = 0 contains a point Py with ramification index m.

We take the point of view that each smooth point of X corresponds to a valua-
tion on some subfield of the ring of fractions § = S, where S is the set of all
non-zero divisors. Because 2l need not be an integral domain, § itself need not be
a field. However, each smooth point corresponds to a surjection v: §* — Z, which
is a multiplicative homomorphism (i.e. v(ab) = v(a) + v(b)) and has v(a +b) =
min(v(a), v(b)). The subring I = {a € § | v(a) =2 0} U {0} is easily seen to be a
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discrete valuation ring of its field of fractions. We will describe one of the valuations
covering the point A = 0.
For each a = (ay,az2) in A, the component a; has a block decomposition into the

sum

a10(¢) + ara(¢"HY)

derived from the decomposition described earlier. This provides us with a grading
0p: A — Z for the ring 2, defined by taking oy(a) to be the order of aj in (~!. With

this we define a multiplicative homomorphism
w: 8 — Z, wo(r/s) = oo(s) = oo(r).

If we can show that this is surjective, then we are done, for in that case Iy = {a € § |
vy 2 0} U {0} is isomorphic to the regular local ring O,. Around the corresponding
smooth point Py the map 7 behaves like ¢ — (™.

To show that 14 is onto, we use Lemma 15. First observe that 2 contains, by

definition, Ady ' &(z) and that for any ¢ € ¢¢
Ady ' (Adxc)g € cg + 3k

Now observe that oy: €g — Z is onto. It follows from Lemma 15 that 00(6%}) contains
all but a finite number of positive integers and therefore so does Ady ™! &(z) C .
So, for every integer k, there exist r, s € 2 for which vy(r/s) = k. O

Remark. We see from this proof that, with respect to the isomorphism C[X 4] = 2,
a regular function on X 4 vanishes on the irreducible component barring Py precisely
when the corresponding component aq is identically zero.

It is not hard to see that 7 intertwines the real involution on X with the map
¢ +— (7! and so it has a pole P, of order m + 1. Now we are going to show that the

irreducible component X of X, which carries the points Py and P, is the completion
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of Spec(2y), where

Ao ={ap | a € A}
Thus 2 is a subalgebra of Ac(c., ) and also is a quotient algebra of 2.
Lemma 18. 2 is an integral domain.

Proof. From now on, for an open subset U of X, we denote by Hol(U, C¥) the space
of C*-valued holomorphic functions on U. Observe that each element of Ac(c,,v)
can be written as a Fourier series in (~!'A, and we obtain a C-algebra morphism of
2, into Hol(I*,C) (where I* = I N A) given by ag(¢™'). Its image consists solely of
holomorphic maps which, unless they are identically zero, do not vanish on either of
the connected components of I*. Therefore, agby = 0 if and only if ay or by is the

zero element. U

It follows from the previous remark that Spec(2ly) is the irreducible component of
Spec(2) = X, carrying the point Py and its conjugate P.,. Although X4 need not
be irreducible, we will shortly see that when ) is full, it must be connected. First
we must introduce a sheaf over X, whose sections provide the harmonic map.

Recall the SR-module M, which is torsion free as a B-module. Since B is an
integral domain, it is elementary to show that M must also be torision free over
R, so that it determines a torsion free coherent sheaf £, over X, . We want to
show that its restriction to Xoa = Spec(2) is rank one. This is easily seen by
looking at the equivalent picture of W (0) = x(0)™*M as an 2A-module. For any
F="4fo, -, fn) € W(0), let us write

F=1"+fo="fo, s fms 0, 0) +50,... 0, frnsts oo s fn)-

So, for a € 2, we clearly have (af)? = aof°. Therefore the vector space W°(0) =
{f°] f € W(0)} is an ™p-module, which is clearly torsion free. Now observe that the
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injection

¥ WO(0) — Hol(I*,C); %+ fy + -+ + £y,

is an 2A-module morphism (one readily verifies that X(agf°) = ag(¢™1)2(f°), using
the representation ag(¢"*A) — ao(¢™')). Therefore, in a smooth neighbourhood of
Py, each stalk of £, is a module of regular C-valued functions of ¢ with respect to
the appropriate regular local ring, so that £, has rank one in this neighbourhood.

Thus we have shown:

Proposition 4. The restriction of L4 to Xoa (and therefore to the connected com-
ponent of X4 containing it) is a rank one torsion free coherent sheaf. In particular,

when X 4 1s connected, L4 has rank one.

We can easily repeat the previous results for each z, replacing R by 2R(z) and
W(0) by W(z). This gives us, for each z, a sheaf £4(z) over X, whose restriction
to Xoa has rank one and whose direct image under 7 is the vector bundle £, of rank
n + 1, corresponding to the B-module M. This vector bundle comes equipped with

a trivialization determined by the isomorphism

[(A,E4) 2 M — {f: A— C""! | Laurent polynomial}
F(Q) = (k)(N),

where A = C} and « = diag(1,¢,...,¢™, ..., (™), so that k(w¢) = k({)o™" and
therefore kf is a function of \.

The effect of this isomorphism is to remove the v-equivalence, which has permeated
into the construction so far. Because of this we will find it most convenient to remove

the effects of v-equivalence from all the objects we are dealing with. To this end we
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redefine, throughout this subsection and the next,

M = {Laurent polynomial f: A — C"*!}
A=Adr

®(z) = Adk D(z)

x(z) = Adrk x(z)

and so forth. Observe that, in particular, ® and x are still holomorphic in their

vector bundle £(z) over P! characterized by the transition relations
X(z)7, =7, on ANI,

where 7, is a trivialization over A and 7, a trivialization over I. Furthermore, we can
always choose I so that it contains no branch points of m other than 0 and oo and
that 7=!(I) contains only smooth points.

Eventually, we will be able to show that when 1) is full, £(z) is the direct image
of a rank one torsion free coherent sheaf L£(z) over X obtained by moving £ (the
extension of £4 to X) linearly around the Picard variety. Before we can do this we
must establish that, for ¢y to be full, the curve X must be connected, so that L4

must be rank one by the previous proposition.
Proposition 5. X is disconnected if and only if 1 is not full.

Proof. First we will show that if X is disconnected, then ®; dy (i.e., ® dy evaluated
at A = 1) takes values in a proper subspace of C"™!. When X is disconnected, we
may write X =Y + Z, where Y is the connected component carrying the irreducible
component X,. For each z, there must be ey (2),ez € R(z) representing the globally
regular characteristic functions 1y, 17 on X (i.e., 1y is identically one on Y and
identically zero on Z). Each of these is clearly independent of A\. Thus we obtain a

direct sum decomposition

M:ny(Z)MEBE‘:ZM
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corresponding to a global decomposition of £(z) into a sum of trivial bundles.
Consider now the global section oy(z) of £(z) defined by 7.(0¢(2)) = . Since
R(z) = AdP(z)"' R, we deduce @7, = 7y and therefore ® §y = 79(0¢(z)). The proof

that 1)y is not full will be finished if we can show

e2(2)7:(00(2)) = 0,

since then £7(0)® §y = 0 and therefore ®; &y, where az = Ady ! ez represents 1, in
2(. Since 1 vanishes identically on Xy, we know (az)o = 0 (recall an earlier remark).

From the Fourier series for ™! on the circle C; we see that y 14y has the form
X7150 = (0507 07 s 70) + O<)‘)

about A\ = 0. Therefore az x '8y vanishes at A\ = 0, whence it vanishes everywhere,
since it represents a global section of £(z).

Now let us show that when 1y is not full, the algebra R possesses idempotent &
different from the identity. For then e, Id — ¢ are a pair of ‘orthogonal idempotent’,

whence Spec (R) is disconnected from the next Lemma (see, for example, [11]):

Lemma 19 ([11]). Let A be a ring. Then the following conditions are equivalent:

(1) Spec A is disconnected.
(2) There exist nonzero elements ey, eq € A such that ejeq = 0, e% = ey, e% = €9,
e1 + ex = 1 (these elements are called orthogonal idempotents).

(3) A is isomorphic to a direct product Ay X As of two nonzero rings.

We may assume without loss of generality that ¢ is full in the projective k-plane
of points whose last n — k coordinates vanish. From the preceding argument
determines a subalgebra R, C Ac(gley,, ) which must contain the identity matrix
in gl,,,. We take this for e. Now observe that R is a unital subalgbra of Ac(gl,.,, )

containing Ry, and therefore € € R satisfies the conditions required. U
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4.5. Completion of the affine curve and the line bundle. From now on we will
assume that v is full and thus, by the previous result, X is connected. It follows
that £4(2) has rank one and therefore 7 has degree n + 1. Using these facts, we will
describe the extension L(z) of L4(z) to all X and produce from it global sections

which reconstruct the map . We aim to prove:

Theorem 7. L(z) has degree p+n, is real (i.e., satisfies Condition (2.1)) and moves
linearly with z,Z around the Picard variety of X. The primitive lift ¢ determines
(and is determined by), up to scaling, global sections oo(2), ... ,0m_1(2), where each
0;(2) has a divisor of zeros at least (m — j)Py + jPx + Ey (while (m + 1)Py + Ey is

the divisor of zeros of ).

Remark. In the statement of this theorem, by ‘Picard variety’ we mean the moduli
space of maximal rank 1 torsion free coherent sheaves, when this is relevant (we will
see later on that £ must be maximal, after Proposition 7).

Before proving this theorem, we need to describe £(z). First, recall that I C P*
has chosen so that X; = 7~ !(I) consists of smooth points and has ramification points
only over A = 0, 00. Using the direct image isomorphism Hol(Xj, C) — Hol(I, C**1)
(see, for example, [8]), it is easy to see that Hol(Xj, C) can be represented, as an
algebra of endomorphisms on Hol(I, C*!), by g®-valued functions on I which are
diagonalisable at each value of A (indeed, for A # 0, 0o, the eigenvalues give the n+ 1
values of the function on X7).

We deduce from these remarks that for each A € I\ {0, 00} the commutative Lie
algebra 20, C 3 obtained by evaluating elements of 2l at A, consists of semisimple
elements. Moreover, 2 has rank n 4+ 1 as a B-module and therefore 2, is a maximal
torus subalgebra of semisimple elements — a Cartan subalgebra for g€. We also
deduce that we can complete this holomorphic family at A = 0, 00. Since all Cartan
subalgebras of g© are conjugate and ours lie in 3, there is a holomorphic map v: [ — Z

(where the Lie subgroup Z C G€ is the stabilizer of A), for which Advy;' 2, = a,
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where a can be any fixed Cartan subalgebra in 3. In particular, we will fix a = ¢, +0,
where 0 is the torus of diagonal matrices in 3.. Therefore, we define A = Ady~t L

Then each element of 2A takes values in a, so that it has a block decomposition
CL:CLO+(11+"'+CLn_m,

where a takes values in ¢,, and a; # 0 is a diagonal matrix function whose non-zero
entry lies only in the m + j-th place with 0 £ 7 < n. In the proof of Proposition 3,
we saw how to use the components ay to obtain a discrete valuation ring in the ring
of fraction §, and this provided us with the ramification point F,. To get all the
points lying over A = 0, it is not hard to show that one defines gradings o;: A — Z,
for which o;(a) is the order of a; in A™! (for a = (ay,as) we define (a1, az;) = aj,
using the block decomposition above). We use these to define valuations of the ring
of fractions A of A in a manner described earlier.

Next, we will describe explicitly the extension £(z) of L4(2) to all of X. In what
follows, let us suppose we are dealing with the generic case in which 771(0) has
n 4+ 1 —m distinct points. First, define W(z) = 771 (2) so that this represents the
module of sections of £4(z) over X4 = Spec(2). Then define W to be the F-module
of fractions SW (z) (where S is the set of all non-zero divisors of 2\ {0}). For each
point P in X \ X4, we can construct an Op-module Wp C W which is torsion free
(and therefore free, since Op is a discrete valuation ring). This will be the stalk

for £(z) over P. For a point over A, for example, we get each Wp in the following

manner.
On W(z), define a map op: W(z) \ {0} — Z such that: (i) op(w; + wy) =
min(op(w;), op(ws)) and, (i) op(aw) = vp(a) + op(w) whenever a € A, where

vp is the valuation for Op. This extends to give op: W \ {0} — Z by setting

op(w/a) = op — vp. So we define

Wp ={w e W\ {0} | op(w) = 0} U{0}.
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This is clearly a torsion free Op-module, since W(z) is torsion free. Now we need to
describe precisely what the map op is.

Let w € W(z) and write its restriction w; to Cy as the column vector

w1y :t<f0(A)7 7fn<)\))
For j =1,... ,n—m, define
0j(w) = —(order of pole of f,,1; at A =0).

For any a € A it is ecasy to see that the correspondence w — aw multiplies each f,4;
by a function of A whose order is v;(a). It follows that o; satisfies both properties (i)

and (ii) above. For j = 0 define

FO) = ¢ (¢

J=0

and
op(w) = —(order of pole of f(¢) at ( =0).

This clearly satisfies property (ii), so we only have to check (i). Recall that the
v-equivalent representation of a, that is @« = Adkx~'a, has a block decomposition
ag+ag+ -+ -+ ay,_yy, for which the restriction aqg of ag to C has a Fourier expansion

of the form
Qo = ZﬁjCijAj

with only finitely many negative powers of (. Let us define
B =D B¢,

Then we have

op(aw) = —(order of Bf at ( =0) = vy(a) + op(w).
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In fact, set 1 = (1,...,1,0,...,0) with m + 1 entries. Then f(¢) = ("'l 1w;.
Using the fact '1A7 =1, we compute
Uk layw; = 1ajor twy
= tl(z Bi¢ N )k
=0/,

from which the result easily follows.

By its construction, the direct image m,£(z) over P! has transition relations
(4.6) XT: =T,

where X = xv and 7, = 77.. The advantage of these transition relations over I is
that 7, now occurs as a direct image from a trivialization of 6, for £(z) over X; (we
will write 7, = m.6,). To see this, let s be a section of £(z) over 7 !(I) (and identify

it with the corresponding section of £(z)). Then
— Yfo,... fn) about A =0,
W) 5 (s = § S0 )
t(ho,... ,h,) about A7t =0.

In the construction of £(z) over X; we used the one-to-one correspondence

(f5) & (s frrs oo fa)y where f(C) = C™F Y f(¢™ )¢,
(4.7) 0
(hy) < (B, hgrs .- hy), where A(C) =Y hy(¢™ )¢
0

The right-hand side above gives us a trivialization over X, since this is a union of
n + 1 —m distinct pairs of discs. Moreover, the definitions of f(¢) and h(¢) describe

the property of direct image about a point of ramification (see, for example, [8]).

Lemma 20. Let [e?] denote the line bundle of degree zero over X determined by the
1-cocycle (e, X 4, X1). Then L(z) ® L = [e%] fora = 2(~! — Z(.

Proof. We have already observed that ®7, = 7, from which it follows (using (4.6)
and (4.5)) that ®© 7,0, = 7,6,. It suffices to show that this implies 6, = e®f,, where
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we regard 6, as a non-vanishing local section of £(z). This identity follows if we see
(4.8) m.0.(¢'s) = Am.0.(s)

for any local section s, where ( is defined to be zero except in the discs about P, and
P. Indeed, then we see that 7,0.(e%s) = ®O7,0.(s) = 7.0y(s), whence e?s/0, =
s/6y. So let us prove (4.8) about A = 0 — the argument about A~! = 0 is much the
same.

From (4.7) we know that if 7.60.(s) = “(fo,...,fn) about A = 0, then s/6, =
LN T f;(¢m ) about Py. Now a simple calculation shows that

W*ez(c_ls) :t()\_lfm7f07"' 7fm—1707“' 70) :AT(*QZ(S)
as required. Il
Now we can prove Theorem 7.

Proof of Theorem 7. Since 7,L(z) is trivial, £(z) must have degree p + n and
the transition relations (4.6) show that L£(z) is real. Also, by the previous lemma,
L(z) = L ® [e*] moves linearly around the Picard variety.

Now define a global section ¢;(z) of L(2) by 0; = 7.(0j(2)). Thus 79(0j(2)) = ®J;
arises from the map ). We must show that the global section o;(2) has a divisor of

zeros (m — j) Py + jPsx + Eo. Near A = 0, we have

m.0-(0;(2)) = X(2)7'4;.

Examining the leading order terms in the two Fourier series’ for X (one on C; and

the other on Cy), we see that

Ylag, ... ,a,0,...,0)+O(N) about A = 0,
80,...,0,bj,...,b,) + O(X7) about A7t = 0.
It follows from (4.7) that

NORUE

¢S 4, ¢ O about Ry,
0;(2)/02 =S 0+ O(\) about Py € Xo, k #0,
> bi¢t+O(¢C™ ) about Ps.
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This shows that o;(2) has a divisor of zeros at least (m — j) Py + jPs + Eb. O

4.6. Computation of arithmetic genus of spectral curves. Recall that the
dressing orbit O, is isomorphic to A; p/I'; p and therefore every primitive map in
this orbit corresponds to a coset gI'; 5. An examination of the definition of the ring
R (via &) shows that it depends only upon this coset and not the particular choice
of g. Given R, the module M fixes £ and we see that the results above provide a
bijective corresponding between (i) ‘full’ primitive maps R? — G/H of finite type,
based by ©(0) = H, up to base point preserving isometries, and (ii) triplets (X, 7, £)
satisfying the conditions described at the beginning of Subsection 2.1 (including the
possibility that X is singular or reducible).

Recall also that the group of higher flows exp(€g) acts on O, and, in particular, its
two parameter subgroup exp(m) induces the translation flow ¢ +— " corresponding
to the translation z +— z 4+ w in R? & C. One readily sees (from the previous
subsection) that in terms of the triplet (X, 7, £) this action fixes X, 7 and maps L to
L(w). In particular, whenever 1 (z) is doubly periodic (and therefore of finite type)

with periods 2, 2, we must have 1% = 1 and therefore £(z;) = £. We obtain

Proposition 6. A necessary condition for (X,m, L) to correspond to a harmonic

2-torus is that there exist linearly independent z1, zo € C for which L(z;) = L.

Remark. This is not a sufficient condition. An examination of (4.4) shows that
¥ = 1 is not sufficient to imply ¢(z + w) = (z); they will in general differ by a
factor depending upon the extended frame ®.(w).

It should be possible (with some extra work) to exhibit an analytic isomorphism
between the exp(€g)-orbit of a map of finite type and the Jr(X)-orbit of the corre-
sponding L. Since the Jg(X)-orbit of (a maximal sheaf) £ is isomorphic to Jr(X)
itself, this would identify the arithmetic genus p of X with the dimension of the

exp(C€g)-orbit. But we can get this useful result more quickly from:
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Proposition 7. H!(X,0x) = ¢ /¢l

Proof. For convenience, let Uy, U,, be the open discs about F,, P, obtained from
X;. Let U denote their union and set U* = U \ { Py, P}, X* = X \ { Py, Px}. Since

X is connected, X* is a Stein manifold and therefore the sequence
0 — Hol(U, C) + Hol(X*,C)*& — Hol(U*, C)*& — H*(X, Ox) — 0

is exact, where the subscript ‘alg’ denotes functions with only finite order poles
at Py, P. Now observe that C, = Ac(c,,v)¥® is isomorphic to Hol(U*,C). The
isomorphism is given, as we have already seen, by c¢(¢7'A) — ¢(¢™!). Moreover, we
observe that € = B @ €., where % is the subspace of all multiples of the identity
matrix, and that B is clearly contained in €. Therefore €/¢l = ¢,/ ¢ where
(’;[kg] = ¢, N ¢, So it remains to show that C[kg} corresponds to the kernel of the exact
sequence above.

Clearly, Hol(X*, C)?# is isomorphic to C[X*], which can be realized as the subalge-
bra 210 of 2 consisting of those elements which extend holomorphically to every point
except Py, Ps. That is, in the decomposition a = ag+a+- - -+a,_n, cach a; for j # 0
extends holomorphically into 1. Let ¢ denote the image of this subspace under the
projection of Ac(a,v)® onto €,. Note that this identifies these two spaces. First, we
see that the kernel is {a € A0 | ap = 0}. Moreover each element of the kernel repre-
sents a regular function on X* which vanishes on the irreducible component X,N X*,
where X carries Fy. But such function must be identically zero, since its restriction
to other irreducible components of X* (which are complete subvarieties) must be
globally regular. Now take € to be the complexification of A(c., ) N (b + As(g,v)).
Then it is not hard to see that €! is identified with Hol(U, C) under the isomorphism
¢, = Hol(U*,C). So it remains to show that ¢ € ¢ if and only if ¢ = ag + by, where
ap € €2 and by € €L, In fact, it suffices to prove this when c is real.

First, observe that ¢ = ¢g. When ¢ = ag+ by, we can define b =by—a;—--—a,_m

so that ¢ = a+b. This exhibits ¢ as an element of (€¥); = €,N37" @ 3%, Conversely,
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it ¢ € ((’:Lg])R, then ¢ = a + b, where a € g and we see that b € 3% commutes
with every element of glR by the proof of Lemma 16. Since X is connected, A is a
B-module of rank n + 1, so elements of 2 have maximal rank almost everywhere.

Thus b must take values in a so that ¢ = ag + bg. O
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5. PROPERTIES OF SPECTRAL DATA WITH A COMPACT CONNECTED RIEMANN

SURFACE

This section is devoted to the proof of Theorem 1. First, properties of smooth real
curves are described, from which we choose spectral curves. Second, properties of
meromorphic functions on the above spectral curves which satisfy Conditions (2) and
(4) in Definition 2.1 are determined (Proposition 8). Finally, after preparing a tool
(Proposition 9) useful to select line bundles satisfying Condition (3) in Definition 2.1,

we prove Theorem 1.

5.1. Properties of smooth real curves. First, we define subsets in the rational
curve P'. Let ST (resp. S7) be the northern (resp. southern) hemisphere defined
by ST ={A € P! ||\ > 1} (resp. S~ ={\ € P! ||\ <1}). Let X be a compact
connected Riemann surface. Let px be an anti-holomorphic involution on X and X7
a subset of X formed by the fixed points for px.

It should be remarked that it is not suitable for our purpose to choose a Riemann
surface with an anti-holomorphic involution px such that X? = (), since px has no

fixed points on X and hence violates Condition (4) in Definition 2.1.

Theorem 8 ([6]). Let (X, px) be as above and X* # (). Then X \ X* consists of

(FO) two connected components or (F1) one connected component.
If X is a Riemann surface of type (F0), then X* consists of v(X) circles S{, ... , Si(x)'

Proposition 8. Let m be a non-constant holomorphic map from X to P! satisfying

the following conditions:

(1) mopx = por,
(2) px fives every point of m1(S?),

(3) 7 has no branch points on S?.

Then X is a Riemann surface of type (FO). Moreover, w is a meromorphic function

on X of degree N = n + 1 satisfying all poles are contained in X~ and all zeros are
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contained in X°, or all poles are contained in X° and all zeros are contained in XN .
Moreover m has a zero Py of order 2 2 and has a point x € X° such that |m(z)| =1

and the set of poles is the image of the set of zeros by px.
Proof of Proposition 8. The proof is divided into several lemmas.

Lemma 21. There exist no non-constant holomorphic maps from a connected com-

pact Riemann surface X of type (F1) to P satisfying Condition (2) in Proposition 8.

Proof. Suppose that such a map exists. Let X* = X \ X?, XT ={z € X* | n(x) €
ST}, and X~ = {z € X* | m(z) € S}. Then Xt and X~ are open and X* =
XtTUX™. Since X* is connected, X* coincides with either X* or X . In particular,

7 is not surjective, which is a contradiction. U

On account of Lemma 21, we may assume that X is a compact connected Riemann

surface of type (FO0).

Lemma 22. The map 7 satisfies Condition (1) in Proposition 8 if and only if 7 is a
meromorphic function on X of degree N = n + 1 satisfying all poles are contained in
XN and all zeros are contained in X°, or all poles are contained in X° and all zeros

are contained in X™. Moreover ™ has a point x € X? such that |7(z)| = 1.

Proof. The map 7 intertwines the involution px on X and p on P! if and only if

(5.1) m(u)m(px(u)) = 1.

From this it follows that if 7 has a pole (resp. zero) of order k at p, then px(p) is the
zero (resp. pole) of m of order k. Since py fixes every point of X”| there exist no zeros
and poles on X?. Suppose that 7: X — P! satisfies Condition (1) in Proposition 8.

Then the divisor of m must be of the following form

(5.2) (m) = () + -+ (o) = (B) = - = (Br);

where «;, 3; are points on X \ X” which satisfy 3; = px(«;). Take a point P on X°*.
Using (5.1), we get m7(P)n(P) = 1, that is, |7(P)| = 1.
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Conversely, let m be the map which satisies (5.2) and has a point p € X? with
|7(p)| = 1. Then, clearly 7 satisfies the equation (5.1). O

Lemma 23. Let m be a map as in Lemma 22. Then 7 satisfies Condition (2) in
Proposition 8 if and only if 7 is either (A) x or (B) 1/x, where x is the meromorphic

function as in Proposition 8.

Proof. Since X is a compact connected Riemann surface of type (F0), X* = X \ X?
consists of two connected components. More precisely, X* = XYUX?®. Let X" and
XN~ be the subsets of X defined by XM+ = {x € XV | n(x) € S*}, respectively.
Similarly, define X% = {zx € X | n(z) € S*}.

Suppose that 7 satisfies Condition (2) in Proposition 8. Then we see that m(X*)N
St = . It then follows that XV = XN+ U XV~ and X = X%* U X%~ Since XV
and X9 are connected, we see that (a) XV = XN+ X5 = X5~ or (b) XV = XN~
X5 = X5+, In the case (a) (resp. (b)), 7 must be a function of type (A) (resp. (B))
as in Proposition 8.

Conversely, if 7 is either (A) x or (B) 1/x, then it is easy to see that m maps
St ... ,Si(X) into S*. Let m; denotes the restriction of 7 to S} and d; be the degree
of the map m;: S; — S* for 1 < i < v(X). Since |d;| 4 -+ + |d,(x)| coincides with
the degree of m by the residue theorem, we see that for any point p € S, 771(p) is
contained in X? = Sj U---U Sy This implies that 7 satisfies Condition (2) in
Proposition 8. O

Lemma 24. Let w be a map as in Proposition 8. Then the ramification divisor does

not intersect X* = S{ U---U S;(X).

Proof. Let m be a meromorphic function of type (A) as in Proposition 8. Note that

the number of zeros of m on X is given by the integral

1 1
e | /axs )
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which is equal to N = n + 1 from Proposition 12. Since 7 maps S, ... ,S,}(X) into

St for every point p € S! we have

(5.3) Hr ' (p)} = N.

Suppose that there exists a point x such that z € RN (S{ U--- U S;(X)), where R is
the ramification divisor of 7. Setting ¢ = 7(z), we see that {7 !(¢)} = N by the
identity (5.3).

Let 7~1(q) = {P1,... , Py} and U; a neighbourhood of P; such that U; NU; = () for
i # j. Let V(q) be the neighbourhood of ¢ defined by V' (q) = (), 7(U;). Denote by
e the degree of m at z. It then follows from the assumption ¢ = 2 that there exists
a neighbourhood W (x) of & such that 7(W (x)) C V(¢q) and the degree of 7|w (x)\ (a1,
the restriction of m to W (z) \ {z}, is e. Take a point y € (W (x)) \ {¢}. Then, there
exist a point Y; € U; for each i # 1 and points Z1,... ,Z. € U; such that m maps
all of these points to y. Also, we see that {7 '(y)} =2 N —1+e = N + 1. This
contradicts that the degree of  is N. Hence R does not intersect Sf U---U S .

The proof for a meromorphic function of type (B) as in Proposition 8 proceeds in

a similar manner. O

By Lemma 22, Lemma 23 and Lemma 24, Proposition 8 has been proved.

5.2. A-invariants of divisors on Riemann surfaces.

Proposition 9. Let (X, px) be a compact connected Riemann surface of type (FO).
Let E and F' be divisors on X

(5.4) E+ px(E) = F + px(F),

where = means linearly equivalence. Let f be a non-constant meromorphic function

such that

(5.5) (f) = E+px(E) = (F+px(F)), oxf =1
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where (f) is the divisor of f. Then f°, the restriction of f to S{ U --- U Si(x)f
is a non-negative or non-positive real function if and only if A(E — F) = 0 where
A(E — F) is a number defined as follows:

A(E - F) =v(X) —[t{si € M| f(s:)/f(s1) > 0} = 8{si € A| f(s:)/f(s1) < O}].

Here A is a set consisting of points sy, sz, ... , S,(x) such that s; € St f(ss) # 0, 00.

Proof. Let S., be a intersection of S} U--- U Si( x) with the set of zeros and poles of
f*. Restricting f* to (SfU---U Si(x)) \ S.p, we get a real function f*. Considering
the restriction of (E + px(E) — F — px.(F)) to S{ U--- U Si(X), we see that f” has
only zeros and poles with even order. So the sign of f* does not change at each
point of S,,. Thus f* is non-negative or non-positive on each connected component
of StU-- U S,f(X). Hence f” is a non-negative or non-positive real function on
Stu---u Si(x) if and only if there exist points p; € ST\ S.p, ..., Du(x) € Si(X) \ Sp
such that f(p;)/f(p1) >0 for 1 £ i < v(X), that is, A(F — F) = 0. O

Now we are in a position to prove Theorem 1.

Proof of Theorem 1. Conditions (2) and (4) in Definition 2.1 are equivalent to the
following assertions:

(1) 7 is a meromorphic function as in Proposition 8.

(2) m has a zero Py of order m + 1 = 2.
This means that Conditions (2) and (4) in Definition 2.1 are satisfied precisely when
7 satisfies Condition (2) in Theorem 1. It is clear that R = Ry + px.(R;). Applying
Proposition 9 to £ = D and F = R, we see that §(£) = A(D—R,). Thus Condition
(3) in Definition 2.1 is equivalent to Condition (3) in Theorem 1. Hence Theorem 1

is proved. U
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6. RATIONAL OR ELLIPTIC SPECTRAL CURVES

6.1. Jacobi’s theta functions and Weierstrass’ zeta functions. C. G. J. Jacobi
introduced four functions 6y, 6y, 83 and 6, of variables p(u) = exp(mv/—1u) and ¢ =
exp(my/—17), where u is the usual covering coordinate of an elliptic curve X = C/LL
and 7 stands for its period ratio with familiar standardization that the imaginary
part Im7 of 7 is positive. If we take IL to be Z & 7Z for simplicity, then these Jacobi’s

theta functions are given as follows:

01 (u) = 01 (ulT) = \/_Z Yl g(n=1/2?
0 (u) = O (ulT) = Zp% L1727

O3(u) = O5(ulT) = me n2

) = el = S

Here the sums are taken over n € Z. Under the addition of half-periods, these

functions transform according to the following table.

w+1/2 uwu+7/2 uwu+1/247/2 u+1 u+7 ut+1l+7
01 0y —v/—1ab, —abs -0, —bby b6,
0| —b6 —abls Vv—1ab, —6y b, —bby
03 04 ab Vv —1ab, 03 b bl
04 03 v—1ab, abs 0, —bl,  —bb,

For example, we have the transformation rules

(6.1) Or(u+7) = —b(u)01(u),
(6.2) O1(u+1/2) = 0z(u),

(6.3) 01(u+7/2) = —v—1a(u)f4(u),
(6.4) O5(u+7/2) = a(u)fz(u),

(6.5) Oy(u+1/2) = 03(u2, 1

where a(u) = p(u)~'¢~"/* and b(u)

are obtained as follows:
66) lim q-1/4 (oy\/ It) = 2m,  lim g Y40,(0[V/—1t) =
thm 03(0|\/— t) =1, tlim 0,(0|v/—1t) = 1.

p(u)~?¢~". Special values of these functions
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On the other hand, Weierstrass’ zeta function (, is defined by
1 1 u 1
6.7 w = Quw, 7 = - — — — 0.
(6.7 ) =Gl =+ 3 { ot
wel\ (0,0)

Note that these functions have the following properties. 6; is a odd function. 6y, 03
and 04 are even functions. Concerning (,,, there exist complex numbers A = A, and

B = B, depending only on 7 such that

(6.8)
Colu+1) = Cu(u) = A, Co(u+7)—Co(u) =B, Ar — B =2ny/—1.

Moreover, if 7 is pure imaginary, we have 0, (u) = 6,(u), (,(u) = (,(7), A = A and
B=-B.
For further details and formulas regarding these functions, we refer the reader to

McKean and Moll [22, Chapter 3].

6.2. Main results. Our main theorems which refine the correspondence proved by
McIntosh may be stated as follows. (See Section 2.2 for the detail of this correspon-

dence.)

Theorem 9. Let X be the smooth rational curve. Then (X, 7, L) is a spectral data

if and only if the following conditions are satisfied:

(1) (X, px) is real isomorphic to (P, p). By the affine coordinate \, m is expressed

as

Hiin()‘ T P])) Py=0, ag= Hjnzilm(l - Q])
Hj:l ()‘_Qj) Hj:l (1 _PJ>

for somem andn with1 < m <n—1. Here P € X® ={A € X |0 < |\| < 1}
and Q; = 1/P; for any 1 < j < n—m.

(2) L is a line bundle of degree n.

mT(\) = apA™ !

Theorem 10. Choosing a complex coordinate on the source suitably, the harmonic

map V: R? — CP™ corresponding to the spectral data (X, n, L = Ox(D)) in Theo-
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rem 9 is given by
z=x+V-ly [Vo(z) : Ui(z) 0o Uy(z)],

where V;(z) is a function defined by

I (i — By)

[=" (0 — Ry)

Here {no, ..., n.} is the inverse image 7' (1) of 1 by m and R, = Y Ryisa
divisor given by the intersection of X° with R, that is, R, = X° N R.

(6.9) U;(z) = exp (n; 'z — n;Z) -

Furthermore we obtain the following

Theorem 11. V¥ is doubly periodic with periods vy, vo € C if and only if the set

(6.10) V= %(R@\/—_M)

1Sisn

contains the 2-dimensional lattice M = Zwvy ® Zvy, where By, ..., (B, are complex
numbers defined by 3; = n; ' —ny .
Proof. Let T = {(w1,... ,w,) € C" | Jw;| =1 (1 £ i = n)} be a real n-dimensional

torus group defined by the rule

(@y,... a,) X (b1,... ,by) = (arby, ... ,auby).

We define a group homomorphism ® = (®y,... ,®,) from the additive group R? to
Trby z=x+ /1y (U1 /Vg, ..., U, /T).

Note that ¥ has two periods vy, vy if and only if so is ®. If ® has two periods vy,
vy, then the set Zv; @ Zuvs is contained in V', since V' is the set of all points on which
the value of ® is equal to the initial value ®(0) = (1, ..., 1) € T™. Conversely, if V
contains a 2-dimensional lattice M = Zwv, & Zv,, then clearly v; and vy are periods of
®, since ® is a homomorphism. Hence condition (6.10) is a necessary and sufficient

condition for ¥ to be doubly periodic with periods vy, vs. Il
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Corollary 2. Let (X, m, L) be a spectral data in Theorem 9 such that the degree of w
is 3. Then the corresponding harmonic map ¥: R? — CP? in Theorem 10 is always

doubly periodic with periods vy, ve, where vi and vy are complex numbers in the set
Zo, & Zo_ = Zw (BiIm(By/B1)) " & Z (BIm(5 /)

Proof. In this case, the set V in Theorem 11 reduces to Zv; ®Zv_. Hence Corollary 2

follows from Theorem 11. O

Now we turn to the case of a smooth elliptic spectral curve X. Let us denote by
Pic?(X) and J(X) the set of line bundles on X of degree d and the Jacobian of X,
respectively. Note that J(X) can be identified with X = C/(Z®Z7). We then define
a biholomorphic map J: Pic®(X) — J(X) by J(L) = Zle(Pj — Q;) (mod Z & Zr),
provided that L € Pic”(X) is expressed as a divisor line bundle OX(Zle(]% —Qj)).

Theorem 12. Let X be a smooth elliptic curve. Then (X, m,L) is a spectral data if

and only if the following conditions are satisfied:

(1) X is an elliptic curve X, = C/(Z @S Zt), where T is a pure imaginary number
V=1t with t > 0. px is an anti-holomorphic involution induced by the usual
congugation of C. Regarded as a doubly periodic meromorphic function on C,

T 18 expressed as

01(u— Po)™ T2 01w — Py) - 0y (u — Py + W)

j=1

Or(u — Qo)™ T Oh(u — Q)
for some m andn with1 <m <n—1. Here e X ={r e X |0<Imx <
Im7/2 (mod Im7Z)} and Q; = P, (mod Z & Z7) for any 0 < i < n—m;
W=m+ 1P+ 30" P —(m+1)Qo— > " Qi; o # P, fori#0; W
belongs to Z & Zt; and C' is the unique constant such that m(0) = 1.

(2) Let r : Pic"™(X) — Pic’(X) be a map defined by F — F @ Ox(—R.), where
R, = Z?:o R; is a divisor of degree n + 1 given by the intersection of X*
with R, that is, Ry = X° N R. Then, L is an element of the inverse image
of (Z®/—1R) / (Z ® TZ) by the composition J or.

m(u)=C
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Theorem 13. Choosing a complex coordinate on the source suitably, the harmonic
map V: R?* — CP" corresponding to the spectral data (X, m, L = Ox (D)) in Theo-

rem 12 1s given by
z=x+V-=1ly— [Wg(z) : Uy(2): - U,(2)],
where W;(2) is a function defined by
Wi(2) =p; " exp (2[Cu(mi — Po) — Ani] = Z[Cu(n: — Qo) — Ami])

(6.11)

(= P T 00O = P)6i (i + mBo+ 35" P — D — 2+ 2)

[T 01(n — R) '

Here {no, ..., nn} is the inverse image 7= *(1) of 1 by w, u; is a constant given by

p; = exp (2rv/=1(D — Ry)Immn;/t) , and A is a constant given in the equation (6.8).

Moreover we prove the following

Theorem 14. The harmonic map V: R*? — CP" in Theorem 13 is doubly periodic
with periods vy, vy € C if and only if the set V = (Vo<,<,, Vi contains the 2-dimensional

lattice M = Zwy ® Zuvg, where Vi, ..., V,, are the sets defined by

w67 (R VEIZ),  if i 40,

‘/Z' =
C, otherwise.
Here By, B1, ..., Bn are complex numbers defined by
Go=—=2n/t,  Bi=[Cu(no — Po) = Cu(ni = Po) = B(no—n:)7™'] (1=4<n).

Corollary 3. Let (X, m, L) be a spectral data in Theorem 12 such that the degree
of mis 2 and Im 3, # 0. Then the corresponding harmonic map V: R?* — CP?! in
Theorem 13 is always doubly periodic with periods vy, vy, where vy and vy are complex

numbers in the set
v, @ Zo_ = Z7w (ImBy) " @ Z Gy (ImpBy) " /2.

Proof. In this case, the set V' in Theorem 14 reduces to Zv, &Zv_. Hence Corollary 3

follows from Theorem 14. O
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We now give some explicit examples of harmonic maps by applying the theorems

above.

Example 1. Let (X = P71, L) be a spectral data defined as follows. The map

7w P — P s given by A — A"t L is the divisor line bundle
L= O)((TLO),

and Py =0, a point as in Condition (2) of Definition 1. Then we choose the constant
function f =1 as a meromorphic function in Condition (3) of Definition 1. Setting
w = exp(2my/—1/(n + 1)), we see that 7=(1) is given by {1,w,w?,... ,w"}. Then

the corresponding harmonic map V: R? — CP"™ is given by
2= a Ty o [Ug(2) s W(2))

where ¥; = exp(w ™’z —w'z). Note that U is a superconformal map. Moreover, if n

=1, 2, 3 or 5, then v is doubly periodic.

Example 2. Let (X = P, 7, L) be a spectral data defined as follows. The map

7w: P — P is now given by

1-08 ,(A—«
AT </\—ﬂ)’

where a is a real number such that 0 < |a] < 1 and B = 1/a. The ramification
divisor R of m is given by R = (Ry) + (0) + (px(R1)) + (00), where Ry = (o + 3 —
Vvat —10a? 4+ 9)/4a. L is the divisor line bundle given by

L =0x(R; + ),

and Py = 0. Moreover, 7= 1(1) = {no,n1,m2} is given by

614V (@ 1PVT  a-1-+I (a—12vI
2 ’ 2 )

nm=1 m=

Then the corresponding harmonic map ¥: R? — CP? is given by

z=x4+V—1y— [Vo(2) : ¥i(2) : Ua(z)],
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where

(ni — @)
(mi — Ry)

Note that V is a harmonic map of isotropy order 1 and is nowhere conformal. More-

U(z) =exp (n; 'z — n;z) -

over, by Corollary 2, U has two complex periods vy and ve, which are in the lattice
Zvy ® Zv_ defined by

- 1 V1 - 1 N
U+—<— 4_(@_1)2+a_3>7r, v_—< 4_(@_1)24—&_3)%.

Example 3. Let (X, = X ,—,7, L) be a spectral data defined as follows. We define

the map m: X; — P byu— X = g(u)/g(1/2), where g(u) is a meromorphic function
on X given by

91(11, - R0)2¢91(U — RO — 2\/—_1)
Gl(u — R3)3

g(u) =

with Ry = 1/2+ +/—1/6 and Ry = 1/2 + 5y/—1/6. In this case, there exists a point
Ry € X% such that the ramification divisor R is expressed as 2Ro+ Ro+px (2Ro+ Ry).
We define the divisor line bundle L by

L = Ox(2Ry + Ry).

Set Py = Ry as a distinguished zero of m as in Condition (2) of Definition 1. We
choose the constant function f = 1 as a meromorphic function in Condition (3)
of Definition 1. In this case, (u(v/—1r) = —/=1(,(r) for v € R. From this,
together with (6.8), we get A = . Since 7 (1) is {0,1/2,+/=1/2}, the corresponding

harmonic map V: R? — CP? is given by
Z=T+v _1y = W(sz) : w(l/zv’z) : ?/1( \ _1/272)]7

where

91(U—R2—Z+2)

P(u, z) = exp [z {Cur(u — Ro) — mu} — 2 {Cur(u — R3) — mu}] 61(u — o)

Note that V is a superconformal map into CP2.
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Example 4. Let (X, = X 1,7, L) be a spectral data defined as follows. We now
define the map m: X, — Pl byu — A\ = p(u—Ry)/p(—=3+v/—1/4), where Ry = 3v/—1/4
and p 1s Weierstrass’ p function defined by
1 1 1
b= 2 {<u “ VTR (m+ F—m?}

(m,n)#(0,0)

The ramification divisor R of 7 is given by R = Ry+ R1+Ro+ R3, where Ry = /—1/4,
Ry =(2++—1)/4 and R3 = (2 + 3v/—1)/4. Define the divisor line bundle L by

L=0x(Ro+R).

Set Py = Ry as a distinguished zero of m as in Condition (2) of Definition 1. The
constant function f =1 can be taken as a meromorphic function in Condition (3) of
Definition 1. Since 7=*(1) is {0,+/—1/2}, the corresponding harmonic map ¥ : R* —
CP! is given by

z=x+V—1y — [¥(0, 2) : @D(\/__l/Qa z)],

where
01('&-R1-Z+5)
Gl(u — Rl)

Note that ¥ is a harmonic map of isotropy order 1 and is nowhere conformal.

P(u, z) = exp [z {Cur(u — Ro) — mu} — Z{Cur(u — Ry) — mu}]

Concerning the periodicity of VU, the corresponding set V' in Theorem 14 then con-

sists of the lattice points in Figure 1.

Figure 1.
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From Corollary 3, we see that ¥ has two periods vy and v_ defined by
vy =21/(4¢,(1/4) — 7) = 0.4962....., v_ =+v—1/2,

that is, V(v_ + z) = W(vy + 2) = Y(2). Moreover, ¥ maps the torus T = C/(Zv, &

Zv_) to an annulus in the Riemann sphere CP'.

6.3. Classification of spectral data with the smooth rational spectral curve.
This section is devoted to the proof of Theorem 9. First, we shall describe the real
structures of the smooth rational curve P!

We first note that there are two real structures on P! (cf. §2.1 in [6]). One is (P!, p).

The other is (P!, o), where o is the anti-holomorphic involution defined by
A= —1 / .

However, it is not suitable to choose the latter as the involution of the spectral curve
X = P!, since it has no fixed points on P! and does not satisfy Condition (4) in
Definition 1.

Throughout this section, we shall always assume that X = P! and px = p.

Proposition 10. Let © be a non-constant holomorphic map from X to P satisfying
Conditions (1) and (2) in Theorem 1.
Then 7 is either (A) x or (B) 1/x, where x is a meromorphic function defined by

/\k Hé:l()‘ o aj)
H;:l()\ - ﬁ])

Here k and | are some non-negative integers with k +1 # 0; ag € C* = C\ 0;

X(A) = ag

ai, ... ,qp are non zero complex numbers satisfying |o;| < 1 and |apay -+~ oy = 1;
and B; = 1/a;. Moreover m has a zero Py of order = 2.

Conversely, any map 7 expressed as above satisfies Conditions (2) in Theorem 1.

Proof. Assume that X and 7 satisfy Condition (1) and (2) in Theorem 1. From
Condition (2), 7 has a zero Py of order = 2, and the divisor of m must be of the

following form

(6.12) (m) = (@) + -+ () = (B) = = (B),
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where {a1,... , o} is a subset of ST or S™, 5, = px (), that is, ; = 1/a;.
Thus 7 is either (A) y or (B) 1/x, where y is a meromorphic function defined by

Hé‘:1()‘ - ;)

(6.13) T(A) = apAF :
where ay, ... ,ap, (1, ... , 3 are all complex numbers contained in C*\ S* with |a;| < 1
and oy € C*.

The function 7mp% 7 is a constant function since its divisor vanishes. By the as-

sumption that 7 has the point z € X with |7(z)| = 1, we see that

7(0)p(0) = (0)7(0) = m(@)7(x) = 1.
Using the above equation, we get
(6.14) laga -+ oy = 1.

Moreover, from Condition (2) in Theorem 1, 7 has a zero Py of order = 2.
Conversely, let m be the map defined as above. Then, clearly 7 satisfies Conditions
(1) and (2) in Theorem 1. d

Proposition 11. Let © be a meromorphic function on X = P! and L a line bundle
over X. Then (X,m,L) is a spectral data if and only if it satisfies the following

conditions:

(1) 7 is a meromorphic function as in Proposition 10.
(2) The degree of L is N — 1, where N is the degree of .

Proof. Conditions (1) and (2) in Theorem 1 are equivalent to that Condition (1) in
Proposition 11 by Proposition 10. Let £ = Ox(D) be a line bundle which satisfy
Condition (3) in Theorem 1. Then the degree of D must be equal to N — 1 since the
degree of R is equal to 2N — 2.

Conversely let £ = Ox(D) be any line bundle of degree N — 1. We see that §(L)
is automatically 0. Thus Condition (3) in Theorem 1 is equivalent to Condition (2)

in Proposition 11. Hence Proposition 11 is proved. U

Now let us prove Theorem 9.
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Proof of Theorem 9. To prove this theorem, it suffices to show that for every spec-
tral data (X, m, £) with Py as in Proposition 11, there exists a real automorphism ¢
on (X, px) such that the value of A at ¢! () is equal to 0 and the pull-back of 7 by
¢ is of a form in Condition (1) of Theorem 9. But this is quite straightforward. O

6.4. Classification of spectral data with smooth elliptic spectral curves.
This section is devoted to the proof of Theorem 12. First, we describe all smooth
real elliptic curves which can be spectral curves. Second, meromorphic functions
on these spectral curves, which satisfy Condition (2) in Theorem 1, are determined
(Proposition 12). Finally, after preparing a device (Proposition 13) useful to select
line bundles satisfying Condition (3) in Theorem 1, we prove Theorem 12

Let X = X, = C/(Z & 7Z) be an elliptic curve, where 7 belongs to the upper half
plane § := {Im7 > 0}. Let px be an anti-holomorphic involution of X and X” the
fixed point set of px.

It should be remarked that a real elliptic curve (X, px) with X? = () is not suitable
for our purpose, since px has no fixed points on X and hence violates Condition (4)

in Definition 1.

Theorem 15 ([6]). Let (X, px) be as above and X* # (. Then (X, px) is isomorphic
to (C/(Z ® 7Z),0), where T belongs to (FO) {v/—1t |t € R, t > 0} or (F1) {1/2+
V=1t | t € R, t > 0}, and o is the anti-holomorphic involution on C/(Z & TZ)

induced by the usual conjugation of C.

If X is an elliptic curve of type (F0), then X” consists of two circles S} and Sk
defined by

Sh=Rer2)/(Z®Zr), Sp=Re7(1/2+72)/(Z®ZT),
and X \ X” consists of two tubes X"V and X* defined by

XN ={zeC|Im7/2 <Imx < Im7} ® Z7) /(Z ® Z7),
X% =({xeC|0<Imx < Imr/2} @ Zr) /(Z S Z1).
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Proposition 12. Let X, be an elliptic curve and px an anti-holomorphic involution
on X, with XP # (. Let m be a non-constant holomorphic map from X, to P
satisfying Conditions (1) and (2) in Theorem 1.

Then X is an elliptic curve of type (F0). Moreover, regarded as a doubly periodic
meromorphic function on C, 7 is either (A) x or (B) 1/x, where x is a meromorphic

function defined by

n+1

V() = C exp(—2mv/~Tqu) HZiZ:Eﬁi

Here 6, is Jacobi’s theta function as in Section 6.1; n is a positive integer; q,
A1y i1, B1, ..., Bna1, and C are constants satisfying the following conditions:
(1) a; € X% and Y,(c; — 3;) is expressed as p+ q1 € L & 7.
(2) Bi = px (), that is, oy + 0; is expressed as r; + ;1 € R Zr.
(3) |C] = exp (W\/—_l ZZ si(o — 52))
Moreover m has a zero Py of order = 2. Conwversely any map m expressed as above

satisfies Conditions (2) and (3) in Theorem 1.

Proof. Assume that X and m Condition (1) and (2) in Theorem 1. From Condition (1)
in Theorem 1, the number of connected components of X \ X? is 2, and hence X is
an elliptic curve of type (FO0).

From Condition (2) in Theorem 1, the divisor of 7 must be of the following form

(6.15)
(1) = (1) + (a2) + -+ + (ant1) = (B1) = (B1) — -+ = (Bata),

where {ai,... ,an41} is a subset of XV or X® 3 = px(a;), that is, a; + 3 is
expressed as r; + 5,7 E RO Z7 (0 =1 < n—m).
By Abel’s theorem, Z"H( a; — (3;) belongs to Z@1Z, and hence there exist integers

p and ¢ such that Z"H( a; — ;) = p+ qr. Thusr is either (A) x or (B) 1/x, where
X is a meromorphic function defined by

il (1 — o)
(6.16) x(u) = Cexp(—2nv—1qu) | | ——==.

i1 01(u— B;)
Here 6; is Jacobi’s theta function as in Section 6.1; n is a positive integer; g,

a1y Qi By ..., Bor1, and C are constants satisfying Conditions (1) and (2)
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in Proposition 12.
The function mp% 7 is a constant function since its divisor vanishes. By the as-

sumption that 7 has the point x € X? with |r(x)| = 1, we see that

7(0)p%m(0) = 7(0)7(0) = w(x)7(x) = 1.

Using the above equation, we get

(6.17) IC| = exp <7r\/—_1 Z si(a; — @-))

Moreover, from Condition (2) in Theorem 1, 7 has a zero Py of order = 2.
Conversely, let m be the map defined as above. Then, clearly 7 satisfies Conditions
(1) and (2) in Theorem 1. O

Proposition 13. Let (X = C/(Z & V—1tZ), px) be a real curve of type (FO), which
is identified with its Jacobian J(X). Let E and F be divisors on X satisfying

(6.18) E+ px(E) = F + px(F),

where = means linear equivalence. Let f be a mon-constant meromorphic function
such that

(6.19) (f) =E+px(E) = (F+px(F)), pxf=1

where (f) is the divisor of f. Then f?, the restriction of f to X? = Sy U SL, is a

non-negative or a non-positive real function if and only if
(6.20) J(E—F)e (ZoV-1R)/(Z& V-1tZ),
where J(E — F) is defined by

> (P—Q) mod Z®ZV-1t,

)

provided E — F is expressed as E — F =) (P, — Q).

Proof. Let S, be the intersection of S} U SE with the set of zeros and poles of f*.
Restricting f* to (S{USE)\S.p, we get a real function f*. Considering the restriction
of (E+px(E)—F—px(F)) to S4US}E, we see that f7 has only zeros and poles with

even order. So the sign of f* remains invariant at each point of S.,, and hence f” is
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non-negative or non-positive on each connected component of S} USL. Consequently,
f? is a non-negative or a non-positive real function on S} U S} if and only if there
exist points a € S\ S,, and 3 € S5\ S, such that f(8)/f(«) > 0.

Note that the divisors E and F' satisfy the equivalence (6.18) precisely when
J(E — F) belongs to L(0) or L(1/2), where L(s) (0 = s < 1) is defined by L(s) =
(Z + s) ® V=1R) /(Z ® v/—1tZ). Then the following lemma completes the proof of
Proposition 13. U

Lemma 25. In the case J(E — F) € L(0), there exist a € S and 8 € Sk such that
f(B)/f(a) > 0. In the case J(E — F) € L(1/2), there exist « € S} and 3 € S§ such

that (5)/f(c) < 0.

Proof. The divisor E + px(E) — (F + px(F)) is expressed as S.-¢ (P, — @Q;) with
P, #Q; (1 =14,j < 2k). By Abel’s theorem, there exist integers p and ¢ such that

2k

(6.21) p+ar=> (P—Qi).

i=1
Then the meromorphic function ¢ having this divisor is determined up to a non-zero
constant and is expressed as follows:
Gl(u—Pl)Gl(u—PQk)
Or(u— Q1) 01(u— sz)’

where 7 is a non-zero complex number and ¢ is the integer given in (6.21).

(6.22) g(u) = yexp(—2mv—1qu)

It is not hand to see by moving the points P, ... , Po, Q1,... , Q9 appropriately
that we can construct a 1-parameter family g; of meromorphic functions on X which

satisfies the following conditions:

’yG,(CO) for k = 2,
7G§€0) or W/Géo) for k= 1.

If JIE-F) € L(1/2), then go = g and gy = ’yG,(gl/Q). Here G,(CO) and G,(Cl/Z) are

meromorphic functions on X, defined by

(1) If J(E — F) € L(0), then go = g and ¢y =

GI(CO)(U,) = exp(—27r\/—_1k:u) (91(u —1/2- 7/2)> ,

(1/2) ) = (Orlu—1/2—-17/2) g "
6w = (MG 6w,
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(2) gs depends smoothly on the parameter s for 0 < s < 1. If we denote the
divisors consisting of poles and zeros of g, by >, P’ and ), ()7 respectively,
then they are invariant under px and P # Q5 for 1 <4, j < 2k.

Also, we can construct 1-parameter families of points a, € S and 3, € S} satisfying

the following conditions:
(1) For each 0 = s £ 1, a5 and s do not belong to {P}, ..., Py, Q5,... ,Q5.}.
(2) ay =€+ 1/2and By =€+ 1/24+7/2 =€+ 1/2+ +/—1t/2, where € is a small
positive constant.

We see that the sign of gs(05s)/gs(as) does not depend on the choice of s, and hence

f(Bo)/ fao) = g0(Bo)/go(cg) and ¢1(B1)/g1(1) have the same sign.
Assume that J(E—F') € L(0) and k 2 2. Let us determine the sign of g1(51)/g1 (1) =

Gg))(e +1/2+ T/2)/G§€0)(e + 1/2). Using the identities (6.1) and (6.3), we see that
GPO(e+1/2+7/2) /GO (e +1/2)
91(6 — 7'/2)91(6 + 7/2)

) 91 (6)2 2k
= exp(=2mV/=Tk(r/2) <(\/—_1a(—€)94(€)) (—V—_1a<6>94<6>)>

_ (eme))‘”“ _ (91<er\/——1t>>4’i

0a(e) O4(elvV—1t)

If we fix €, we get a nowhere vanishing real function ¢ defined by

(0=
0= (o) >0

By (6.6), we get the following Taylor expansion:

= exp(—2mv/—1k(7/2)) <

(6.23) lim g o(t) = (2m)" e + O(™),

from which we see that for a small positive ¢, this is positive. If k = 1, then we can
see that the sign of f(5y)/f(c) is positive in a similar fashion. Thus Lemma 25 is
verified in the case that J(E — F) € L(0).

In the case J(E — F) € L(1/2), the sign of g1(61)/g1(c1) = G,(gl/m(e +1/2 4+
7/2)/ G,(gl/ De+1 /2) is similarly determined as follows. Using the identities (6.1),
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(6.2), (6.3), (6.4) and (6.5), we obtain
G\ (e+1/2+7/2) )GV (e +1/2)

:( 01(c) )( 01(c — 7/2) >2G,£°>1<e+1/2+7/2>
01(e +1/2) O1(e+1/2—17/2) a0 (e+1/2)

0:( ) ( 01(c +7/2)/b(e — 7/2) ) 260 (e +1/2+7/2)
0(€) O1(e +1/2+7/2)/b(e +1/2 —7/2) G (e+1/2)

be+1/2—7/2)) (916 ( 01(c +7/2) >—2G,§°>1(e+1/2+7/2)
b(e —7/2) O1(e+1/2+7/2) GO (e+1/2)

( V= Ta(€)f4(e) )‘2G221<e+1/2+7/2>
V—=Ta(e +1/2)04(c + 1/2) GO (e+1/2)

<28>2 (@(f 4.5? /2))_2 G’(“O—gg_); :i 2;;)/2)
(DO () TR )
(95) ) <e>2G’@1§€+1/2+T/2>.

(

be + 1/2—7’/2) (€

b(c —1/2)
)

)
)
ble+1/2—17/2)a ())
ble —7/2)a(e +1/2)

ble —7/2)a(e +1/2

(&
( E
(b €+1/2 —7/2)) (91§6
(
(

G (e +1/2)

A\ (e+1/2)

From (6.23), together with (6.6), we get the following Taylor expansion:

thm g k- 1)G (1/2) (e+1/2+ 7-/2)/G§€1/2)(6 +1/2) = B O(€4k71).

If we take a small positive ¢, this is negative. Thus Lemma 25 also holds in the case
J(E—F)e L(1/2). O

Now we are in a position to prove Theorem 12.

Proof of Theorem 12. Conditions (1) and (2) in Theorem 1 are equivalent to the
following assertion: 7 is a meromorphic function as in Proposition 12.

It is clear that R = R, + px«(Ry). Applying Proposition 13 to E = D and
F = Ry, we see that Condition (3) in Theorem 1 is equivalent to Condition (2) in
Theorem 12.

Take any spectral data, that is, a triple (X, m, £) with Fy, which satisfies the above

assertions and Condition (2) in Theorem 12. Consider the following real automor-
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phism ¢, on (X, py) defined by u +— wu + a, where a is a real number. Then, by
using ¢, and px, we can construct a real automorphism ¢ on (X, px) such that
(X, ¢*m,¢*L) is a triplet in Theorem 12, where ¢*m and ¢*L denote the pull-backs
by ¢ of m and L, respectively. Hence Theorem 12 follows. O

6.5. Construction of harmonic maps in terms of the rational spectral curve.
Using the results in Section 2.2, let us now construct harmonic maps corresponding
to spectral data whose spectral curves are smooth rational curves, and prove Theo-
rem 10.

Let (X, 7, L) be a spectral data as in Theorem 9. We may assume that 7, R and

L are of the following form:

[[="(A = P)
[ (A= Q)

T(\) = apA™ !

Py =0, R:D+pX<D>7 EZOX(D)J

where g is a constant as in Theorem 9 and D is a divisor defined by D = mFP, +

> " R;. First we prove the following

Lemma 26. Let (X, 7, L) be a spectral data as above. Define a function i(z, z, \)

on X with parameter z by
"N = P;
(6.24) Y(z, Z, \) = exp (i)\_l - (E>)\) ~ Hfljn( j>.
K K [ (A= Ry)

Here k = (OC/ON)|a=p, is the value of the differential of the meromorphic function ¢
as in (2.4) at A = Py. Then (2, z, u)04(z) is an element of H*(X, Ly ® L(z)) for
any z € C.

Proof. Denote by D|puq, the restriction of the divisor D = mP, + > . " R; to
Py U Q. Then, applying Lemma 2 to M = D — D|p,ug, — Eo, N = D|p,ug, — mFo,
and ¢ = 1, we get the assertion. Il

Next we construct a special orthonormal basis of global sections of £ = Ox(mPy+
Yo" R;) following the method explained above. Here we choose f =1 as a mero-

morphic function on X in Condition (3) of Definition 1. For 0 < i < n, let us denote

76



by o; the following element

o T (s — Ry) [T—oX—n) - TTi s (A=)
[Tzo(m =) - Tl ya (i — ) A T2 (A = Ry)
Then we see that o; € HO(X, L(—n9g— -+ —1i—1 — g1 — -+ - —nn)) and h(oy,03) = 1

for 0 £ i < n. Thus we get an orthonormal basis {0;}o<;<, of H(X, L), that is,
h(O’Z‘7 O'j) = 51]
Owing to (2.11), the corresponding harmonic map : R*> — CP" is given by
z=r+V=ly—[5(1) i) - - Yp(1)],
where each ¢7(1) is a function defined by
(6.25) o =ew (2 = (D)) - fen 0
R R Hj:l (mi — Ra)
Define a map F': R?> — R? by 2 = x++/—1y — kz. Then the composition 1) o F gives

rise to the harmonic map given in (6.9). This completes the proof of Theorem 10

6.6. Construction of harmonic maps in terms of elliptic spectral curves.
By an argument similar to that in section 6.2, we now construct harmonic maps
corresponding to spectral data whose spectral curves are smooth elliptic curves, and

prove Theorem 13.

Lemma 27. Let (X X 5,7 L= Ox (XM B -8 1F)) be a spectral data

as in Theorem 12. Define a function (z, Z, u) on X with parameter z by

0z, 0 = (216 = ) = Aud = (Z) el = Qo) - A
T (u = F) - 6(u = Py - T 1w — Py) -6 (u— G — H)
Hk+n+1 0r(u— E,) :

Here ¢, is Weierstrass’ zeta function as in (6.7)

(6.26)

A is the constant as in (6.8), and k= (0 C/au)|u:p0 is the value of the differential of
the meromorphic function ¢ in (2.4) at u = Py. Then 1(z, Z, u)04(z) is an element
of H'(X, Lo ® L(z)) for any z € C.
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Proof. The proof of this lemma is similar to that of Lemma 26 U

Next we construct a special orthonormal basis of global sections of £L = O X(Zfiln Hp—

S | F}) following the method used in Section 2.2. Here we choose

Hk+n+1 el(u _ Ej) Hk-l—n-l—l el(u . Fj)

Jj=1 J=1

[T 61w — F) Ty s (u— Ry) T1°, 61(u—F5) [T/ 61 (u — R;)

as a meromorphic function on X in Condition (3) of Definition 1. Let u; be the con-
stant in Theorem 13 and set 7; = Zf;nﬂ Ei—Zle Fi—(mo+ - +mi1+nis1+ -+ 1)
Denoting by o; the element

S [T 6r(n = By) - TTj=y 01w — Fy) - T2 61 (w —my) - 02 (w = ) - Ty 62 (u = my)
’ H;;ll th (772' - 773‘) : 91(7%‘ - ﬁz) ) H;'l:i—i-l 91(%‘ - TIJ) ) Hf:ﬁl 91(“ B EJ)
we see that o; € HY(X,L(=no — +++ — Nim1 — Mix1 — -++ — 1)) and h(oi,03) = 1

for 0 < ¢ < n. Thus we get an orthonormal basis {0;}o<i<, of H’(X, L), that is,
h(o;, 0;) = 6;;. These are well-defined by the following lemma.

f=

Y

Lemma 28. The above constants 1; are not equal to n; (mod Z & Zr).

Proof. 1t n; = n; mod Z @ Zt, then h(o;, 0;) = 0, which is a contradiction because h
is positive definite. O

On account of (2.11), the corresponding harmonic map : R? — CP™ is given by
z=z+V=ly— [Y5(1) i (1) s - yp(1)],

where each ¥7(1) is a function defined by
i(0) = pesp  Zl6utn — 70 = An] = (Z) Gl — Qu) — 4]
(s = Bo)" Ty (i — By) - 01 — G — H{(z, 2))
H?:o 01(n; — R;) .

Define a map F': R? — R? by 2 = 2 ++/—1y — kz. Then the composition ¥o F gives

rise to the harmonic map given in (6.11). This completes the proof of Theorem 13.

(6.27)
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6.7. Periodicity conditions of harmonic maps in terms of generalized Jaco-
bians. McIntosh studied periodicity conditions of the corresponding harmonic maps
by introducing certain homomorphisms into generalized Jacobians. In this section,
when X is a smooth elliptic curve, we reformulate McIntosh’s periodicity conditions
by introducing certain families of lines on the complex plane C, and prove Theo-
rem 14.

Let (X, m, L) be a spectral data as in Definition 1. Let L(z) be the line bundle
as in Section 2.2 and 64(z) the local trivialization of L(z) over X4 as in (2.4). Let
J(X,) be a generalized Jacobian defined by

J(Xo) = |J {(Hom (L], Lly) \ {0}) x --- x (Hom (L|y,, Lly) \ {0})}-
LeJ(X)
We define a map L: R? — J(X,) by z = 2++/—1 — (L(2), h1(2), ... , hn(2)), where
> L(2)|n,) \ {0} (=2 C*) defined by the condition that
m 10 04(2)]5,- Then Mclntosh proved the following

hi(z) is an element of Hom (L(z)

hi(z) maps 04(2)

Theorem 16 ([18]). The harmonic map 1: R?* — CP™ corresponding to the above
spectral data is doubly periodic if and only if L:R? — J(X,) is doubly periodic.

In the case of the smooth rational curve X, the maps ® in the proof of Theorem 11
and L are essentially the same.

Let us determine the map L when (X, m, L) is a spectral data with a smooth elliptic
curve as its spectral curve. First, we compute the map L: R? — J(X) defined by
z=x++/—1y — L(z). Let T, be a divisor defined by
(6.28) T, = (D) —m(Fy) — (S) — Eq,
where S is a point on X defined by S = G + H and Ej is the divisor given in Sec-
tion 2.2. Then 9(z, z, u)®04(2) belongs to H*(X, Ox(T,)®L(2)) (2 HY(X, Lo(—5)®
L(2))) by Lemma 27. Moreover, we see that (z, Z, u) ® 04(z) is a non-vanishing
global holomorphic section of Ox(T,) ® L(z). In particular, the line bundle L(z) ®
Ox(T,) is trivial, that is, L(z) ® Ox(T,) = Ox, and hence L(z) = Ox(—1,). Us-
ing (6.28) and identifying Jacobian J(X) with X = C/(Z @& /—1tZ), we see that
L: R? — J(X) is given by

z=c+V-1ly— —-D+mPy+S+Ey=H(z, 2) =2/k—(2/k) mod Z & Zv—1t,
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where x is the complex number in Lemma 27.

Second, we determine 64(z). Let © be a meromorphic function on C? defined by

O(w,u) = [ 6w — ) .
7 1, 01(u— Fy) - 01(u— Po)m ;2" 01(u— Py) - 01 (u— G — w)

Using ¥(z, z, u) ® 04(2) € HY(X, L(z) ® Ox(T.)) = H°(X, Ox) = C, we see that

0a(2) = Coxp (=216l = R = + (2 Gulu = Qo) — 4 ) © #(z.2),0).
where C'is a non-zero constant.

Now we give an explicit description of L. Let v: St={eV"1|0<6 <21} —
J(X) be a map defined by eV~ — /=1t0/27 mod Z ® Z+/—1t. Let Jg — S} be
the pull-back of J(X,) by v. For 0 £ i < n, we define B;: eVl ¢ St B;(eV~19)
Hom (V(e‘/__w) - V(e‘/__19)|n0>, sections of Jg — S} by the condition that each
Bi(eV=1%) maps the element exp(yv/—17;0)0(v/—1t0/(27), ;) of Ox(=T.)l,, to the
element
exp(v—1no0)O(v/—1t0/(27),m0) of Ox(—T%)|,,- Since the image of R? by L is con-
tained in Z & Rr mod Z @ Zr (C J(X)), we can regard L: R? — J(X,) as a map
R? — Js. Using this identification, the map L:R? Jg is given by

z=x+V-1y— (exp(2rH(z, 2)/t) € S}, hi(z, 2), ha(z, 2), -+, hu(z, 2)),

where h;(z, Z) is an element of Hom (v(exp(27H(z, Z)/t))|,,, v(exp(2rH(z, z)/t))|n,)
being defined by h;(z, Z) = exp(b;i(z, 2)) Bi(exp(2mrH (z, Z)/t)) with

bi(za 2) = [Cw(no - PO) - Cw(ni - PU)

—(=)[Cuw (1m0 — Qo) = Gu(n: — Qo)

Lemma 29. For 1 <i < n, each b;(z, Z) is pure imaginary.

(o —mi)]

T

T lw

(1m0 — mi)]-

T

R

Proof. We may assume that 0 < Im Py, ImQq, Imnq, ..., Imn, < Im7. On this

assumption, Qo = Py + 7. Using (,(u) = (,(#) and B = —B, we then get
[Cuw (10 — Po) — Cuw(ni — Fo) — BT~ (1o — mi)]
(6.29) = [Gu (0 = Po) = Gu(ni = Po)] = BT~ (o — 1)
=[Gl = Qo +7) = Cu(Ti = Qo + 7)) = BT (0o — my).
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In the case that ny € S} and n; € Sg, it follows from (,(u+ 7) = (,(u) + B that the
right hand side of (6.29) is equal to
[Cu (o = Qo+ 7) = Culmi =7 = Qo+ 7)] = B~ (no — mi + 7)
= (G0 — Qo) = Culm = Qo)] — BT~ (no — i),

which implies see that b; is pure imaginary. Similarly, we can also see that b; is pure

imaginary in other cases. U

Thus we can consider L: R2 — Jg to be amap Ly: R2 — T = §lx §lx ... x 51
defined by

z=1x+V—1y— (exp(2rH(z, 2)/t), exp(bi(z, 2)), ..., exp(ba(2, 2))).

Evidently, L is doubly periodic if and only if Ly is doubly periodic. Then we have
the following

Proposition 14. The harmonic map : R? — CP™, defined by (6.27), corresponding
to a spectral data (X, m, L) is doubly periodic with periods vy, vo € C if and only if
the set V. = mOSiSn Vi contains the 2-dimensional lattice M = Zwvy @ Zvy, where
Vo, ..., Vi, are the sets defined by

C, otherwise.

(6.30) V=

Here By, B1, ..., Bn are complex constants defined by
Bo=2m/(rt),t, ;= [Culiio = Po) = Culti = Po) = B (o —mi)7" ']/ (1=i=n)

Proof. Recall that ¢ has two periods vy, vy if and only if Ly has two periods vy, v9
by Theorem 16. If Ly has two periods vy, v9, then the set Zv, & Zv, is contained
in V', since V' is the set of all points on which the value of Ly is equal to the initial
value Lr(0) = (1, ..., 1) € 7"

Conversely, if V' contains a 2-dimensional lattice M = Zuv, @ Zwvy, then clearly v,
and v, are periods of Ly, since Ly is a homomorphism from the additive group R?
to T""!. Hence Condition (6.30) is a necessary and sufficient condition for Ly to be

doubly periodic with periods vy, vs. Il
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Now let us prove Theorem 14.

Proof of Theorem 14. From the argument in the proof of Theorem 13, we see
that the map given in Theorem 14 is a composition 1 o F', where 1) is the map in
Proposition 14 and F is a map defined by R?> — R? 2 = x + /—1y — k2. Thus

Theorem 14 follows immediately from Proposition 14. U
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