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Introduction

Let P be a partial differential operator with coefficients of class C* defined in an open
set Q of R P is said to be hypoelliptic in Q if

for any u € D'(2) and for any open subset " of €,
Pu e C*(Y) implies u € C*(Q).

It is one of basic problems in the theory of partial differential equations to analyze to
what extent a distribution solution u to the equation Pu = f is smooth according to the
smoothness of an arbitrarily given function f. Hypoellipticity of P is considered as a part
of this problem. The study of hypoellipticity of operators whose principal symbols have
real-valued coefficients and constant signs has progressed by the following methods. The
first one is based on an a priori estimate of solutions in Sobolev spaces. Once we find such
an inequality, we can prove the hypoellipticity with the aid of interpolation inequalities or
the theory of pseudo-differential operators. The second is based on the study of elementary
solution. It is not easy to construct an elementary solution in general. In some cases we
apply the theory of stochastic differential equations, and in other cases we construct a
parametrix instead of an elementary solution.

In this thesis, we study the hypoellipticity of second order partial differential operators
whose principal symbols are complex-valued or change sign. For this, we must apply both
of the above two methods except for some particular cases. Indeed we will divide the dual
space into two microlocal domains in one of which we use an estimation of norm and in
the other of which we construct a parametrix. Let us introduce the development of the
study of hypoellipticity of such operators from the viewpoint of norm estimate.

As is well-known, elliptic operators are hypoelliptic. This suggests that the principal
symbol of hypoelliptic operators has a kind of positivity. In 1967, Hérmander [10] proved
“If a second order differential operator with real-valued coefficients is hypoelliptic, then
the principal symbol does not change sign when the dual variables vary.” Let us refer to it
as the Hormander principle. A natural question arises. “Is it necessary for hypoellipticity
that the principal symbol does not change sign when the space variables vary?” In 1971,
Kannai [12] proved that L; = d; + t0?, an operator of two variables, is hypoelliptic, while
Ly = 0; — t0? is not. L; and L, are typical examples of operators with sign-changing
principal symbols. This illustrates that the semi-definiteness of the principal symbol is
not necessary for hypoellipticity and that the type of changing sign is important. The sign
of the principal symbol of L, above changes from minus to plus as ¢ increases. This is a
condition similar to Nirenberg—Treves criterion for local solvability of differential equations

of principal type. (See [26] and [27].) In 1976, Beals and Fefferman [5] generalized Kannai’s



result to higher dimensional cases. Their result was obtained by getting a suitable a priori
estimate with weight and using the general theory of pseudo-differential operators due to
Beals (See [3]). An advantage of this method is that the hypoellipticity follows from a
single a priori estimate with weight. However, there are many restrictions on the weight.
Therefore, the class of functions which control the sign of the principal symbol are strictly
limited. Beals and Fefferman’s result was extended by many authors. (Kumano-go and
Taniguchi [15], Taniguchi [32], Akamatsu [1], Zuily [35], Amano [2] and Lanconelli [17])
However, these works treat operators neither with complex-valued coefficients nor with
degeneracy of infinite order.

On the other hand, in 1987, Morimoto [23] presented a new idea for the study of
hypoellipticity. This is described simply as follows. First, suppose that the following

inequality without weight holds. Given any positive number N,
(1) lull < C(IPull + [lufl_y) for all u € CF(S),

where || - ||s denotes the norm of the Sobolev space Hy of order s (s is a real number)
and || - || stands for || - ||op. Let u be a distribution on Q. If Pu € C*(2), then we expect
that u € L*(Q) from (1). But the hypoellipticity of P does not follow simply from this
observation. Now, let (s, ¢, 1) be an arbitrary element of R x C7°(£2) x C°(Q2) such that
1 = 1 in a neighborhood of the support of ¢. If u is a distribution, there exists an N such
that ¢u € H_y(R"). Applying (1) to (D,)’¢u and N + s in place of u and N respectively,

we have

(2) 1{D2)*gull < C(IP(D2) dull + [[$ull_y),

where (D,)* = (1 + |D,|*)*/?. We admit for the moment that the first term on the right

hand side is evaluated as follows:

(3) 1P(D.Y gull < C(IXD.) 0Pull + llgul_y).

Combining (2) with (3), we obtain

(4) (D2 gull < C(I(DY YPull + [pull_y).

So, (4) holds if (1) and (3) hold. The hypoellipticity of P follows from (4). This is because
YPu € Hy(R") implies (D,)’¢u € L*(R?) from (4), so ¢pu € H(R"). Since (s, ¢, 1)) is
arbitrary, P is hypoelliptic by Sobolev’s imbedding theorem. The question is how to prove
(3). To do this, it suffices to prove that the norm ||[(D,)’¢, P] u|| is estimated by the right
hand side of (3). Successive derivatives of the symbol of P appear in the expansion of
the symbol of [(D,)’¢, P]. So, Morimoto introduced four kinds of estimates with weight

for operators with the differentiated symbols of P and proved that these estimates are
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sufficient for (3) to hold. This is a method applicable to a very large class of operators
because the hypoellipticity follows from a priori estimate like (1) without regularity gain.
However, we have to verify many inequalities to hold.

We improve Morimoto’s method to apply to a special microlocal domain and obtain
the results of hypoellipticity for a large class of second order partial differential operators
with complex-valued principal symbols which contains the operators treated in [5].

The operators which we study in this thesis are of the form:

(A) P =20+ f(t,x) Zn: aju(t,z) Li(z,0,) Ly(z,0,) in R,

k=1
where (t,7) € R x R% f(t,x) is a real-valued function of class C*™, a;.(t,z) (j,k =
1,...,n) are complex-valued functions of class C* and L;(z,0,) (j = 1,...,n) are
first order differential operators in R? with real-valued coefficients. d and n are positive
integers, d > n or d < n. Operators of the form (A) are a sufficiently general object of
the study of hypoellipticity of operators with sign-changing principal symbols.

In what follows, we introduce our results in the order of composition of this thesis.
There are five results in this thesis, only the forth of them is on non-hypoellipticity, the
others are on hypoellipticity. The first result is our main theorem, the second and the
third are extensions of the first result. In the first result, we study the case where f is
real-valued and f depends on x or not. The second result is devoted to the case where f is
complex-valued. In the third result, we restrict ourselves to the case where f is real-valued
and independent of z and suppose that orders of degeneracy of vector fields Li, Lo, ..., L,
are not the same. In the forth result, we investigate the question of non-hypoellipticity of
P of the form (A) in the case where f is independent of z. Our fifth result is a criterion
for hypoellipticity of operators with f(t) = ¥ + ¢t?. This is related to the second result.
But the criterion is not a simple corollary to the second result.

[10] The first result is on hypoellipticity of operators of the form (A). Let us enu-

merate our basic assumptions on f(t,z), ajx(t,z) and L;.

(1°)  Either the following (1°-a) or (1°-53) holds.

(1°-a) f does not depend on x and there exists no non-empty open interval on
which f(t) vanishes identically. Moreover, if f(ty) > 0 at a point ¢, € R, then
f(t) > 0 everywhere on [tg, +00].

1°-3) f depends on x and does not change sign. Moreover, for any z, € R?, there
( ge sig y

exists no non-empty open interval on which f(¢,x) vanishes identically.

(2°) The matrix A(t, ) = (a(t,7))%,—, satisfies the following:



For any compact set K of R there exists a constant § = §(K) > 0 such that

A(t,z) + "A(t,z) > 61 on K.

(3°) The Lie algebra generated by {L;}}_; is of dimension d at every point of R

Now our first result is the following.

Theorem A Suppose that P is an operator of the form (A) satisfying Conditions (1°),
(2°) and (3°). Then P is hypoelliptic in R

Let us explain briefly about each of the conditions. Condition (1°) restricts the type
of changing sign of f and the largeness or smallness of the set of zeros of f. In the manner
of changing sign, (1°) admits the case where f changes from minus sign to plus sign as
t increases and does not admit the opposite case. On the size of the set of zeros, (1°)
means that it is sufficiently small. But this is not so restrictive, because there exists an
f satisfying (1°) whose set of zeros is of positive Lebesgue measure. Moreover, (1°) does
not restrict the vanishing order of f, so f may vanish in infinite order. Condition (2°)
implies that the real part of the principal symbol of P is non-negative when £ runs over
R, which is consistent to the Hormander principle. Condition (3°) is the assumption that
the degeneracy of P with respect to x is of finite order. We hope to relax this assumption
so that we can treat infinitely degenerate operators with respect to x.

We will mention the proof of this theorem in the last part of Introduction. The method
of the proof of this theorem is applicable to show the hypoellipticity of various operators.
In fact, the results [2°], [3°], [5°] below are proved in a similar way to the proof of
Theorem A.

[20] Next, we consider the case where f in (A) is complex-valued. Let P be a second

order differential operator with coefficients of class C* of the form:

(B) Pz@t—l—(f(tx —i—zgtx)Zajkta;LLk in R,
7,k=1
where f(t,z) and g(t,z) are real-valued functions of class C™ and L; (j =1,...,n) are

the same as in (A) and satisfy Condition (3°) above. Assumptions on f(¢,x), g(¢,x), aji

are the following:

(1¥) f(t, ) satisfies (1°) in Theorem A.

(2%) For any compact set K of R*™ either the following (2%-1) or (2£-2) holds.



(2%-1) f changes sign and there exist positive constants p = p(K) > 3/4 and
C = C(K, p) such that

d
gt 2)| < C|f(t.2)| and Y [Dng(t,2)| < CLf(t2))” on K,

k=1
(2°-2) f does not change sign and there exists a positive constant ' = C(K) such
that ;
[g(t, )| + D [9ug(t,2)* < Cf(t, )] on K.

k=1
(3%) a;x(t,x) are complex-valued functions of class C™ and the matrix

A(t,x) = (ajx(t, 7))} ,_, satisfies the following:

For any compact set K of R either the following (3f-1) or (3f-2) holds.

(3%-1) f changes sign and there exists a positive constant § = §(K) such that

Re((f(t.a) +ig(t.a)) Alta)n, f(t.x)n) = 8172 P

for all ((¢,z), n) € K x C".

(3%-2) f does not change sign and there exists a positive constant § = §(K) such
that

Re((f(t,2) +ig(t,a) At ), )| = 811(t,2)]| ]l
for all ((t,z), n) € K x C"™.

Here (-, -) stands for the Hermitian scalar product on C".

If the inequality in (3%*-1) holds, then the inequality in (3%-2) holds even if f changes sign.

Now our second result is stated as follows.

Theorem B Suppose that P is an operator of the form (B) satisfying Conditions (1%),
(2%) and (3%). Then P is hypoelliptic in R

Briefly speaking, this theorem says that P of the form (B) is hypoelliptic if P is
hypoelliptic in the case where g is equal to 0 and if g is small in comparison with f.
Condition (2%) is not necessary in general for P to be hypoelliptic. For example, let us

consider the following operator of two variables:

Lyg = O+ (1 +it7) 02,



where p, ¢ are non-negative integers. This is one of operators of the form (B) satisfying
(1%) and (3%). As will be seen in [5°] below, L, , is hypoelliptic if and only if p < 2¢. In
the case where p/2 < ¢ < p, L, , does not satisfy (2¢) but it is hypoelliptic.

[30] In the third place, we extend Theorem A to a different direction from The-
orem B. That is to say, we study the case where orders of degeneracy of vector fields
Ly, Ly, ..., L, in (A) are not the same. Let () be a second order differential operator with

coefficients of class C* and of the form:

(C) Q=0+ fo(t) Zn: ajr(t,x) fj(t) L fe(t) Ly in R,

7,k=1

This is a generalization of P in Theorem A in the case where f is independent of = (See
(1°-a) above). Let {f;(t)}7_, be real-valued functions of class C*° defined in R, and let
Z; be the set of zeros of f; (7 =0,...,n). For every compact set I of R, we define the
set N(I) to be

NIy ={je{l,....n}; Z;NI#0}.

Assume the following conditions on { f;(¢) }7—,.
(1-1) For every j € {0,...,n}, Z; does not contain any non-empty open interval.
(1°-2) If fo(to) > 0 at a point ¢ty € R, then f3(t) > 0 everywhere on [t, +-0c].

(1°-3) Given a compact set I C R, suppose that N(I) is not empty. Then the following
statement holds.
“For any j € N(I), there exist positive constants C' = C(I,7), A = A(I,j) such
that

fo®)] < C )] onl.”

Our third result is the following.

Theorem C  Suppose that Q satisfies (1°-1), (1-2), (1°-3), (2°) and (3°). Then Q is
hypoelliptic in R4

Roughly speaking, @ is hypoelliptic if the functions {f;}}_,, which stand for the

degeneracy of vector fields with respect to t, are controlled by a single function f.

[40] Now, we study a condition of non-hypoellipticity of an operator P of the form
(A) under (2°) and (3°) in Theorem A. We restrict ourselves to the case where f is

independent of x. Our result is the following:



Theorem D Suppose that P is an operator of the form (A) satisfying Conditions (2°)
and (3°). Then P is not hypoelliptic in R if there exist an s € R and an open interval

I containing s such that

f(t) >0 for every t € I satisfyingt < s
(D)
and f(t) <0 for every t € I satisfying t > s.

This is a refinement of the result on non-hypoellipticity in [5]. Theorem D admits
the case where the vanishing order of f is infinite. However, since there exist f’s such
that neither Condition (D) nor Condition (1°) holds, we do not know from Theorem D
whether P with such an f is hypoelliptic or not. However, assuming that Conditions
(2°) and (3°) hold and that f is real-analytic, (1°) is necessary and sufficient for P to be
hypoelliptic owing to Theorem D.

[50] Finally, we investigate the hypoellipticity of the following operator of two vari-

ables:
(E) Lyg = 0+ (" +it7)02,

where p, g are non-negative integers. Our result is the following.
Theorem E L, , is hypoelliptic in R? if and only if p < 2q.

Theorem E indicates that Condition (2f) in Theorem B is not necessary for hypoel-

lipticity.

Sketch of the proof of Theorem A
Theorems B and C on hypoellipticity are proved in a similar way. To simplify the expla-
nation, we restrict ourselves to the case where f changes sign and it does not depend
on x. Let (7,€) be the dual variables of (,z) and © an open subset of R*™. Also, let [

be positive number. For the proof, we divide the space szl into two microlocal domains
(i) I7] = U€[*/2 and (i) || < I[¢]*.

Definition @ We say that P is hypoelliptic in the microlocal domain D of Rfjgl if
Pu € C*(2) and u € D'(2) implies x(Dy, D,)u € C*(Q) for every real-valued func-
tion x(7,€) such that x is equal to 1 identically on D and the support of y is contained
in a neighborhood of D.

It suffices for the proof to prove that P is hypoelliptic in each of (i) and (ii).



(i) P satisfies Hormander’s condition in the microlocal domain |7| > 1|£]?/2. So there
exists a left parametrix of P in this domain belonging to an appropriate class of

pseudo-differential operators. Consequently, P is hypoelliptic in this domain. This

will be proved in §1. (P is [-elliptic, where I" = <—oo 2 ¢ ¢ 1) (see §1 of [31]).)
12

(ii)  In the domain |7| < [|¢]?, P is microlocally a weakly elliptic operator. Here, we
say that P is weakly elliptic if the inequality (4) holds for P.

Let us explain how the proof of (ii) proceeds. As is mentioned above, Morimoto gave
a sufficient condition for a general partial differential operator to be weakly elliptic. We
rewrite this condition in the microlocal domain |7| < [|¢]2. The sufficient condition
obtained in this way is composed of one a priori estimate without weight analogous to
(1) and four kinds of estimates for operators whose symbols are derivatives of the total
symbol of P. These are introduced in §2. (See Conditions (I)-(V).) Thus, there are five
kinds of estimates to be verified. Let us sketch how to do it.

First, since the principal symbol of P in question is a quadratic form of the vector
fields {L;}7_, multiplied by f, an operator with a differentiated symbol of P is roughly
of the form: . o

Z Mjij + Z Z Nj,kfl‘ij + Mo,

j=1 j=1k=1
where M;, Nj; are pseudo-differential operators. From this representation, we see that
verifying four kinds of estimates with weight is equivalent to studying inequalities for op-
erators {L;}"_,. From this, we have not so many inequalities to be verified. Furthermore,
we can investigate the hypoellipticity of an operator of the form (A) even if we generalize
the class of f to a certain extent. This is the reason why we have set the form of the
operators as in (A). Therefore, the idea of the proof of Theorem A can also be applied
to the proofs of Theorem B and of Theorem C.

In view of the fact explained above, the four kinds of inequalities with weight for P
will follow from the following two estimates for L;. Without loss of generality, we may

assume that f changes sign at ¢t = 0.

Lemma 3.1 For any K CC Q and any p > 3/4, there exists a constant C' depending
only on (K, p) such that

(3.1) SN Lyul < C {[Re (Pu, (sgn LA )|+ 1ull?}
j=1

for allu € CY(K).



Proposition 4.1  For any K CC €2, any N > 0 and any x € Sy, there exist positive
constants k = k(K),C = C(K, N, x) such that

Sloar st + o fqu+ZH NG

< C(IPxull® + Iul? +Hu||_N) for allu € CF°(K),

(4.1)

where $y is a class of pseudo-differential operators defined in §1.

We explain simply each of these two inequalities. Let us begin with (3.1). The smaller p,
the better (3.1). For example, if p were equal to 0, (3.1) would be an estimate which is not
affected by the degeneracy from f. The function (sgnt)|f|*~'u appearing on the right
hand side is smooth if p = 1. On the other hand, this function is not smooth in general
if p < 1. An estimate like (3.1) involving a non-smooth function can not be treated in
the usual method based on the theory of pseudo-differential operators, because we can
not choose such a non-smooth function as a weight. One of advantages of our method is
that we can use such an estimate. The proof of (ii) starts from (3.1). We can deduce
from (3.1) many estimates involving only smooth functions. (See §4, §5, §6.) Lemma 3.1
is proved in §3.

Next, let us explain (4.1). The number x is smaller than 1 in general. The loss of
derivatives of (4.1) with respect to z is equal to 1 — k, which is smaller than 1 if f does
never vanish. So, (4.1) would be regarded as a subelliptic estimate and a good estimate
if f did not vanish. If we take the vanishing of f into account, (4.1) is not really so good.
Our proof goes well without obtaining a good estimate, which is another advantage of our
method. To prove (4.1), we divide the microlocal domain |7| < [|¢|* into two subdomains
|F(O" < 1, |f(€)"] > 1 and evaluate the left hand side of (4.1) in each domain, where
K is a constant depending only on (K, {L;}7_,). (4.1) in the former domain follows from
(3.1), and (4.1) in the latter is obtained by using Condition (3°) and applying Oleinik—
Radkevich’s method [28]. (See also [14].) Proposition 4.1 will be proved in §4.

The remaining problem is to show an inequality analogous to (1) which we need. This

follows from the next proposition.

Proposition 5.1  For any open set K CC R, any N > 0, any x € Sy and any
p >0, there exists a constant C' = C(K, N, x, 1) such that

(5.1) Ixul| < pl|Pxul + Cllu||_y forallu e CF(K).
(5.1) is an improvement of (1), because we can take any positive number p in advance.

In application of (5.1) to our problem, it is important that pu can be chosen arbitrarily

small (See Conditions (II) and (V) in §2). The proof of Proposition 5.1 is done by using

9



(4.1) and by a partition of unity according to a given small u. The construction of such
a partition of unity is the key to the proof of Proposition 5.1 and it is our new idea. We
make use only of the smallness of the set of zeros of f and the way of changing sign of f
in this construction, so our result is also available in the case where the order of vanishing
of f is infinite and the set of zeros of f is complicated.

This is the sketch of the proof.

We believe, by this thesis, that the condition for operators with sign-changing sym-
bols to be hypoelliptic becomes clear to some extent. In this thesis, we can not treat,
unfortunately, the case where f which controls a sign of the principal symbol depends on

x if f changes sign. This will be our future problem.

10



1 Preliminary

In this section, we introduce some notation used for the proof of Theorem A. Moreover,
we prove (i) and prepare for the proof of (ii), where (i) and (ii) are stated in the

Introduction. Before going into the detail, we give some examples of Theorem A.

Examples of Theorem A

1) The following operator P of 3 variables is hypoelliptic:
P =0, + 1% (02 +2),
where k is a non-negative integer. On the contrary,
Q =0, — ™ (2 + 02)
is not hypoelliptic. (See [15], [5] (k = 0)).
2) The following operator P of 3 variables is hypoelliptic:

P =0+ f(t) (02 +2%07)

L

1y -
(sgnt) (1 + sin 7) e 1 fort#0,

where f(t) =
0 for t = 0.

f(t) has a countably infinite number of zeros which accumulate at the origin and

f(t) changes sign there. On the contrary,
Q=0,— f(t) (92 +20])
is not hypoelliptic. (See §10).
3) The following operator P of 3 variables is hypoelliptic:

P =0+ f(t,z,y) (02 +2202) |

. 1 1
<1 e +y2> P <_t2+x2 +y2>

where f(t,z,y) = for (¢,z,y) # (0,0,0),

0 for (¢t,z,y) = (0,0,0).

11



We shall mention further examples in §7.

In what follows we shall use systematically the notation in Chapter 2 of Kumano-go
[14]. We say that a function a(t, z, 7, €) of class C* defined on R**™ = R} x R? x R} x Rg
belongs to a symbol of class S7% if for any multi-index a, 3 there exists a constant Cy s
such that

’a(ﬁ)(o‘)(t,m,ﬂ 5)) < Cap (T;§>m+6|ﬁ|fp|a| in R?2

where (1) = /|72 + |2+ 1, a@@(t,2,7,€) = 02D} a(t, x,7,€) and D;, = —i0;,.
Let S (Rd+1) be the space of rapidly decreasing functions. We say that a linear operator
A from S(R™) to S(R™) is a pseudo-differential operator with symbol a(t,z, 7, £) of
class S if a(t,z,7,&) € )5 and if Au can be defined to be

Au(t,z) = (27T)_d_1/em”””'5 a(t, o, 7,&) Flu)(r,€) dr d¢  for u € S(R™Y),
where Flu| is the Fourier transform:

Flul(r,€) = /e_iST_iy'f u(s,y) dsdy.

We write A = a(t,z, Dy, D,) € S} and denote the symbol a(t, x, 7,§) of A by
o(A)(t,z,7,&). ( See §1 of Chapter 2 in [14]. )

Since the hypoellipticity is a local property, we may assume, without loss of generality,
that the coefficients of P are bounded as well as their derivatives of any order. We
introduce some notation. Let (7,£) be the dual variables of (¢,z) and [,{’, m any positive
numbers such that [ < I’. We denote by Z, the set of non-negative integers. We say that
a smooth function x(7,&) belongs to the family W, ,, if

XES?/Z,Ov O§X§17
suppx C {|7] < V[P N {l7| + €] = m} . x =1 on {|7] < {[¢*}
and (1) ()Y 0207 x is bounded in R for every (o, 3) € Z4 x Z% |

where (7) =V1+72and (§) =/1+ ¢

Set
U = U Vitm -

1Ll m>0
<l

For x, x’ belonging to C* (R, X RZ), we define the notation y CC x’ if ¥’ =1 on suppy
( x € X’ means that y CC x" or x = x' ). We see immediately that if x € Uy,
X €Vppm (I'< LyM < m) then x CC x’. Therefore, for any element x of ¥, we can
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find a x’ € ¥ such that y CC x’. Alsoif y CC x/, then 1 — ' CC1— x.
We define the class of operators $y to be

Sy ={x(Dy,D,); x €V},

Obviously, $y C 5?/2,0-

Theorem A follows from the following two propositions. Propositions 1.1 and 1.2

correspond to (i) and (ii) in the Introduction respectively.

Proposition 1.1  Suppose that P is an operator of the form (A). Then P is hypoelliptic

in the microlocal domain supp(l — x) for every x € U, that is to say, for any Q@ C R
fived, if u € D'(R™) and Pu € C™(Q), then (1 — x(Dx, Dx))u € C™(Q).

Proposition 1.2 Suppose that P is an operator of the form (A) satisfying (1°), (2°)
and (3°). For any Q cC R, if u € D'(R™") and Pu € C*(R), then x(Dy, Dy)u €
C>(Q) for every x € V.

Indeed, since u = <1 — x(Dy, Dm)>u + x(Dy, D,)u for every x € U, the hypoellipticity

of P follows from these propositions. First, let us prove Proposition 1.1.

Proof of Proposition 1.1.  Since P is hypoelliptic in a domain of R*"! on which f
does not vanish, we may assume that sup(, ,yeq [f(¢, 7)| is sufficiently small in €2 according
to a given xy € W. First, P satisfies (H)-condition in supp(l — x), that is to say, there
exist constants C, C’ and for any o, 3 € Z ‘fl there exists a constant C,g independent of
(t,z,7,€&) such that

p(t,z,7,8)] = C(7;:8) on {|7| +[¢] = C"} Nsupp(1 — ),

4 e (2,76 < Caplrs &7 Ip(t, 2, 7,8)]
on {|7|+[¢] > C"} Nsupp(1 — x),

where p(t, x,7,€) is the symbol of P i.e., p(t,z, T, &) = e #T—2& peitrtizt,
These inequalities allow us to define a formal left parametrix of P as a sum of pseudo-

differential operators. First, we choose a function ¢(7,£) € C™(R, x R{) satisfying

0<9(r,8) <1, Y(r=0(Ir[+ [ <C"), =1(I7|+[{] =2C"),

and set
QO(t7:C7 T? f) = p(t7x7 T? 5)71w<7—7 5)7
(1.2) |
Qk(tamvTaf) = - Z —|qj(7)p(7) 90 (k’ > 1)
4=k "
j<k



Since gy is not globally smooth, we define new functions g}, by setting ¢, = qx(1 —x) (k >
0). Then from (1.1) and (1.2) we get

(a) ’
(a) ’

Coa < .€>—1—|a\/2
Ckaﬁ< §>—1 k/2— |a‘/2

/
)

<
!
@ | =

which implies ¢}, € 51/12 Ok/2 (k> 0). Next we can find a symbol ¢(t,z,7,§) € 517270 such
that ¢ ~ Y32, ¢, by the general theory of pseudo-differential operators. (See Chapter 2
n [14].) Then for any N we have

1 N—-1 . B
(1.3) o@QP) = 3 (qu) Py € Sipng

[v|<N k=0

where Q) = q(t,z, Dy, D) and o(QP) is the symbol of QP. On the other hand, we write

x> (z qk) b

[y|<N k=0
(X a)a-0+ X 555 (e a- 0
<N 7 \k=0 <N T k=0 p<y
B0
1 N-1

(set Ky = Z T Z ( ) X)(ﬁ)p('y)>

<N T' k=0 B<vy

B#0

|’Y|§N V! (Z%)p X+ Ky
= qop(1 — x +Z{qkp+z i p(v}(l—x)

[y|+i=Fk

1
+ > g pe(l—0) + K

[v|+7>N
J<N,|v|<N
Then we have
1-N/2
> r <Z qk) -x)—Kye S1/2,0/ ;
v 70

which implies, together with (1.3),
1-N/2

a(QP— (1= x(Di, D)) = Kn(t,a, Dy, D )) e S

We take ' € ¥ such that y CC x’. Since (1 — X’(Dt,DI)>KN(t,x,Dt,Dx) € $° due
o(1—-x")CccC(1-x), we obtain

a<(1 =X (D1, D2))QP = (1= XDy, Dx))> S

14



Since N is arbitrary, we have for any x,x’ € ¥ (x CC x’)
(1.4) (1= XD, D)) = (1= x(Dr, D.))QP + R,

where (1 - X(Dt,ng)>Q € Sl_/lm and R € $ . Let xy be any fixed point in € and
@, € C7°(Q) be such that ¢ CC ¢ and ¢ is identically equal to 1 on some neighborhood
of zg. For the proof of Proposition 1.1, it suffices to show that gp(l—x(Dt, DI)>u e C ()
provided that u € D'(R*™!) and that Pu € C*(Q). From (1.4), we have

(1 — x(Dy, Dx))wu = Q' PYu + Ryu,
where @' € Sl_/12,0‘ Multiplying ¢ from the left to the above equality, we obtain
o(1=X(D1, D) Ju = Q' Pu + ¢[Q'P,|u — ¢[1 = x(Dy, Da), ¢ |u.
Since ¢[Q'P, v, ¢[1 = x(Di, D), v| € 87, we have ¢(1 = x(Dy, Ds))u € CF(Q). O

Next, we prepare the proof of Proposition 1.2. By Sobolev’s imbedding theorem,
X(Dy, Dy)u € C™(Q) is equivalent to the following:

(1.5)  (Dy; DY x(Dy, Dp)u € L*(R*!) for any real s and for any ¢ € C°(Q).

Since (£) < (1:€) < C(€)* on suppy, where C' depends only on y € ¥, (1.5) is equivalent
to the following:

(1.6) (D)X (Dy, Dp)u € L*(R!) for any real s and for any ¢ € C°(9).
And again, (1.6) holds if
(1.7) (D)X (Dy, Dy)pu € L*(R1) for any real s and for any ¢ € C°(9).

Indeed, suppose (1.7) holds. Then for any ¢ € C°(2), we can take ¢ € C§°(€2) such
that ¢ CC ¢'. From (1.7), (D.)*x(Dy, Do)¢'u € L*(R™Y), so (D) x(Dy, D)¢'u €
L2(R™™). Since [¥, (D,)°]|x(Dy, D,)'u € L*(R*™') from (1.7), we have (D,)*¢x(Dy, D,)
Y'u € L*(R™"). Finally (1.6) holds because (D,)*v[x(Dy, D,),%'] € $~=. Now, (1.7)
implies u € C*™(Q2). So, for the proof of Proposition 1.2, it suffices to see that u €
D'(R™) and Pu € C*(9) implies (1.7).

On the other hand, for any Q cc R fixed, if Pu € C*(Q), then Px(D;, D,)u €
C>(Q) for every x € ¥, because Px(Dy, D,)u = —P(l — X(D,:,DQ)U + Pu and (1 —
X(Dy, Dl,)>u € C™(Q) from Proposition 1.1. Thus in order to show (1.7) for u € D'(R*™)
such that Pu € C*(Q), it suffices to show the following proposition.
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Proposition 1.3 Suppose that P satisfies (1°), (2°) and (3°). For each real s, each
X, X €V satisfying x CC X', the following statement holds.

“ Suppose that (D) PX"(Dy, Dy)u € L*(R™"Y) for any ¢ € CP(R™) and any x" € ¥
satisfying x € X" C x'. Then (D,)°x(Dy, Dy)u € L*(R™1Y) for any ¢ € C°(R™). 7

This means that P is weakly elliptic in microlocal domain suppy. (see §2 in [22].) We
will prove Proposition 1.3 in §6 by making use of a result in the next section. If we admit

this for the moment, Proposition 1.2 is proved, and the proof of Theorem A is completed.

16



2

Criterion for hypoellipticity in microlocal domain

In this section we shall give a refinement of Theorem 2.1 in [23]. We use this to prove

Proposition 1.3. The statement of Proposition 1.3 is almost the same as Proposition 2.1
below. Let Q be an open set of R¥! and P(t,x, Dy, D,) a differential operator of order

m with coefficients in C*°(€2). P in this section is not necessarily the same as P in §1.

|| - ||s denotes the norm of the Sobolev space H; for real number s and || - || stands for || -||o.

If there is no confusion, we identify a function x € ¥ with an operator x(Dy, D,) € Sy.

For x,x" € Sy, the notation y CC x’ (resp. x C x’) means that o(y) CC o(x’) (resp.

a(x) € o(x’')). We assume five conditions for P as follows:

(D

(IT)

(I11)

For any K CcC €, any N > 0 and any y € %y, there exists a constant C; =
C1(K, N, x) such that

2.1) Il < G (1Pl + llull_y) ~ for all u € C(K).

For any K CC Q, any 3= (0,3) € {0} x ZL (|8| # 0), any pp > 0, any N > 0 and
any x € Sy, there exists a constant Cy = Co( K, 3, 1, N, x) such that

(22) (Do) PX)@yu|| < plPxul + Callull_y  for all u € CF(K),

where pig)(t,x,7,§) = Dgxp(t, z,7,€) and D, = —i0; .

For any K CC 2, any o € Zi“, any N > 0 and any x, X’ € 9y satisfying x CC v/,
there exists a constant C3 = C3(K, «, N, x, X') such that

23)  |P0)@ul < & (IPXull + llul ) for all uw € CF(K),

where pl®) (¢, z,7,€&) = 3ﬁ§p(t>$a77 §).

For any (tg, o) € Q and any neighborhood U of (¢, z), there exist ¢,¢ € C5°(U)
such that

¢(t,z) =1 in some neighborhood of (¢, xo),
¢ CC1  (thatis, ¢ =1 in a neighborhood of supp ¢ ),

and the inequality

(2.4) [[(Da)" Pxoull
< Cy (I(D2) e Pxull + | Pxull + || PX"u| + [[u]|_y) for all u € CF(K)

holds for any open set K CC 2, any N > 0 and any x, x’ € Sy (x CC X’), where
Cy = C4(K,N,x, X', ¢,1) is a constant depending on (K, N, x, x’,¢,%) and « is a

positive number smaller than 1 depending only on K.
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(V) For any K CC Q, any 8= (0,3) € {0} x Z% (|3| #0), any p > 0, any N > 0, any
X, X € 8w (x CC x'), there exists a constant C5 = C5(K, 3, i, N, x, X', 1) such that

(2.5) [(Da)" Pl (W Px) oy
< (Do) e Pxull + Cs (| Pxull + | PXul| + [[ull _y) for all u € CF(K),

where 1 is the function introduced in (IV) and & is the number introduced in (IV).

Proposition 2.1  Suppose that a differential operator P = p(t, x, Dy, D) satisfies Con-
ditions (I)—(V). For each real s, each x, X' € Sy satisfying x CC X/, the following state-
ment holds.

“ Suppose that v € D'(Q) and (D,) Y Px"u € L*(R™") for any ¢ € CF(Q) and any
X" € Sy satisfying x € x" C x'. Then (D,)*xu € L*(R™") for any ¢ € CF(Q). ”
Therefore P is hypoelliptic in the microlocal domain suppy X €.

Remark.  Proposition 2.1 holds even if we omit the term ||Py’u|| from the right
hand side of (2.4) and (2.5) in Conditions (IV) and (V) respectively. We need this term
in the application of Proposition 2.1 to P specified in Theorem A. This is because we
have to investigate operators with differentiated symbols of Py. The derivatives of the
symbol Py involve derivatives of x. The term ||Pyul| alone does not suffice to evaluate
operators with such a symbol applied to u. So the term ||Px'ul| is needed for applying

Proposition 2.1 to P in question.

Before proving this proposition, let us sketch the roles of Conditions (I)—(V) in the
proof. Let y, X’ be as above and u an element of a Sobolev space. Given any point
(to, z0) € 2, let ¢, € C°(R2) be as in Condition (IV). The proposition follows from the
inequality
(2.6) [(Day*xou| < € ([(Doy wPxul| + [lwoull _y ) -

Obviously, (2.1) in Condition (I) is a version of (2.6) in the case s = 0. To obtain (2.6)
for s > 0, we apply (2.1) to (D,)*x¢u in place of u to have

(2.7) [(D2yxeu|| < 1 (|P(D.) xou] + lgull_y) -

Rewriting P(D,)’x¢u = [Px, (D.)’] pu + (D)’ Px¢u, we have to show two inequalities
(2.8) [P, (D2)*]ou]| < € (|[(D2)* Pxou| + lloull_y),

(2.9) (e Pxsul < € ([(Da) wPxul +llwul )

Let us begin with (2.8). By an asymptotic expansion of the symbol, we have

H[Px,<Dx>1¢uHs0< > H<DI>S"B'<P><>([;)¢uH+HaﬁuuN),

0<|8|<2(s+m+N)
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where 3 runs over indices of type (0, 3"). Condition (II) guarantees that each term of the
sum on the right hand side does not exceed C (H(Dx>st¢uH + Hde_N) (see Lemma
2.2). (2.8) is verified in this way (Arbitrariness of p in Condition (II) will be necessary
only to prove Lemma 2.2).

Next, the proof of (2.9) is divided into four steps.

First step : We rewrite (D,)’ Pyou as

(D,)* Pxgu = (D,)" [Px, (D2)* ™| gu + (D.)Px(D.)*"¢u,

and deal with the first term on the right hand side, where x is the number introduced in

Condition (IV). Again by Lemma 2.2, we have
(D2 [Px, (D2)* ] dul| < pul|{D2)* Pxgull + Cp) [[woul] _y -
Choosing a p small enough, we have
(2.10) [(D2) Pxou|| < € (| (D) Px(D2)"u| + lull_y)-
Second step : We rewrite (D,)"Px(D,)" "¢u as
(D2 Px(Da)*"pu = (Dy)"Px [(D2)"™", 6| w+ (D,) Px$(Dy)* "u.

We expand the symbol of {(Dg)s—”, d)} and evaluate the commutators between each term

in the expansion and Py applied to u. Then, we have

[0 (D™ 6] w] < € ([ (D) P + [(02)

)

Here we make use of Condition (III) to evaluate commutators between Py and multipli-

cation by functions (see Lemma 2.3).
Third step : Condition (IV) yields

(D2} Pxe(D)*"u
<C’<H Veap Px(D,

u ‘ + HPx(D

u‘ + HPx’<D

ul + gull_y)-

By Condition (II), the second and third terms on the right hand side are smaller than
€ ([0 Pl + D2

B ) Hence we obtain

(D2} Pxe( D) "u
< O ([[(pa)"wPx(D

u‘ + H<D$>S%PXUH + H(D

Here, notice that not (D,)* but (D,)°”" appears in the second and third term on the
right hand side. Thus, we need Condition (IV) to lower the order of (D, )" Px.
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Forth step : We rewrite (D,)"¢Px(D,)" "u as
(D) Px(Dy)* ™ u = (Da)" [ Px, (Da)* "] u + (Da)* ¥ Pxu.

We expand the symbols {wa, (Dxf_”} and evaluate the composition of (D,)" and each
term of the expansion applied to u. By Condition (V), we have

(D2} [P, (D)™

< O ([epayripral + [[(De) ™ Prad] + [0 [+ vl )

Condition (V) plays the same role as (II) for Py instead of Px. (See Lemma 2.4 and
Corollary 2.5.)

Combining all these steps, we have

(211)  |[(Da)*Pxou|
< (ji.repal + [Pl + 122

)

(see Lemma 2.6) The remaining problem is to estimate the second and third terms on the
right hand side of (2.11). We take functions ¢/, ¢’ € C{(Q2) such that v CC ¢/ CC ¢/
and (2.4) holds for (¢', ') in place of (¢,1). Substituting ¢'u for v in (2.11), we have

(212)  [(D.)" Pxoul
< O ([[eyePxal + [y

S—K

ul_y),

because 1 [Py, ¢'] is a smoothing operator. The second and third terms on the right hand
side of (2.12) are of the same type as in the left hand side of (2.11). Then we have easily

|02 Pxn|
< O([payupral + 02w Pl + D2y

|

+ Doy P + (0 DY Py

[+ 1 ull_y ),

where x” € 9y satisfying x’ CC x”. Repeating a finite number of times of this argument,
the second and third terms will be estimated by C'|[¢'u||_5 . Therefore we have an

inequality analogous to (2.6).

Now, we mention lemmas which are used above, and prove them. As in §2 of [22] we
employ a pseudo-differential operator A,y = (D,)*(1 + e(D,))™" for real s, ¢ > 0 and
k > 0. The first lemma is used to control ||[(D,)", Px]ul.
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Lemma 2.2 (cf. Lemma 2.1 of [23]) Suppose that P satisfies Condition (11). Then for
any K CC Q, any 8 = (0,83") € {0} x Zi (18] # 0), any real s, any pp > 0, N > 0,
0<e<l1, k>0 and any x € Sy, there exists a constant C = C(K,[,s, u, N, k,x)
independent of € such that

(2.13)

otk (P ]| < 1A Pxul + C llull_y  for all u € CF ().

Furthermore, for any K CC §, any real s,s', any p >0, N >0,0<e <1, k>0 and
any x € Sy, there exists a constant C' = C' (K, s,s', u, N, k, x) independent of € such that

(2.14) H Px,ASkE H < pl|Aste e Pxul| + C' ul|_y  for allu € CF(K).

Proof of Lemma 2.2.  We take ¢,¢ € C(Q2) such that ¢ CC ¥, ¢ =1 on K.
Applying (2.2) to K = suppy, YA p0u € C3°((suppy)°®) and YA, i -¢pu for u, we obtain

(D)2 (Pr) o As pcu| < gl Pxwohpecul| + C llull_y -

Then we have easily

s—IBI,k,a(PX)(ﬂ)uH < H s [ PX) ¥, AS’”} ¢“H
+ ,u‘ s,k,sPXUH +u H [PXID, As,k,s}(buH + C lull _y s

where C is independent of €. Since we can regard Ay as an element of %7, ; on suppy,

the expansion formula yields

-1 o _

0<|a|<2(s+m+N) al
1

RN -
Z o Agks(PX@b)(a) mod 81/12\7,0

0<|a|<2(s+m+N)

[(PX), Aage]

(where « runs over indices of type (0,¢/)) ,

and since N is arbitrary and {(Px)(ﬁ)l/}}(a) ¢ — (PX)(a4p)@ € $7°°, we see that

(2.15)

w1k (PX) oy
< ullharePxull + 0 3 [Aciaee (P

0<|a|<2(s+m+N)

+C”( >

s-lal-19ke (PX) @] + IIUII_N) 7
0<|a|<2(s+m~+N)

where C” is independent of (e, ) and C” is independent of €. It is obvious that (2.13)
holds for || > 2(s +m + N), so we may suppose that |G| < 2(s+m + N) — 1. Set
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a = [[AspPxull , a; = Z\m:j‘As—ww,k,s(PX)(ﬁ)uH J=1,....,2(s+m+N)
a2(5+m+N) = HU’H—N (215) ylelds

2(s+m+N)—-1 2(s+m+N)
(2.16) a; < p > a+Cuy DY

k=0 k=j+1
(j=1,...,2(s+m+N)—1).

Applying Lemma 2.9 of [22] to (2.16), we have

i < plag+ C' jasistmen

—1) and

for any ' > 0. This inequality is equivalent to (2.13). (2.14) follows from (2.13) and the

above expansion formula.

O

Next lemma is used to evaluate the commutators between Py and multiplication by

functions.

Lemma 2.3 (cf. Lemma 2.2 of [23]) Suppose that ¢(t,z) belongs to C°(S2) and that P
satisfies Conditions (11) and (II1). Then for any K CC 2, any real s, any N >0, 0 < & <
1, k>0 and any x, X € Sy (x CC X), there exists a constant C = C(K, s, N, k,x, X', })

independent of € such that

(2.17) [ A Pxoull < C (10swe Pxull + A PYI| + [ull_y)  for all u € CF(K).

Proof of Lemma 2.3. By means of (2.14), we have

As,k,spx(buH S “PXAs,k,s¢u" + H[As,k,aPX}d)uH
HPxAs,k,EqﬁuH + /L‘ As,k,ePX¢UH + Cy || dul|_y -

IN

Then we obtain

AspePxou| < O ([PxAageou] + flull_y) -

Here and in what follows we denote different constants independent of ¢ by the same

notation C'. Using the expansion formula

(2.18) AN = Z a)ASkE/a mod 51/20 on suppy,
0<|a|<2(s+m+N)
we have
(2.19) | PxAaseoul| < C ( S|Pl )
|a|<2(s+m+N)
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And each of the sum satisfies

(2.20) |[PxéASu

< owPaallat X barn(POPAL/B + Cluly
0<|8]<2(s+m+N)
< C (HPxAg,a,;au ‘ + HPx’Ag,a,;au ’ + ||u||_N) ( by Condition (IIT) ) .

If X" is one of x and x’, we have

QePxut Y (DI PN eu/B + Cluly

0<|B]<2(s+m+N—|al)
stk PX0|| + [l _y) (by (2.13) ).

(2.21) | Px"ASu

s,ket

S‘A

< ¢

Combining three inequalities (2.19), (2.20) and (2.21), we have (2.17). O

Next lemma is used to control ||[¢) Py, (Dy)’|ul|.

Lemma 2.4 (cf. Lemma 2.3 of [23]) Suppose that P satisfies Conditions (II) and (V).
Then for any K CC Q , any 3 = (0,3") € {0} x ZL (|B| # 0), any real s, any pu > 0,
0<e<1, N>0,k>0and any x,X' € Sy (x CC X'), there exists a constant
C=C(K,pB,s, 1 k,N,x,x',0) independent of € such that

(2.22)

s—|ﬂ|7k,5(¢PX)(5)“H
< g Avke@Px)uf +C ]

As—n,k,EPXUH + )

Asmrere PYt] + [[ull_y)
for all uw € CP(K), where k > 0 and ¢ are the same as in Condition (V).

Proof of Lemma 2.4. As in the beginning of the proof of Lemma 2.2, we take
¢, ¢ € C(Q) such that ¢ CC ¢, =1 on K. Applying (2.5) to K = supp¢’, we obtain

(2.23)  [(D. >“"B'<wa> e ——
< (D) (PG s ohu
+ C ([|[Pxd' Asretu| + | PXO At + 16/ A s pctull_y) -

The left hand side of (2.23) is estimated from below as follows.

(D) (0 Px) 5) 8 A
= A s @PY)@u + (D) [(0PX) )8 Asie] o
> A pre@PY) ]| = (D) [ PX)5)8, Asse] 1
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Using the expansion formula

[(¢PX>(6)¢/7 As—n,k,a} ¢ = Z (_1)|Q‘Agoi)n,k,a {(wPX)(ﬁ)}(a) ¢/Oé' mod 81_/12\7,0

0<|a]<2(s+m+N)

(where a runs over indices of type (0,a/)), we have

(2.24)  |[(Da)" (W PX) (30 Aot
> ‘ As_gre(VPX) ’

oz

0<|a|<2(s+m+N)

Aotk e (P PX) (as ]| + HuHN) -

Next, the first term on the right hand side of (2.23) is written as follows.

(2.25)  p(D2)" (@ PX)G Ay opcou
A (WPX)u+ (Do) [($PXD), A e b
More@Pu[+Cu X Ao @PX) @y + C lull_y

0<|a|<2(s+m+N)

= p
<yl

where C'is independent of (i, ¢) and C” is independent of €. Also the second (third) terms
on the right hand side of (2.23) are estimated as follows.

(2.26) SXCh —
— ’ As—n,k,apxu + {quﬁ’, AS—H,k,E:| QﬁuH
< )As—h},k,apqu +Clull_y ( by (2.14) when ' =0 ),

where C is a constant independent of . e.
Combining above three inequalities (2.24),(2.25) and (2.26), we obtain

|

As_ﬁ,k,a(dfPX)(m“H

< pAare@Pxu|+pC Y A ke (EPY) @]
0<|a|<2(s+m+N)
+C > |As etk (OPX) sy
0<|a|<2(s+m+N)

+ C” ( Asfn,k,EPXuH + ‘

AarrePX + ull ).,

where C, C" are constants independent of (u,¢).

By the same way as in the proof of Lemma 2.2, we obtain (2.22). O
We have a corollary by the same way as in the proof of (2.14) from (2.13).

Corollary 2.5 (cf. Corollary 2.4 of [23]) Suppose that P satisfies Conditions (1I) and
(V). Then for any K CC €, any real s,s', any N > 0, 0 < e < 1, k > 0 and any
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X, X € Su (x CC '), there exists a constant C' = C(K,s,s', N, k, x, X', v¥) independent of
€ such that

(227) (Do) [$Px. Al u
S C () As+s’,k,a¢PXuH + ‘

Ao PXU]| [ Astrpe PXu + llull_y)

for all uw € C(K), where (k,1) are the same as in Condition (V).

The next lemma plays the most important role in the proof of Proposition 2.1. (see
(2.11).) If P satisfies Conditions (I),(II) and the inequality in the next lemma holds, then

Conditions (IIT)—(V) are not necessary to assume.

Lemma 2.6 (cf. Lemma 2.5 of [23]) Suppose that P satisfies Conditions (I1)—(V). Then
for any K CC Q, any real s, any N >0,0<e <1, k>0 and any x, X € Sy (x CC X'),
there exists a constant C' = C(K, s, N, k,x,x") independent of ¢ such that

(2.28) |

As+n,k,sPX¢UH
<(C ( A5+n,k,e¢PXuH + )

As,k;,aPXuH + ’A

)

for allu € CF(K), where k and ¢, € CF () are the same as in Condition (IV).

s,k,e

Proof of Lemma 2.6. The left hand side of (2.28) is written as follows.

AsirpePxou| = [[(De) PxAgpodu+ (Do) [Aspe, PX] du)
< |(Da) PXAs et + A e Pxou| + Cllull_y .

(by Lemma 2.2 (2.14) with s’ = k). Taking p small enough, we have

|

In view of the expansion formula (2.18) we have

AH,{kstgbuH <C (H PxAskgde + ||ul|_ N) for all u € C°(K).

[(D2)" PxAs 0

< [(D2)"PxéApeu

|+o( S| Pt \+nun_N)
0<|a|<2(s+m+N+r)

for all w € CF(K).

By means of (2.17) with s = k, k = 0 we have for |a| # 0

(D2 Pxya) AL
< O (Do) PxA u

ul + (D PAAE

ull_y) for all u € CF°(K)
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If x” is one of x and y’, we have by (2.13)

H PX”A ks
= (Do) AL PX w4 (D)™ [PX", A |

<C (HAW_M,I.:,EPX“UH + | At nmtoct e (PX Yoy + ||u||_N)

0<|B|<2(s+m+N+r—|af)
< C (|| AsirtatpePX"ul| + ull ) for all u e CF(K).

Combining these three inequalities we have

<C (H VY PyoA,

)

Next, as in the beginning of the proof of Lemma 2.2, we take ¢, ¢’ € C7°(€2) such that
© CC ¢, p=1on K and ¢’ =1 on suppy). Then we have that for u € C5°(K)

H(Dx>KPX¢As,k,su H PX¢A ke (puH
< |(Da) Pxop Ao + | (D) Pxo[ A, '] u
< H )" Pxop A keSDUH + Cul|_y

because (D,)"Px¢ [Ask.e, ¢'] ¢ is smoothing. Substituting ¢'Agx.pu for u in (2.4), we

obtain
[(D2)" Pxog Ao
< C (|[(D2) 0 Px Aseipu]| + || Pxd' Meseou|| + | PX' @ Asciou| + Ilull_y ) -

By means of Y Px¢ — Y Px, [PX, ¢'| As ke, [PX, @' Asrep € . the right hand side is

smaller than the following:

<C (H Y YPXAs g cu

i HPXA pell
< O(|AsimncvPra] + [P [wa, Auie]y
) ) ( by (2.14) with &' =0 )
[ull )

+Jlull_y)

+ “As,k,spxu“ + HAs,k,EPX/u

< O (| Assnreto P + || A Pxul + A PX'u
( by Corollary 2.5 (2.27) with s’ = & ).

Combining above inequality and (2.29), we have (2.28). O

Remark. Set k = 2(so +m + N + &) for so > 0. Then, for any v € H_y(R*™) N
E'(K), we have

|AsrniePxev| < O ([AsrnnetoPoo| + [AkePxo| + | AsrePxv| + llull_y)
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where s < sy and C' is a constant independent of €. This can be verified from (2.28) in

the same way as in the remark to Lemma 2.5 in [23].

Proof of Proposition 2.1. Let (tg,z¢) be any fixed point in € and let ¥(¢,x) €
C° () be such that ¢ = 1 in a neighborhood U (to, zo) of (tg, ). Then, for any positive
integer | and any x,x’ € S¢(x CC x’), we can find finite sequences {¢;},_;, {¢;}_; C
C (), {x;}}=1 C Sy satisfying the following two conditions.

condition (a) :

1 CC 1y CC hg CC APy CC -+- CC ¢y CC Yy CC

X CC x1 CC x2 CC -+- CC x; CC X' (= x141)

condition (b) : For any K CC Q and any N > 0, there exists a constant C' =
O(K7 N, X Xj+1s ¢j/,¢j/) such that

(2.30)  [[(Da)*Px;é5u| < C (|(Da)" by Prsu|| + |1 Pxgull + [ Pxgrull + ull_y)

forallu e C(K) (7,7 =1,...,1),
where k is a positive number depending only on K.

Indeed, we can find these sequences as follows.
First, we take a sequence {x;},_, satisfying the condition (a). Next, from Condition (IV),
we can take ¢, € Ci°(U(tg,x0)) such that ¢ CC 91, ¢1 = 1 in some neighborhood
V (to, 20) of (to, zo) and (¢y, 1y ) satisfies (2.4) in place of (¢, 1). Similarly we can take again
QNSQ,@ZZ € C7°(V(to, o)) such that qz~52 cC @g,&z = 1 in some neighborhood W (%o, xq) of
(to, zo) and (¢, U) satisfies (2.4) in place of (¢, 1)). Here we used the arbitrariness of U in
Condition (IV). Since W (to, z0) CC V(to, o) CC Ulty, o), 2 CC 1y CC ¢y CC thy CC
1. Repeating these steps [ times, we have sequences {% 2:1 and {1;] é‘:1 C Cr (). Set
¢; = %l_j_’_l, P = @Zl_jﬂ(j =1,...,1). Then, {gbj}é-:l, {@/Jj}ézl are sequences we want.

As is well-known, for u € D'(Q), there exists an N > 0 such that yu € H_y(R™™).
Let us choose [ larger than 2(s +m + N)/k. By means of Lemma 2.11 of [22], its remark
and (I), for any ¢1u = ¢1ypv € H_n (R NE'(K) (, where K is some neighborhood of
supp ¢ ), we have

(2.31) |

As,k,eX1¢1UH <C <‘

As,k,sPX1¢1UH + MJU”_N)

for a constant C' independent of € and k = 2(s+m + N). From (2.30) and the remark to
Lemma 2.6 with £ = 2(s 4+ m + N), we have for any s’ < s,
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As’,k,EPX]'QSj/u‘
As/,k,sPXijj’(z)J/*lu"

< C(‘ As',k,a%/PXj(bj’HUH
+ ’ As’fn,k,EPXj(z)jUrluH + ‘ As’fn,k,sPXj+1¢j’+1uH + kuHN>
< ( A5/7k75¢j/PXjuH - ‘ AS/_,.@,/.:,EPX]-%/HUH + ’As’—n,k,aPXj-i-lqu’-&-luH + ||¢U||_N) :

Because 9 Px;pj11 — Yy Px; € $°° and ¢yu = ¢j¢pyu. From (2.31) and above

estimate, we have

|

Aspxao

l +1
< (35 s maatsaol + 53
Jg'=1 =1

As—nl,k,apXﬂ/JUH + H¢“H_N) ,

where C' is a constant independent of e.
Since [[As—n(r—1)kety Pxgull < (D)"Y "D Pyjull (4,5 = 1,...,1) and the family
{As—xikPX;¥}o<e<t i1s bounded in 51_/]2\[,0 forall j (7 =1,...,1), we obtain

Since the right hand side is bounded uniformly with respect to € from the hypothesis of

Aspexaidrul < C ( S (D Py + ||¢u||_N) -
Jy'=1

the proposition, we finally obtain by letting € tend to 0
!
[Py xadvu| < | D2 (D2 vy Prsul| + llull_y | -
Jy'=1
This shows that (D,)°x1¢1u € L*(R™). Let ¢ be any fixed element in C(9). Since

(to, ) is arbitrary point in Q, we see that (D,)’y19u € L*(R*!). This completes the
proof of Proposition 2.1. a
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3 The basic inequalities
From now on, we investigate the operator

P=0,+ f(t,x) Za]kthLk
7,k=1
specified in Theorem A. In view of Proposition 2.1, for the proof of Proposition 1.3 (see
§6), it suffices to show that P satisfies Conditions (I)~(V) in §2. We need many preliminary

inequalities. Let us sketch how they are used in the following sections.

1. We use inequalities (3.1), (3.2) and (3.3) in Lemma 3.1 below to show that P
satisfies Conditions (I), (II), (IV) and (V). More precisely, they are used to eval-
uate fLjxu (j = 1,...,n) which are principal terms of (D,)”' (PX)gu (B =
(0,3, 171 =1).

2. Inequalities (3.12) and (3.13) in Lemma 3.3 are used to have the inequality
Ixull < pl|Pxu|l + Cyunl|ul|-n  for every p, N > 0 and every x € Sy

(see Proposition 5.1 in §5). P satisfies Condition (I) due to this inequality.
3. We use the inequality (3.14) in Lemma 3.4 only for the proof of Lemma 3.5.

4. Inequality (3.16) in Lemma 3.5 is an a priori estimate with weight. Combining (3.12)
and (3.13) with (3.16), we can show that P satisfies Conditions (I), (IV) and (V).
More precisely, these inequalities are used to prove Proposition 4.1. (see Lemma 4.5

in §4.)

Let Q be a bounded domain in R%! and let m; be the projection from € to Ry
(m((t,z)) = t). If f does not depend on =z, let f(t) = f(t,z). (We set always
f(t) = f(t,z) in this case.) Then, from the hypothesis (1°-«), there exists at most one
point where f(¢) changes sign. Without loss of generality, we may suppose that the point
ist=0.

Definition

We say that (f,2) is of type (a-1) if f(¢,z) does not depend on z and if m(2) contains
t=0.

We say that (f, Q) is of type (a-2) if f(¢,z) does not depend on x and if m(£2) does not
contain ¢ = 0.

We say that (f, () is of type (8) if f depends on x.

We denote by (-, -) the ordinary scalar product on L?(R*).
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Lemma 3.1 (i) If (f,Q) is of type (a-1), for any K CC Q and any p > 3/4, there
exists a constant C' depending only on (K, p) such that

(3.1) Z PP Lyull? < C{|Re (Pu, (sgnt)] £~ u) | + [lul*}

for allu € CF(K).

(ii)  If (f, Q) is of type (a-2) or of type (B), for any K CC Q, there exists a constant
C depending only on K such that

(3.2) anlHlf!”ZLju\f < C{Re (Pu,u)| + lulP}

for allu € C7°(K).

(i)  If (f,Q) is of type (a-2) or of type (), for any K CC Q, there exists a constant
C depending only on K such that

n d
(3.3) Y I/ Lyul* < © {\Re (P, fu)l + 32 1 @e el + | ful® + i((atnu,u)\}

for allu € C7(K).

Remark. In (i), the lower bound 3/4 of the exponent p of |f| can not be replaced
by smaller one in general. This is because we need for the proof of Lemma 3.1 the estimate
Re(Oyu, (sgnt)|f?~tu) < C||ul|®. If2p—1 < 1/2, then (sgnt)|f|>~! is not of class C*(R)
in general even if (df /dt)(0) = 0. For example, if we take

1) = { (sgnt) <1 + sin %) e T , fort =0,

0, fort=0,

then (sgnt)|f(t)|*/? ¢ C*(R), because |f(t)|'/? is not differentiable at t = 1/ (3 + 4I) for
every | € Z. Since the set {1/ (3 +4l)},., accumulates at the origin, (sgnt)|f(¢)[*/? ¢
C'(m,(Q)) for any Q satisfying 0 € 7,(Q).

On the other hand, the exponent 1/2 in (ii) can not be replaced by smaller one. In (iii),
the second, the third and the forth terms on the right hand side should not be replaced
by ||u||*. The reason will be seen in §4. In the following sections, we study the case where
the exponent p is smaller than 1. This is because, as is mentioned in the Introduction,
the smaller p, the better (3.1).

Proof of Lemma 3.1.  Let us begin with (i). We define E(u) to be
(3.4) E(u) = — / (sgn ) [£(1)[* 0, (|uf*) dt da.
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Then we can rewrite Re(Pu, (sgnt)|f[*~1u) as follows.
Re (Pu, (sgn t)|f|2p—1u)

= Re (atu7 (Sgn t)‘f‘Qp_1u> + Re Z (‘f‘ZpajijLku7u)

7,k=1

- %/(sgnt)|f|2p—18t (Jul?) dt do

+ Re Z <|f|2pajkLkU, Lju) + Re Z <|f|2” [ajk, L] Lku,u> ,

7,k=1 7,k=1

where L7 is the formal adjoint of L;. Furthermore, we have
Re (Pu, (sgnt)|f[*~'u)

= —Re Z (|f|2pajkLku, LJU) + Re Z (|f|2pajkLku7 (LJ + L;)u)

k=1 jk=1

<|f|2p [ajk, L] Lku,u> - <—; /(sgnt)|f|2p_18t|u|2dtdm)

n

<|f|2p {“J’k + akﬂ} L, LJ’“) +Re Y (I/ajLiu, (L + L})u)

J,k=1

+ Re Zn_: <|f| [ajk, L ]Lw,u) — —E(u).

Since L;+ L} reduces to a multiplication by a smooth function, we have by using Condition

(2°) and Schwarz’ inequality
n 1
K) S Lyl + 5 B
=1
[Re (Pu, (sgn O )| + 2 3 1ALyl + Coep
=1

where ¢ is any positive constant, C;  , is a constant depending only on (¢, K, p) and §(K)

is the number introduced in Condition (2°). Taking ¢ = §(K')/4, we have
1
(35) o Z 1P Lyu* + E ) < |Re (Pu, (sgn t)] 1227 ) | + Ccp |

Next, we introduce the following condition for E(u).

(F) E(u) can be represented as E(u) = Ey(u) + Ey(u), where Ej(u) > 0 and |Ey(u)| <
Cle|lul|? for any u € CF(K). (C) depends only on K)

If (F) is satisfied, it follows from (3.5) that

K)ilrm%juu? < TOE) S NFPLulP + 5 (Bw) — Ba(w)

7=1
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< ‘Re (Pu, (sgnt)]f|2p*1u)‘ +Ck,p HUH2 — %E2(u)
< ’Re (Pu, (sgnt)]f|2p—1u)‘ + (Ckp+ Ck/2) HUH2

This implies (3.1).
Now let us show that (F) is satisfied. The proof is divided into two cases where f’(0)

is equal to zero or not.

Casel [f'(0)=0
If (sgnt)|f(t)[?>~' € C'(m(Q)), then |E(u)| < Che|lul|? for all u € C{°(K) by integration
by parts. So (F) is satisfied if we set F1(u) = 0 and Es(u) = E(u). Therefore we have
only to show that (sgnt)|f(¢)|*~* € C*(m,(Q2)). In this case, f(0) = f/(0) = f”(0) = 0 by
the Taylor expansion. Since f(t) does not change sign except at ¢t = 0, |f(¢)| is smooth
except at t = 0. Hence |f(t)| belongs to C*(R). The next lemma allows us to prove that

(sgnt)| ()" € CH(m()).

Lemma 3.2 Let g(t) € C*(R) be a non-negative function. Then, g(t) belongs to
C'(R) for every A > 1/2.

Proof of Lemma 3.2.  Let Z, be the set of zeros of g(t). ¢(t)* is differentiable at
every point of R and

(3.6) “{aw} = { : s

Ag() g (t)  otherwise.

Therefore, we shall show that the derivative of g(¢)* is continuous at every point ¢y of Z,.
As is well-known, for non-negative C*-function g(t), there exist a neighborhood U of t,

and a constant C' such that

d :
(3.7) ﬁg(t)‘ < Cy/g(t) in U.
(cf. Lemma 1.7.1 in §7 of [28]) Consequently, we have

< Mgt 19 (0] < Cx g F i U,

d

—g(t

79()
which implies, together with (3.6), g(t)* € C*(R). 0

Now we apply this to g(t) = |f(¢)] and A = 2p — 1 > 1/2. Then we have |f(t)|*~! €
C'(R) and 4 {|f(¢)]*"'} — 0 as t — 0. Therefore, (sgnt)|f(t)|*~' € C'(R).

Case 2 f'(0)#0
In this case, set h(t) = f(t)/t for t # 0 and h(0) = f’(0). Then A(t) is non-negative and
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Ih(t)[21 € C'(R) by Lemma 3.2. So we have (sgnt)|f(£)>*"! € C(R\ {0}) N C(R).

We rewrite F(u) as follows.

E(u)=—1lim [ {(sent)|f[*"'} 0, (|uf*) dtda

=0 J|t|>e

by Lebesgue’s convergence theorem. Then we have

By = tm{ [ a0 ((san Ol uo) ) dede
+ [ (P e )+ (-2 u(=e.2)) de
= tim{2o = 1) [ R0 Pl ded
+ [ Gt o, (a(o) dtda}.

because |f(+e)| = O(e?*7!) and 2p — 1 > 1/2. Furthermore, since [t|**~2 is locally
integrable,

Blu) = (2p—1) [ ¥ 2|a@)> uldida + [(sen )|t |ul?o, {|p(t)* "} deda

(sgnt)|t|>710; {|h(t)|**~'} is bounded in 7;(K), so there exists a constant C%- such that
|Ha(u)| < Clllul]? for all u € C°(K). Moreover H;(u) is non-negative because the
integrand is non-negative and 2p — 1 > 1/2. So (F) is satisfied if we set E;(u) = H;(u),
FEs(u) = Ho(u). This completes the proof of (i).

Next we shall prove (ii). (The proof of (iii) is done in a similar way, so we omit
it.) Without loss of generality, we may suppose that f(t,z) is non-negative. We rewrite
Re(Pu,u) as follows:

Re (Pu,u)

n

= Re(Qu,u) +Re > (f(t,x)ajijLku,u>
k=1

Re i (f (t,z)ajpLyu, L u) +Re Y ([f(t,x)ajk,Lj] Lku,u)

,k=1 7,k=1

—Re Zn: (f (t,x)ajxLyu, L, u) + Re Z ( f(t, z)a;, Ly, (L; —|—L’;)u)

J.k=1 j,k=1
+Re Y ( f(t, x)aj, Lj] Lku,u)
7,k=1
and rewrite [f(¢, x)ai, L;] as

(3.8) {f(t, T)ajk, Lj} = f(t,2)bjko + Z b (Ox, f (L, ),
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where bjy; is a smooth function. Then we have

(3.9) Re (Pu,u)

f(t7 [L‘) {ajk; + akj} Liu, L]u> + Re zn: (f(t; ZL’)Cij;LkU7 (L] + L;)“)

7,k=1

I

|
N |
VR
VS

n n d
+ Re Z (f(t,x)L,w,%u) + Re Z Z ((&clf(t,x))Lku,%u) .
k= .

H

—
Il

i

Note that the forth term on the right hand side does not appear in the case where (f, )
is of type (a-2). Since f(t,z) does not change sign in K, we have

(3.10) Zdjmxlf t,x))? < C(K)f(t,z) on K.

(This is a generalization of (3.7) to (d + 1)-dimensional case. (see also [28].)) Then we

have

(3.11) zn:zd:” (04, f(t,2)) Lyu))® < C(K XH:H (t,z))2L, uH
j=1 j=1

=1
Since L; + L} reduces to a multiplication by a smooth function, combining (3.9) and

(3.10), using Condition (2°) and Schwarz’ inequality, we have

- 0(K) Z 1712 Lyl < [Re (Pu,u)| + Z 17172y + (. &) ful?,
j= j=

where ¢ is any positive constant, C'(K, ¢) is a constant depending only on (K, ¢) and §(K)

is the number introduced in Condition (2°). Taking ¢ = §(K')/4, we obtain (3.2). The

proof is completed. a

Lemma 3.3 (i) If (f,Q) is of type (a-1), for any K CC S, there exists a constant C
depending only on K such that

(3.12) lull* < C (|Re (Pu, tu)| + [[tul|*)  for allu € CF(K).

(i) If (f,Q) is of type (a-2) or (B), for any K CC Q and any a € R, there exists a

constant C' such that

(3.13)  |ul*<cC (\Re(Pu, (t = a)u)| + i it~ a)f(t,x)\l/QLjuHQ)

for allu € Cy(K), where C' depends only on K and the diameter of {a} U m(K).
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Proof of Lemma 3.3.  First, by means of (3.8), we rewrite Re (Pu, (t — a)u) as

Re (Pu, (t — a)u)
— —% |u|| — Re Z ( (t —a)f(t,z)a,Lyu, Lju>

7,k=1
n

+Re Y ((t —a)f(t,x)ajxLiu, (Lj + L;‘) u)
k=1

+ Re Z ([f(ta x)ajk, Li] Ly, (t — a)u)
k=1
= —— ||u|| — Re Z ( (t —a)f(t,z)a,Lyu, Lju>
7,k=1

n

+Re Y ((t — a)f(t,7) Lyu, ajp (L; + L)) u)

G k=1
FRe Y ((t = @) £(t, ) Lyu, bjrout) + Re DS ((t = @) (Du f(t, ) Lit, Byt -

Ji:k=1 k=1 1=1
In the case (i), we have by setting a = 0
;HUH2 6<K ZH|tf|1/2L H < |Re (Pu, tu) |+52H|tf|1/2L UH +C€KH|tf|1/2uH

due to tf(t) > 0. |tf(t)|*/?/t is bounded in 7, (K), so we obtain (3.12) if we set ¢ = §(K) /2.
In the case (ii), we have from (3.10)

33 it =)@t )L < OO 3 =) ) 1

=11l=1

where C(K ,a) is a constant depending only on K and the diameter of {a} U m(K).
Combining this inequality with the above equality, we have by Schwarz’ inequality

lul® < 2|Re(Pu, (t - a)u)| + ¢ [|ul?
n 2
+ O, a,0) Y I = a) (8, )] Ly
j=1
We finally obtain (3.13) by taking e = 1/2. O

We prepare a notation for the next lemma. Given a multi-index J = (ji,...,7) with
1>1,set J=(Jj1,...,j5i—1) and define vector fields R, inductively by
R = le (l = 1) , Ry = [Rj’ sz] (l 2 2)‘

For example,

Ry =14
R12 = [Rla LQ] - [L17 LZ]
R123 = [R127 LB] = HL17 LZ] ) L3] .
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The number [ is said to be the length of J and denoted by ||.J].

Lemma 3.4 (cf. Lemma 3.2 in Chapter 4 of [14]) For any K CC 2, any multi-index J,
there exists a constant C depending only on (K, J) such that

(3.14) H<ch>21"""1f"”R]uH2 < C(1PulP + [ulP)  for all u € CF(K).

Proof of Lemma 3.4. We proceed by induction with respect to the length [ of J.
When [ =1, we get (3.14) from (3.1) and (3.2). Now we assume that [ > 2 and write

J=0j1,- ), Jd =(J1,--,51-1). If we prove
‘2

= =TIy 7 2
so(znv@mF+WDa2 lﬂ”RwH+wwﬂ
j=1

(3.15) H(Dx)ZI'J”—lflJIRJU

for all u € C(K) and apply the induction hypothesis to .J, then (3.14) will follow from

(3.1) and (3.2). Set Ty = (D) """ 2fWIR, and we write

D gl = (P R (D PR )
= (LM Ryu Tyu) + ([, L] Ryu, Tyu)
— (RN Ly, Tyu) = ([0, Ry| Ly, Tyu)

Since {f“JH,le] , {f“JH,Rj] are rewritten as
[fIIJII’LjZ} = U, fMI and {fIIJII’RJ} = U,f,
where U; and U, are multiplications by functions of class C*°. Thus, we have
H<Dm>21u”_1f|JlR‘JuH2

= (ftt. o)V Ryu, Ty f L) + (R, [£L5,Ty] w) + (FVR ju, U Tyu)
— (fLyu TV R5u) — (FLju, [FVRS Ty w) — (FLju, UsTyu).

[fL’;-l, TJ} ; {f“jHR}, TJ:| and Ty belong to the symbol class SQlfllj”_l(Ri) with parameter
t, and they are bounded in SQlfllJ”_l(Ri) when ¢ runs over a compact set of R. Then,
using Lj, + Lj =0 and R;+ R% = 0 mod 5?,0, we have (3.15) by Schwarz’ inequality. O

Remark. If (f,Q) is of type (a-1) (resp. (a-2)), Lemma 3.4 holds even if we replace
ft, o)1 by [ £V (resp. | f(t)[17172), where p is a constant satisfying p > 3 /4.
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Lemma 3.5 (cf. Theorem 3.4 in Chapter 4 of [14]) For any K CC X, there exist a
positive integer% depending only on K and a constant C' depending only on K such that

512
(3.16) H<DI>2 f’“u‘ < C(1PulP + [ull?)  for all u € CF(K).

Proof of Lemma 3.5. From Condition (3°), we have the following:
For any K CC Q, there exist a positive integer k and functions b, (z), ¢;(z) € C®(K)
such that
O = > by(x)Rs(z,Dy) +¢(z) (I=1,....d).
I711<k

Then we write

217}; '

fFu |

= | D

o

2

2 d e ~
< C(Z (D)2 fF oy

=1

+ H(Dz>21k_lu

)

2 -
+ u2) (‘since 2% —1<0)

IN

C (Zd: ZN"<D$>21;_1fE<leRJ + Cl>u

=<k

< o8 5 Jiar i

=)<k

+ u) < C(IIPul® + [[ull*) (by (3.14) ).

The proof is finished. O

Remark. If (f,) is of type (a-1) (resp. (a-2)), Lemma 3.5 holds even if we replace
f(t, )% to | f(t)]P* (resp. |f(t)[¥/?), where p is a constant satisfying p > 3/4.
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4 The basic a priori estimate with weight

As is mentioned in the Introduction, we need an estimate for L; with weight for the proof
of Theorem A. In this section, we shall prove Proposition 4.1 below. Inequality (4.1)
there is an estimate for L; with the weight (£)"f. By making use of this proposition,
we will verify that P in question satisfies Conditions (IV) and (V) in §2. Furthermore,
we will prove Proposition 5.1 in the next section by using the corollary to Proposition
4.1. Proposition 5.1 will guarantees Condition (I) for P to hold. As is stated above,

Proposition 5.1 plays an important role in the proof of Theorem A.

Proposition 4.1  For any K CC €2, any N > 0 and any x € Sy, there exist a positive
number k = k(K) and a positive constant C = C(K, N, x) such that

(41) ZH S+ [0 el +ZH ) Onu el
< O (IPxall + Il + ull® ) for all w e CFF(K).
We have immediately the following corollary.

Corollary 4.2  For any K CC €2, any N > 0, any x € Sy and any p > 0, there exists
a constant C' = C(K, N, x, ) such that

(4.2) 3 I Lxul® + [ Fxall® < o (1Pxall? + Ixull?) + Cllul®y  for all u € CF(K).
j=1

Proof of Corollary 4.2. By interpolation inequality, we have for any \, M > 0
(4.3) Jol® < (D) 0l + O M) (D)™ o[ for all v € S(R™Y),

where x is the number specified in Proposition 4.1. Applying (4.3) to v = fL;xu and
M =2(N + 1), we have

I Lixul® < M(D.)" fLyxull” + C(K, Nox, A) [Jull -
Moreover, applying (4.3) to v = fyxu and M = 2N, we have
I xull® < MUDL)" Fxull” + CUE N, x, A) [lullZy
Combining above two inequalities and using (4.1), we obtain (4.2). O

The proof of Proposition 4.1 is done by dividing R?‘i? into two domains

{(t,2, ) | f(t o)) <1} and { (t,2,€): |f(t, 2)[(€)" > 1} with a suitable &’ > 0 and
evaluating the left hand side of (4.1) in each domain.
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Let ¢1 and ¢ be functions of class C* in R such that

suppgr C {[s| <2}, d1=1 on {|s| <1}
suppgs C {|s| > 1}, ¢2=1 on {|s| >2}
and
<51 + 52 =1on R.

And set X0 (t, 2, 8) = ¢; (f(t, x)<£>HI> (j=1,2), where £’ is a positive constant smaller
than 1. By the definition of gz~5j, we have

(44) (O <Ifta) <27 onsupp (9 eXiw ) (o] >0, 5=1,2),
Furthermore, in the case where (f, ) is of type (), we have

(4.5) 0 (8, 2) | + 37 |00, f (8, 2)" < C(K) f(t,x) on K

k=1

because f(t,x) does not change sign from (1°-3). In the case where (f,2) is of type (a-1)
or of type (a-2), X1, and X2, belongs to S?,Q(Ri) with parameter ¢ (see (4.4)) and they
remain bounded in S?’O(Ri) for every k' as t runs over a compact set of R;. On the
other hand, in the case where (f,) is of type (3), X1.»» and X2, belong to S} H,/Q(Rﬁ)
with parameter ¢ (see (4.4) and (4.5)) and they remain bounded in 57, /Q(Ri) for every
k' as t runs over a compact set of R;. In both cases, Y1, + X2, is identically equal
to 1 on R**!. If there is no confusion, we identify functions X1, X2, With operators

X1 (t,x, Dy), Xow (t, x, D,) respectively.

For the proof of Proposition 4.1, it suffices to show the following two lemmas.

Lemma 4.3  For any K CC Q, any N > 0, any x € Sy and any 0 < k' < 1, there

exist a positive number k1 = k1(k') and a positive constant C = C(K, N, x, k") such that

(4.6) ZH Y FL T + [(Da)™ x| + ZH ) (O )T x|
< ¢ (IPxul* + [lxul? + ||u|r_N) for all u € CF°(K),
where k1 depends only on k' and C' depends only on (K, N, x, K').

Lemma 4.4  For any K CC Q, any N > 0 and any x € Sy, there exist positive
numbers k' = Kk'(K) < 1, ke = ko(K) and a positive constant C = C(K, N, x) such that

(4.7) ZH Y FLRapxct]) + [ (D2)™ o xu| +ZH ) (O, )R x|
< C(IIPxul® + xull® + [[ul® y) ~ for allu € CF(K),

where (K, ky) depends only on K and C depends only on (K, N, x).
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Proof of Proposition 4.1.  Given (K, N, x), let ¥’ be the same as in Lemma 4.4
which depends only on K. Set k1 = k(') as in Lemma 4.3 and kg = k2(K) as in Lemma
4.4. Now we define k = min{ry, ko }. Since X1, + X2 1S equal to the identity operator,

we have

601" ] + (0.1 ] + |00 ]
< S0zt DT ) + [0 00

+[(D2) " f Rt + Z(H (@ )Xt + (D) (r )X HfXU\D
< C(K,N,x) (||qu|| + |lxu| + ||u||_N> ( by Lemma 4.3 and Lemma 4.4 ).

Proposition 4.1 is proved. We see that x depends only on K. O

In the following subsections, we shall prove these lemmas. The proofs of them are
done by reducing estimates for L; to inequalities in Lemma 3.1. So we will divide the

proofs into some steps according to stages and kinds of the reduction.

4.1 Proof of Lemma 4.3

We prove Lemma 4.3 in two cases where (f,€2) is of type (a-1) or (). The proof in the
case of type (a-2) is done in a similar way as in the case of type (a-1) (or is done by the
proof in the case of type (/3), because the case of type (a-2) is a special case of type (3)).
Let us begin with the case of type (a-1).

Case of type (a-1) :

Since 0., f(t) (kK =1,...,d) vanishes identically in this case, it suffices to show that
(4.8) ZH Y FLy R+ (Do) F x|
< C(K,N,x,r) (||qu||2 + xull® + ul® ) for all u € CF(K).
Since | f(t)[(¢)" <2 on SUpPpPX1,./, We have
@)™ <2 on suppX e,

where p’ is a positive number smaller than 1/4. Set k1, = p’k’, then we have
ZH e L)+ (D)™ f ] < 227 (Z [P L)+ 1417 x| )
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Setting p =1 —p’ (> 3/4) and using Lemma 3.1 (3.1), we have

(19) S0 eyl + [0 oo
< C(K,p, N.x) (IPxull® + [ull” + [lul ) -

By using an asymptotic expansion formula, (D,)™ f[L;, X1,~] is an element of S?}O(Rﬁ)
with parameter ¢ and remains bounded in S?,o(Ri) when ¢ runs over a compact set of R.

Thus, we have

iu ) FL il

IA
NE

(D)™ f 1w Lixu]| + i\)wm (L, Xuw] x| + C(K, N, X) ull_y

<.
Il
-

IA
M=

[(D2)™ £ Lixul| + CUS, p.x) el + OO, N x) |y

.
Il
—

Combining this inequality with (4.9), we obtain (4.8). And hence, Lemma 4.3 is proved
in the case of type (a-1).

Case of type (3) :

The multiplication by f can be regarded as an element of | /2(Ri) on the support
of X1 (t,z,§). Moreover, the multiplication by 0,, f or by 0;f can be regarded as an

element of & :,/ //QQ(R;[) By making use of the fact above, we prove Lemma 4.3 in the case
of type (3).

Let k be a positive number satisfying 0 < k < k’/4. To prove Lemma 4.3, it suffices

to show the following two inequalities:

(4.10) ZH fLJXM/XuH < C(K, N, x, 5, 8) (I1Pxull + Ieull® + ull? 5 )

(411) (D) f x| +ZH ) (Or x|
< C(K, N, K, ) (pruu + xull® + el y ) -

Let us begin with (4.11). Since (D,)"fX1» € ST, ,’““/Q(R;,l) and (D.)"(0z, f) X140 €
Sfm,“/Z/Q(Rd) (k=1,...,d) with parameter ¢, they remain bounded in 87 ,(R;}) as t
runs over a compact set of R. So they are bounded in L?*(K). Thus, the left hand side of

(4.11) does not exceed C(K, N, x, k, &') || xu||*. This yields (4.11).

Next, we shall prove (4.10). The proof is divided into four steps.
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First step :
Applying (3.3) to (D,)"X1 . xu for u, we have

(4.12) ZHfL 2 |
< (N0 ([Re(PUD) T, D) )| + f:l\(amkf><0m>*’~>a,mu2
k=1
[ (@ YD) T, (Do) )| + [l ).

Since [fL;, (Dy)"] X1,4 € Sfm,ﬂ/z/Q(Rd) C SRH%(Ri) due to k < K'/4, the left hand side of

(4.12) is estimated from below as follows.

(4.13) ZHfL )T
: EHMWW[ij,<Dx>mxu\f
> giu " FLi e —zu FLy (D2 Ko
- ;i\\ ) FLinerxal|” = OO i) Il

Since (X1.4)" (D)™ (04 f){ D) X100 € sz,/';/Q(Rd) and (4.11) holds, the second and third
terms on the right hand side of (4.12) are evaluated as

(414> zi:H xkf Xl K/XuH + ’( at >Hil,n’xua <Dx>ﬁil,m’xu)’

S C(K R, H)HXUH + ‘((il,n’)* <Dx>ﬁ(6tf)<Dx>nil,n’Xu7 XUJ)‘
< C'(K kR [l

Combining (4.12) with (4.13) and (4.14), we obtain

(119) 3D L

< C(K, N, x5, 1) ([Re(PUDL) "Rt F{D2) St | + xull + [[ull? ) -
Second step :
By means of (4.15), it suffices for the proof of (4.10) to show that

“Forany K CC Q,any N > 0, any ' (0 <k’ < 1), any k (0 < K < k’'/4) and any p > 0,
there exists a constant C' = C(K, N, x, k, ', pt) such that
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(4.16) | Re(P(Da)"Xawxu, F(D2)"Twxu) |
< WSO Ll + € (1Pl + Il + ul? )
j=1
for all w € CP(K).”

Indeed, choosing a p sufficiently small, we have (4.10) from (4.16) above. To obtain (4.16),

we rewrite P(D,) X1, as

P(D)" 1w = (Do) X1 P + [PAD2) S
= (Da)"SuwP + [PAD)" | X1 + (D) [P, R

So the left hand side of (4.16) is evaluated as
| Re(P(Da)" X1 xtt, F(Da) X1 x0) |

< [(Pxw, (Raw)™ (D) (D) S xu)|
+ ‘([P7 <Dx>ﬁ} )zl,n’X'L% f<Dx>n>z1,n’Xu>) + ‘((Dacy{ [P7 )?1,»4})(% f(Da:>K>z1,n’Xu>’ .

Since (X10)" (Da)*f(Da) X1 € 87575 (RL), we have
) R'e(P<D:L‘>K5€1,N’XUa f<Dx>KX1,H’XU> ‘

S ‘([P; <Dx>n} le,n’xua f<Dx>Hil,/<’Xu>‘ + ‘<<DI>H[P; %,n/}X% f<Dx>H21,n’Xu)‘
+ Ok, ) (1Pl + yull)

Therefore, it suffices for the proof of (4.16) to show that the first and second terms on
the right hand side of the above inequality do not exceed the right hand side of (4.16).

So we shall prove the following two inequalities:
(4.17) ([P AD2) | R, (D) X x|
< w0 Lo
]:r C(K, N, x, 5, 1, ) (|1 Pxul® + [Ixul® + [Jul® 5 )
(4.18) (D) [P, R | xtt, (D) X o) |
< C(K N, x5 &) (1Pl + el + ull? ) -

The form of [P, <Dx>”} is similar to one of [P, Xl,,{/} (see (4.19) and (4.20) below), but
(4.17) and (4.18) are treated in a different way. This is because N, in (4.19) and M
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in (4.20) belong to a different class of operators. (4.17) and (4.18) will be proved in the

Final step below and in the next step respectively.

Third step :
In this step, we prove (4.18). First, [P, X1 is represented as follows.
n n d
(4.19) [R Xm/} = > NjofLij+ > > Njk(0r, f)Lj + Nog,
j=1 j=1k=1

where N;; € Si’!,Q/Q(R;’) (7€{0,...,n}, ke€{0,...,d}). So the left hand side of (4.18)

is evaluated as follows.

({D2)" [P X ]xu F(D2) "X x|

= Z)( "NjofLyxu, f(D )Kil,nfxu)‘

j=1

n d
30 3| (D2) N0 F) Ly, £ (D) )|

Jj=lk=1
+ (D) Nooxu, £ (D) T

Since N (D.)" f(Dy)"X1n € Sf'l,/';/Q(Rd) C 87 5(RY) due to & < #'/4, we have by

Schwarz’ inequality
(D) [P Xase s D2 S|

n n d
< CO(K,N,x kK (Z 1F Lixull® + 32 37 1@, ) Lixeul” + [lxul + ||UH2—N) :
7=1

j=1k=1

Combining (4.5), ( (3.3) and this inequality, we obtain (4.18).

Final step :
In this step, we shall prove (4.17). We rewrite [P, (D,)"] as follows.

n n d
(4.20) [P, <Dx)“] = ZMj7oij+ZZ k(O [)Lj + Moy,
=1 j=1k=1

where M;;, € Sto(R2) (j € {0,....n}, k € {0,...,d} ). Therefore (4.17) follows from

the following two inequalities:
(4.21) zi: ‘(Mj,oijil,n'XU, f<Dx>K21,n'XU>‘ + ‘(MO,OXVI,H/XU7 f(Dx>Hil,n/XU>‘

< YDA L e+ KN x ) (1Pl + Il + ol )
j=1
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(4.22) iz\(M]kaxk F)LiXxus £{D) Xawxu)
j=1k=1
< Y D L el + ol N x ) (1Pl + Il + )
Jj=1

First, let us prove (4.21). Since M;, € Sf,O(RZ) and f(Dy)" X100 € ST ,’*/2(Rf£) C
83 /Q(Ri), we have by Schwarz’ inequality

Zn: ‘(Mj,oijil,n'XUa f<Dx>“>21,fou)\ + ‘(Mo,oil,n’X% f<Dx>R>21,n'XU>‘

7=1
< 1P v+ OO N ) (Pl + T,

which implies (4.21).

Next, we prove (4.22). We rewrite (M, (0u, f)LiX1,0 X0, [(Dx)"X1,:x0) as follows.

(Mj,k(aiﬂk f)Ljil K XU, f<Dx>K>ZLH’XU>

= (f k(ﬁxkf> ]XLKIXU/7 <Dx>’i>21,m’xu>

= (X5 (D) My (O ) F Ly X w1ty x) + ([, My ] (D ) LK xtts (D) "R wrxn)
The expansion formula of the symbol yields L}(0,, f) [f, Mjk]” (Do) X100 € STZT/EI/Q(R:%).
Moreover, we see that X . (Da)"M;(0, f) € 5125,/52/2(Rd) C 57 p(RY) and Y10 €
Sg,{/ /2(Rz). Thus, by Schwarz’ inequality, we obtain

n d
Z Z ’(Mﬁk’(al‘kf)ij(vl,ﬂ’XUa f<Dx>K§(v1,H/XU>‘

j=1k=1
n . N 9
< w Y (DY FLiTawxu| + CUC N Xm0 (Il + [l )
=1
which implies (4.22). So (4.17) holds and hence (4.16) holds. Therefore, (4.10) is proved.
Now the proof of Lemma 4.3 is completed. a

4.2 Proof of Lemma 4.4

Since f does not vanish on the support of X2, (¢,2,§), P does not degenerate on the
support of Xa . (t,z,£). By making use of the above fact, we get a subelliptic estimate
(4.23) in Lemma 4.5 below. We prove Lemma 4.4 by using this estimate.

Lemma 4.5 For any K CC Q, any N > 0, any x € Sy and any ' satisfying 0 <
K < 2'7F/(k +1), there exists a positive constant C = C(K, N, x, k') such that

(423) (Do) Rawrxt] < € (IPxul® + Ihxull® + ul®y)  for all u € CF (),
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where C' depends only on (K, N, x, k") and k is as in Lemma 3.5.

Proof of Lemma 4.5. First, we consider the operator f_’;;>22ﬁ/<Dx>721—k. Since f
does not vanish on the support of Xz ./, f _’I;Xlﬁ/ ( Dx)721_k is a pseudo-differential operator

with the symbol f_;<5>,21_k>22ﬁ/ (t,z,&) which belongs to Sf”“,/gl k(Rd) due to (4.4). Set

21k k

Ry = (D2)" Yo — (Da) F ™ o (D)2 2D

By an asymptotic expansion of the symbol, R, € Sf;}%nl_l(Ri) - Sloﬁ,/Q(Ri) due to
0 <K <2°%/(k+1). Thus,

<Dx)”,>227H/XuH is evaluated as follows.

21k

(D0 S]] < | (D2 f F D)™ D2
+C(K, N, &) (lxul| + [lull_y)

N | f"5<Dz>“qu + Il + )
0t N (02" v + [ 75 0"

+ el + flll_y ).

IA

IA

Since [fz, <Dx)21k} € S?’O(Ri), combining this inequality with (3.16), we obtain (4.23).
O

Lemma 4.5 guarantees that second and third terms on the left hand side in (4.7)
does not exceed C(K, N, x) <||P)<u||2 + |Ixull* + ||u||2_N) if we choose a k2 so small that

Ko < K.

Proof of Lemma 4.4. Given K cC Q, let k be as in Lemma 3.5 and «’ a positive
number satisfying 0 < &' < 275 /(k +1). Set kg = K’/4. We treat the first term on the
left hand side in (4.7). It suffices to show the following inequality:

(4.24) ZH ) FLySawxu|” < COCN ) (IPxall? + Il + [lull® )
In what follows, we prove this inequality. The proof is divided into three steps.

First step :
In the case of type (a-1), we apply (3.1) with p =1 to (D)™ X2 xu for u. In the case of
type (a-2) or of type (), we apply (3.3) to (3.3) (D)™ Xaxu for u. Then, we have

ZHfL o) Ko
< C(K,N,x) (]Re(P(Dx>“2>zz,ﬁfxu,f<D> 2 Rowxt) | + (D) Ko xu]| + [lul2 N)
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In the same way as in the proof of Lemma 4.3 for type (), we have
(4.25) ZHfL "25,, n,qu

< CEN, ><>( [Re (Pxut, T, £ (D2) ™ Yo
#|([PAD Rawx FD2) Rz

+ ‘((nyfz [P7 i?,n’}xua f<Dx>K2>z2,ﬁ’Xu>‘ + H<Da:>ﬂ222,m’XuH2 + ||u||2_N)

Since [fLj,(D,)™] € $13(RY), the left hand side of (4.25) is estimated from below as

follows.
(4.26) ZHfL " Zawxt|

iH sl - DD R

’ 2
Since [|(D,)™ Yo xul]” < H(D;Q” )ZZMXUH due to kg < K/, combining (4.25) with (4.26),

we have by Lemma 4.5

420 S e < O N0 (Pl + el +

+|([P D2y Rowerxu, F(D) R )|
(021" [P T FDY* ) ).

In view of (4.19) and (4.20) , [P, (D.)"*] X2, (Dz)™ [P, X1.+] are rewritten as follows:

n n d
(4.28) [P (Do) |Row = > Mjof LiXow + 3. . Mjn(0n, f)LiXow + MooXaw,
j=1

j=1k=1

where M;; € St3(R2) (7 €{0,...,n}, k€ {0,...,d}).
n n d
(4.29) [R Xz,n'} = Y NjofL;+> Z 5k (O, f)Lj + No,
=1 =1 k=1
In the case of type (a-1), N;o € S?jO(Rz) for j € {1,...,n} and Ny € S%(Rﬁ). In the

case of type (a-2) or of type (), N;i € Sil,%(Ri) for (4,k) € {0,...,n} x{0,...,d}.

More precisely, Ny in the case of type (a-1) is represented as

(430) N070 = (atxv27,€/>(t, Dx> + ]’\7070 where ﬁo’o € S?,O(RZ)
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By means of (4.27), (4.28) and (4.29), it suffices to show the following two inequalities for
the proof of (4.24):

(4.31) 3 (Mj0f LiXewxu, f{Da)"™ Xauwxu)|

j=1

n d
+ Z Z ‘( gk axkf X2,k X Us f<Dx>K2X2,ﬁ’XU>‘

j=1k=1

* ’(Mo,oiz,nfxua f<Dx>sz,n/xu)‘

MZH o) FL x|

+ Co (KN, x, ) ([Pl + ol + ull” ) -

(4.32) zn: (D)™ Njo fLixu, f{D2)"™Xo x|

j=1

Yy (D)™ Ny (O, ) Lixu, f(Da) Xt

j=1k=1
+ ‘ (<Dx>R2N0,0XU, f<Da:>H2>22,n'X“)‘
< Co(K, N x) (I1Pxull® + xull” + [lull” ) -
Second step :

In this step, we prove (4.32). First, each term in the first and second sums on the left

hand side of (4.32) is rewritten as follows.

(<Dm>m2 0/ Ljxu, f<Dx>m>22,n’Xu) = (ijxu, N;,O<Dm>m2f<D9:>m%2,n’Xu)7
(<Dx>ﬁ2 j,k(axkf)Lqu7 f<Dx>R2>Z2,n’Xu) = ((axkf)Lqu7 N;k<D:U>H2f<D:v>n2>z2,n’Xu>'

Since Ny (D)™ f(D,)™ € Sf:n,/Q(Ri) for (j,k) # (0,0), by Schwarz’ inequality, the left
hand side of (4.32) does not exceed

(4.3 0 N3 7l £ O Ll
j=1k=1

(D) K| + | (D)™ Nooxu, f<Dx>*””2>z2,mxu)D'

In the case of type (a-1), from (3.1) with p = 1, (4.33) does not exceed

CO, N ) (I1Pxul + lal” + . + | (D2 Nooxu, £(D2)*Tawxcu) )
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In the case of type (a-2) or of (), the same estimate holds from (3.2), (3.3) and (3.11).

The remaining problem is to evaluate |((D.)™ Nooxu, f{D:)**Xaoxu)|. This is di-

vided into two cases. Suppose that (f,€2) is of type (a-2) or (). Remembering Nyo €
Silg/Q/Q(Ri), we have Ngo(D,)™ f(Dy)™ € Sﬁ’n,/Q(Ri) by ko = k’/4. Thus, we have

(4.34) | ({D2)™* Nooxu, F(D2)*Xowxu)| < | (X, Noo(Da)™ F(D2)"* Roxu)|
C) (IhulP + | (D) Tawrca)

Suppose that (f,€) is of type (a-1). Also in this case, (4.34) holds. This is proved in the
following way. We have from (4.30)

IN

(D)™ Nogxu, F(Da)*Xoxu)| < [({D2)™ (OXaw) (£ Da)xtt, F{Da)™ Ko x|
| (X, Ng o (D)™ F(D2)"™* Xa o xt) |

|(f (Oa) (5, Da)xu, (D) Rowxu)|
+ | (s Noo(D2)™ (D)™ o xu) |

IA

(The multiplication by f commutes with (D)™ in this case.) Since N&O(Dﬁ)m f(D)™ €

STR(RY) C 87 (RY), the second term on the right hand side of the above inequality is
evaluated as

| (s N o (D)™ D)™ X o) | < C(K) (qulf + H<Dx>“'>22,ﬁfqu2) :

Next, we treat the first term. The symbol of f (0:X2.x) (t, D,.) is equal to (@f(t))f(t)(@“l
o (F(1)(€)"). Since |f(£)] ()" < 2 on the support of ¢} (f()(€)"), f (OeXaw) (£, Ds)
belongs to the operator class S?,o(Ri) and remains bounded when ¢ runs over a compact
set of R. So the first term is evaluated as

‘(f (&tiQ,/{’) (tv Dx)Xuv <D5E>2){2X2,I€/Xu)‘ S C(K> (HXUH2 + H<Da:>ﬁ/i2,n’qu2> .

Therefore, (4.34) holds also in this case.
Applying Lemma 4.5 to (4.34), we obtain (4.32) in both cases.

Final step :

We prove (4.31). First, we evaluate the first and third terms on the left hand side of
(4.31). Since M;o € S7%3(R2) C S7o(RE), we have by Schwarz’ inequality

(4.35)

) ’(Mj,oijﬁ,H'XU» f(D:c>m>z2,H'XU>’ + ’(Mo,oiz,nfxua f<Dx>K2>22,N’XU>)
=1

<

n

< 1w Do) Ly + CU ) (Do) Kool

=1
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n K _ 2
< Y [(Da) = FLRa x|+ CUC N, X ) (1Pxull + eu® + [lull® )
j=1
( by Lemma 4.5 ).

Next, we evaluate the second term on the left hand side of (4.31).
We rewrite (M (0z, f)LjXow XU, f{D2)™ Xa,mxu) as follows.

(Mj7k(axk f)LjXVZ,H’Xua f(DCC>K25€2,H/XU’>
= (Mj,k(axkf ) LiXow XU, <DI>H2§Z2,;~;’XU)
+ (Xawxtt, L3 (a, £) [f, Mya]" (D2)"Rawrxu)

Since M;x(0y, f) € S13(R2) and L0, f) [, My i)™ (D)™ € Sf’O(RZ), the second term
on the left hand side of (4.31) is evaluated by Schwarz’ inequality as

n d
(4.36) S (MO )Ly Xz xtt, (D)™ Koo xt)|
j=1k=1

< YD LR + O ) [(D2) R

Jj=1

By using Lemma 4.5, (4.35) and (4.36) yield (4.31). And hence (4.24) holds. The proof
of Lemma 4.4 is finished. O

50



5 A priori estimate without weight

In this section, we shall prove Proposition 5.1 below. Inequality (5.1) there is an improve-
ment of (2.1) in Condition (I). Obviously (5.1) guarantees Condition (I) for P to hold.
We need the arbitrariness of u to verify Conditions (II) and (V). (see Proposition 6.1 in
§6.) Moreover, (5.1) allows us to neglect ||xul|| in the course of estimation in the following

sections.

Proposition 5.1  For any open set K CC R*™, any N > 0, any x € Sy and any
p > 0, there exists a constant C = C(K, N, x, ) such that

(5.1) Ixull < pllPxull + Cllull_y  for all u € CF°(K).

Proof of Proposition 5.1.  For every subset M in an Euclidian space, M denotes
the closure of M. For any K CC R™, there exist a bounded open interval I of R, and
a bounded open set U of R? such that K CC I x U. There are two cases according as
I and U can be or cannot chosen so that (f, I x U) is of type (a-2) or of type (5). We
prove Proposition 5.1 by a partition of unity of I x U. First, suppose that (f,I x U) is
of type (a-2) or of type (3). Without loss of generality, we may suppose that f(¢,x)
is non-negative on I x U.

Let us begin with the construction of a partition of I. A partition of U will be
constructed later. For any y € U and any € > 0, we can find families of open intervals

{I,(y,¢) (J]V:(Zl"’s), {J,(y, 6)}(];[:(?1”5)_1 C R satisfying the following conditions:

(B1) N(y,e) is finite for every y € U and every ¢ > 0.
(B2) T C (U0 1,(5.€) U (U™ Ty(.2)).

(B3) I1(y,¢) contains the left end point of T and Iy(,.)(y,€) contains the right end point
of I.

(B4) I,(y.e) N1y(y,e) = 0 and Jp(y,e) N Jy(y.e) =D if p # q.
(B5) I,(y,e) N Jy(y,e) # 0 and I,41(y,e) N J,(y,e) # O for any q.
(B6) |1,(y,e)| < ¢ for any g, where |I,(y, ¢)| is the length of I,.
(B7) |Jy(y,€)| < g/2 for any gq.

(B8) f(t,y) > 0in Jy(y,e) for any gq.
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Indeed, we construct them in the following way.

Given y € U, let I; be any open interval of length € containing the left end point of 1.
If f(t,y) vanishes at the right end point of I}, then we take a smaller one such that f(¢, )
does not vanish at the right end point of I; and |I;| > /2. This is possible because, by
the hypothesis (1°), there is no non-empty interval on which f(¢,y) vanishes identically,
so the set {t € Ry; f(t,y) > 0} is dense. Let ¢; be the right end point of I; and we choose
an open interval J; such that ¢, € Jy, f(¢t,y) > 0in J; and |J;| < €/2. (Note that the set
{t € Ry; f(t,y) > 0} isopen.) Let s; be the right end point of J;. Obviously, t; < s; and
|s1 —t1] < &/2. Next we choose a point ty € (t; +¢, 51 +¢) satisfying f(t2,y) > 0. This is
also possible by hypothesis (1°). Set Iy = (t3 — ¢, t2), then |Iy| = &. Since t; < to —e < s1,
L NI =0and I,NJ; # 0. Moreover, t, — s; > £/2 because |s; — t;| < £/2. Then
we choose an open interval Jy such that ¢ty € Jo, f(t,y) > 0in Jy and |Jo| < £/2. Since
to — sy > ¢/2, J1 N Jy = (. Repeating these steps [ times for any positive integer I, we
have {I,},_1, {Jg}o—1, and set Io(y,e) = Iy, Jo(y,e) = Jy (¢ =1,...,1) which satisfy the
conditions (B4)-(B8). Since

3

ilfl z 5 +(=1e,

U 0 %)

l
U
q=1

let us choose [ so large that |I]|+& < (I=1)e+¢/2. Then I C (Ui, L,(y,€))U(U—y Jo(y, €)).
Let t* be the right end point of 1. Then, the set {q € {1,...,1} ;t* € I,(y,&) U J,(y,€)}
is non-empty. Let M (y,e) be the minimal element of this set. We choose N(y,¢) in the

following way:.
L. N(y,e) = M(y,e) if t* € In(ye)(y, )
2. N(y7€) = M(y7€) + Lif ¢~ € IM(y,E)+1(y7€)'

3. Ift" € Jue (v, €)\<IM(E) (y,€) U Ini(ey+1(y, 5)), then we take a new Iys(c)+1(y, €) such

that Ty (y,€) N Ingey+1 (Y5 €) = 0, Tnie) (¥, €) N Ingey+1 (5 €) # 0, [ Taaey+1(y,€)| = €
and t* € Injey41(y,€). We set N(y,e) = M(y,e) + 1.

And hence, {I,(y, 5)}2\;(%5), {J,(y, 5)}2\[:(%’6)_1 satisfy the conditions (B1)—(B3).

Next, let us construct a partition of U. f(¢,y) does not vanish in J,(y,e) by (B8),
so there exists an open cube @), , of center y such that f(¢,z) > 01in Jy(y,e) X Qg Let
l, e be the smallest length of sides of cubes Q,, (¢=1,...,N(y,e) —1). Let @, be the
open cube of R? of center y and of length of side I, ./2. We define the set Z i to be

Zri={(t,2) € K; f(t,x) =0}.
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Then, from (B2) and (B8),

N(y.e)
Zsr C U U I(y,€) X Qye.

yeU q=1
Since I,(y,€) X Qy.e is open and Zy x is compact, we have

J(e) N(yj.€)
Zf’K C U U Iq<yj7€) X Qyj@

j=1 g¢=1
where J(¢) is finite for every €. Let a;, be the middle point of J,_1(y;,¢) U I,(y;,¢) U
e e . .
Jy(y;, €) for every (4, q). The family {{Iq(yj, ) X Qyj,g}évz(?fj’ )} ,(1) obtained above satisfies
‘]:

the following four conditions:

(Q1) For any £ > 0 and any (j,q), we have

[t —ajq,l <e foranyte J_1(y;,e) Ul(y;,e)UJy(y;,¢€).

(Q2) f(t,x) > 0in Jy(y;,€) X Qy, for any € > 0 and any (j,q).

(Q3) f(t,x) >0 on K\{ UK, Uq:(yj 91 o(y;,€) % Qyjﬁ} for any € > 0.

J(e)

Now we construct a partition of unity on I xU subordinate to {{Iq (yj,€) % Qyws}(]]v:(?{j’s)} ot
]:

We choose a sequence of functions {¢; ,(t) (1]\72(11/]- e C°(R) such that

$1(t) = Lon Ii(y;,e) N1, ¢5u(t) € CF (Li(y;,€) U Ji(y;,€)),
Gjq(t) = 1 on Iy(y;, e),
$jq(t) € CF(Jg-1(yj,€) U Ly(y;,€) U Jg(ys.€)) (g=2,...,N(y;,e) = 1),
Ny e)(t) =1 on Ingy, o (y;,€) N1,
GiN(y;.e) (1) € CT7(In(y; )15 €) U In(y,.0) (Y5, €))
and 0 < ¢;,(t) <1 for every (j,q).

Let Q;, . be the open cube of center y and of length of side [, .. We see that Q,. CC Q; .
We choose a sequence of functions {qzﬁj(x)}jfl) C CP(RY) such that

¢j(x) =1on Qy,c, ¢j(z) € C(Qy,.) and 0<¢;(x) <1 (j=1....J())

Then we set

Spj,q(tvx) ¢JQ(t gb (:E) fOl"j € {17 . ,’J(g)}, qc {17"'7N(yj’5)}>

#(t.0) =Y. Y (pialtn)) + I(TH( (3att2)))

=1

) N( 2

<
Il
-

Il
—

<.

23



and
D=1 T (1- ().

q=
the support of d,p,, for every (j,¢). Since &(t,z)
s € C*(R™). We set

Note that f(¢,z) does not vanish

on t
does not vanish in R, so ( )

Gialt2) = gig(t0)(B(t,2)) 7 forj e {1 T} g€ {L.... N(y;.e))

and
~1/2

Vu(t,7) = O(t, 2)(D(t, 7))
We see that ¢, , € C° ((Jq—l(yjag) U Iy(yj,e) U Jy(yj,¢€)) X sz,e) and

y
Z )24+ (t,r)? =1 on R¥.

H MA

Moreover, supp® C R*™ \ Z; , so suppih, € R*™\ Z;

Now we start evaluating ||u||. Let €, be positive numbers which we shall choose later.

By using (3.13) in Lemma 3.3, ||u||? is estimated as follows.

J(g) N(yj,e)
lul* = 21 Zl .qull* + |wul?
J() N n
= 012 Z {)Re(P%qUa(t—aj,q)%qu)’+ZH|(t—aj,q)fll/QLk@/’j,quW}
k=1
+Hw*u\| :

where C} is independent of (e,0). By Schwarz’ inequality and (Q1), we have

J(e) N(yj.e)
> < Gy Y {6|!Pwmun + 25 sl +sZHrfr”2Lw]quH }+Hw*u|!

j=1 g¢=1
€ 5 5E)
< 20l +200 Y. 3 [IPsalul + 200 3 |
1 =
J(e) N (yJE)J -
+2C'1<SZ Z Hf1/2 Lkﬂ/’]q UH +Cl ||UH +H¢*UH

j=1 gq=1

Now we obtain

(52) ful® < 206 |Pul® +2C16R, .(u) +2C1e Y | £2 L] +2C1eRac(w)
k=1
+01—HuH VX
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where

Rle =

H MA

yz (P, ] and Ry (e z z 17 s

Let us evaluate each term of Ry .(u). We rewrite [P, z/JM] as

(u)-
[P, wj,q] = (8,52[13 q + f t xr (Z bj,k,q,aLk: + bj707q75>
k=1

1/2(81590](1)_5 _3/2(@ )‘Paq+ft33 <Zb]kq5Lk+b]0q5>

k=1

and rewrite 0,® as
J(e) N(yj.€)

0P =23 > ©iq(0ipsg) +2(0:P)

j=1 ¢=1
Then we have

ool sl

T MA

(5.3) Ric(u) =

Jj=1 ¢=1

J(e n o
- (Z > | 8tsoj,q>ull2+2Hkau||2+Hqu2+H¢“H)’
k=1

where C'(K, ¢) depends only on (K, ¢).
Next, we evaluate each term of Ry (u). Let v be a positive number which we choose
later. We define QNSL,,(t,:E) and gzzgﬁ,,(t, x) to be

Giw(t,w) = &5(f(t,2)/v) (5 =1,2),
where ggj is the function specified in §4. Obviously, 51’1, + (527,, = 1on R™ and |f(t,z)| <

2 on suppo,. So Hfl/2 [Li, V4] uH2 is evaluated as follows.
|72 gl o] < OO Gk g,0) || £72
< 20K Gk 9) (|20 + | 12020

CK, jokva,2) (vl + 2] )
)

J(€) N(yj,
lul> < 2018 Pul +20152Hf1/2LkuH +0Cy(K, ) Z Z [

)

IN

Thus, we obtain
(5.4) Ry.(u) < C(K,¢) (l/ || + H(Z)g,l,u
Combining (5.2) with (5.3) and (5.4), we have

5K, €) (Z £ Ly +||fu||)+504 o) | @l

+cl— lul® + vCs5(K €) |[ull® + Co(K, €) | dapu

4 e,
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where Cy(K,e) (I = 2,...,6) depends only on (K,¢). Applying (3.2) in Lemma 3.1 to

the second term on the right hand side, we have by Schwarz’ inequality

ll? < 28] Pull® + Coe [ PulP + 0Cs(K, ) (Z I L] +|rfuu)

g2 505
o, T vCs(K,e) | |Jul]® + Cs(K,e,6,v) S |lbul?,
B eyt

where C7 depends only on K, Cs(K,¢,0,v) depends only on (K, ¢,d,v) and I is the set

{@, G20, (Drpsg) (3 =1,...,J(e), q=1,...,N(y;,€)) }

Given p > 0, we choose ¢ so small that 2C6 < p?/8. Next, we choose a small € in such
a way that Cie?/(40) + 5Cre/4 < 1/4,Cre < u?/8. Moreover we choose v so small that
vC5(K,e) < 1/4. Then we have

Jull? < £ Pl + 204 .o (z 1 Ll +|rfu|\)+2cs<f<,a,5,u>z ol
Yel’

Given N > 0, applying this inequality to yu for u, we have

bl® < 2 Pxul? + 2660 () (z 1 Lol +||fxu||)

+205(K,¢,6,v) Y |[¥xull* + Co(K, N, x,&,6,v) |ull® x
Yel’

for all u € C7°(K), where Cy(K, N, x,¢,0,v) depends only on (K, N, x,e,0,v). Let X\ be
a positive number which we choose later. Applying Corollary 4.2 to the second term on

the right hand side, we have

2
+ QCg(K,éT,(s, V) Z |‘¢XU||2 + CIO(K7 N7X7€767 v, )‘) ”u”2—N7

el

where C1o(K, N, x,¢,0,v,A) depends only on (K, N, x,¢,d,v, A).

2
65) Il < (“—+2503<K,6>A) 1Pl + 20C4 (K, )\ [cul”

We evaluate 3¢ l¢hxul|>. Suppose that a smooth function 1 satisfies

(5.6) f(t,z) #0 on suppy.

By the hypothesis (3°), the Lie algebra generated by {0, {L;}%_,} is of dimension d+1 at
every point of R4, Therefore, by hypothesis (2°), P has a subelliptic estimate in some
neighborhood of the support of ¥, that is to say, there exist positive constants k = k(K)

and C' = C(K,v) such that
lull < © (|Pyul® + [¢ul?)  for all w € CF(K).
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By interpolation inequality [[v]|* < @ ||v||2 + C(N, 8) [[v]|” y, we have

0 C(K,v) | Pyull® + 0 C(K, ) |ul® + C(K, N, 0,9) [[ull*
0 Cy(K,0) || Pull® + 20 C(K, ) [|[P, ¢ ul”
+0 Co(K, ) [[ull® + C(K, N,0,9) |[ul|”
0 C1(K, ) | Pull® + 0 Cs(K, ) (I FLyull* + [|u]*)
+0 Co(K, ) [[ul® + C(K, N, 0,) |[ul|
0 Co(K, ) [|Pull* + 0 C5(K,v) [ul® + C(K, N, 0,v) [[ul|”
( by (3.3) in Lemma 3.1 ).

|

IN

IN

IN

IN

Applying this to yu for u, we obtain

(5.7) [oxul|® < 0 Cy(K,¥) || Pxul® + 6 Cs(K,¥) |[xull’
+ C(K,N,x,¢,0) |Jul|>y for all u € CF(K).

Each element of I" satisfies (5.6). Indeed, supp @ € R*™\ Z;x and suppy, ¢ R4\
Zs ke by (Q3), so @ and 1, satisfy (5.6). Since f(t,z) > v > 0 on suppqggw7 $Q7V also
satisfies (5.6). Since Oyp;q(t, x) = ¢;(x)0ip;4(t) and suppdig;, C Jo—1(y;, ) U Jy(y;,€),
supp(9epjg) C (Jg-1(yj,) U Jg(y;,€)) X Q;. .. So, by (Q2), Oypj4 satisfies (5.6) for every
(U, )-

Combining (5.5) with (5.7), we have

2
Ixul> < (% + 26C5(K, )\ + C11 (K, &, 6,v) 9) | Pl

+(26C5(K, €)X + C1a(K, ,6,) 0) [[xul® + Cus(K, N, x,, 6,2, 1, 0) ul®

where C11(K,¢,6,v) and C12(K,¢e,6,v) depend only on (K¢, d,v) and
Ci3(K, N, x,&,0,v,\,0) depends only on (K, N, x,¢,6,v, A, 0).

Finally, we choose A, 0 so small that 20C5(K,e)A+ C11 (K, e,6,v)0 + Cio(K,e,0,1v)0 <
min{?/4,1/4}. (Note that ¢, §, v have already been chosen.) Then we obtain

4
HXU“2 < p? ||qu||2 + 5 Ci3(K, N, x,g,0,v,\,0) Hu||2_N for all u € CP(K).

This completes the proof in the case where (f, I x U) is of type (a-2) or of type (5).

Next we prove (5.1) in the case where I and U satisfying K’ CC I x U can not be
chosen so that (f, x U) is of of type (a-2) or of type (5). Let (I,U) be a pair such
that K CC I x U. Then, I contains the origin and (f,I x U) is of type (a-1) by the
hypothesis (1°). So we write f(tf) = f(¢t,x). For any € > 0, we can find open intervals
Iy, I, Is, Jy, Jy satisfying (A1)—(A6) below.
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(A1) ICynJyninJiND.

(A2) I, contains the left end point of I, I; contains the origin and I, contains the right
end point of I.

(A3) I,NnI,=0,and JoNJ =0if p #q.

(A4) None of JyN Iy, J1 N 11, JoN I, Jy NIy is empty.
(A5) [JoN 11N Jy| < 2e

(A6) f(t) does not vanish in Jy U J;.

Such open intervals can be chosen in the same way as in the proof of the case of type
(a-2). We define Io, Iy, I by Iy = Iy U Jo, [y = JoU T, UJy, Iy = JyU I Then (f,1o x U)
and (f, I x U) are of type (a-2). We find functions g, p1, p2 € C°(R) satisfying

0, €CX(I,), w,=1onl, (¢=0,1,2), > pf=1onl.

Now we start evaluating ||xu||. Applying Lemma 3.3 (3.12) to ¢yu, we have

2
2 2
lull® = > llegul
q=0
< poul® + C1 (| Re(Pgru, toru) | + lltorull) + llpzull?,
where '} depends only on K. Substituting xu for u into this inequality, we have
eull® < lloxul® + Cr (| Re(Peryu, torxu) | + [[teixul’)
+ lpaxull® + C(K, N, x) [[ull -

Since (f, Iy x U)) and (f,]; X U) are of type (a-2), applying Proposition 5.1 to yoxu

and poyu for u, we have

Ixul* < 8 [1Peoxull® + Co(K, 8, N) [lpoxull”  + 8 [|Poaxul|* + Co(K, 8, N) [[paxull”
+C (‘ Re(nglxu, tgolxu> ‘ + Htgolqu2>

for any 6 > 0, where Cy(K,d, N) depends only on (K, suppgo,d, N) and Cy(K,d, N)

depends only on (K, suppys,d, N). Thus, from the condition (A5), we have by Schwarz’

inequality

2 2

C

Deul® < 63 I1Peqxul” + <4§ +01> ltorxull® + Cs [lull
q=0

IN

02 2
23 1Pyl + 427 (4 €1 ) el + 283 0wl + Gl
q=0
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where C3 depends only on (K, d, N, g, p2). Then, for any u > 0, we choose ¢ so small
that 2§ < p?/4. Next we take a small ¢ in such a way that 4¢? (C?/(40) + C;) < 1/2.

Then we have
2 M2 2 2 2 2
Ixull™ < = [1Pxul +40 Y 10w xull” + 2Cs [Jul|~ -
q=0

Finally, since f does not vanish on U;_, suppd,, by the condition (A6), we obtain (5.1)
by using (5.7) as in the proof of type (a-2). O
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6 The proof of Proposition 1.3

For the proof of Theorem A, it suffices to show that P satisfies Conditions (I)~(V) in §2
as is mentioned in §3. Since they are local conditions, we may assume, without loss of
generality, that coefficients of P are bounded as well as their derivatives of any order. We
assume always that the point where f(t) changes sign is t = 0 in the case where (f, ) is

of type (a-1).

6.1 Verification of Condition (I)

As is mentioned in §5, the inequality (5.1) in Proposition 5.1 is an improved version of
(2.1) in Condition (I). So Condition (I) is satisfied for P in question.

6.2 Verification of Condition (II)

In this subsection, we verify that P satisfies Condition (II). Let us remember that this is
the following:

“For any K CC Q , any = (0,7) € {0} x Z‘i (18] # 0), any u > 0, any N > 0 and
any y € 9y, there exists a constant Cy = Co(K, 3, 1, N, x) such that

61 (Do) PRyl <l Pxull + Collull_y  for all u € CF(K).”

To verify this, we will use Lemma 3.1 and Proposition 5.1.

By an asymptotic expansion of the symbol, we have Pgx — (Px)@ € $~ . Since
H 1Al ( — (Px)( )uH < C(K, B, N,x)||u|-n, it suffices to show the inequality
(6.1) Wlth (Px)(ﬁ) replaced by P x. Namely, we shall prove that
“For any K CC Q, any = (0,7) € {0} x Z‘i (18] # 0), any u > 0, any N > 0 and
any y € 9y, there exists a constant Cy = Co(K, 3, 1, N, x) such that

62) (D) Pl < pll Pxull + Coflull Ly for all u € CF(K).

The proof of (6.2) is divided into two cases |3| > 2 and || = 1. First, suppose that
|3| > 2. Since we can regard (DIYWP(@ as an element of S?/z,o on suppy, we have (6.2)
by Proposition 5.1.

Next we shall prove (6.2) in the case where || = 1. Let p(t,z, 7, &) be the symbol of
P and ZT](:E, €) the symbol of L;. Then p(t,z,7,&) is written as

aj,k(t?x) z;(.iﬁ,f) Eg(-f,f)

1

pt,z,7,8) = i+ f(t,x)

s

J

—i—f(t:r,"

a’jk E;( “ :C 6) Lk(a (CIZ’ 6)

1 la|=1

“TrM:
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The symbol of second order part of P ( principal symbol of Pgy) is written as follows:

n

(6.3) 02(Pigy) = f(t;2) D {amgg(t; ) Li,€) Li(x,€)

j,k=1
+aji(t, @) Lj ) (2, €) Li(w, €) + agi(t, 7) Lj(,€) L) (w,6) |
) S agelt,x) (e, €) (e, ©).
]k:l

Since pg)(t,x, 7,§) — 02(Pg))(t, , 7,§) is of class 5’170 and does not depend on 7, Pg) is

of the form

(6.4) Py =) MjosfL;+ ZZ 5.k,8 (O )L + Moo g,
j=1

j=1k=1
where M, 5 € Sllﬁo(RdH) and their symbols do not depend on 7. Note that M;; 3 =
0 (k> 1) if (f,Q) is of type (a-1) or of type (a-2). For each (5, k), (D,)” ' M, 5 belongs
to 5870, so they are bounded on L?(K) and their operator norms depend only on K.

2
Therefore, <Dx)_1P(5) XUH is evaluated as follows:

(Z L Lyl + [Ixull* + HUHQ_N)

j=1
for the case of type (a-1) or of type (a-2),

I Ljxul

INgE

[(D2) ™ Py < C(K. 5. N x) (

Il
i

J

n d
2 2 2
#3310l + +|\uuN)
j=1k=1

for the case of type (/).

By means of Proposition 5.1, it suffices to show that
“For any K CC Q, any g > 0, any N > 0 and any xy € %y, there exists a constant
C = C(K, u, N, x) such that

>N Lyl
j=1

for the case of type (a-1) or of type (a-2),

ZHfLJXuH +ZZH Oy f) Lyxul|”

j=1k=1

(6.5) i [|Pxull® + Clull2y =

for the case of type (3)

for all u € CP(K). ”
If (f,Q) is of type (a-2), then we have by Lemma 3.1 (3.2)

(6.6) zqujxuu < C(K ZH|f|1/2LJ><uH
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< C(K) (JRe (Pxu, xu)| + [Ixul®) + C(K, N x) Jull? -

If (f,€) is of type (), then we have by (3.11) and Lemma 3.1 (3.2)

(6.7) zi; 1/ Lxul)? +ZZH 0p f)Lyxul? < C(K H!f|1/2L]XuH

j=1k=1 Jj=

< C'(K) (IRe (Pxu, xu)| + [Ixull*) + C(K, N, x) [l -
If (f,9) is of type (a-1), then we have by Lemma 3.1 (3.1) with p =1
(6.8) I Lyxul® < NI xul

j=1 j=1
< () (IRe (Pxu, (sen ) flxw)| + Ixull) + CCE N, )l

Therefore, by Schwarz’ inequality, we have from (6.6), (6.7) and (6.8)

e [[Pxull* + C(e, K) |xull® + C(K, N, x) [[ull2
>N fLyxull®

j=1
for the case of type (a-1) or of type (a-2),

ZHfL xul|* +ZZH Oy f) Lyxull”

j=1k=1

v

for the case of type (3)

for any ¢, N > 0 and for all u € C°(K). Finally, given u > 0, we choose ¢ so small that
e < p?/2 and apply Proposition 5.1 to u/1/4C(e, K) in place of p, then we obtain (6.5).
The proof of (6.2) is finished.

6.3 Verification of Condition (IIT)

In this subsection, we verify that P satisfies Condition (III). Let us remember that this
is the following:

“For any K CC (), any o € Ziﬂ ,any N > 0 and any x, x' € 9y satisfying y CC x/,
there exists a constant C3 = C3(K, «, N, x, X') such that

(P @l < &5 (I1Pxull + [lull_y) ~ for all u € CF(K)."
To verify this, we shall use a left parametrix of P in the microlocal domain supp(1—ao(x)).

By an expansion formula, we divide (Px)(a) into two parts as follows.

(PX)(a) = P@y 4 Z Cﬁﬁp(ﬂ)x(v) mod $~°

Bty=a
¥#0

= J1+J2 mod %~ .
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Notice that, if @« = 0, only J; appears on the right hand side. We have to show two

inequalities
(6.9) lhull < Cu(K,a, N x) (1P ull + [l _y)
(6.10) 1aull < oK, o Nox X)) (IPXull + ull_y) -

First, let us begin with (6.10). We take y” € %y satisfying x” CC x. Then,

(6.11) X' ccxccy

(6.12) () =o()Ve(x)(1 - (X)) (v #0).

Moreover, since |£|? is equivalent to |7| on suppo(x)?), we write v as (71,v') and have
(613) ‘0'()()(7)(7-7 5)‘ < Cy<7_>—71 <€>—"Y \ < C'/y<§>_271_h ‘

By means of (1.4) in §1, P has a left parametrix ) in the microlocal domain supp(1—x"),
that is to say,

(6.14) (1—x"u=0-x")QPu+ Ru, Q€ 51_/12,07 Re 5.
Then, by using (6.12) and (6.14), we rewrite each term of J, applied to u as follows.

(6.15) POy, = p(ﬁ)X(”/)X/(l —x"u
= POYOINA - x")QPu+ Sgu  (, where Sz, € §7°)
= POXD(A = \)QPXu+ POXD [, (1 = X")QP)u + Sgyu
= POYOIQPYu + Sl u,

where S = POYD [\ (1 = x")QP] + Sg,. Since PPXW) [y, (1 — x")QP] is a smooth-
ing operator due to (6.11), so is Sj.. In view of (6.13), we see that PPONIQ € 8190 for
v # 0. Therefore,

| Jaull < 30 Coy [|POX|

Bty=a
70

Y. Coo | POXVQPY
Bty=a
¥#0

< CU(K a, N x) (IPxull + [l ) -

IN

[+ COK Ny ) lul

Thus, (6.10) is proved.
Next, we shall show (6.9). By the same way as in the preceding subsection, there
exists a constant C' = C(K, «) such that

|Pe| < c(lIPv) + Z IFLyoll + [v]])  for all v € CF(K).
j=1
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Applying this inequality to yu for v, we have by (6.5) and Proposition 5.1
6.16) [l < C(K,a, N, x) (I1Pxull + llul_y)  for all u € CF(K).

Notice that it is not Py’u but Pyxu which appears on the right hand side of (6.16). Since

X CC X/, ||Pxu|l is evaluated as

(6.17) IPxull = IPxxull = [xPx'u+[Px]xu
< [Pxull + [P, x] Xu

Thus, we shall prove that

[P x)xu]| < € (1Pxull + lull_y) -

We take Y € Sy satisfying ¥’ CC Y. Then we have y1) = x()¥(1 — x”) (v # 0). The

expansion formula yields

_ =DM ) N
[P, x] = > X Py mod Sy,

o<hl<a(n+2) T

By the same way as in the proof of (6.15), we have X P, = )((7)P(A,)QP>Z+§7 for v #£ 0,
where Q € Sl_/lz’o and gy € $7°. Since X(V)P(A,)Q € S?/zo for v # 0, we obtain

|+ ||u|r_N)

< C(K N, x) (IPYull + lull_y)  (by X' €C %)

[P, X)X
0<|y|<2(N+2

| < C(K,Nax)( > XPPyePYYu
)

Combining this inequality with (6.16) and (6.17), we have (6.9). This completes the
verification of Condition (III).

6.4 Verification of Condition (IV)

In this subsection, we shall verify that P satisfies Condition (IV). We will use Proposition
4.1 in §4. Let us remember that Condition (IV) is the following:

“ For any (tg,zo) € 2 and any neighborhood U of (ty, z¢), there exist ¢,¢ € C7°(U) such
that ¢(t,z) = 1 in a neighborhood of (ty,z¢), ¢ CC 1 and that the inequality

[(D2)"Pxou|
< 04(”<Dx>wpxuu + | Pxull + | Pxul| + ||u||_N) for all u € CF(K)

holds for any open set K CC €, any N > 0 and any x,Xx € Sy (x CC X'), where
Cy = Cy(K,N,x, X, ¢,v) is a constant depending on (K, N, x, X, ¢, ¥) and & is a positive

number smaller than 1 depending only on K.”
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Let ¢, € C(R™) be such that ¢ CC 1 and & be a positive number smaller than
1 which we choose later. Let x, X’ € $y be such that y CC x’. We rewrite (D,)"Px¢ as

(D2)"Pxé = (Do) " Px + (D2)" [P, ] x + (Da)" [x, 6] P + (D2)"[ P, [x, ¢]]
Since (D,)"[x. ¢] € 87,0 by (6.13) and [x, 6]P —[x, 9| PX' € 8~ by x CC ', we have
(618) |(D.)"Pxou| < CUK,N,x. X+, 6) (H 6Pl + [(D.)" [P, ] xu
+ IPXull + || (D) [P, T )] + ||u||_N).
As in the preceding subsection, we have by taking x” € Sy such that y” CC y
(D.)"[P, [x, @] = (D:)" [P, [x, 6] (1 = X")QPX' + R,

where ) € 517270 is a left parametrix of P in the microlocal domain supp(1 — x”) and
R € 7. Since (D,)" [P, [x,¢]] (1 —x")Q € Sf/_llo, we have

(6.19) (D) [P Ix ¢l u| < €0 Nx X, ) (IPX ull + Tull_y) -

Next, we rewrite [P, ¢| as

P.g] = 0,6+ MyfL; + Myf.

J=1

where M; € C°(R™™") (j =0,...,n). Then we have
[(D2)" [P ¢] xu
< o, 5,00 @ + St + ooy + il )
Combining (6.18) with (6.19) and this inequality, we have
[(DayPxou] < s N X, 0) (D2 6Pl + 1 Pxul

#pay @] + SO szl + ey s + )

If we choose a k smaller than the x in Proposition 4.1, we obtain by applying Proposition
4.1

(6.20) |(D)"Pxou| < Co(.N,x.\sr.9) (H 6Pyl + (D2} (8:6) x4
+ [Pl + 1Pl + Ly )

Now we shall evaluate ||(D,)"(9;¢)xul||. For any given point (tp, ) in 2 and any given
neighborhood U of (g, ), we choose ¢,1 € C°(U) in the following way.
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1.

If f(to, l’o) 7£ O,
we choose ¢, 1 such that suppy N { (t,z); f(t,z) =0} =0 and ¢ CC 9.

. If f(to,l’o) = O,

then we choose an open interval [ C R; containing ¢y and an open set V' C Rg
containing xy such that I x V.C U. We take ¢(t,z) € CyF (I x V) such that
f(t,z) # 0 on the support of dy1p) and ¥ = 1 in a neighborhood of (ty,zo). This
is possible because the set of points where f(t,zq) does not vanish is dense in R;
and {t; f(t,zo) # 0} is open. In fact, we choose open intervals Iy, Jy, J; such that
Jo\Io # 0, Jonly # 0, I\ Lo # 0, JiNly # 0, JoNJ, =0, JoULyUJy C I, f(t,z0) >
0in JyUJ; and tg € Iy. Since f(t,x¢) > 0 in Jy U J;, we choose an open cube Vj of
RY of center z contained in V such that f(¢,2) > 0in {JyU J;} x V. Let V; be
an open cube of R? of center x, whose length of side is a half of one of V. We set
Y(t,x) = 1 (t)e(x), where ¥y (t) € C(Jo U Iy U Jy) such that ¢, (t) =1 in Iy and
Po(x) € C°(Vp) such that ¢r(x) = 1 on Vi. Replacing U by Iy x Vi and repeating

this argument, we get a new 1 and so we choose again a ¢. Obviously, ¢ CC .

In either case, f(t,z) # 0 on suppdy¢. So P has a subelliptic estimate in some neighbor-

hood

of suppd; ¢, that is to say,

“ There exist positive constants 6 = §(K, suppd;¢) and C' = C(K, 0,¢) such that

||, < c(Hp(atqﬁ)XuH + H(@tqﬁ)qu) for all u € CF(K).”

We can set § = min{21_7‘5, 1/2} for example, where k is the number introduced in Lemma

3.51n

§3, so we may regard J as depending only on K. We have by choosing a x smaller

than § above

[(D2)" (@) xu
C . Nx 0) (@10 P + P01 x| + 1 @u)xad

IN

< G(K N o) (IPxall + X IF Ll + lxall)

=1

< Co(K, N, x,0) (1 Pxull + lxull) by Lemma 3.1).

By Proposition 5.1, we have

(6.21)

[(Da)" @ro)xu| < G505, N x, 0) (I1Pxull + Jull )

Combining (6.20) with this inequality, we obtain

(6.22)

|(D.)" Pxou

< O N o) ([ (D 0Pl + 1Pl + [Pl + )
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Since ¢ CC ¥, (Dy)"¢ = (Dy)"¢1p. Moreover (D,)"¢(Dy)~" € 57 . Therefore, Condition
(IV) holds from (6.22). Verification of Condition (IV) is finished.

Remark. The inequality (6.22) holds even if we replace ¢ by . That is to say, the
following inequality holds.

(6.23)  [(D2)" Pty
< CUEN x5 0) (D2 0P| + [ Pxall + 1Pl + ull_y )

for all u € CF°(K).

This is because it is sufficient for inequality (6.23) to hold that f(¢,z) # 0 on the support
of Op1p. The inequality (6.23) is needed for the proof of Proposition 6.1. (See Proposition

6.1 and Lemma 6.2 in the next subsection.)

6.5 Verification of Condition (V)

In this subsection, we shall verify that P satisfies Condition (V). Let us remember that
Condition (V) is the following:

“For any K CC , any § = (0,0') € {0} x Z‘i (18] # 0), any p > 0, any N > 0, any
X, X € Sy (x CC X'), there exists a constant Cy = C5(K, 3, i, N, x, X', ¢) such that

6:24) (D) WP )y
< p[(D2) e Pxal| + Cs ([Pxull + 1PX"ull + [lull ) for all u € CF°(K),

where (¢, k) is the same as in (IV).”

To verify this, we will make use of Propositions 4.1 and 5.1.

Since (Y Px) ) — (VP)@p)x € $~°°, we shall prove that
“For any K CC Q, any 5 = (0,7) (ﬁ’;«éO), any 4 > 0, any N > 0 and any y, X’ € S¢
(x CC x'), there exists a constant C' = C(K, 3, u, N, x, x’, %) such that

(6.25) [(D2) 1 (2 P) gy xu
< pl[(Da) 0 Pxu + € (IPxull + [Pxull + ul_y) for all ue CF(K),

where (¢, k) is the same as in (IV).”

Remark. If (f,Q) is of type (a-1) or of type (a-2), we can prove that P satisfies
the following condition (V’).
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(V') For any K CC Q, any 3 = (0,4) € {0} x Z% (]3| # 0), any N > 0, any x €
Sy (x CC x') and any ¢ € C{°(Q2), there exists a constant C = C(K, 3, N, x, )
such that

(D) @ P) gyxu| < € (I[Pxull + [[ull_y) for all u € CF(K),
where x is the number specified in (IV).

Obviously, Condition (V) holds if Condition (V') is satisfied.

The proof of (6.25) is divided into three cases |3| > 3, |#| =1 and |5] = 2.

Case 1: |B] >3
Since we can regard (D,)" ‘(I/JP)(Q) as an element of Sf/;lo in the microlocal domain

suppy, so (6.25) holds by Proposition 5.1.

Case 2: |8 =2
We rewrite (¢ P)s) as
WP = d@P+ > du)Pa +¥Fp

B1+B2=8
B81,82#0

= Pi(v,0) + Pa, 8) + Pa(v, B).
To prove (6.25) in this case, we shall show that each of H(DI)WZE(@D, B)
H VT2 Py (1), B) XUH and H V2 Py (4, B) qu does not exceed the right hand side of
(6. 25) The first term ,uH wauH on the right hand side of (6.25) is needed only to
evaluate H ) P31, ) XUH

Estimate of H “_2131(1/),[‘3))(11,”
Since (Dm)”_zw € 31/20 /2 on suppy, we have

(6.26) H . 2P1 (¥, B) XUH < Ci(K, B, N, x, )(HPXU” + ”UH_N>

Estimate of H(Dw>'€_2132(¢,ﬁ)qu
We rewrite Py(1), () as

—_— d —_—
Py(v,8) = Mof + 3 Mi(0s, f) + N

k=1
where M, € St (k=0,...,d), N e $1 and their symbols do not depend on 7. Since
(Dz>'€_2]\/4vk € Sf/QO onsuppy (k=0,...,d) and (D,)"" ’N € 51/20 % on suppy, we have

Ji0Fiw

< 0,8, N0 (|40 P + D @ v + Ly )
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Therefore, Proposition 4.1 yields

(6.27) [(D2) 2 Baw, Byxu|| < CoK, 8, N, x, ) (IPxcull + Jlull_y)

Estimate of H(Dm>”_2ﬁg(¢,ﬂ)qu
Here we shall prove that
“For any K CC Q, any g > 0, any N > 0 and any x, X’ € Sy (x CC x/), there exists a
constant Cy = C3(K, i, N, x, X', %) such that

(6:28) ||(D2)" Py (), B)xu
< ,uH wauH + C; (||qu|| + [|PXu|| + |lull_ N) for all w € CFP(K).”

The proof is divided into two cases where f depends on x or not. Suppose that f does
not depend on z, that is to say, (f, Q) is of type (a-1) or of type (a-2). Then,
Ps(1, B) is of the form ¢ Pf(t), where P € 51, and (D,)"?P(D,) ™" e $00- Then we

have
(D)2 Py, B)xul| < C(K, B, 4) [(Da)" full.
By Proposition 4.1, we obtain
[(D2)" 2 Py(w, B)xu|| < C(K, B,9) (1 Pxcul] + [l ) -

This implies (6.28).
Next, suppose that f depends on x, that is to say, (f, Q) is of type (38). We rewrite
VP as Y P = Ppv + [w, P(ﬁ)} and have

[Py 2 Baw, B)xu]| < |[(Da)™* Piaytbxcul| + [(D2)"2 [, Py | x|

Since (D,)" *Pys)(D,) " € S0 and (D))" {w,P(g)} € Sf';;?m on suppy, applying

Proposition 5.1, we obtain
(6.29) (D2)" 2 Py(, 3) qu

< CuE)|[(Da) u]| + Cs (K, N, x, X ) (I1Pcal] + [l ) -
Therefore, it suffices for the proof of (6.28) to show the following proposition.

Proposition 6.1  Assume that (f,Q) is of type (3). For any K CC Q, any p > 0, any
N >0 and any x, X' € Sy (x CC X'), there exists a constant Cs = Ce(K, u, N, x, X', 1)
such that

(6.30)  [¢{Da)"xwu| < pl(Dey wPxul + Co (IIPxull + [PXull + Ilul _y)
for allu € CP(K),

where (¢, k) is the same as in the verification of Condition (IV).
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(6.28) holds if we admit this proposition. This is because |(D,)"®xu| does not ex-

ceed |(Da)"xtbull + [[(D2)" [1, x] ull. Moreover (D,)" [, x] € 817, and (D,)" [, x] -
(D)"Y, x] X' € 87 due to x CC x’. So we have by Proposition 5.1

[¢Da) wcu]| < [P Da) oul| + Co (K, Nxo x5 8) (I PYull + [l ) -
Combining (6.29) with (6.30) and this inequality, we obtain (6.28).

Proof of Proposition 6.1. Applying Proposition 5.1 to (D,)"tu for u, we have
for any p >0

(6.31) H(D wuH < ,uHP X@Du” + Cs(K, pu, N, x, ) |Jul|_  for all u € CF(K).

(Note that y commutes with (D,)".)
We shall treat the first term on the right hand side. Since P(D, )" is rewritten as P(D,)" =
(D,)"P + [P,(D,)"], we have

|0 ] < (D) Pxwu] + (P 4D ]

Applying (6.23) in the remark of the preceding subsection to the first term on the right

hand side, we have

|PDy x| < P4D
+ Gyl N, ) (| (D) o P + [Pl + 1Pl + [y )

Combining this inequality with (6.31), we obtain

632 [0 < WIPADYT ] + oD P
+ Cro(K, 11, N, X X5 8) ([[Pxul| + [1PXu] + [lull ) -

To evaluate [|[P, (D,)"] xtul|, we need the following lemma.

Lemma 6.2  Assume that (f,) is of type (3). For any K CC Q, any N > 0 and any
X, X € Sy (x CC X)), there exists a constant Cy; = C11(K, N, x, x',¥) such that

(633) ([P0 x| < Cur([(Dy vl + (Do) "xw

+ [ Pxull + [|1PXull + HUHN) for allu € C°(K),

where (Y, k) is the same as in the verification of Condition (IV).
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We admit Lemma 6.2 for the moment. Lemma 6.2 will be proved later. From (6.32) and
(6.33), we have

[y xon] < w(Cot-cun) (2" D v
+ Co (K, 11, N X w) (IPxull + [ P ull + [y ) -

Finally, given p/ > 0, we choose a small p in such a way that uCy; < 1 and p(Cy +
C11)/(1 — pChp) < /. Then we obtain

(D2 x| (D)™ Pxu
+ Cra (K, N, X, 1) (1Pl + [PXul) + Jlull ) -
This is equivalent to (6.30). The proof of Proposition 6.1 is completed. O

Proof of Lemma 6.2. In view of (4.18), we rewrite [P, (D,)"] as

{ } Z oS L +§:§:M3k (Ox f)Lj + Moy,

j=1k=1

where M; € 57, on suppx. Then we have

(6.34) [[(P.(D)" xvu| < 014(K,N7X<ZH )" f Lxio

n d
+ 30 3P O N ] + (D) ] )

j=1k=1

By Proposition 4.1, the first term on the right hand side of (6.34) is estimated as
ZH L] < Cus( N, 0) (D2 Prcia + ).

Applying (6.23) to the first term on the right hand side, we have

(6.35) ZH S Lixtu]

< Cugl, N, X 0) ({06 Pl + Pl + 1Pl + Ly ).

Next we evaluate the second term on the right hand side of (6.34). (D,)" (0, f)L; is

rewritten as (Da)" (O, /) Lj = (0n, f)Lj(D2)" + [(Da)", (0, f) Ls]. Since [(Da)", (Oa, f) L]
€ 875 on suppy and |9,, f| < C(K)|f]'/? due to (4.5), we have

(6.36) znjzd:H ) (Da, N Lixtou| < Crn(K i”ml/% o) xtou

j=1k=1

+ Ol N, 0) ([ ] + ).
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Applying Lemma 3.1 (3.2) to the first term on the right hand side of (6.36) for (D, )" x¢u

in place of u, we have

iH!fl”"’Lan“meQ

< Ci(K, N,x,w(\ Re(P(D)"xvou, (Da)xtbu) | + [(Da) x| + [ful® N)
Let A be a positive number. By Schwarz’ inequality, the above inequality yields
Sy e’ < i D v + 3Dy P
j=1
+ Coo(K N, ) (| Do) x| + el )

Combining (6.36) with this inequality and applying (6.23) to the second term on the right

hand side, we obtain

(6.37) ZZH ) (O, ) Lixtou

< ACur(B)|[[P, (D)) xibu]| + ACo1 (K, N, x, X5 9) [ (D)™ Pxa
+ G, N0, ) (| (D) x| + 1Pl + [Pl + [y )
We have from (6.34), (6.35) and (6.37)
[P, (D2 xou|
< ACi(K) [|[PAD)"] xtbul| + Cos(K, N x, x5 9, M)
< (D v Pad] + | Doy x| + 1 Pxal + 1PXall + lull_y ).
We obtain (6.33) by setting A = 1/(2C15(K)). O

Now we return to the proof of (6.25) in the case where |5| = 2. (6.25) follows from
three inequalities (6.26), (6.27) and (6.28). Condition (V) for P in question is verified in

this case.

Remark. Here we have a corollary to Proposition 6.1. This is used in the proof of
(6.25) for the case where |3 = 1.

Corollary 6.3  Assume that (f,Q) is of type (B). For any K CC Q, any u > 0, any
N > 0 and any x,x € Sy (x CC X'), there exists a constant C = C(K,u, N, x, X', )
such that

d
> 3D @r ) L]

ul[ (D) v Pxul + € (I1Pxull + | Pxull + ull_y) ~ for allu € CF(K),

(6.38)

AN TM:

where (¢, k) is the same as in the verification of Condition (IV).
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Proof of Corollary 6.3. Let us remember that the inequality (6.37) is the follow-

ing:

d
>- 3 [[(D2) @u ) Lixtru|

1k=
< MOy (K)||[PAD.) xu]| + Ao (K, N, x. X' )| (Do) " Pxu

+ oI, N s 0, ) (| (D x| + 1Pl + 1Pl + ).

Applying (6.33) in Lemma 6.2 to the first term on the right hand side, we have

n d
ZZH )" (O, f) JX@DUH

j=1k=1

S )\024([( N7X7 7w H

T Cos (K N, X s A (H ]+ 1Pxall + IPull + ul_y ).

Let X' be a positive number and set A = X' /(2C%,). We apply Proposition 6.1 to X' /(2C55)

in place of u. Then we obtain

550,10 0

< N

o
HM:
1§

(D) W Pxul| + Cas (K, X, N, x, . #) (I[Pxull + [PXull + [lul| ) -

This is equivalent to (6.38). O

We return to the proof of (6.25) which is our purpose in this subsection. The remaining

case is || = 1.

Case 3: |B| =1
We rewrite (@/JP)(g) as (Y P)g) = Y@ P + P and have
[P WP X“H <[22y i Pca| + [ (Do P

Since (Da;)"/”_lv,b € 51/20 on suppy, the first term on the right hand side does not
exceed C'(K, 3, x, N) <||qu|| + Hu||_N> So, it suffices for the proof of (6.25) to show the
following inequality:
(6.39) (D) 0 Pgyyul < (D2} Pxu

+ C(K, s Nx X w) ([Pl + [1PX ] + Tl ) -

We rewrite (D,)"" Q/JP(g)X as

(6.40) (Da)"Pgx = D (Da)" " MjofLix

Jj=1

n d
+2> <Dx>ﬁ_1wijk(8$kf) iX (D) wMo 0Xs

j=1k=1

73



where M;, € 81170 and their symbols do not depend on 7. Furthermore M is rewritten

as
d
(6.41) Moo = Mof + Y My(0y, f) +m
k=1
where M, € S1o(k=0,...,d) and m is a multiplication by a smooth function.

Remark. If f does not depend on z, M, (k # 0) does not appear in (6.40),
moreover My (k # 0) and m do not appear in (6.41).

We shall evaluate each term of (6.40) applied to u. First, we evaluate
- H(Dx)”_ld)Mmejqu. Since <Dx)”_1¢Mj70<Dx)_H € 5’8’0, we have

(6.42) Zi:H Da)" Mo fLixul| < Zi:” )" f Lo

< C(K,N,x, ) (I[Pxull + [[ull_y)
( by Propositions 4.1 and 5.1 ).

Next, we evaluate >°7_; e H(DI)”flngj,k(@xkf)ijuH. We will make use of Corol-
lary 6.3. As is mentioned in the above remark, we may neglect to evaluate this term if f
does not depend on x. Calculating the commutator between the multiplication by 1 and

M; 1 (0z, f)Ljx, we have
WM (O [)LiX = My(Du F)LiX + MLy [0, X] (0u f) + Mg | (D0 ), L [, X]]
+ ijk [¢7 L]] (8a:kf)x + W}7 Mj,k] (axkf)L]X

(Note that 0,, f commutes with [¢, L;], because they are multiplications by functions.)
(D)™ M (De) ™™, (Do) Mg [, L;] (D2) ™" and (D)™ [, M) belong to S8 So,

we have

(6.43) 33 (D 0M, 00 1) Ly

j=1k=1
d
< c<K,w>zlkz(H * O ) Lixtbu]| + (Do) MLy 10, x] (9 f)ul
j=1k=1
0 3 ] 021 @] 2]

The asymptotic expansion formula yields

(D2 MLy [, X) (D)™ (D)™ My k[0, £, L [0 X]) € 8920

Since

[¢7 X] (amkf) - W, X] (8xkf>xl7 {axkfa Lj [¢7 XH - |:a£l?kf7 Lj [wa XHX/ € 5
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for x' € Sy satisfying y CC x/, we have

(6.44) zanH o) T OM; (O )L x|

=1k=1

< C(K,N,x,X (izﬂ “(Ou )L xwuH+2H )" (O f)X

Jj=1k=1

+qu\|+ZH axkfqu+ZZH o] + luly )

.

Applying Corollary 6.3 to the first term on the right hand side, we obtain by Propositions
4.1, 5.1 and Lemma 3.1

(6'45> iZH wMJ k(amkf JXUH

j=1k=1
< WD x| + OO N, X ) (1Pl + [Pl + lull_y)

Finally, we evaluate ||(D >F”_1¢M0 OXUH Let us remember the definitions of My and m
(see (6.41)). Since (D,)" " My(D,)™" and (D,)" 'y belong to 50, we have by (6.41)

[0 oo < €, (|02 +2H Ot + ).
By Propositions 4.1 and 5.1, we obtain

(6.46) [(D2)" o Mogxu|| < O, N, x X w) ([1Pxull + ull ) -

From (6.42), (6.45) and (6.46), we obtain (6.39). (6.25) in the case where |5] =1 is

proved. Now Condition (V) for P in question is verified.
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7 Examples

In this section, we give some examples of P satisfying (1°)—(3°), especially, examples of
f(t,z) which satisfies Condition (1°). Since Condition (1°) is not so restrictive, the set
of functions satisfying (1°) contains an f(¢,x) whose set of zeros is of positive Lebesgue
measure.

First, we need the following lemma. This guarantees the existence of a smooth function

which vanishes only on any given closed set of R".

Lemma 7.1 (cf. Theorem 2 in §2.1 in Chapter VI of [30]) For any closed subset K of
R", there exists a function f of class C™ in R" such that

f=0 onK and f>0 in R"\K.

7.1 Examples of f independent of =

Now we show some examples of Theorem A. First, let us begin with the case where f(t, z)

does not depend on x.

1)  The following operator of 3 variables is hypoelliptic:
P=0,+ fi(t) (22 + 2%alt, 2,)3}) ,

where a(t,z,y) is a complex-valued smooth function satisfying Rea(t,z,y) > 0 in R
and f; is defined in the following way. Let I, = [0,1], I, = [0,3/8] U [5/8,1], I, =
0,5/32] U [7/32,3/8] U [5/8,25/32] U [27/32,1], ..., where I;;; is obtained by removing
the middle open subinterval of length 4-U*1 from each closed interval consisting I 5. S0, I;
is a disjoint union of 27 closed intervals of equal length (1+27)/2%**. The set K; = N2, I;
is called the Harnack set. This is closed and does not contain non-empty open set. Let
f1 be a smooth function on R such that f; =0 on K; and f; > 0in R\ K;. Such an f;
exists due to Lemma 7.1.

P satisfies obviously Conditions (2°) and (3°). Moreover, f; satisfies Condition (1°).
This is because, f; is non-negative and the set of zeros of f; contains no non-empty open
interval. So f satisfies Condition (1°-«). Furthermore, the Lebesgue measure of the set

of zeros of f; is equal to
00 2k71 1
1— — = — > 0.
2 T3

2)  The following operator of 3 variables is hypoelliptic:
P =0+ fo(t) (a(t,2,y)02 + 22b(t, 2,)02) ,
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where a(t, z,y) and b(t, z,y) are complex-valued smooth functions satisfying Re a(t, z, y) >
0 and Reb(t,z,7) > 0 in R® and f, is defined to be

fi(t+3/8) for t >0,
—fi(=t+3/8) fort <0,

fo(t) =

where f; is as above. Obviously, fs is smooth possibly except at ¢ = 0. Since the set
{s € K;; s > 3/8} accumulates at s = 3/8, the right differential coefficients of f, of any
order are equal to 0 at t = 0 by Rolle’s theorem. By the same way, the left differential
coefficients of f, of any order are equal to 0 at ¢ = 0. So f5 is smooth everywhere. f; has
an uncountably infinite number of zeros and changes sign at the origin. And f5 satisfies

Condition (1°-«). Furthermore, the Lebesgue measure of the set of zeros of f; is positive.

7.2 Examples of f depending on x

In this subsection, we show examples for the case where f(t,2) depends on x.
1)  The following operator of 2 variables is hypoelliptic:
P = &g + gl(t, x)@i,

where g (¢, z) on R? is defined in the following way. Let f3 be a smooth function on R
such that f3(s) =0 on K3 and f3 > 0 in R\ K3, where K3 is the Cantor set. There exists
such an f3 due to Lemma 7.1. We define the function ¢;(¢, z) to be

gi(t,z) = f3(t + ).

f3 is non-negative and does not vanish identically in any non-empty open interval, so
does ¢1(-,z) for every x € R. Thus ¢; satisfies Condition (1°-3). The set of zeros of
g1 consists of uncountably infinite number of lines. These lines accumulate at every line

t + x = constant.

2)  The following operator of (d 4 1)-variables is hypoelliptic:

4 2
P =0+ go(t,x1,29,...,14) (a(t,x)@il + b(t, x) ( Z mlkﬁxk> ) ,
k=2

where a(t,x), b(t,z) are complex-valued smooth functions satisfying (Rea)(Reb) > 0 at

every point of R4 and ¢, is a smooth function on R defined to be

d
92(757551,9527- . ,de) = fl <t2 + in> )
k=1
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where f; is the same as in the preceding subsection.

Obviously, P satisfies Condition (2°). Since the set of zeros of fi(t? + a) contains
no non-empty open interval for every a > 0, g, satisfies Condition (1°-3). Therefore,
P satisfies Condition (1°). Furthermore, the set of zeros of go consists of uncountably

infinite number of spheres. The Lebesgue measure of the set of zeros of g is calculated

/ dt do = / / rldr ds,,
((t:2) g (t)=0} [rw)eRy x54; [(r2)=0)

where R, = {r, 0 <r < +oc}, S?is the unit sphere of dimension d and dS,, stands for

as follows.

the area element of S¢. The right hand side is estimated from below as follows.

// ridrdS,
{(rw)eR4 x5%; f2(r?)=0}

1
= area(Sd)/ rldr = Earea(Sd)/ sd=D/24g

{reRy; f2(r?)=0} K1

1 73\ W@-1/2 1 /3 @d=1)/2
> (2 d _ (2 d
z (8) area(S?) . ds 1 ( 8) area(S?),

where area(S?) is the area of S?. So, the Lebesgue measure of the set of zeros of g, is
positive.

Next, we shall prove that {&Cl, e, xlk&ck} satisfies Condition (3°). Set Ly = 0Oy,
and L; = X¢_, 2,%0,,. Let us remember the notation R; (see p.35). Given a multi-index
J = (j1,...,5) with I > 1, where j,, € {0,1} (m =1,...,1), set J = (ji,...,ji—1) and
define R; inductively by

R, = le (l - 1) , Ry= [Rj7 le] (l > 2)

(See Lemma 3.4 in §3.)

d d—1 d—2
Set Jy = (1,0,0,...,0 ), J = (1,0,0,...,0 ), Jo = (1,0,07...,0 ), cee sy Jgo = (1,0,0).
Since l

Z%RJFT = (_1)dil(d_l>!axdfz (l :07"'7d_2)7

r=0 """

the Lie algebra generated by {Lg, L;} is of dimension d at every point of R%. Thus,
{Lo, L, } satisfies Condition (3°).
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8 Application 1 of Theorem A

As far as the preceding section, we studied the hypoellipticity of P of the form (A). We
assumed that f(¢,z) is real-valued. In this section, we investigate the hypoellipticity of P
of the form (A) in the case where f(¢,z) is complex-valued. For example, let us consider
the operator P = 0, + {f(t,z) +ig(t,x)} 0 in R?, where f(t,z) satisfies Condition (1°)
and g(t,x) is a real-valued smooth function. P is hypoelliptic due to Theorem A if the
quotient g(t,x)/f(t,z) can be extended to a smooth function. Theorem B in [2°] in the
Introduction gives a sufficient condition for hypoellipticity of P of the form (B) in the

case where g(t,z)/f(t, ) is not necessarily extended to a smooth function.

Before giving the proof and examples of Theorem B, let us sketch the roles of Condi-
tions (2%) and (3%).

1. (2%) controls g(¢,7) by means of f(¢,z). This guarantees the following inequalities
to hold. .
(8.1) ZHgt (t,2)Lyul|* < C(K ZHft (t,z)Lyul>  for all u € CF(K).

Z
.0 St )P

for the case where f(t, ) changes sign,
< C<K>jil |17t )

for the case where f(¢,x) does not

change sign

for all u € C°(K), where p is the positive number specified in (2%-1). These inequalities
allow us to neglect effects of g in the course of estimation for P. (2%) is not a necessary
condition for hypoellipticity of P. For example, let p, ¢ be non-negative integers and let

us consider the following operator:
Lyg =0+ (" +it7)0}.

The necessary and sufficient condition for L, , to be hypoelliptic is that p < 2q. (see §11.)
L, , does not satisfy (2¥) but satisfies (1) and (3%) in the case where p/2 < ¢ < p.

2. If the matrix A(t,z) is hermitian or the function g(¢,z) vanishes identically, (3) is
equivalent to (2°).
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Examples of Theorem B

1)  The following operator of 3 variables is hypoelliptic:
P =0+ (f(t) +ig(t)) {(2+2i sindt) 9 + (1 + i sin8t) (sinx)* 02} .
where
1 . 1 1
exp <—> for t £ 0, sin () exp (—) for t £ 0,
flt) = |t] and g(t) = t I
0 fort =0 0 for t = 0.

The quotient g(t)/f(t) can not be extended to a smooth function but remains bounded

in R. The matrix for P appearing in (3%) is equal to

9+ 2 sin 4t 0
Alt,z,y) = :

0 1+ sin 8t
Thus, Re ((f(t) +ig(t)) A(t,z,y)n, f(t)n) for n ="(m,72) € C* is equal to

|f(t)]? <4 {1 — (sin4t) <sin %) }2 Im|? + {1 — (sin 8t) (sin %) }2 ’,72‘2) .

Since the functions 1 — (sin4¢)(sin1/t) and 1 — (sin8¢)(sin 1/t) do not vanish in R, so
A(t,x,y) satisfies (3%-1).

2)  The following operator of 3 variables is hypoelliptic:

P=0+ (f(t) +ig(t,z, y)) (28§ + i sin(2? + y*) 02, + 3i sin(2? + y?)20,0, + 29328;) ,

where
(sgnt)e p< 1) fort #£0
X T )
f) = i
0 for t =
and
1 2 2
éexp<— Rk —l—y) for t # 0,
gt zy) = { 2 i
0 for t =

f satisfies (1%) and g satisfies (2°-1) for every p satisfying 0 < p < 1. The matrix for P
appearing in (3%) is equal to

Alt,z,y) = ( ’ i sin(a’ +y7) ) .

3i sin(2? + y?) 2
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Thus, Re ((f(t) +ig(t,xz,y)) A(t,z,y)n, f(t)n) for n € C?* is evaluated from below as

Re ((f(t) +ig(t,z,y)) Alt,z,y)n, f(t)n)
2 \/{1 + 3exp (2 L gin? (42 4 42)
2

> |f(@®))[n]* for t #0.

Since

2 2 2
{1 + 3exp (—%) } sin? (x2 + y2) <4 for every (t,z,y) € R*\ {t = 0},

so the matrix A(t,z,y) satisfies (3%-1).

3) The following operator of 3 variables is hypoelliptic:

P=0 + (f(t, z,y) +ig(t, y)) (33 + 50435) )

where
ftoy) = exp <—(t2 +Ii+y2>3> for (t,x,y) # (0,0,0),
! for (¢, 2,y) = (0,0,0)
and
. 1 1
oty = sin (txy) exp (—W> for txy # 0
0 for tzxy = 0.

g(t,z,y)/f(t,x,y) can not be extended to a smooth function but remains bounded in R,
On the other hand, (9,¢(t, z,y))” /f(t,x,y) and (0,9(t, x, y))? /f(t,z,y) can be extended

to smooth functions in R®. Therefore, g satisfies (2°-2).

Proof of Theorem B.

The proof is done in a similar way as that of Theorem A. So we give it roughly. Since
Proposition 1.1 holds for P in question, it suffices to show that P satisfies Conditions
(I)—(IV) in §2. Let us begin by getting the inequalities analogous to those in §3. As in §3,
let f(t) = f(t,z) if f(t,z) does not depend on x. From the hypothesis (1%), there exists
at most one point where f(t) changes sign. So we assume that the point is ¢ = 0. Let 2
be a bounded domain in R*™. We use again the definition for (f,Q) to be of type (a-1)
or of type (a-2) or of type () as in §3. First, if (f, ) is of type (a-1), (3'-1) yields

33 Re((J(0)+ig(t.2) Al ), (sent) O n) = 51/ OF Il

for all p > 3/4 and all n € C". On the other hand, if (f,€2) is of type (a-2) or of type
(8), (3+-2) yields

(54 Re((f(t.2) +ig(t.0)) Alt.o)n. f(t.o)m)| = 815 mP
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for all n € C™. Using above inequalities, we have the following lemma corresponding to

Lemma 3.1.

Lemma 8.1 (i) If (f,Q) is of type (a-1), there exists, for any K CC § and any
p > 3/4, a constant C' depending only on (K, p) such that

(85) > L] < 0{[Re (Pu. o)l £ 10)] + )
for allu e C(K).

(ii)  If (f, Q) is of type (a-2) or of type (B), there exists, for any K CC ), a constant
C' depending only on K such that

(3.6) S 12 L] < € {Re (Pusw)] + 2}
j=1
for allu € CY(K).

(i)  If (f,Q) is of type (a-2) or of type (), there exists, for any K CC 2, a constant
C depending only on K such that

n d
(8.7) EHJCLJUHQ < (J{IR<%(1%J”U)|+ZH(@mkf)UH2

+ 3 1@ g)ull” + [1full® + (B u, U)|}

k=1

for alluw e C(K).

Proof of Lemma 8.1.  We only prove (i). (The proof of (ii) (resp. (iii)) is done by
using (3%-2) (resp. (8.4)) in place of (8.3).) Set

P=—0+ i Ly (f(t,2) + i g(t,x) ) aju(t, ) Ly

jk=1

Since L; + L reduces to a multiplication by a smooth function, we have

(8.8) P+P = (f(tx) —f-lgt:zc)zn:bjg
7=1

+izwwm@ﬂmmw%wmﬂﬁ

j=11=1
where bj(t,z) € C*(R*"). Note that 9,,f(t,2) =0 (I = 1,...,d) in the case where

(f,Q) is of type (a-1). By (8.8), —Re (Pu, (sgnt)|f]**~'u) is estimated from below as
follows.

(8.9) —Re (Pu, (sgnt)|f[* )
> Re (Pu, (sgnt)|fu) = |((P+ P)u, (sgnt)| £ "u)|.
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From (8.3), the first term on the right hand side of (8.9) is estimated from below as

follows. R . R .1
(8.10) Re (Pu, (sgnt)| f*~u) > 6(K) S [1/17Lyul + 5 B,
j=1

where

E(u) = — /(sgnt) FOP 0, (jul?) deda.
(See (3.4) in the proof of Lemma 3.1.) By Schwarz’ inequality, the second term on the
right hand side of (8.9) is evaluated as follows.

(811) [((P+P)u. (sent) 777w
< ajz: H’fP;LjUHZ + 6;: (H\f\%lngqu + lz: H’fP;l(axlg)Ljqu)
+C(K, &) |lul*.
From (2°-1), we have

(8.12) £t 2)P" g(t.2)| < Cu(K,p)If (1, 2)IP.

Moreover, 2p — 1+ p > p, where p is defined in (2°-1). So we have from (2°-1)
(8.13) £t )7 (9 g(t 7)) | < Co(K p)I £t )]
Therefore, we obtain from (8.9), (8.10), (8.11), (8.12) and (8.13)
B(K) Z P + 5 Bw)
< [Re(Pu, (sgu )|/ )| + C(K p.7) Z 1P L "+ C (.20 )
=

Setting ¢ = 0(K)/(2C(K, p)) and evaluating E(u) as in the proof of Lemma 3.1, we obtain
(8.5). O

Lemma 8.2 (i) If (f,Q) is of type (a-1), there exists, for any K CC €2, a constant
C' depending only on K such that

(8.14) lull* < C (|Re (Pu, tu)| + [[tul|*)  for all u € CF(K).

(ii)  If (f,Q) is of type (a-2) or of type (), there exists, for any K CC Q and any
a € R, a constant C' such that

" 2
8.15)  |ul*<cC (|Re(Pu, (t = a)u)| + |||t = @) f(t, 2)| > Ly )
j=1
for all u € CY(K), where C depends only on K and the diameter of {a} U m(K).
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If (f,Q) is of type (a-1), (3%-1) yields

(8.16) Re((£(1) + ig(t.)) Alt.z)n, tn) = 61t/ Inl

for all n € C™. We can prove (i) by using this inequality as we used Condition (2°) in the
proof of Lemma 3.3. On the other hand, the proof of (ii) is done in the same way as that

of (i) in Lemma 3.3. So we omit the proof.

Next, we have the following lemma which plays the same role as Lemma 3.5 in §3.

Lemma 8.3  For any K CC (Q, there exist a positive integer k depending only on K
and a constant C' depending only on K such that

21—k:

(8.17) | ptt o)l < € (1Pull? + lull?)  for all u e CF(K).

The proof is done by using Lemma 8.1 as we used Lemma 3.1 in the proof of Lemma 3.5.

Now we give two propositions corresponding to Propositions 4.1 and 5.1 by making
use of lemmas obtained above. We use Lemma 8.1 and Lemma 8.3 as we used Lemma
3.1 and Lemma 3.5 in §4 respectively. And we have the following proposition by applying
(8.1) and (8.2).

Proposition 8.4  For any K CC €2, any N > 0 and any x € Sy, there exist positive
constants Kk = k(K),C = C(K, N, x) such that

(8.18) Z o) fLyxull” +ZH 2 gLixul” + {Dx)" fxul”

7=1

+ (D) gl +ZH V(B x| +ZII (O g) x|’

< O (I1Pxull® + bxul® + [lul2 ) for allu € CF(K).

Furthermore, we obtain Proposition 5.1 for P in question by using Proposition 8.4, Lem-
mas 8.1 and 8.2. By making use of Propositions 8.4 and 5.1 in the same way as we used
Propositions 4.1 and 5.1 in §6, we can verify that P satisfies Conditions (I)-(V). However,

we have to evaluate the following terms:

n n d
2 2
Do llgLixull”s D2 1(0ueg) Lixull, ZH (O, 9)xul|”
j=1 j=1k=1
n d )
and Y > (D) (9urg) Lixtoul|”
j=1k=1

They are estimated as follows.
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1. In the verifications of (II)—(V),
> llgLxul®
j=1

< oK) z I LxulP (by (81))

IN

C(K,N,x) (”PXUHZ + HuH%N) ( by Lemma 8.1 and Propsition 5.1 ).

2. In the verifications of (II),(IV) and (V),

S S (e 9) Lyl

=1 k=1
< C(K N, x) (IIPxul® + [xul® + [[ull® )
( by (8.2) and Lemma 8.1 )
< C'(K,N,x) (||PXU||2 + ||u||2_N> ( by Proposition 5.1 ).

3. In the verifications of (IV) and (V),

d
Z Dl‘ xkg XUH
k

=1
< C(K,N,x) (IIPxull® + [ull® ) ( by Propositions 8.4 and 5.1 ).

4. In the verification of (V),
Z Z ||<Dw>ﬁ(axk9)LjX¢UH2

< 33 @ag) (DY Lyxwul + C(K) I[{Ds) xul?

j=1k=1
Zl\\\f<t>rp<z>x>%xwuu2
j:

for the case where f(¢,x) changes sign,

= O 2 ( by (8.2))
> It 2)12(De)" L]

for the case where f(t,z) does not change sign,

C(K) [{Dx)"xtoul’
< pl{Da) wPxull* + C(K, N, x, X', 1) ([|Pxull” + | PXull® + [[ull” )

( see Proof of Corollary 6.3. )

In this way, we can evaluate these terms. So we neglect the effects of g in the verification

of Conditions (I)=(V). The proof of Theorem B is finished.
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9 Application 2 of Theorem A

In this section, we investigate the hypoellipticity of @ of the form (C) which is a general-
ization of (A) if f(¢,2) does not depend on z. Our result is stated as Theorem C in the

Introduction. Let us begin with stating a corollary to Theorem C.

Corollary 9.1 Suppose that (a;,(t, ) )} =, satisfies (2°) and that { L; }}_, satisfies
(3°). Let {e; }?:1 be non-negative integers. Then, the following operator is hypoelliptic:

(9.1) Q=0+t ap(t,z)t9L;t*Ly in R
j,k=1

Proof of Corollary 9.1.
If ep = 0 and if there exists a positive integer j such that e; # 0, then {t% _o does not
satisfy (1°-3) for any closed interval containing ¢ = 0. Therefore, we divide the proof into
two cases where ¢ is equal to zero or not. @ is hypoelliptic if ey # 0 by applying Theorem
Cto fj(t) =t% (7 =0,...,n). Next, @ is hypoelliptic even if ey = 0. This is because the
Lie algebra generated by {6&, {t9L; Y5, } is of dimension d 4 1 at every point of R*™.
O

Before giving the proof and examples of Theorem C, let us sketch the roles of Condi-
tions (1°-1), (1°-2) and (1°-3).

1. (1°-1) and (1°-2) for f, are the same as (1°-a) in Theorem A. They play the same

role as (1°-«) in Theorem A.

2. (1°-3) controls the vanishing order of f; (j = 1,...,n) by means of f;. In order
to prove that @ is hypoelliptic, we have to evaluate H\fg(t)\p|fj(t)|5LjuH2 for some p, 0
satisfying p < 1,6 < 1 and (p,6) # (1,1). We can evaluate ||| fo(t)|*f;L;ul|* for 3/4 < p
as will be seen in Lemma 9.2 below. Thus, the degeneracy of () with respect to ¢ should
be controlled by f5. So we need (1°-3). In addition, (1°-3) is used to get a priori estimate
(9.11) in Lemma 9.5 below. On the other hand, (1°-3) is not a necessary condition for

hypoellipticity of ). For example, the following operator of 3 variables is hypoelliptic:
Q = 0+ 0.+ 0.
Q satisfies (1°-1), (1°-2), (2°) and (3°) but does not satisfy (1°-3).
Examples of Theorem C
1)  The following operator of 3 variables is hypoelliptic:
Q=0+ fo(t) (92 +2°f1(1)3}) .
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where fo(t) and fi(t) are real-valued functions of class C* such that

(9.2) the set of zeros of fy(t) does not contain any non-empty open interval,
(9.3) fo(t) satisfies (1°-2) and
(9.4) there exists a positive constant C' such that

|fo(t)] < C|fi(t)| forallte R.

In this case, the exponent A\ appearing in (1°-3) can be chosen to be 1 due to (9.4).
Moreover, form (9.2) and (9.4), the set of zeros of f(t) does not contain any non-empty
open interval. So a pair of functions (fy, f1) satisfies (1°-1), (1°-2) and (1°-3). The following
pair is an example satisfying (9.2), (9.3) and (9.4).

1

1
(sgnt) (sin2 ) e T fort #0,
folt) = t
0 fort=0
1y 1
(sin > e M fort#0,
h(t) = t
0 for t = 0.

fo and f; have a countably infinite number of zeros which accumulate at the origin.

2)  Let dy,01,...,0q4 be positive numbers. Then the following operator of (d + 1)
variables is hypoelliptic:

d
Q=0+ go(t) (gl<t)aﬂ231 + Z gj(t)x?ﬁij) ’
j=2

1
where goft) — (sgnt)exp <—m> for t # 0,
0 for t =
exp <—1> for t £ 0,
and g,(t) = ot j=1,...,d)
0 fort =0

For this example, A(I, ) appearing in (1°-3) is equal to 28;/8, for every j € {1,...,d}

and every closed interval I containing ¢t = 0.

3) Let hy,ho,...,hg be real-valued functions of class C* defined in R such that
the set of zeros of h; does not contain any non-empty open interval for every j. Let
€1,€a,...,eq be positive integers. Then the following operator of (d + 1) variables is
hypoelliptic:

d d
2e
O+ [T ha(8)™* D hy(1)%02..
k=1

= j=1

87



Set fo(t) = TI4_, hi(t)™*, f;(t) = hi(t) (j = 1,...,d). Then {f;(t)}._, satisfies (1-1),

7=0
(1°-2) and (1°-3). A(I,j) can be chosen to be 2¢; for every j and every I.

Proof of Theorem C.

Let I be an arbitrary bounded open interval of R; and I the closure of I. We shall prove
that @ is hypoelliptic in Q = I x R%. The proof is divided into two cases whether N(T)
is empty or not. Suppose that N(7) is empty. Set a;x(t,z) = au(t,z)fi(t) fr(t) (4, k =
L,...,n). Then (a(t x));,_, satisfies Condition (2°) on Q2. So, @ is hypoelliptic in §
due to Theorem A.

Next, suppose that N(I) is non-empty. The proof is done in a similar way as that of
Theorem A. So we give it roughly. By the same way as in the proof of Proposition 1.1 for
P, Proposition 1.1 holds for ). Therefore, it suffices to show that () satisfies Conditions
(D)—(V) in §2. Without loss of generality, we may suppose that f, changes sign at ¢t = 0.
As in §3, we say that (fo, Q) is of type (a-1) if m(2) contains ¢ = 0 and that (f, Q) is of
type (a-2) if m(€2) does not contain ¢ = 0.

First, we have the following two lemmas corresponding to Lemmas 3.1 and 3.3 respec-

tively.

Lemma 9.2 (i) If (fy,Q2) is of type (a-1), there exists, for any K CC Q and any
p > 3/4, a constant C' depending only on (K, p) such that

(9.5) S ILfol? fy Lyull® < € {Re (Qu, (s 1 fol2 )| + uf?)
j=1

for alluw e C(K).

(ii) If (fo,?) is of type (a-2), there ezists, for any K CC €, a constant C' depending
only on K such that

(9.6) fj H|f0|1/2ijjuH2 < C{IRe (Qu,w)| + [[ul*}  for all u € CF(K).
j=1

Lemma 9.3 (i) If (fo,9) is of type (a-1), there exists, for any K CC ), a constant
C depending only on K such that

(9.7) lull* < C (|Re (Qu, tu)| + [[tul|*)  for all u € CF(K).

(i) If (f,Q) is of type (a-2), there exists, for any K CC Q and any a € R, a constant
C such that

" 2
(9.8) lul® < € (|Re<@u, (t = a)u)| + X |1t = @) fol 72 £ L0 )
j=1
for all u € C(K), where C depends only on K and the diameter of {a} U m(K).
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The proof of Lemma 9.2 (Lemma 9.3) is done in the same way as that of Lemma 3.1

(Lemma 3.3) respectively, so we omit it.

The next lemma is used only for the proof of Lemma 9.5 below. We prepare a notation.
Given a multi-index J = (j1,...,j;) with I > 1 and 7, € {1,...,n} (m=1,...,1), we
define the function F;(t) to be

l
FJ Hfjm

[ is said to be the length of J and denoted by ||.J]|.

Lemma 9.4  For any K CC Q) and any multi-index J, there exists a constant C de-
pending only on (K, J) such that

(9.9) H(Dx>21_|J_1FJ(t)RJu Ye (1Qul* + [ul)  for all u € CF(K).

where || J|| is the length of J and R; is the same as in §3. (See Lemma 3.4.)

The proof is done by induction with respect to the length of J and by using Lemma

9.2 as we used Lemma 3.1 in the proof of Lemma 3.4.

Next, set
- 1
(9.10) M = M(I) = max
sen ) ML, j)’
where A has been defined in (1°-3). M is a number which stands for what extent the
functions fi, fa,..., fn are controlled by fy;. Then, we have the following lemma which

plays the same role as Lemma 3.5 in §3.

Lemma 9.5 For any K CC Q, there exist a positive integer k depending only on K
and a constant C depending only on K such that

2177(3

011) (D fo@ ™% < € (1Qu + [[ull?)  Jor all u € CF(K).

Proof of Lemma 9.5.  From the hypothesis (3°), we have the following:
For any K CC €, there exist a positive integer k and functions b,;(x),¢;(x) € C*(K)
such that

(9.12) = Y by(@)Rs(z,D;) +az) (I=1,...,d).
I7l<k
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From Condition (1°-3), we have for every multi-index J = (ji,..., ;) and any t € [

[F5()] > [folt |H|f]m )| > @D I T m)lfolt) AT

Jm€N(I)
> Co(T, ) |fo(t)] H o) = Co(T. T) | folt)| M.
This implies, together with (9.12),

21—k

[0 o)k < cwo(Z H<Dx>2“’“1Fj<t>RJuH2+||uH2>
1<k

< oK) ([1Qul® + lul®) (by (9.9)) .
The proof is finished. O

In view of Lemma 9.5, the degeneracy of ) with respect to ¢ is controlled by fo(t). We
set Ny (t,€) = ¢; (fo(t)@f)”,) (j = 1,2). Applying Lemmas 9.2 and 9.5, and using ¥, .
as X1, and Yo, are used in getting Proposition 4.1, we obtain the following proposition.

Proposition 9.6  For any K CC €2, any N > 0 and any x € Sy, there exist positive
constants Kk = k(K),C = C(K, N, x) such that

(9.13) Z o) fofsLyxull* + [[{Da)" foxul
< C (lQxull* + lIxul + l[ul® ) for all u € CF(K).

Furthermore, by making use of Lemmas 9.2 and 9.3, we obtain the following proposi-

tion which guarantees that () satisfies Condition (I).

Proposition 9.7  For any domain K CC Q, any N > 0, any x € Sy and any p > 0,
there exists a constant C' = C(K, N, x, 1) such that

(9.14) Ixull < pll@xull + Cllull_y  for all u € CF°(K).

The proof of this proposition is done by constructing a partition of unity according to

(fo, ) as in the proof of Proposition 5.1 in §5. Thus, we omit the proof.

End of Proof of Theorem C. We can verify that @) satisfies Conditions (I)-(V)
by using Lemma 9.2 and Propositions 9.6 and 9.7 as we used Lemma 3.1 and Propositions
4.1 and 5.1 in §6 respectively. So () is hypoelliptic due to Proposition 2.1. And hence the
proof of Theorem C is finished. O
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10 Necessity of (1°) for hypoellipticity

In this section, we investigate the question of non-hypoellipticity for P of the form (A)
under Conditions (2°), (3°). Throughout this section, we assume that f(t,z) is a real-
valued function of class C* and independent of x, so we set f(t) = f(¢,z). Our result
is Theorem D presented in the Introduction. Before proving this theorem, we give a
remark.

Remark. Condition (1°-«) is necessary and sufficient for hypoellipticity of P under
Conditions (2°) and (3°) provided that f is real-analytic. This is because f satisfies one
of (F1) and (F2) as follows if Condition (1°-«) does not hold.

(F1) There exists a non-empty open interval I on which f vanishes identically.
(F2) There exist t1,t, € R such that t; < to and f(t1) > 0> f(t2).

If (F1) holds, P is obviously not hypoelliptic. If (F2) holds and if f is real-analytic,
(D) holds and hence P is not hypoelliptic due to Theorem D. Indeed, let Z; be the
set of zeros of f(t) in [t1,ts]. Zy is finite because f is real-analytic. So, there exist a
positive integer ¢ and a sequence of numbers {s,,}&_; such that Z; = {s1,...,8,-1}
and t; < s1 < s3 < -+- < S401 < 8, = to. Since f(t) > 0 on [ty,s1], the set {m €
{1,...,¢ =1} ; f(t) > 0 on [t1, $;]} is non-empty. Let [ be the maximal element of this
set. Then we have f(t) > 0 on [t1,s;] and f(¢) < 0 on [s;, s;11]. So (D) is satisfied if we
set s = s; and I = (ty, S141).

On the other hand, Theorem D does not make clear whether (1°-a) is necessary or
not for hypoellipticity of P if f is not real analytic. This is because, there exists an f
such that neither (D) nor Condition (1°-«) holds. For example, we can construct such a

function in the following way. Let g, ¢ be functions of class C* in R such that
g>0 in {jt|<1/2}, g=0 on {|t|>1/2}
g>0 in {t>0}), g=0 on {t<O0}.
And set
Yo = {2}
Y, = {2+351+3252+---+3’51; S € {0,2} (m = 1,2,...,l)} (1=1,2,...).
We define a sequence of functions {g;}°, by
g(t) = g(=t)+g(t—1)

O T T

oEY; 1
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and set

) =Y alt).

We can verify that the sum >}, gl(k) (t) converges uniformly in R for every k € Z,.
Therefore g* belongs to C*™(R). Obviously, ¢* does not satisfy Condition (1°-«). More-
over, since the set of zeros of ¢g* is the Cantor set, there exists, for any zero s of g* and
any neighborhood J of s, an ¢’ € J such that ¢*(s’) > 0 and s’ > s. So ¢* does not satisfy
(D).

Let us sketch the proof of Theorem D. The idea of proof is to construct a non-smooth
function u for which H = Pu is of class C*. The construction is based on [5]. A formal
solution is obtained as a sum of distributions, but the sum is not convergent in general
in the distribution sense. In the second subsection, we investigate the smoothness of
each term of the sum. And we modify the formal solution to make it convergent in the
distribution sense and to make its image by P smooth. In the third subsection, we verify

that the modified sum is not smooth.

Let us begin with the proof of Theorem D. First, without loss of generality we may

suppose that s = 0. Moreover from (D), we may assume that

(10.1) —/Otf(s)ds>0 ift e\ {0}

This is because, if there exists an r € I\ {0} such that — [; f(s)ds = 0, then f(t) vanishes
identically on [min{0,r}, max{0,r}]. Obviously, P is not hypoelliptic in this case.

10.1 A formal solution

A formal solution is the sum of distributions obtained by solving a system of ordinary

differential equations (10.2) below.

Let ¢ be the dual variable of x and a(t, r,§) be the symbol of 37, _; a;.L;Lg. Then
P is written as P = 0, + f(t) a(t,x, D,). We denote by F, the partial Fourier transform

with respect to x. We rewrite Pu formally as follows by integration by parts.
T i|a‘ lo" «
Pu= [ e=<{amiine + 505 L o (@2a(10.9) £l (1) e

where d¢ = (2m)~%d¢. Next, let 1(€) be a real-valued function of class C* defined on R?
which we shall choose later. Let {v;(t,£)}52, be the solution of the following system of
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ordinary differential equations.

d
—00(L,€) + f(1) alt, 0, vo(t,§) = 0

j—1 iled
(1028 Loy.6)+ F(1 000,08 = —FOY X Trx
k=0 |a|=k+1 :

08 (041 (t:€) 22a(t,0,€)) (5 > 1)
subject to the initial condition

w(0,§) = ¥(¢)

vi(0,6) = 0 (7=1).

We can solve (10.2)-(10.3) inductively. We see easily that v;(t,&) € C*(R™™) for every

J. If we denote the inverse partial Fourier transform with respect to £ by F¢ ! the sum

(10.3)

(10.4) u(t,z) = ifgl[vj](t, )

§=0

satisfies Pt = 0. (We shall show in Lemma 10.2 below that F '[v;](t, ) belongs to

S’ (Rg) for every t € I.) Indeed, we can rewrite Pu formally as follows.
Pi — /em-s{ Oo(t,€) + F0)alt,0.) v + 3 (B (1,€) + (1) a(t,0,)
=1

j—-1 jlod
FIOY ¥ o0t 0.0)5aa(0.9)) b

k=0 |a|=k+1

The right hand side is equal to 0 by (10.2). Moreover, if ¢ is not rapidly decreasing, so
will be F,[u](0,&).

10.2 Modification of the formal solution

In this subsection, we shall modify the formal solution u (see (10.4) above). Let us
sketch how the modification will be done. First, we study — [y f(s)a(s, 0, &)ds and choose
a suitable 7 in (10.3) (see Lemma 10.1). Next, we study the order of decay of v; as
€] — oo. We will see that the order of decay of v; grows larger as j increases (see
Lemma 10.2). This means that F¢ '[v;] is more and more smooth as j increases. Finally
we construct functions {u;}22, from {v;}52, such that v = 3372 u; is convergent in the

distribution sense and that Pu is smooth.

We investigate — [5 f(s) a(s,0,¢&) ds. We set
F)=— [ fs)ds. Gr.)=— [ f(9)als,0.€)ds.
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Since a(s,0,&) is a polynomial in £ of degree 2, let as(s, &) be the second degree part of
a(s,0,&) and set a;(s,€) = a(s,0,&) — aa(s,§). as(s,§) is written as follows:

= 3 a(5,0) 0(L;)(0.€) 0y (L) (0,€).

7,k=1

where 0,(L;) is the first degree part with respect to & of the symbol of L;. Since the
coeflicients of L; are real-valued by Condition (3°), 0,(L;)(0, &) is purely imaginary. Then

we have for every s € [

Reas(s,§) = Re Z a;k(s,0) 0p(L;)(0, ) o (L) (0, €)

IN

51 Z lop (L )*  ( by Condition (2°) ).

where o is the column vector *(0,(L1)(0,€), ..., 0,(L,)(0,€)).

Next, in view of Condition (3°),

(10.5) there exist integers ¢ € {1,...,n} and m € {1,...,d}
such that the coeflicient of &, in 0,(L,)(0,€) is not zero.

Let Ez (&1, &m-1,0,&mi1,5 - -+, &q). For every C' > 0 we define D(C) to be
(10.6) D(C)={¢ e R'; |6, > ClEP}
We see immediately that

(10.7) £ > ¢

> 1+C’|§|2 for every £ € D(C).

Now we shall show the following lemma.
Lemma 10.1  There exist positive constants (Cy, Cy, Cy) independent of (t,§) such that
(10.8)  [exp G(t,€)| < exp(=CoF(1)[E?)  for all (1,€) € I x (D(Ch) N {[¢] > Ca}).
Proof of Lemma 10.1.  Since |exp G(t, )| = exp Re G(t, ), it suffices to show that
(109)  ReG(t,€) < —Col¢PF(t) for all () € I x (D(Cy) N{[¢] > Ca}).
This follows from the inequality.
(10.10)  Rea(s,0,€) < —Col¢]* for all (s,€) € I x (D(Cy) N{l¢] > Ca}).
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In fact, suppose that (10.10) holds. If ¢ € I and ¢ > 0, then —f(s) > 0 on [0,t] by (D)

and we have
ReG(t,&) = —/Otf(s) Rea(s,0,&)ds
< Col¢)? /Otf(s) ds = —Col¢)*F(t) for all £ € D(Cy) N{|¢] > Cs}.

In a similar way, we can verify that this holds also for t < 0. So (10.9) is satisfied and
hence (10.8) holds.

Now let us prove (10.10). First, by (10.5), there exist positive constants C3, Cyy inde-
pendent of & such that

Z|Up (0,67 > Cs 6, — Culé.

Then, in view of the definition of D(C'), we choose a positive number C5 so large that
Cie? < e, for all € € D(Cy),

Thus we have

(10.11) Reas(s, &) < —%5(1) Cs&,? forall (s,€) € I x D(Cs).

Since ay(s,€) is a polynomial in £ of degree 1, there exist constants Cg, C7 independent
of (s,€) such that

|Reay(s,&)| < Cslé| + Cr forall (s,6) € I x R™.

We choose a positive number Cy so large that

Cslél + C7 < M I€]? for all € € R? satisfying |¢] > Cs.
8(1 + Cs)
Then, we have by (10.7)
§(I)C3C5 |,
10.12 < =
10.12) [Rear(s. )] < 00 4 g

< éé([) Cy&n? forall (s,€) € I x (D(Cs) N {I€] = Cu}).

Set Cg = §(1)C3C5/(8 + 8C5) > 0. We have from (10.11), (10.12) and (10.7)
RGG(S,()?g) = Rea2(57§> + RGCLl(S,g) < _Z 6(1) 03 £m2 + |R€CL1<S,§>|

< —%5(I>Cgﬁm2+%5(1)03§m2 < ——0(1) Cy&”
< —Col¢?

95



for all (s,&) € I x (D(C5) Nn{l¢| > Cg}). This implies (10.10). And hence Lemma 10.1 is
proved. O

We choose a real-valued function $(£) in such a way that (€) = (€)™ >y (€), where
x(€) is an element of S{(R") and satisfies

0<x <1, suppx C D(Ci)N{l{] >C2} and x =1on D(2Cy)N{[{| > 2Cs}.
Note that ¥ (&) is not rapidly decreasing. From (10.2)—(10.3), we have
wo(t,€) = ¥(€) exp G(L, ).
Therefore (10.8) implies
[oo(t, &) < (§)" P exp(—CoF ()[¢]*)  for all () € T x R
By (10.1) and this inequality, vy(t, £) belongs to Ll(Rg)ﬂLQ(RZ) for every t € I, moreover

Fe [vo] is differentiable once with respect to t and twice with respect to z.

Now we are going to show that F '[v;] is ([j/2]+1)-times differentiable with respect to
(t,z). We shall prove Lemma 10.2 below for this. Furthermore, 7 '[vj] is differentiable
once with respect to ¢ and twice with respect to x by using Lemma 10.2 (see (10.18)

below).

Lemma 10.2  For any (4,p,0) € Zy X Z, X Zi, there exists a constant C” .5 Such that

2>|ﬁ|+2j

(10.13) |98, (1, &) < €35 (1+ F(£)() (&)~ exp Re G(t, €)

for all (t,€) € I x R".

Proof of Lemma 10.2.  We proceed by induction with respect to j. For 7 = 0, we

treat 8? vg at first. It is written as

Huo= Y Co(000)(0/G(t€) - (01G(tE) expG(t.€),
i o

and 8? G(t, &) is evaluated as follows.
g, ) ‘ /f )0a(s,0,€) ds| < CsF(t)()> 1.

Note that F(t) is non-negative by (10.1). So we have

00u0(t.€)] < 3l IRR() () I il exp Re Gt €)

18|
= Y CuFH ™€) expRe G(t,€)

=1

< G (1+ F(©?)” (M expRe G, 6).
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Therefore (10.13) holds for j = p = 0. Next, we prove (10.13) in the case where j = 0,p >
1 by induction with respect to p. Let p’ be a positive integer and suppose that (10.13)
holds for j = 0,0 < p < p'. From (10.2), we have 8?“8?1}0 = —af'ag (f(t)a(t,0,&)vo).
By Leibniz’ rule, this implies

ZZ( )( )c’)qaa(ﬂ) alt,0,€)) 0 109!~ "vy

q=0 a<p

Z > Cral&)* x

q=0 a<p

Cp’—qﬁ—a (1 + F(t) <€>2>
( by induction hypothesis )
< Oy (14 (1)) (6200158 exp Re (1, ).

So (10.13) holds for p = p’ + 1. Now (10.13) is verified for all p provided that j = 0.

‘afl+18?U0‘ _

IN

T 200l o Re G, €)

Next, let 5’ be a positive integer and suppose that (10.13) holds for 0 < j < j'. Then
(10.2)—(10.3) yield

-/

J

vi(t,€) = —Z Z exp G(t,€)

k=0 |a|=k+1

t Z|O“
< ()" 08 (vymnl5,€) a(5.0,6) ) exp(~Gi(s. ) ds
Furthermore, we have by Leibniz’ rule

(10.14) Ovyr41(t,€)

= - Z 0’71,72,732 Z ( eXth£)>

T+y2+y3=8 k=0 |a|=k+1

t ilel
< ) 0 (a5, €) 055, 0,6) ) (02" exp(=G(s,))) ds

o!
By the same way as for vy, we have

(10.15 0 expG(tE)] < C (T+FE)°) " (©) M expReG(t,€),
07 exp(~G(s,€))| < € (14 F(5)(€)) ™ () exp(~ Re (s, €)).
Since j' — k < j’, we have by induction hypothesis

(10.16) i

8a+72 (vj,_k(&g) aﬁj“a(s,(),f)) ’

< Caagra (14 F(s)(€)?) "7V (g)mdmtolatnl=6'0) o Re (i, €).

Suppose that ¢ > 0. Since |f(s)] = —f(s) for every s € [0,t], we have by combining
inequalities (10.14), (10.15) and (10.16)
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0041 (2.6)

) il —d—l—]at+y1+72 -’ -
- Y. > D Chummsiika <1+F(t)<§)2) ! (€) d=1-latyi+y2+73=(i"~k)

Y1+72+73=8 k=0 |a|=k-+1
xexpReG(16) [ {(1(9) (1+ F9)(6)?)

Since —f(s) > 0 for s € [0,t], we have 0 < F(s) < F(t) for s € [0,¢]. Therefore we obtain

laty2+v3]+2(5"'—k)
ds.

(10.17) ]agvjfﬂ(t,é’)’

|B]+25"+1

(€I expReGLt,) [ (- 7(s)) ds

(€U (exp Re G(1,€) ) F(1)(€)*(6)
(&)~ 3 PG exp Re Gt €).

< O (1+F(1)(©)?)

= O (1+ F(1)(©)?)
< O (1+ F@)©)°)

|8]+25"+1
|8]+25'+2

In a similar way, we get (10.17) also for t < 0. Now (10.13) is verified for every (p,j) €
{0} x Z,. Finally, (10.2) yields

afurlagvj (ta f) = _af’a? (f(t) a<t7 0, f) Uj (ta 5))

, Jj—1 ilel
~oy o (f(t)z 3 a8§(vj_k_1(t,§)8§a(t,0,§)>)

k=0 |a|=k+1

for 7 > 1. Thus, again by induction with respect to p by the same way as in the proof for
v, we have (10.13) for p > 0. Now Lemma 10.2 is proved. O

The support of v;(t,-) is contained in C D(Cy) N{|{| > Cy} for every (j,t) € Z4 x I
from (10.2)—(10.3) and the definition of ¢. Moreover, since

sup { F(1)![¢[" exp(~Col¢[*F(t))} < +00  for every | € Z.,
IxR?

we have by Lemma 10.2 and (10.8)
(10.18) 0700;(t,€)] < Cjppl@)® ™77 forall (1,€) € I x R

This shows that F; '[v;](t,2) € CU/A+H(T x RY).

In what follows, we modify v;. The formal sum « satisfies Pu = 0 (see (10.4)).
However, u is not necessarily convergent in the distribution sense. Therefore, we need to
modify v; consisting @ so that the modified sum converges and in addition that its image
by P is smooth. Let h(€) be a function of class C* in R® such that

h(€) =1 on {[¢| =2}, supph(¢) C {[¢] = 1}
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Let {g;}52, be a sequence of positive numbers such that eg =1 <&, <eg < -+ — +00
which we choose later. For every (j,p, ) € Z; X Z X Zi satisfying p + | 8| < [j/2], we

have
| OFOLF [l ) vyt )] (@) |

= | [ b oot de | < oo [ 7T (by (1018)

|§1>¢€;

< Cipo [ 7O < Ciposs™ [ (077 = CipoCasy ™,

|€1>e;

where Cy is a constant depending only on d. So we choose a {¢;}32, inductively in the

following way:.

=1, e >max{l+¢e;_1,22C; max C; > 1).
" ! { T Bt “”0} G=1

We set u;(t,z) = F; ' [h(ej)v;(t,-)](x). Then we have for every (j,p, 8) € Z X Z, ¥ z¢
satisfying p + |6] < [5/2]

(10.19) 0700, (t,x)| <277 forall (t,x) € I x R”.

And hence

(10.20) u;(t, ) converges in C™/2(I x R?) for every positive integer N.
J=N

Let

u(t,z) = iouj (t,x).

Since u(t, ) is a continuous function in I x R* from (10.19), it belongs to D’(I x R%).

Now, let us show that Pu is smooth. For a positive integer N, we divide Pu into two

parts as follows.
N-1 )
Pu(t,z) =P > wu;(t,x) + P> uj(t,x) =Un(t,z)+ Usn(t, x).
=0 j=N

It suffices to show the following lemma.
Lemma 10.3  Let [ be a positive integer. Then Uy n(t, ) € C'(I x R?) if [N/2] > L.

In fact, given a positive integer [, we choose N so large that [N/2] > [ 4+ 2. By (10.20),
Usn(t,z) € CVA72(1 x RY) ¢ C'(I x R?). Moreover, this lemma implies Uy y(t,z) €
C'(I x R%). So Pu = Uiy + Uy € C'(I x R%). Since [ is arbitrary, we see that
Pue C>®(I x RY).
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Proof of Lemma 10.3. U y(t, z) is given by

Uin(t.z) = /wfzh 1) By, (¢, €) de

N—
+/”5f txgz &) v;(t, €) de.
7=0
By the Taylor expansion and integration by parts, we have

UI,N<t7 l’)
‘ N-1
_ / ¢ivt Z h(e; ) Oy (t, €) dé

Z|a|

+ [ DY Y o (he; )1, alt, 0,6)) de
Jj= 0|oz\<N

+N [ MZ“/ 1-¢ N18§<f()8at9.r§Nz:lh v]tg))dedg
la|=N 7=0

= Vin(t, )+ Von(t,z)+ Vs n(t, o).
To prove Lemma 10.3, we have to show the following:
(10.21) Vin(t,z) + Van(t,z) € CHI x RY) if [N/2] >
(10.22) Van(t,2) € CHI x RY) if [N/2] > 1.

Let us begin with (10.22). We evaluate derivatives of the integrand of V5 y by using
(10.18) and we have

“ For any K CC R? and any (p,a,3,7) € Zy x Z1 x Z% x Z% satisfying that |a| =
and p + |B| < [IN/2], there exists a constant C' = C(K, p, a, 3,7, N) such that

(i€ ot o a7 (1) 02alt, 02, ) 3 bl ") us(t,€))

for all (t,2,£,0) € I x K x R* x [0,1].”

This implies Vs y(t,2) € C™3(I x RY). Consequently, Vs y(t,2) € CY(I x R?) if [N/2] >
[. Now (10.22) is verified.
Next, we prove (10.21). We define Wy (¢, z) by

N—
(10.23) Wi n(t, z) z/e”“fh Z v;(t, €) de.

Since derivatives of h(&)0w;(t, &) — h(sj_lf)atvj(t,ﬁ) of any order are rapidly decreasing
with respect to £, the difference Vi x — Wi y is smooth. Also, we define W5 (¢, z) by

‘ N-1 jlal
(1024)  Won(t,z) = [ €¢h(g) S0 XD 08 (w(t.9) 02a(t,0,0)) de.

la|<N
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Then, the difference Vo v — Wa y is also smooth because derivatives of h(£)0g (vj (t,€)
8?@(15,0,5)) 3 (h(e;lf)vj(t,f)aﬁa(t,O,f)) of any order are rapidly decreasing with
respect to £. Therefore, for the proof of (10.21), it suffices to show that

(10.25) Wi n(t,2) + Wan(t,z) € C(I x RY) for every N satisfying [N/2] > [

Now we prove (10.25) by making use of (10.2). Summing up both sides of (10.2) from
j=0toj =N —1, we have

. N— jlel
(10.26) / ¢th(E) Y (atv] &)+ f(t) D Jag(vj(t,@ amu,o,g))) d¢

=0 la|<N
' N— N-1 Z|o¢|
o x E aloaomina

k=0 |a|=k+1p=N—k—

The left hand side of (10.26) is equal to Wy y + W5 n. Therefore, we have to show that the
right hand side of (10.26) belongs to C'(I x R?) for every N satisfying [N/2] > [ +2. We

evaluate derivatives of the integrand by using (10.18). Then we have for every (q, ) €
Z, xZ¢

l\')

N-1

( N %lag(vp(t,g) a;‘a(t,O,{-“))) ‘

k=0 |a|=k+1p=N—-k—1

N-1
= Croppan €I < Gy () I,
=N—

N—-2
<2
k=0 Jaj=

,_.

k+

This shows that the right hand side of (10.26) belongs to C™/?(I x R%). So (10.25) holds.
This completes the proof of Lemma 10.3. O

10.3 Verification of non-smoothness of the solution

From (10.19), the sum 222, u;(t, ) is convergent uniformly in any compact subset of I.
Since u;(t, ) is continuous for every j and u;(0, ) vanishes identically for every j > 1 by
(10.3), we have

2) = 3 uy(0.0) = wof0,2) = [ e Eh(Eyi(e) de.

J=0

If u were smooth, u(0,z) should also be smooth. In what follows, we shall prove by

contradiction that u(0, z) is not smooth.

Set B, = {x € R% |z| < r}. Suppose that u(0,z) be smooth in B;. Then for every
p € CP(By), p(x)u(0,z) belongs to Cg°(By) and F,[p(-)u(0,-)](€) is rapidly decreasing.
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Let ¢ € CP(By) be such that F,[p1](€) is real-valued and non-negative. There exists
such a ;. In fact, take a ¢, € C§°(By/3) such that ¢, is real-valued and o (x) = po(—1x).
Then F,[p2](€) is real-valued. Set p1(x) = a9 *@a(x), where * stands for the convolution.
Now, ¢1 € CF(By3), Fzlp1](§) is real-valued and non-negative, because F,[¢1](§) =

2
(Fale2](€))"

Let us evaluate Flo1(-)u(0,-)](§) and prove that it is not rapidly decreasing. First,
without loss of generality, we may suppose that m appeared in (10.6) is equal to 1. So

D(C) is defined to be
D(C) ={¢eRY; |4 = Cl&f + - + [&l’}.
Let us remember that 1) is of the form
w(&) = (6)™"x(9),
where x(€) is an element of S?jO(Rd) and satisfies
0<x<1, suppx C D(Cy)n{[{| > C3} and x =1on D(2C))N{[{] > 2C,}.

Then we have
Flenu©,0]©) = [ e =Seu@F ) ()] @) do
= [ Faleadn) (€ = m) " b = m) x(g —m) dn

n

Since the integrand is non-negative and (¢ — n) < v/2(€)(n), we have

(1027)  Flea()u(0,)](€)
> 27 [ F o] )49 ) hiE =) (€ — ) .

n

Next we define three domains D(&;), D2(&1) and D3(&;) by setting
Di(&) = {neR*; |G —ml =20 (Imlf + -+ nal*) |,
Dy&) = {neR' & —m =20 (Il 4+ +Ind?)),
Ds(&) = {neR";|(€,0,...,0) =y > max{2C,, 2} } .
We see immediately that Do(&1) C Di(&) for every & € R and that

h(& —n)x(§ — m’g:(gl,o ..... 0= 1 on Di(&) N Ds(&) for every & € R.

Substituting (1,0, ...,0) for £ in (10.27), we have
Flon)u(0,)](6,0,...,0) > 270972y =03

> 27(d+3)/2 <£1>—d—3

Falior) () ()~ dn

Falir) () (m) = an.

/D1(§1)OD3(§1)
/D2(€1)0D3(€1)
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Set
1/2
Dy = {n € R'; —m =20, (Iml” + - + Inaf*) }
Then, Dy C Dy(&)N D3 (&) for every & satisfying & > max{2C5,2}. Therefore we obtain
for any &; satisfying & > max{2Cy, 2}
Flor()u(0,)](€,0,...,0) > 27H3/2(g) =03 /D Fulior () (m) ™ dn.

4
Since F[p1](n) is real-analytic by Paley-Wiener’s theorem and D, contains an open set
of R, F.[¢1](n) does not vanish identically on Dy. Moreover F,[p1](n) is non-negative,
so [p, Fale1)(n) ()~ dn is a positive constant independent of &. This shows that
Fele1()u(0,-)](§) is not rapidly decreasing. This is a contradiction, so u(0,z) is not

smooth and hence u(¢, x) is not smooth. The proof of Theorem D is completed. O

Remark. Throughout this section, we assumed that f does not depend on x. Here
we mention a result on non-hypoellipticity of P of the form (A) in the case where f

depends on .

Corollary 10.4  Suppose that f(t,x) does not change sign, no a;,(t,x) depends on
t and that the operator 37, _; ajL;Ly has an elementary solution E(x,y) belonging to
C™(R; x R\ {z =y}). Then, Condition (1°-3) is necessary and sufficient for P of the
form (A) to be hypoelliptic under Conditions (2°) and (3°).

An example is the following
L=0,+f(tx) (0% + 0%+ +02,).

If f(t,x) does not change sign, L is hypoelliptic if and only if f(¢,z) satisfies Condition
(1°-B). This is because L is hypoelliptic due to Theorem A if f(t,x) satisfies (1°-3). If
f(t, z) does not satisfy (1°-(3), then there exist an zy € R" and a non-empty open interval
I such that f(t,x0) vanishes identically on I. Let E(z) be the usual elementary solution
of the Laplacian A, that is,

1

Sel W=
1
B@) =) logle| (d=2)
['(v) 9 g o d=2
—47rd/2|q;| (d>3), WhereV—T.

Now we calculate the pairing (LE(z — ), ) for every p € C5°(I x RY) as follows.

(LE(x —x0),)
= (E(zx —x), M f(t,x)p) (since E(x — xq) does not depend on ¢t )

= (3w —z0). J(t.2)p) = [ Jt.wa)eltw)dt = 0.
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Thus, LE(z—20) = 0in D'(I x R%). Obviously, E(z—) is not smooth in a neighborhood
of 2 = 9. So L is not hypoelliptic in I x R%. Therefore, Condition (1°-3) is necessary
for L to be hypoelliptic.
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11 Hypoellipticity of a particular operator
of the form (B)

In this section, we investigate hypoellipticity of the following operator which appeared in
68
Lpg =0+ (" +it7) 02,

where p, ¢ are given non-negative integers. We gave a necessary and sufficient condition
for L,, to be hypoelliptic in the Introduction (see Theorem E). If p is large with respect
to g, 1t90? is dominant. 0, + it?0? is not hypoelliptic because this is a Schrodingerlike
operator. So one can guess that L, , is not hypoelliptic in this case. On the contrary, if ¢
is large with respect to p, tP9? is dominant. Since d; +t?9? is hypoelliptic due to Theorem

A, we expect that L, , is hypoelliptic in this case. Indeed, the following propositions hold.
Proposition 11.1 L, , is not hypoelliptic in R ifp>2q+1.

Proposition 11.2 L, , is hypoelliptic in R? ifp<2q.

11.1 Proof of Proposition 11.1

Let us sketch the proof. First, we take a non-smooth solution w belonging to D’ to the
equation (0; +7t70?)w = 0 (see (11.3) below). Next, from this w, we construct a formal
solution U of L, ,U = 0 as a sum of distributions. And we modify U so that the modified
sum U is convergent in the distribution sense and that its image by L, , is of class C*.

Finally, we prove that U is not smooth.

To simplify the proof, we restrict ourselves to the case where p = 2¢g+1. The remaining

case is treated in a similar way. Set

(11.1) My = Lagirg = O+ (£ +it7)02,
(11.2) L, = 0, +itlo2
Let a,b be numbers satisfying 0 < a < b and I an open interval containing ¢ = 0. We
shall show that M, is not hypoelliptic in I x (a, ). For this, it suffices to prove that there
exists a U € D'(I x (a,b)) \ C*(I x (a,b)) such that M,U € C>(I x (a,b)).

Let k be the smallest integer such that k—(¢+1)/2 > —1. We define w € D'(I x (a,b))
to be

1 b poo
(11.3) (w,p) = ﬁ/ / tFwo(t, z) (tLZgo) dtdx  for every ¢ € C°(I % (a,b)),
+ Ja JO
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where

Atat+1
and 'L, = —0, + i t70?. We see that L,wy = 0 in {¢ > 0}. First, let us show that

. 1 2
wo(t, ) = [t~ @D/ exp <_M>

(11.4) Lyw =0

as an element of D'(I x (a,b)). We calculate the pairing (L,w, ) for ¢ € C7°(I X (a,b)).

(Lyw,p) = <w,tLq<,0> = % /ab {/OOO tFwo(t, z) (tL];Hgo) dt} dx

N Y L (Rt tr k1
= lgllﬂolﬁ/a {/E two(t,x)(Lq gp)dt}dm

( by Lebesgue’s convergence theorem ).

Set
1 b o)
I = ﬁ/a /8 tkwo(t,x) (tLl;“(p) dtdxr for e > 0.

Since integration by parts yields

LA ﬁwg =LFL iwo = LF Lwo =..=Lawy =0
q k! 17\ R ) (k—1) a

in {t > 0}, I. is rewritten as

k

I. = Zjl,ev
=0
i(g+1)x

I 2
where J; . = W/a gh=l=a1)/2 oy <_T+1)> (tLS’%) (e,x)dx (1=0,...,k).
It reveals that
(11.5) Jie = O(eh i),

In fact, J;. is rewritten as follows.

1 b hi—(g+1)2 20 i(qg+1)a? k-1
Jl,a - _(k,’—l)!/ag (a+1)/ ﬁ@xeXp —W (tLq QO) (E,[E)dﬁ(}

9 ck—l+(g+1)/2 b ; 1) 22 LElo(e, x
- c /{3xexp<—Z(Q+ >m>} i )dx

Ci(g+1) (k=) x

Since 0 < a < b, (‘Lip(e,x))/x € CF((a,b)). Therefore we have by integration by parts

9 gk—l+(g+1)/2 b ; 1) 22 tf k=l ,
J. = - < / exp _M , M dr.
T+ 1) (E=D! Ja 4eatl T

This shows (11.5). Since k—1+(¢+1)/2>0({=0,...,k), liﬂf)lfe = 0. And hence (11.4)
holds.
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Now we prepare three lemmas to construct a formal solution U of M,U = 0. Lemma
11.3 is used only to have (11.8) below. The construction starts from (11.8). Lemma 11.4
is needed only for proving Lemma 11.5. We use Lemma 11.5 to construct successively a

formal series solution U.

Lemma 11.3  Let w be as in (11.3). Then, the following equality holds as an element
of D'(I x (a,b)).
(11.6) M, (e(qﬂ)xz/gw) = (t2q+1 +z'tq) (@ie(qﬂ)x?/iﬂ) w

. . 2
Z(q;r 1) p(a+D)2?/8,, _ i(g+1) Hap2p(at D)2 /8,

Proof of Lemma 11.3.  Given ¢ € C°(I x (a,b)), set

J = <<t2q+1 + z’tQ) (age(qﬂ)xz/s) w,gp> B w <tqe(q+1)x2/8w, 90>

. 1 2
B Z(QZ ) <th2€(q+1)x2/8w’ 90>
and -
L= {7 trwolt.) T {02 (0t 0)  di  do.
We see that

(M (e ) ) =

Since M, = L, + t*7"1 92 due to (11.1) and (11.2), (11.6) holds in {¢ > 0} for wy in place
of w. So the difference I. — J is equal to a sum of integrals on [a,b]. By the same way as
we evaluated J; ., we see that this sum of integrals tends to 0 as € | 0. Therefore, (11.6)

holds in the distribution sense. O

We define the distribution w to be

" oo (57

Remark. In the case where p > 2¢+ 2, w is not needed for the proof of Proposition
11.1. Lemma 11.5 below holds if we replace w by w. Thus, the construction of U goes

well without w in this case.

Rewriting (11.6) for w, we have

(11.8) M, @ = t*" Cy(q, ) @ + t* Cy(q, x) 0,
g+l (g1, g+ 1  3(g+1)? ,
where C}(q,z) = Tt T and Cy(q,x) = —i YR 5% )

Next, we have the following lemma which generalizes (11.8).

107



Lemma 11.4  Let w be as in (11.7). For any F(x) € C*([a,b]) and any positive
integer 1, there exist two functions Cy(q, F,x) and Cy(q, F,x) belonging to C*([a,b])
such that

(11.9) M,(#F(x)®) = £ C(g, Fa) @ + 7 Co(g, ) @
+t 7 ((g+ Do F' +1F)d
as an element of D'(I x (a,b)).

Proof of Lemma 11.4. Set

1
Cilg, Fw) = Cilg0)F(@) + Lo o F'(a) +1 F'(2)
C . q+1 / 1"
2(q, Frz) = Calg2)F(2) —i—— 2 F'(2) + F'(z),
where Cy(q,x) and Cy(q, ) are as in (11.8). Then (11.9) holds in {t > 0}. By the same
way as in the proof of Lemma 11.3, we obtain (11.6) in the distribution sense. O

For every non-negative integer [, let V; be the vector space consisting of linear com-
binations of C(z)t™w where C(z) € C*([a,b]) and m is an integer not smaller than
[. As is mentioned above, the following lemma allows us to construct successively the

summands of U.

Lemma 11.5  Given a non-negative integer l, there exists, for any v € Vi, a u € Vi
such that
Mq u+ve ‘/l+1.

Proof of Lemma 11.5. Let w be as in (11.7). For any v € V,, there exist a finite
number of functions G1(z),...,G,(x) belonging to C*([a,b]) such that

v =Y t'Gi(x) W € Vi
j=1
So, it suffices to show that, there exists, for any G € C*([a,b]), a u € V4, such that
M, +t'G(z) w € Viyq. Given G(z) € C*°([a,b] ), we set

I+1)/(g+1)—1

F(z) = —g~HD/(at) /z Y —
a q

G(y)dy and @ =t"F(z)w.

Since 0 < a < b, the interval [a, b] does not contain z = 0. Consequently, @ € V;;;1. Then,
M, +t'G(z)w € Viyq by (11.9). Lemma 11.5 is proved. O
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Now let us construct a formal solution U of M,U = 0. To do this, we are going to find

a sequence of distributions {v;}32, such that

!
11.10 v €V, and M v, eV, foreveryl e Z,.
q J
Jj=0

o -
If such a sequence {v;}32, is chosen, set

U= Z’Uj.
7=0

Then, this is a formal solution of M,U = 0. We choose {v;}52, in the following way.

Set vg = w. Then, M,vy € Vj from (11.8). We take a v; € V; such that M,v, + M,v, €
Vi. This is possible by applying Lemma 11.5 to [ = 0 and v = M_,vy. Next, we take a
vy € V4 such that Mve + M, (vg 4+ v1) € V5. This is also possible by Lemma 11.5 because
M, (vo +v1) € V1. We repeat this procedure and obtain {v;}52,.

Next, we modify U obtained above. The sum U is not necessarily convergent in
the distribution sense. So we construct {u;}52, from {v;}32, so that the sum 22 u;
converges in the distribution sense and that its image by M, belongs to C*(I x (a,b)).

For every non-negative integers (j,m), t‘w € C™(I x [a,b]) if j —1 —q/2 > m(q+2).

Thus, we have

» — 3
(11.11) V; ¢ U= 4/D/@tN(T 5 [a,b])  for every j > %,

where [s] denotes the largest integer not exceeding s. Let {€;}52, be a sequence of positive
numbers such that 1 = ¢y > ¢; > g9 > .-+ — 0 which we choose later. Let h(s) be a

smooth function of class C*° such that
h(s) =1 on {|s| <1/2}, supph(s) C {|s| <1} and 0<h(s)<I.

We have for every j > (¢ + 3)/2 and every non-negative integers «, 3 satisfying a + <
(G —1—q/2)/(q+2)]

(11.12) \agaf (h(t/sj) uj)j < g/l D=Blat=atD20. o for all (¢, x) € T % [a, ],

where Cjo5 does not depend on the choice of {€;}32,. So we choose a {¢;}52, inductively

in the following way.
g =1 if 0 <j <[(qg+3)/2],
(11.13)

a+B<[i 2

0<e <  min ]{(zf(cjaﬁﬂ))“‘,ggl} if 5> [(g+3)/2 + 1.
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Set u; = h(t/c;)v; (j > 0). We define U to be
(11.14) U=>Y uj.
=0

By (11.12) and (11.13), we have for every j > (¢ + 3)/2 and every non-negative integers
a, 3 satisfying a4+ 3 < [(j — 1 —¢/2)/(¢ + 2)]

‘80‘8ﬁuj (t,x ‘ <277 onlI x[a,b].

And hence, for any non-negative integer [,

(11.15) the sum > u; converges uniformly in C*(T x [a, b]).
j=la/2+2+1(q+2)

Now let us prove that U (see (11.14)) converges in D'(I x (a,b)). We divide it into

two parts as follows.
lg/2]+1

U=3u= 3 w+ > wu
=0

J=0 j=la/2]+2
The second sum on the right hand side converges uniformly in C°(I x [a,b]) by (11.15).
Thus, U converges in D'(I x (a,b)).
Next, we prove that M, U € C*(I x (a,b)). It suffices to show that M,U € C'(I x
(a,b)) for any non-negative integer I. Given [, we set N = [¢/2] + 2+ (I +2)(¢ +2). We

divide M,U into two parts as follows.

N-1
MU MZUJ—I—MZUJ
7=0 j=N

The second sum >°72  u; converges in C'""*(T x [a,b]) from (11.15) with [ + 2 in place of
l. So M, 332 yuj € C'(T x [a,b]). The remaining question is to prove that M, YNy €
C'(I x [a,b]). It is rewritten as follows.

N-1 N-1
> Mgu; = Mg h(t/e;) v;
=0 =0
N-1 N-
— e W (t/e;) v Z( (t/ej) — h(t/en— 1)>Mqvj
j=0 j=0

N—
t/f—:N 1 Z
7=0

= Pin+Pon+ Py

The support of P, y and that of P, 5 are contained in {27leyy <t <1} So Py n and

P> n belong to C*(I x (a,b)) because v; is smooth except at t = 0 for every j. Moreover,
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we have from (11.10) and (11.11)

N—
P37N— t/ENl Z ’UJGVN 1CC(IX(6L b))

Therefore, M,U € C'(I x (a,b)). Since [ is arbitrary, M,U € C*(I x (a,b)).

Finally, let us show that U ¢ C*(I x (a,b)). The proof is done by contradiction.
Suppose that U € C*(I x (a,b)). Since the support of u; is contained in {t > 0} for
every 7, so is the support of U. Thus,

(11.16) amU(0,x) =0 in (a,b) for every m € Z,.
Let ¢ be a positive number smaller than 1 and let ¢;(t), ¢2(x) be functions such that
p1 €Cr(I), 0<¢; <1, =1 Iin aneighborhood of t =0,
b
P2 €CE(( D), 0@ <1, [ pade>0,

Set

ps(t, ) = 1(t/0) pa(w) € CF(I % (a,b)) and  ((t,x) = exp (M> :

4ta+1
Then, (11.16) implies
(11.17) <tkC[7,g05> =0 (0™) foreveryme Z,,

where k is as in (11.3). We shall show that (11.17) does not hold. First, t*uq belongs to
L (I x (a,b)), t*Cuy is real-valued and t*Cuy = h(t) t*=@ /2 in {t > 0} N (I x (a,b)).

loc
So, we have for sufficiently small §

<tkCu07<P5> — />O/bh 1) (250 (118 o) dit d
/to/ ) 01(t/0) pa(x) dt dx

( since t*=(@+1)/2 > 1 on the domain of integration )

b
> —
> 6/t>0<p1(t) dt/a wo(z) dx 19,

v

where (] is a positive constant independent of §. So we have

(11.18) (t*Cug, 5) > C10.

On the other hand, t*u; belongs to L{.(I X (a,b)) for j > 1, and
[t )| < Choolt] 2" on Tx (a,B) (5>1).
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If j > (q+3)/2, Cjoo is the same as that in (11.12). From (11.13), &;//* < 279Cy if
j > (q¢+3)/2. Thus, we have

¢Sy ‘ < Cylt|Y* on T x (a,b).
j=1

This yields
< Cyd™*,

‘<tkC§:1Uj>905>

where Cj is a positive constant independent of . Combining this inequality with (11.18),

we have
(5T, 05)| = €10 = C50°* > (C1/2)5 for 0.< 5 < (1/(2C3))*.

This contradicts (11.17). So U ¢ C*=(I x (a,b)). Proposition 11.1 is now proved. O

11.2 Proof of Proposition 11.2

Let € be a bounded open set of R*. We sketch the proof for L, , to be hypoelliptic in {2
if p < 2q. Let (7,€) be the dual variables of (¢, z) and $y be the class of operators defined
in §1. For a = € %y, we divide the space Rz,g into two microlocal domains suppo(5),

supp(l — o(Z=)) and prove that L, , is hypoelliptic in each domain.

First, we shall prove that L,, has a left parametrix ) in the microlocal domain
supp(l — o(Z)) for every = € $y. The proof of the next lemma is done in the same way

as that of Proposition 1.1 in §1. So we omit it.

Lemma 11.6  Suppose that p < 2q. Then, for any = € Sy, there exist () € 81_/12,0 and
R € 57 such that
(11.19) (1-2)=QL,,+R.

Remark. This holds even if p > 2¢ > 0.

L,, is hypoelliptic in supp(l — o(Z)) for every = € Sy from this lemma. This
is because, given = € Sy, (1 — Z)u = QL,,u+ Ru € C*(Q) if u € D'(NN) and if
L,,ue C®(). Since u = (1 — E)u+ Eu, L,,Zu € C*(Q) for every = € $y provided
that L, ,u € C™(£2). So it suffices for the proof of Proposition 11.2 to show the following

proposition.

Proposition 11.7  Let u be an element of D'(Q2). If L, ,Zu € C*(Q) for any = € Yy,
then Zu € C™ () for every = € Sy.
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To prove this, we prepare three lemmas. Set

2
(11.20) k(p) = PR

The proof of Proposition 11.7 starts from the inequality (11.21) below which is an a priori

estimate with weight (5)”(1? )

11.11 below.

. This lemma will also be used to prove Lemmas 11.10 and

Lemma 11.8  For any open set K CC 2, any N > 0 and any = € Sy, there exists a
positive constant C' = C(p, K, N, Z) such that

(1121 (D)= < O (ILpgZull® + ul? y)  for all u € CF(K).

Proof of Lemma 11.8. We define an ordinary differential operator @, ,(§) on

R, with real parameter £ to be

d
=
For the proof of (11.21), it suffices to prove the following lemma.

Qpal€ (& +it7)&.

Lemma 11.9  For any non-empty bounded open interval I, there exists a positive con-
stant C' = C(p,I) such that

(11.22) [0 [1ofat < € [1Qua(€) el dt for all (v,6) € CF(R) x {Ig] = 1),
where C' is independent of & and v.

We admit this lemma for the moment. We denote by F, the partial Fourier transform
with respect to z. Substituting v by Fyu(t,§) in (11.22), we have for any ¢ satisfying
€] =1

/ (&) Fru
On the other hand, we have for any ¢ satisfying || < 1

JAIGRE

Therefore, we have for any £ € R

[l Foaf dt < o1, 3) ([ 100ale) FouP at + [ () Fo

Ldt < 220 / Qg (€) Fouul .

2
dt.

Car < a0 [ )N F

2
dt) ,

where C'(p, K, N) is a constant depending only on (p, K, N). Integrating both sides with

respect to &, we get by Plancherel’s formula

|0y < v, K, N) (||L,,,qu|y2 + H(Dxﬂ%jf) for all u € C(K).
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We obtain (11.21) by applying this inequality to Zu in place of u. Lemma 11.8 is now
proved. O

Proof of Lemma 11.9. We prove this lemma only in the case where p is even.

The case where p is odd is treated in a similar way. (11.22) follows from the inequality
2 dw ’ o)
(11.23) /|w| ds < C’l/ i sPw| ds for allw € C(R),
s
where C does not depend on w. Indeed, (11.21) is obtained by applying (11.23) to

i |€|2p—20)/ (1) 1 2/ (o 1)
w(s) =exp | — s v(s .
O (3/JEP/ )
Let us prove (11.23). Given w € C°(R), set

a= [ 27 g and 6(A .
_/s exp(—p+1> [ an ( )—exp(—p+1>w(s).

Then, the following inequality yields (11.23).

rLan 400 2Mp+1 J o
11.24 _ / _ < 00 < 8 < 00),
(1121)  pls) exp(pﬂ)s exp( pﬂ) W<y (—00 < s < o0)

where Cy does not depend on s. This is because, since § € C°((0, 00)),

9 B +o0 ) 4gPt1 < (2 +oow
/|wy ds = /0 e e e 02/0 :

d\ ( by Hardy’s inequality (see Theorem 327 in [§].) )

sz (by (11.24) )

IN
N
S
S~
+
8
|&.
>

Thus, it suffices for the proof of Lemma 11.9 to verify (11.24). Now let us show (11.24).
Obviously, p(s) is bounded in {|s| < 1}. Suppose that s < —1. Since 1 < p? for

VS [87_1]7
2gpt1 400 2,up+1 -1 QMp-&-l
_ d / p — d
exp<p+1) (/_1 exp( b1 u+ : W exp b1 L

2gpt1 +oo 2Mp+1 1 1
< — d _ = L2/(pt1) — < .
< exp<p+1) (/_1 exp( P B e —|—2 +00

A similar argument applies to the case where s > 1 because 1 < p? for u € [s, +00]. And
hence Lemma 11.9 holds. a

IN

p(s)

The next lemma is needed only for proving Lemma 11.11. We define a non-negative
number r(p) to be

(11.25) r(p) = []%1] :

where [s] denotes the largest integer not exceeding s, so r(p) = p/2 if p is even.
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Lemma 11.10  For any K CC 2, any N > 0 and any = € Sy, there exists a positive
constant C = C(p, K, N, =) such that

(11.26) H(ny@@)/?ﬂ(waxzu\\? < C (ILpgZull® + ull? y)  for all u € CF(K),

where k(p) is as in (11.20).

Proof of Lemma 11.10. We prove (11.26) only in the case where p is even.
(The proof of the case where p is odd goes by using (11.28) in place of (11.27) below.)
First, the following inequality holds.

(11.27) [t720,u]” < | Re (Lygu.w)|  for all u € CF(K).
In fact, this follows from the equality
Htp/zﬁqug = —|Re (Lpqu,u)|.
(If p is odd, the following inequality holds.
(11.28) Ht<P+l>/2amuH2 < |Re (Lyqu,tu)| forall u e CF(K). )

Applying (11.27) to (D,)""/2Zu for u, we have

[P @200, zu* < |Re (Lyg(D) 250, (D) 2 20)| + C(K, N, Z) Jull®
< |Re (D)L, Zu, (D))" P2 20) | + C(K, N, 5) |[ul y
< |Re (LygZu, (D) Zu)| + C(K, N, Z) ||u]]®
< N LpoZull® + (D) P =Zu| + O N, Z) [lull .

This implies (11.26) by Lemma 11.8. O

Remark. Lemma 11.8 and Lemma 11.10 hold even if p > 2gq.

The following lemma is used in the proof of Proposition 11.7 to evaluate the commu-

tator of L, ,= with multiplication by a function applied to u.

Lemma 11.11  Suppose that p < 2q. Let p,p € CF(R?) be such that ¢ CC .
Then, for any K, any N > 0 and any =, € Sy (=2 CcC :;), there exists a constant
C=C(K, N,E,f,gp,d}) such that

(1129)  |[(Da)" 2L, Zoul
< C’(H(Dx>n(p)/2¢[,p7unH g =l + | Ly + HuH_N)
for allu € CY(K), where k(p) =2/(p+1).
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Proof of Lemma 11.11.  First, L, ,ZEpu is rewritten as follows.

Ly,Zpou = L,,p=Zu+ Ly, {E,gp}u

—_—

= YL, Eu+ [Lp,m 90} Su+ [E, 90} Lypqu + [Lp,q’ [:

oJu
Then the left hand side of (11.29) is evaluated as follows.
(11.30) (D) 2Ly, g Zipu|
< CO(K, =, ¢) (D)™ /2¢quuuH+H ) 2L 0, 0] Zu
(0 ]+ [0 L[5, ]

We treat the second term on the right hand side. {Lp,q, go} is rewritten as

[Lpgr @] = (00p) + 2(00p) (17 +i17) D, + (02¢0) (17 + i127).
Since p < 2¢, r(p) < min{p, ¢}, where r(p) is as in (11.25). Thus, we have
K.9) (Do) @20 + [0y 0, 2]

C(K,N,Z,¢) (||Lp,q_uu + HuH_N)
( by Lemmas 11.8 and 11.10 ).

IA

(02 Ly ) 20

IN

Combining (11.30) with this inequality, we have
(11.31) H L,.= <puH

H P22, o] L] + | (D Ly [2,6] o]

4 C(K,Z,N, ) (H ) np/%Lp,q_uH 1Ly Sl + ||uH_N).

The first term on the right hand side of (11.31) is estimated as
(11.32) (D)™ P2[2, 0| Ly gul| < CK, N, 2, Z,0) (|| LpoZu] + Tull_y)

because [E, gp}LM — [E,gp} LME € $ > and (D,)" ~(p)/2 [E,(p} € 51/270. It remains to
evaluate the second term on the right hand side of (11.31). We choose a Z € 8y such
that £ cC =. Since £ cC = cC =,

[Lp,q, [E,QDH - [qu = (pH(l— ) e §7.

So, we have by Lemma 11.6

[me {5790H = [me {E,ngQprqé + R,



where () € Sf/lz,o is a left parametrix of L, , in the microlocal domain supp(1 — = ) and

R € $7°°. Furthermore, {Lp,q, [E , gOHQ € S;/12,0‘ Therefore, we get

[ PP Ly [2,0] o] < €U 2, 2.8.0) (LS + ).

Combining (11.31) with (11.32) and the above inequality, we obtain (11.29). O

Proof of Proposition 11.7.  Suppose that L,,Zu € C*(Q) for every = € Sy.
It suffices for the proof of Proposition 11.7 to show that (D,)’ Spu € L*(R?) for every
(s,0,Z) € Rx Cy(2) x Sy. If this is done, we see that Zpu € C*™(Q) for every
(p, 5) € C77(02) x $g by Sobolev’s imbedding theorem, so our assertion holds.

Let s >0, 5,5 € 8y (£ cC 5) and p,v € CF(Q) (po CC 1) be any given. Set
k= k(p)/2. Ifu € D'(Q), there exists an N > 0 such that yu € H_y(R?). Let us choose a
positive integer [ larger than 2(s+N+2)/k. We find sequences {p; }\_y, {¢;}._y € CF(Q)
and {Z;},_, C Sy such that

=1y CCh CC 1 CCehy CC - CC o CCahy =1

=5 CCECC---CCE_ CCihE=E

Our aim here is to show the inequality

as oy %uuw(zu Ly a Sy + ] N).

As in §2 of [22] we introduce a pseudo-differential operator Agye = (D,)*(1 4 e(D,)) ™"
for real s, ¢ > 0 and k& > 0. Note that L, ,= commutes with A . for every (Z,s,k,¢).
First, applying Lemma 11.8 to As_, kcpou with £ = 2(s + N + 2), we have

(1134)  [Ase Spou| < C(HLMEASn,k,swouHJrHWHN>

= (4D Ly Ao v + el ).

where C' is independent of €. Here and in what follows we denote different constants
independent of € by the same notation C'.
Next, let j, j be non-negative integers satisfying 0 < 7/ < 7 <[ — 1. The expansion

formula yields

= (a)
’A (j+2)k.k,e PO — =5 Z gpj(a)A (]+2)mka/a ESl/QO ’

0<]r|<2(s+N+2)
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so we have

(11.35) |

<DI>K Lp7q5j/Asf(j+2)n,k,€ QDJUH

< G( > H<Dm>“Lp,qufsoj(a)Aﬁi%M)H,k,suH+||¢u|\_N)-

0<|r|<2(s+N+2)

Since ¢,y CC ¥; and @;, Agci)(jﬁ)mkﬁ ~ Pia) Ai(i)(j+2)m,k,a ¢i+1, we have by applying
Lemma 11.11 to the right hand side of (11.35)

H <l):z:>}'i Lp,qu’As—(j+2)n,k,s SDJuH

=< C{ > <H<Da:>m UiLpg Sy AL yene i1t
0<|a|<2(s+N+2)
+ “vaqu’Aioi)(j+2)n,k,e 90j+1uH + Hvaqu/+1Ai(i)(j+2)ﬁ,k,e 90j+1uH> + W)UH—N}
< C(’ N (G42pn e VLpgZjru ‘ + H(nyC Ly oZjNs—(48)m ke 90j+1uH

+ H<Da:>H Ly gSjr1As—(j43)mke 90j+1UH + ||¢U||_N>-

Combining (11.34) with the above estimate, we have

ASJC,E ':SOOU'H

l [
. C(Z\ 3|
i'=0 7

As—on e VLpg=ju

Ns— 1)k e Lp,qu’IDUH + ||1/JUH_N> :

Since ||As_op ke Y Lp o =iul < || (D.)® YL, ,=jull and the family {As—(l—i-l)n,k,a L, .5 bocect

is bounded in Sl_/zv o for every j, we obtain

(Do) YL, ,Z5u € L2(R?) for every j' because L,,Zu € C®(Q) for every = € Sy. So
the right hand side is bounded uniformly with respect to €, we finally obtain (11.33) and
(D,)* Zpu € L*(R?) by letting ¢ tend to 0. Since (s, =, ) are arbitrary, Su € C™()
for every = € $y. This completes the proof of Proposition 11.7. And hence Proposition
11.2 holds. O

l
ke Spou]| < C (Z |(D2)* WLy Zyul| + ||wuH_N> -
§'=0
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