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1. Introduction

Given a fiber bundle whose projection is a Riemannian submersion, it is important
to characterize geometric objects on the total space such as curvatures, geodesics and
isometries in terms of the geometry of the base space. This characterization provides us
with a better understanding of the geometric objects on the total space. Let (M, g) be a
connected, orientable Riemannian manifold and T'M the tangent bundle over M with the
Sasaki metric ¢°. Then the projection 7: TM — M illustrates a typical example of this
problem. In this case, the fibers of the bundle are Euclidean spaces. Sasaki [12] proved
that the complete lift X of an infinitesimal isometry X of (M, g) and the vertical lift of
a parallel vector field on (M, g) are infinitesimal isometries of (TM, g°). Subsequently, in
1973, Tanno [14] characterized the infinitesimal isometries of the tangent bundle in terms
of certain tensor fields on the base space M: Any infinitesimal isometry Z of (T M, g°)
can be decomposed as

Z=XY+.T+Y¥

where X is an infinitesimal isometry of (M, g), and T the lift of a parallel, skew-symmetric
tensor field T' of type (1,1) on (M,g). The term Y* is also an infinitesimal isometry of
(TM,g°) defined in a slightly complicated manner, whose explicit definition is given
below.

Another typical example of the problem is offered by tangent sphere bundles. Let A be
a positive number. The total space of the tangent sphere bundle T*M over M is the set
of tangent vectors of M with length \. This yields a hypersurface of (T'M, g%) for which
we denote the induced metric by ¢° as well. In this case, the fibers of the bundle are
spheres. A vector field Z on T*M is called of fiber preserving if the local one-parameter
group of local transformations generated by Z maps each fiber of T*M into another one.

In the first part of this thesis, we characterize fiber preserving infinitesimal isometries
of (T?M, ¢°) in terms of the geometry of the base manifold M. Since the infinitesimal
isometries of the tangent bundle (T'M, g°) have been determined by Tanno [14], we are
able to determine the conditions under which the infinitesimal isometry of TAM can be

extended to that of TM. Our result is stated as follows:

THEOREM 1 ([5]). Any fiber preserving infinitesimal isometry of (TAM, g%) can be

extended to an infinitesimal isometry of (T M, g°).



Conversely, if an infinitesimal isometry Z of (T M, g¥) is tangent to T* M, then the re-

striction Z|pay, can be regarded as a fiber preserving infinitesimal isometry of (T M, gS).

In general, any infinitesimal isometry of T*M is not necessarily extendable to that
of TM. For example, the geodesic spray on the tangent sphere bundle over a space of
constant curvature 1/A? is an infinitesimal isometry ([14], [15]) that does not preserve the

fibers of TAM.

Theorem 1, together with the results of Tanno in [14], implies the following:

THEOREM 2 ([5]). Let X be an infinitesimal isometry of (M,g), and let T be a
parallel and skew-symmetric tensor field of type (1,1) on (M,g). Then the restriction
(XC 4+ 4T)|papy is regarded as a fiber preserving infinitesimal isometry of (T*M, g°).

Conversely, every fiber preserving infinitesimal isometry of (TAM, g°) is of this form.

Let i(M, g) and i(T*M, g°) be the Lie algebras of infinitesimal isometries of (M, g) and
of (T*M, g°), respectively. Let D®2(M)o denote the set of parallel two-forms on (M, g).
Theorem 2 allows us to define for each X € i(M, g) its natural lift Wy, (X) € i(TAM, ¢g°),
and for each ¢ € D2(M)g its natural lift D, ,,(¢) € i(TAM, g°). It should be noted that
both lifts are fiber preserving vector fields.

In these cases, the fibers of the bundles are Euclidean spaces and spheres. On the
other hand, Takagi and Yawata [13] discussed another case of this problem in which the
fibers are special orthogonal groups. Let SO(M) be the bundle of oriented orthonormal
frames over M. For any fixed positive number A, a Riemannian metric G on SO(M) is
defined by

22
G(Z,W)="0(Z) - 0(W) + 5 trace ('w(Z) - w(W))
for Z, W € T,SO(M), u € SO(M), where 6 and w denote the canonical form and the
Riemannian connection form on SO(M), respectively. In their paper [13], Takagi and
Yawata studied the Riemannian manifold (SO(M),G) when A\ = v/2: They derived
the decomposition formula of an infinitesimal isometry of (SO(M),G) which is of fiber
preserving, and proved that M is a space of constant curvature 1/2, if (SO(M ), G) admits
a horizontal infinitesimal isometry which is not of fiber preserving.

Let i(SO(M),G) be the Lie algebra of infinitesimal isometries of (SO(M),G). By



refining the method of the proofs in [13], we obtain the natural lifts

and

D50 (9) €1(SO(M),G)  of ¢ € D*(M)g

for every positive number . We note that both o (X) and Dgon)(¢) are fiber
preserving infinitesimal isometries of (SO(M), G).

The total space of the tangent sphere bundle T*M can be regarded as the base space
of the bundle of oriented orthonormal frames SO(M) (see p. 21). The main purpose
of this thesis is to study the projection SO(M) — T*M. We prove that there exists a
natural homomorphism ¥ from the Lie algebra of fiber preserving infinitesimal isometries
of the tangent sphere bundle (T*M, ¢°) to that of fiber preserving infinitesimal isometries
of (SO(M), ). We also prove that it provides the factorizations of the mappings ¥so(ar)

and Pgo(nr) through ¥pay, and @pay,. Namely, we have the following:

THEOREM 3 ([6]). Let (M,g) be a connected, orientable Riemannian manifold and
A a positive number. Then there exists a unique homomorphism W of the Lie algebra of
fiber preserving infinitesimal isometries of (TAM, g°) into that of (SO(M),G) such that

EpSO(M) = WOWTAM and QSSO(M) = EPO@T/\M.

In Chapter 4, for any infinitesimal isometry Z of (T*M, g°), we define a vector field
U(Z) on (SO(M),G) by using the Riemannian connection form on SO(M).

When dim M = 2, Theorem 3 can be further refined as follows: The tangent sphere
bundle (T*M, ¢°) is isometric to (SO(M),G), and there exists an isomorphism ¥ of
i(TAM, g%) onto i(SO(M),G) satisfying Wson) = ¥ o ¥payy and Do) = ¥ 0 Py
Moreover, we are now able to determine the structure of the Lie algebra of infinitesimal
isometries of (T*M, ¢g°), without assuming the completeness of the Riemannian manifold.

Namely, we obtain the following:

THEOREM 4 ([6]). Let (M, g) be a connected, orientable two-dimensional Riemannian
manifold and X\ a positive number.

(i) If(M,g) is not a space of constant curvature 1/)\?, then any infinitesimal isometry



of (TAM, g°) is of fiber preserving. Furthermore, we have
(TAM, ) /Tpans (M, )) 2= Doy (D% (M)o).

In this case, the center of {(T>M, g°) is Dy (D (M)o).
(i) If (M, g) is a space of constant curvature 1/\2, then we have

i(T/\Ma QS)/WTAM(i(Mag)) = sp}:m {¢T/\M(¢)v S, [@ran(9),5]: ¢ € QQ(M)O} )

where S denotes the geodesic spray on (T*M, gs). In this case, the center of i(T*M, gs)

18 trivial.

It has been shown by Tanno [14] and Tashiro [15] that the geodesic spray on T* M is an
infinitesimal isometry of (T*M, ¢°) if and only if (M, g) is a space of constant curvature
1/)%.

When (M, g) is a unit two-sphere in the Euclidean three-space with the canonical
metric, it follows from Theorem 4 that the tangent sphere bundle (T M, q° ) is isometric
to the three-dimensional real projective space with sectional curvature 1/4, which was
proved by Klingenberg and Sasaki in [3]. Podesta [11] studied the decomposition of
arbitrary infinitesimal isometry of 7'M, when the Ricci tensor of M is parallel and the
Ricci curvatures of M are non-positive.

This thesis is organized as follows: In Chapter 2, we review relevant background
materials from the Riemannian geometry of tangent bundles. In Chapter 3, we obtain
the conditions under which an infinitesimal isometry of T*M can be extended to that of
TM, and then prove Theorems 1 and 2, which are Theorems 3.1.1 and 3.1.2. Chapter
4 is the main part of this thesis, where we first derive a useful formula to clarify the
relation between the Riemannian metrics ¢° and G. Then, for each infinitesimal isometry
of T*M, we define the corresponding vector field on SO(M) and obtain the necessary
and sufficient condition under which the vector field becomes an infinitesimal isometry of
SO(M). Theorem 3 is proved here as Theorem 4.1.1, and the result is applied to the case
of dim M = 2 in order to prove Theorem 4 which is stated as Theorem 4.5.1.

In the Appendix, we first prove an extended version of Theorem 1 for the tangent
sphere bundles over space forms, which is presented as Theorem 5.1.2; and characterize
the geodesics in the total spaces in terms of the vector fields along certain curves in the

base spaces satisfying appropriate conditions. Next, applying Theorem 3 to an extended



version of the results in [13], we provide other proofs of Theorem E in [14] and Theorem

2 for orientable Riemannian manifolds.



2. Tangent bundles

2.1. Tangent bundles and the Sasaki metric

Let N be a Riemannian manifold with metric h. Let F(IN) denote the ring of
C® functions on N, X(N) the F(IV)-module of vector fields on N, and i(N,h) the Lie
algebra of infinitesimal isometries of (IV, h), respectively. Suppose further that N has the
structure of a fiber space. A vector field Z on N is called of fiber preserving if the local
one-parameter group of local transformations generated by Z maps each fiber of IV into
another one. We call Z vertical if it is tangent to the fiber at each point of N. The vector
field Z on N is of fiber preserving if and only if the commutator product [Z, W] is vertical
for any vertical vector field W on N.

Let V denote the Riemannian connection of an n-dimensional Riemannian manifold
(M,g), and w: TM — M be the bundle projection of the tangent bundle T'M over M.
Recall that the connection map K: TTM — TM corresponding to V is defined to be

t
t —_
(2.1.1) K(Z) = lim M for Z € T,TM, u e TM,

where u(t), —e < t < e (for some ¢ > 0), is a differentiable curve on T'M satisfying
u(0) = u, 4(0) = Z. Also 7¢(u(t)) denotes the parallel displacement of u(t) from m(u(t))
to 7(u) along the geodesic arc joining 7(u(t)) and m(u) in a normal neighborhood of 7(u).

We define distributions H and V on T'M by
H, =Ker (K|r,r0m), Vi =Ker(mi|r,701); for u e TM,

where the right hand sides of both the formulas above denote the kernels of K |7, 7y and
7|7, 70, respectively. The space H, is called the horizontal subspace of T,,7M and V,,
the vertical subspace of T,,TM. The tangent space T,,7M of T M is decomposed as the
direct sum T,,7M = V,&® H,. Then the Sasaki metric gS on T'M is defined by the formula

G2, W) = g(mu(Z2), m(W)) + g(K(Z), K(W))  for Z, W € T,TM, v e TM.

With respect to the Sasaki metric ¢°, the horizontal subspace H,, and the vertical subspace

V., are orthogonal at each point wu.

2.2. Infinitesimal isometries of tangent bundles



In this section, we review the results of Tanno in [14].
Given p € M and X € T,M, for any u € 7~ !(p), there exist X, and XV, in T,TM
such that

(2.2.1) mn(XT) =X, KX%)=0 mX",)=0 KX",)=X.
When X is a vector field on (M, g), the correspondences
wr— (o) eand we— (X))

define vector fields on TM. We also denote these vector fields by X and XV, respectively.
We call X the horizontal lift of X and XV the vertical lift of X. For f in §(M), we
define f¢ in F(TM) by f€(u) = uf for u in TM. Each X in X(M) has the unique lift
XY to TM such that X¢(f¢) = (X f)° for any f in F(M). We call it the complete lift
of X.

Let T be a tensor field of type (1,1) on M. Then we define /T and *T" in X(T M) by

For X in X(M), we define X* in X(T'M) by the formula X% = XV + *(Tx), where Ty is
a tensor field of type (1,1) on M satisfying

g(TxU, V) 4+ g(U,VyX) =0 for U, V € X(M).

For a chart (U, ) of M, a chart (7~ 1(U), @) of the tangent bundle TM is naturally
defined by

(2.2.2) @(gf(aiz)p) = (ml(p), e z™(p), Yt Y byl ..,y") € R,

where ¢(p) = (x'(p),...,2"(p)) for p € U. Here we use the Einstein convention for the
summation. Using these charts, the horizontal subspace H, and the vertical subspace
Vu, uw € TM, of T,,TM are expressed as

and the components of the Sasaki metric g° given by

o 0
g9° ( R %> = gij + g s T}y’



QS(%,%) = gl hy°, 95(8%1-7 %) = gij;

where Ik, i, j, k = 1,...,n, denote the Christoffel’s symbols of the Riemannian metric g.

YR
Putting X = X*9/0x* and T = (T*;) on U, we get the local expressions

0 0 0
XH =Xk~ _rkyixi — XV =Xk
ok T A g R Oy’
0 oxk o .0
2.2.3 XC =xk_~_ 02— T =Tk
(2.23) ok Y ok " PV g
0 , , d
o= _yrgklgrm(VX)mlW + (Xk + Filj-g”grm(VX)ml yjyr)a_

Yk

The general form of infinitesimal isometries of (T'M, g°) is given by

THEOREM 2.2.1 (Tanno [14]). Let (TM,g°) be the tangent bundle with the Sasaki
metric over a Riemannian manifold (M,g), and R the curvature tensor of V. Suppose
X, T and Y satisfy the following:

(i) X be an infinitesimal isometry of (M, g),

(ii) T be a tensor field of type (1,1) on (M, g), which satisfies

(ii-1) VI =0, and
(ii-2) ¢g(TU,V)+g(U,TV)=0 forU, V € X(M),
(iii) Y be a vector field on (M,g), which satisfies
(iii-1) (V2Y)(U, V) + (V2Y)(V,U) =0 for U, V € X(M), and
(iii-2) R(W,Ty(U))V + RW, Ty (V))U =0 for U, V, W € X(M).
Then the vector field Z on TM defined by Z = X© +.T +Y?* is an infinitesimal isometry
of (TM, g5).

Conversely, every infinitesimal isometry of (T M, g°) is of this form.



3. Infinitesimal isometries of tangent sphere bundles

3.1. Fiber preserving infinitesimal isometries

For each A > 0, the tangent sphere bundle TAM := {u € TM ; g(u,u) = \?} is a
hypersurface of TM, and let +: T*M — TM denote the inclusion. In particular, we call
T'M the unit tangent bundle over M. We also denote by ¢° the induced metric by 2 on
TAM. We define a diffeomorphism f*: T'M — T*M by fMu) = \u, v € T'M. Put
oo ={u€TM; g(u,u) =0}. For Z in X(T'M), we define Z in X(TM \ aq) by

Zu = (10 f), (Z‘(zof/\)fl(u)) for u € TM \ 0p and A\ = \/g(u,u).

For Z in X(T*M), we define Z in X(TM \ o) by Z = m Z is tangent to
TAM and Z|px,; = 1«(Z). We often consider Z to be a vector field on TM \ og by the
correspondence Z — Z.

The main purpose of this section is to prove that any fiber preserving infinitesimal
isometry of (T*M, g°) is extended to an infinitesimal isometry of (T'M, g%). Namely we

obtain the following.

THEOREM 3.1.1. Let (M,g) be a Riemannian manifold and X\ a positive number.
If Z is an infinitesimal isometry of (TMM,g%) which preserves the fiberes, then there
exists an infinitesimal isometry W of (T'M,g°) such that W is tangent to T"M and
Wl = w(Z).

Conversely, let Z be an infinitesimal isometry of (TM, g°) which is tangent to T M.
Then there exists a fiber preserving infinitesimal isometry W of (T*M, g%) such that
(W) = Zlpapy-

REMARK. If the infinitesimal isometry Z of (T'M, ¢°) is tangent to T*M, then it is
automatically a fiber preserving vector field on (T'M, g%). We will see it in the proof of
Theorem 3.1.1.

This theorem and Theorem 2.2.1 imply the following.

THEOREM 3.1.2. Let (M, g) be a Riemannian manifold and X a positive number. As-

sume that X is an infinitesimal isometry of (M, g), and T' a parallel and skew-symmetric



tensor field on (M, g) of type (1,1). Then the restriction (X + .T)|px s is regarded as a
fiber preserving infinitesimal isometry of (T*M, g°).

Conversely, every fiber preserving infinitesimal isometry of (TAM, g%) is of this form.

Let Z be a vector field on TM and put
0 0
_ 7k k+ -1
Z—Z @—FZ na—yk on m (U)
From the definition of the fiber preserving vector field, we can see that Z is of fiber

preserving if and only if
ozZ*
Ayt
holds for k, I =1, ...,n. For example, the complete lift X of a vector field X on M, and

=0

T for a tensor field T" of type (1,1) on M are of fiber preserving. For a fiber preserving
vector field Z on T'M, we define a vector field Z on M by (Z)r) = 7«(Zu), u € TM. A
fiber preserving vector field Z on T*M also makes it possible to define the vector field Z
on M by (Z)r(w) = (mlpang)(Zu), u € TAM.

PROPOSITION 3.1.3 ([5]). If Z is a fiber preserving infinitesimal isometry of (T M, g°),

then Z is an infinitesimal isometry of (M,g).

PROOF. In a neighborhood of an arbitrary point ug € T M, we use the coordinates
such that Fi’;(w(uo)) = 0. Let Lzg® denote the Lie derivative of g% with respect to Z.
From (Lzg°)(0/dx",8/027) = 0, we have that

o
24 g+ 9T E"y) + 25 G T + g T )
k oz k+n
o (ks + g T Ty +

k k+n

0z
b b
+w(gik + g2 TRy y") + 907 glisy® =0,

and hence, we see immediately that (Lzg)(0/02",0/0x7) (e = 0. Q.E.D.
This Proposition is not used in this paper, but the method of the proof is applied to
prove the following Lemma 3.1.4, (i).

Now we study fiber preserving infinitesimal isometries of (T*M, g°).

10



LEMMA 3.1.4 ([5]). If Z is a fiber preserving infinitesimal isometry of (T*M,g°),
then:

(i) Zei(M,g).

(i)  Z|rum € {(THM, g%) for any u > 0.

(ili) Z € i(TM \ oo, gS|TM\O'0)‘

(iv)  There exists W € {(TM, g°) such that Wlrme, = Z.

Proor. (i) In aneighborhood 7~!(U) of an arbitrary point ug € T*M, we use the
coordinates such that FZ];(W(U())) = 0. The horizontal lifts (0/0x")# and (9/027)" of the
vector fields 0/0x" and &/027 on U are tangent to T*M at any point of 7=1(U)NT*M,

hence they can be regarded as the vector fields on (7|pay,) 1 (U). Then we see that

(Lz9°) ((Qii>lj(uo)’ (%)Ij(u())) N (ng)<%’ %)ﬂuo)'

This implies that Lzg = 0 at the point m(up) of M proving (i) of Lemma 3.1.4.

(ii) Let Z, = Z|rupm. Suppose that A and B are arbitrary fiber preserving vector
fields on T*M. At any point u € TFM, we compute that

(L2,9%) (Alzurs, Blrewm)
= 2,9° (Alrunr, Blren) — 9°((Zys Alrend), Blrear) — ¢° (Alruns, [Zu, Blruw))
=Z¢%(A,B) = g° ([(#* o (FN)7):Z, (" o (#)71)+ AL, Blrum)
= ¢° (Alrunrs [(F* 0 (F))Z, (f* o (F)71).B])
) = °(1Z, Allzeas, Blren) — 9° (Alrune, [Z, Bllrwnr)
) —9°([Z,A], B) —g°(4, [Z, B).

I

N
|
&

9°(
9°(

9
9

I

N
|
&

Since Z, A and B are the fiber preserving vector fields on T M, there exist Z¢, A7, B* ¢
F(R") and Z'*t", Aitn BFt" ¢ &(R®™), i, j, k =1,...,n such that

) o ) 0
A2)=ZN . ) =— + Z7 (2 eyt ) =—
Z( ) (x7 ’x )axz—i_ (:B’ 7'1: 7y7 7y )ayz7

; 0 . 0

— Ad(Ae1 ny_~ Jj+n(1 n 1 n
1m(A) = Az, ...,z )6$j + ATzt 2y, Ly )—ayj,
0 0

1(B) = Bk(xl, ey ™) + Bk+n(l’l, -'-7$n7y17 oY) m

dak

11



We define a function r on TM by r(u) = /g(u,u), w € TM. From the definition of the
extended vector fields Z, A and B, we see that

) ) 1 n
Z =7z, .. 2" 4 r (ml,...,x” Ay )\i)i

ort A r r /oyt

— 0 Ayt Ay 0
A=At 2 (gt ne —
(=", )8mJ+A (x, T T Ty )8y3’

1 n
B = B* (a1, ,x")% + %Bk"'”(xl, ey /\i, s Ai)i
x

Then, for any v € T* M, we have
. 7” .
9°(A,B), = [A]Bk(gjk + 9 Tiy™y') + AV B g Ty

)\AHang]kasy I ()\) AJ+'rLBk+nng:|

u

= [0 G () (8 (e st )

+AjBk+ng I-vb /\ +A]+ang st/\_ +Aj+an+n }:|

= (1- <§>2>9(4’§>ﬂ<u>+ <§> 9% (A, B) (pro ey ws

u

and hence

P ATZB), = (1 (£))0(a 12 Bl + (£) 05 (A 12 B raginy -

Therefore, we get

(L2,9%) (Alzwrs, Blrun),
% 2
= (1 - (X) )(ng)(é, B)r(uy + <X) (Lzg%) (A, B) (pro(fu)-1)(u) = 0.

The last equality above follows from Z € i(T*M, ¢°) and (i) of this lemma. We proved

the second statement of Lemma 3.1.4.

12



(iii) The gradient vector field of 72, gradr? = 2y°d/dy’, is orthogonal to TAM at

any point of T*M. Since we know L grad r? = 0, we have that
(ngs) (Z, grad r2) =0, (ngs) (grad r?, grad r2) =0

for any A € X(T*M). The statement (iii) follows from this fact and (ii) of this lemma.

(iv) Let Z = Zk(?/axk + 7k+n8/f)yk. From (iii) of this lemma we know that

(2 9y
(LZg )<8yi’8yj)_0 on TM \ oy,

which implies that

—k+n —k+n
—h 0gi; n 0z 0z

Ozk oyt Tk " Toy T v

Since Z is the fiber preserving vector field on T*M, we may suppose that (9/ 8yl)7k =0.
Differentiating the left hand side of the formula above with respect to 3!, we get
827k+n 627k+n

yiay I + Doyt I = 0.
Putting ¢ = j in the formula (3.1.1), we have that

82?k+n 827k+n
WQM =0, or D0y gk =01].

(3.1.1)

Therefore, putting [ =i in the formula (3.1.1), we have that
827k+n
ayay =

Hence we get (02/9y'0y")Z" = 0 for n < m < 2n. From the definition, Z"" is in

proportion to the function r, hence it is of the form

where A}" are certain functions on R". Since Z™ is a smooth function on TM \ o, we
see that
— (k)
AP (gt e =2 (2 20,0, 1, ...,0) € F(RDY),

for each m with n < m < 2n. Therefore, Z € F(TM \ o) is extended to a differentiable
function on TM, hence Z can be extended to the vector field W on T'M such that

Z onTM \ oy,

W =
(10)«(£) on a0,

13



where 19: M — TM denotes the natural inclusion. This satisfies the equation Lyyg® =0
on oy, proving (iv). Q.E.D.

Now, we will complete the proof of Theorem 3.1.1.

The necessary condition of Theorem 3.1.1 follows from (iv) of Lemma 3.1.4. So, we
will prove the converse part of Theorem 3.1.1 as follows. Suppose that an infinitesimal
isometry Z of (T'M,g°) is tangent to T*M at any point of T*M. By Theorem 2.2.1,
there exists an infinitesimal isometry X of (M, g), a tensor field T of type (1,1) on M and
a vector field Y on M such that Z is decomposed as Z = X© 4+ /T + Y. It is easy to see
that X and /T are tangent to T*M at any point of T*M. Therefore Y = Z — X¢ —,T
is also tangent to T*M, which implies ¢°(Y*, gradr?), = 0 for any u € T*M. Putting
Y =Y9/0z%, we know

1

g° (V¥ gradr?), = g;;Y'y? for any ‘(y',...,y") € R", guy*y' = N2

Hence Y is identically zero on M, which implies Z = X +.T. Since X¢ and /T preserve
fibers of T'M, Z also preserves fibers of TM. By Sasaki [12, II, Lemma 1], Z|px, is

regarded as an infinitesimal isometry of (T*M, g°). In consequence,
Zlpanr = (X 40T Ipany

is regarded as a fiber preserving infinitesimal isometry of (T*M, g°). We proved Theorem
3.1.1.

We also prove Theorem 3.1.2 as follows: Let X be an infinitesimal isometry of (M, g),
and T a parallel and skew-symmetric tensor field on (M, g) of type (1,1). From Theorem
2.2.1, the vector field X¢ + /T is an infinitesimal isometry of (T'M, g°), which is of fiber
preserving and tangent to T*M. So the restriction (X + tT)|pa,, is regarded as a fiber
preserving infinitesimal isometry of (T*M, g°).

Conversely, we assume that Z is a fiber preserving infinitesimal isometry of (T*M, g%).
From Theorem 3.1.1, Z can be extended to an infinitesimal isometry W of (T'M, g°),
which is tangent to T*M. By Theorem 2.2.1, there exists an infinitesimal isometry X of
(M, g), a tensor field T of type (1,1) on M and a vector field Y on M such that W is
decomposed as W = X¢ + T + Y*. Since X¢ and (T are tangent to T*M, the vector
field Y = W — X© — T is also tangent to T*M. Hence Y* is identically zero, which
implies W = X¢ + /T and

Z =Wl = (XC +0T)|pan.
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We proved Theorem 3.1.2.

3.2. An example

When M is the sphere of radius A in the Euclidean space, there is an infinitesimal
isometry of (T*M, g%), which is not of fiber preserving ([14]). In this section, we will
find a Riemannian manifold M such that any infinitesimal isometry of the unit tangent

bundle over M is of fiber preserving.

PROPOSITION 3.2.1.  Let (M, g) be a space of constant curvature c, where the dimen-
sion of M is greater than two and the curvature ¢ satisfies the inequality: —0.30 < ¢ <
0.32. Then every infinitesimal isometry of the unit tangent bundle over M is of fiber

preserving.

We identify TT*M with 1,(TTAM) C TTM. Then we have
T,7*M = H, & (V, N T, T*M)
for each u in TAM. Tt is easy to see that Z € X(T*M) is of fiber preserving if and only if
(s)(X) € Vy,uy for any X € V, NT, T M, u € T*M,

where 15, —¢ < s < ¢ (for some € > 0), denotes a local one-parameter group of local
transformations generated by Z. We need the following lemma to prove Proposition

3.2.1.

LEMMA 3.2.2. If a vector field Z on T*M is not of fiber preserving, then there exist
up € TM, Yy € Vu NT,T M \ {0} and, eo with 0 < g¢ < ¢, such that the horizontal part
of (¢s)«(Yo) is not zero on 0 < s < &.

PrOOF. From the assumption, there exist u € T M, Y € V, N T, T M \ {0} and
t > 0 such that (¢1)«(Y) & Vi, ). Set
to =sup{s; 0 <s <t, (¥s)«(Y) € Vi) }-

Since 1), is continuous, we have 0 < tg < t. Put

Uug = wto(u)v Yo = (wto)*(y)7 g0 =1 —to.
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They satisfy the conditions stated in Lemma 3.2.2. Q.E.D.
The shape operator A of TAM in TM is computed by Blair ([1]):
0 for X € H,NT, T M,
AX) =

-A71X for X € V, N T, T M.
Let R, R%M and R denote the curvature tensor of (M,g), (TM,g%) and (T*M, g°),
respectively. And let h denotes the second fundamental form of TAM in TM. Then the
Gauss equation of TAM in TM is

P (RY(X,Y)Z,W) = ¢°(RF (X, Y)Z, W) 4+ h(Y, Z)h(X, W) — h(X, Z)h(Y, W),

for X, Y, Z, W € TT M. The curvature tensor of (T'M, ¢g°) is calculated by Kowalski
([7])-

Now we are in a position to prove Proposition 3.2.1. Suppose that there exists an
infinitesimal isometry Z of (T*M, g¥) which is not of fiber preserving. By Lemma 3.2.2,
there are ug € T M, Yy € V, N T, T M, ¢°(Yo,Yy) = 1, and g9 > 0 such that the
horizontal part of (15).(Yp) is not zero on 0 < s < g9. We define a vector field E(s) along
the curve ¢5(up) in ThM by E(s) = (1s)«(Y0), 0 < s < gg. Let

E(s) = h(s) +v(s), h(s) € Hy ), V() € Vi, (uo)

be the orthogonal decomposition of E(s). By taking & sufficiently small if necessary, we

may suppose v(s) # 0 for 0 < s < g, because of v(0) = Yy # 0. Put, for 0 < s < e,
or s =0,
(s) fors>0,

b(S ()

Then we have E(s) = a(s)X(s) + b(s)Y(s) for 0 < s < gp. Remark that a(s) is a
continuous function satisfying a(s) > 0 for 0 < s < 9. We take a vector Y in Vi, N
Ty TMM such that ¢°(Yp, Yp) = 0 and ¢%(Yp, Yg) = 1. Put E(s) = (1s)«(Yo), 0 < s < e,
and let

E(s) = h(s) +0(s), h(s) € Hy up), 0(5) € Vip, ug)



be the orthogonal decomposition of E(s) We take ¢g sufficiently small and put, for

0 < s < e,

Then we have E(s) = a(s)X(s) + b(s)Y(s) for 0 < s < gg. Since 9, is the isometric

mapping, we see that
1= ¢%(Y0,Yo) = ¢°(E(s), B(s)) = a(s)* + b(s)?,
1= g%(Yo, Vo) = ¢%(E(s), B(s)) = a(s)
0= ¢%(Y0, Yo) = a(s)a(s)g” (X (s), X (s)) + b(s)b(s)g” (Y (5), Y (s)).
On the other hand, from the definitions of X (s), X (s), Y (s), and Y (s), we have that
FEOXD =1 Gos i
(Y (), Y(s) =1, ¢%(X(s),X(s)) <1, ¢°(¥(s),Y(s)) =1

Since M is a space of constant curvature ¢, R(U,V)W is of the form R(U,V)W =
Ag(V, WU — g(U W)V}, for U, V, W € TM. For each s with 0 < s < ¢, putting
k(A s) = g% (RS(E(s), E(s))E(s), E(s)), we compute the value as follows:

k(X s) = (a&)2{0(1 —¢%(X, X)?)
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In particular, we know k(\,0) = 1/A2. If we suppose A = 1, then we get

1 1 a 1
- (gse- 52+ 53]+ 1- 5
From this inequality there exists a positive number gy’ > 0 (g0’ < eg) such that, if
(6 —2v14)/5 < ¢ < —6 + 24/10, then k(1,s) < 1 for 0 < s < g¢’. But since )5 is the

isometric mapping, we know that k(1,s) = k(1,0) = 1, which gives a contradiction. We

proved Proposition 3.2.1. Q.E.D.

Al <1 - a2{<1 - %CZ —(le| + 1)&)‘%‘2
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4. The homomorphism between infinitesimal isometries of
tangent sphere bundles and those of the bundles of ortho-
normal frames

4.1. Bundles of orthonormal frames

Given an orientable Riemannian manifold, we consider the bundle of oriented or-
thonormal frames and the tangent sphere bundle over it, which admit natural Riemannian
metrics defined by the Riemannian connection. In this chapter, we show that there is a
natural homomorphism between the Lie algebras of fiber preserving infinitesimal isomet-
ries of these bundles. In particular, for any orientable Riemannian manifold of dimension
two, we show that the homomorphism yields an isomorphism between these Lie algebras.

Let (M, g) be a connected, orientable Riemannian manifold of dimension n > 2, and
SO(M) the bundle of oriented orthonormal frames over M. For any fixed positive number
A, the Riemannian metric G on SO(M) is defined by

)2
(4.1.1) G(Z,W)=9(Z)-9(W) + Etrace (tw(Z) - w(W))
for Z, W € T,SO(M), u € SO(M), where 6 and w denote the canonical form and the
Riemannian connection form on SO(M), respectively.

In their paper [13], Takagi and Yawata studied the Lie algebra of infinitesimal isomet-
ries of (SO(M), G) with A = v/2 and proved that there exist the natural lifts Wgo(nr) (X) €
i(SO(M),G) for each X € i(M, g) and Pgon)(¢) € I(SO(M),G) for each ¢ € D*(M)o,
where (M, g) and i(SO(M),G) denote the Lie algebras of infinitesimal isometries of
(M, g) and (SO(M), @), respectively, and D?(M)g the set of parallel two-forms on (M, g).
Refining the proof in [13], we know that the mappings

Wsomn : (M, g) = i(SO(M),G) and Pgor): D*(M)o — i(SO(M),G)

are also defined for any positive number .

The main purpose of this thesis is to prove that these mappings Yso(ar) and Psor)
are simultaneously factored through in terms of natural lifts to the tangent sphere bundle
over M.

To be precise, let TM be the tangent bundle over M, and g° the Sasaki metric on TM.
For a given positive number \, we consider the tangent sphere bundle T*M over M. The
total space of T M is defined to be the set of all tangent vectors at all points of M whose
lengths are . It is a hypersurface of (T'M, g°). We also denote the induced metric on T* M
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by ¢°. We derive the useful formula in Section 4.2, which shows the relation between the
Riemannian metrics g% and G. In Konno [5], we studied the fiber preserving infinitesimal
isometries of (T*M, g°) and constructed the natural lifts Wy, (X) € i(T*M, ¢g°) for each
X €i(M,g) and ®pxp,(¢) € (T*M, g°) for each ¢ € D2(M)o. Regarding SO(M) as the
total space of a principal fiber bundle over the base manifold T*M, we then prove that
Ysom) and Pgo(pr) are simultaneously factored through Wy, and @pa )y, respectively.

Namely, we have the following.

THEOREM 4.1.1. Let (M, g) be a connected, orientable Riemannian manifold and X
a positive number. Then there exists a unique homomorphism ¥ of the Lie algebra of

fiber preserving infinitesimal isometries of (T*M, g°) into that of (SO(M),G) such that

WSO(M) = WOWTAM and QSSO(M) = WO@T*M'

In Section 4.3, we define the vector field ¥(Z) on (SO(M),G) for any infinitesimal
isometry Z of (T*M, ¢°) by using the Riemannian connection form on SO(M), and prove
in Section 4.4 that ¥ is a homomorphism when it is restricted to the Lie algebra of fiber

preserving infinitesimal isometries of (T*M, ¢°).

4.2. Riemannian metrics on bundles of orthonormal frames

In this section, we fix notation used in this chapter and derive the useful formula that
clarify the relation between the Sasaki metric g% on TAM and the metric G' on SO(M)
defined by (4.1.1).

When we regard SO(M) as the principal fiber bundle over the base manifold M with
structure group SO(n), the special orthogonal group of n x n matrices, denote it simply
by P. Let mp: P — M denote its bundle projection, and wp the Riemannian connection
form on P. Let (-,-) denote the canonical inner product on the n-dimensional real vector
space R". We regard each u € P as an isometry of (R",(-,)) onto (T, w)M, glrp(w)) a8
follows: For u = (X1,...,X,) € P,

()
u(e;) = X; where e; = (0, ..., i,...,()) €eR" 1<i<n.

Let ©?(M) denote the Lie algebra of two-forms on M, and ©?(M), the Lie subalgebra
of parallel two-forms in (M) with respect to V. We shall identify ©?(M) with the set

of all skew-symmetric tensor fields of type (1,1) on M in the usual manner. Let o(n) be
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the Lie algebra of SO(n). For ¢ € D%(M), we define an o(n)-valued function ¢* on P and
a vector field ¢LP on P, respectively, by

(4.2.1) P (u) =u o dr,you forue P andwp(ph?) = ¢ (rp).(¢"") =0.
Given an infinitesimal isometry X of (M, g), a vector field X*P on P is defined by
(4.2.2) Xtr = xHr L (vX)br,

where X7 denotes the horizontal lift of X. For any X € i(M,g) and ¢ € D?(M)o,
XLP and ¢'P are the fiber preserving infinitesimal isometries of (P, G), which can be
proved in the same manner as in [13]. We define the mapping ¥p of i(M, g) into i(P, Q)
by ¥p(X) = XEP for X € i(M,g), and also the mapping @p of D?(M)g into i(P,G) by
Pp() = 677 for ¢ € DA(M).

Let us identify SO(n — 1) with the subgroup of SO(n) given by

{(g ?);aESOm—I%.

The set of oriented orthonormal frames over M, or SO(M), can be regarded as the
total space of a principal fiber bundle over the base manifold T*M with structure group
SO(n —1). In fact, the bundle projection 7o : SO(M) — T*M is defined by

mo(u) = XX, for u = (X4,...,X,) € SO(M),
and the structure group SO(n — 1) acts on SO(M) on the right as follows:

ua = (Zakllel, o Z ak“—ln_len_l,Xn> for a = (a';) € SO(n — 1).
k1 kn—1
Each a in SO(n) defines a diffeomorphism Ry: v € SO(M) — ua € SO(M). We denote
this principal fiber bundle simply by @. In [9], Nagy used @ to study the geodesics in the
tangent sphere bundle over a Riemannian manifold.

We define an inner product (-,-) on the vector space o(n) by (A4,C) = trace (*A - C)
for A, C € o(n). Let o(n — 1)+ denote the orthogonal complement of o(n — 1) in o(n),
and p: o(n) — o(n — 1) be the orthogonal projection. Define wg = p owp. It should be
noted that wq is a connection form on @Q, because of wg(A*) = A for A € o(n — 1) and
Ry*wg = ad(a™Hwg for a € SO(n — 1), where A* denotes the fundamental vector field
corresponding to A € o(n).
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We now define horizontal subspaces and vertical subspaces of the tangent spaces of P
and Q). Let N denote either the bundle P or (. Distributions Hy and Viy on SO(M)
are defined by

(Hn)u = Ker (wn|r,s00)),  (VN)u = Ker (7n)«|1,50(01))5 for u € SO(M),

where the right hand sides of both the formulas above denote the kernels of wy|r, so(nr)
and (7n)«|7,s0(n)> Tespectively. The space (Hy), is called the horizontal subspace of
TuN and (Vn), the vertical subspace of T),N. At each point u in SO(M), the tangent
space T,SO(M) is decomposed into a direct sum 7;,SO(M) = (Hn)u @ (VN )u. Given a
vector field Z on T*M, there exists a unique vector field Z#~ on SO(M) such that

(7n)«(Z2"N) = 2, wn(Z2"V) =0,

which is called the horizontal lift of Z to N. For X in X(M), we also define a horizontal
lift of X to TAM. There is uniquely X in X(7T*M) such that

(TF\TAM)*(XH) = X, (K|TTAM)(XH) =0.

We call X the horizontal lift of X to T*M.
A useful identity clarifying the relation between ¢° and G is given by the following.

THEOREM 4.2.1. (i) In the notation introduced above, we have

CZW) = §%(7Q).Z, (7). W) + 5 (wa(2), wo(W))  for Z, W & T(SO(M)).

(i) Let V¥ and D denote the Riemannian connections of (T*M, g°) and (SO(M), G),

respectively. Then we have

G(D o Y2 zHe) = ¢%(VoxY,Z)  for X, Y, Z € X(T*M).
To prove Theorem 4.2.1 we need the following lemma.

LEMMA 4.2.2. Let Z and W be vector fields on TAM and A in o(n —1). Then we
have G(ZHe WHe) = ¢5(Z, W).

PROOF. Since each tangent space of TAM is decomposed as the direct sum of the
horizontal subspace and the vertical one, it suffices to verify the formula for the following

three cases.
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Case 1. Both Z; () and Wy, () are in Hy,(,). Since there are the vector fields X

and Y on M such that Z; ) = XH Waow) = yH

o , we have

mQ(u) mQ(u)

G(zfe,whe), = G((x™M)fe, (yh)He), = a(x!r yir),
= g(X7 Y)ﬂ'p(u) = gS(XHayH)ﬂ*Q(u) = gS(Z7 W)ﬂ-Q(u)

Case 2. Zr, ) 18 In Hy ), but Wi,y is in V() - Since there exists a vector field X

on M such that Z, ) = XH , we have

Q(u mQ(u)

Gz, whe), = {(00X7), 0 10)) + 2 (wp (1) wop(w o)}
2

= g((mp)(XT), (mp)(WHQ)) ) + /\7<O»WP(WHQ)>u
= Q(Xv O)TFP(u) =0= QS(Z’ W)ﬂ'Q(’U,)‘

Case 3. Both Z () and Wy, () are in V
such that ZHe, = A*, . Setting

o(u) - I this case, there exists A in o(n — 1+

&1
A= 0 an
gn—l
& - =&e1| O
we have
)\2 n—1
H H _ N 12 2

Furthermore, for some £ > 0, putting exptA = (a'(t)), —e <t < e, and u = (X1,..., Xy),

we have
9°(2.2) = H%{(”Q ° ReXptA)(u)}’t:O H2
- P oxg| g dox)] )
k=1 =1
n—1

= gAY @n(0) X A Y ala(0)X)) = XY {aka(0)12 = X)),
k=1 =1 k=1

k=1
and hence G(ZH2, Z10), = ¢5(Z, Z) rpy(u)- Q.E.D.
We are now in a position to prove Theorem 4.2.1. Since the tangent space at u €

SO(M) has the orthogonal decomposition of

(4.2.3) T,SO(M) = {X"e,; X € Tp,(yT*M} & {A*,; Aco(n—1)},
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the statement (i) of Theorem 4.2.1 follows from Lemma 4.2.2. From Lemma 4.2.2 and
the above decomposition, we know that the projection g is the Riemannian submersion.

Hence, by the O’Neill’s formula in [10], the statement (ii) holds, proving Theorem 4.2.1.

REMARK. Let Z and W be in X(SO(M)). By (4.1.1) and (i) of Theorem 4.2.1, we

have

2
(%) °)(Z, W) = ¢%((m@). 7, (r@). W) = G(Z,W) — 5 (wq(Z), wq (W)
2 2
= (0(2),000)) + 5 (wp(2), wp(W) — = (wa(Z), wa(W)).

Putting A = 1 in the formula above, we obtain
(m@)" 9" =D _{(6:)° + (win)?},

where the one-forms 6; and wiy, @ = 1,...,n, on SO(M) are defined by 6;(-) = (0(-), ;)
and win(-) = (w(+)en, €;), respectively. This formula is proved by Musso and Tricerri ([8,

Proposition 6.1}).

4.3. Lifts of infinitesimal isometries of tangent sphere bundles

Given an infinitesimal isometry Z of T*M, we shall define the lift ¥(Z) of Z to
SO(M), and find the necessary and sufficient condition under which ¥(Z) is an infini-
tesimal isometry for G.

We first define A;; € o(n), i,j =1,...,n, by A;; =0if i = j,

and Ai]’ = _Aji if 1 > 7.
For the A;;, we recall here, without proof, the following well-known facts which will

be frequently used in the argument below.
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LEMMA 4.3.1. Put A; = Ap; fori=1,...,n—1. Whenn > 3, the set {A,..., An_1}
is a basis of o(n — 1)* and {A;;; 1 <i<j<n—1} is a basis of o(n —1). Moreover, we

have

[As, Ajl = Ay, [Aij, Ag] = 0 Ay — S As,

[Aij, A = 0j1Aik — Sk Ai — 0uAji + dirAjy

fori, j, k, 1 =1,...,n — 1, where 0;; denotes the Kronecker delta.

We define an o(n — 1)-valued function F(Z) on SO(M) by

(4.3.1) (F(2)(u))-€j,ei) = %G(DAJ.*ZHQ,AZ'*)U for u € SO(M).

To see that F'(Z) is o(n — 1)-valued, we first note that A;*, is in (Hg),, from
wo(Ai*y) = (powp)(Ai*y) = p(4i) =0,

and there exist X; in X(T*M) with i = 1,...,n—1 such that A;*, = (X;/@),. It then
follows from these and (ii) in Theorem 4.2.1 that

1 . 1
(F(Z)(u))-ej e5) = 15G(Day 210, AiT)y = 5 G(Dy ng 279, Xi19),

1 1
= ﬁgs(vssza Xi)ﬂ'Q(u) = _ﬁgS(vSXiZ7 Xj)ﬂ*Q(u) = _((F(Z)(u))'eiﬂej)7

which shows that F(Z) is o(n — 1)-valued. We then define a vector field Z%@ on SO(M)
by

(4.3.2) zte, = zHe, + (F(Z)(w))*.  at u e SO(M),

and get the mapping ¥: i(T*M, g°) — X(SO(M)) by ¥(Z) = Z*2. We call Z*@ the lift

of an infinitesimal isometry Z of T M.

LEMMA 4.3.2. If Z is an infinitesimal isometry of (T*M, g°%), then G(Z'<, Ai*) =
G(Da,ZMa, Aj).

PROOF. At each point u € SO(M), we set F = (F(Z))(u) and F'j = (Fej,e;). Then

we have
A2 22
G(ZLQ7Aij*)u = G(F*aAl]*)u = 7<F, A7,3> = 7131‘&C€ (tF : AZ])
N - 21 H, *
= ? (Aijek,Fek):)\ F]i:G(DAi*Z Q,Aj )u
k=1
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Q.E.D.
The next proposition offers a condition that Z%@ is an infinitesimal isometry of

(SO(M),G).

PROPOSITION 4.3.3 ([6]). Let Z be an infinitesimal isometry of (T*M,g%). Then
Zte s an infinitesimal isometry of (SO(M),G) if and only if it satisfies the following

equation:

LZLQG(XHP,A*) =0 forany X € X(M) and A € o(n —1).
To prove Proposition 4.3.3, we need several lemmas.

LEMMA 4.3.4. Let 2 denote the curvature form of V. For any A, C € o(n) and
&, n, C € R", we have the following:

G([B(&), B(n), A") = =X(Q(B(€), B(n)), 4),  G([B(€), B(n)], B(¢)) =0,

[A%, B(§)] = B(A¢), [A",C"] =[A,CT,

2
G(DpeB(n), A") = —/\7@(3(5),3(77)),%1% G(DpB(n), B(¢)) =0,
2
G(DpA™,C%) =0, G(DpeA™, Bn) = %W(B(S),B(n))w‘l%

G(Da=B(£),C*) =0, Da-C*==[A,C]",

1
2

where B(€) denotes the standard horizontal vector field corresponding to £ € R™.

Proor. We only prove the first formula, because the others can be seen in a similar

way as in the proof of Lemma 1 in [13]. By the structure equation of E. Cartan, we have

2
G([B(&), B(n)], A”) = %<wp([3(€)7B(n)]),wp(A*)) = —X{Q(B(€), B(m), A),
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which shows the first one. Q.E.D.
From this lemma, it is easy to see that the tensor DA* on SO(M) is skew-symmetric
with respect to G, hence A* is an infinitesimal isometry of SO(M).

To prove Proposition 4.3.3, we now find a condition which is equivalent to L 4G =0.

LEMMA 4.3.5. If Z is an infinitesimal isometry of (T?M, g°), then L, G(XHe yHa)
=0 holds for any X, Y in X(T*M).

PROOF. Since 7 is the Riemannian submersion, we have that
L,1oG(Xe yHe)
= ZLQG(XHQv YHQ) - G([ZLQaXHQ]v YHQ) - G(XHQv [ZLQ, YHQ])
= zHeq(XxHe YHe) — q([z, X)He,YHe) — G(XHe [Z,V]He)
= ZgS(Xv Y) - gS([Za X]v Y) - gS(X7 [Z> Y]) = LZQS(X’ Y) =0.

Q.E.D.

LEMMA 4.3.6. If Z is an infinitesimal isometry of (T*M, g°), then L,y G(A*,C*) =
0 holds for any A, C in o(n —1).

Proor. It suffices to show that LZLQG(AZ‘J‘*, Ap*) =0for1 <i,j,k,l <n—1. Since
A;;* and Ap* are infinitesimal isometries of (SO(M), G), we have, by Lemmas 4.3.1 and
4.3.2, that

Lo G(A;", A™) = Aii*G(ZM9, Aw™) + An*G(Ayj*, Z1e)
= 6u{G(Da;+ 2", A*) + G(Da- 219, A%)}
- jl{G(DAk*ZHQ,Ai*> + G(DAi*ZHQ,Ak*)}.

The formula above vanishes, because Z is an infinitesimal isometry of (TAM L g° ). Q.E.D.

LEMMA 4.3.7. If Z is an infinitesimal isometry of (T*M, g%), then Lo G(A*,CY)
=0 holds for any A in o(n — 1) and C in o(n — 1)=+.

PRrOOF. There exist functions a* with k,1 =1,...,n — 1 on SO(M) such that

(4.3.3) Zte = zMe 13 " aM Ay,
k<l
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which implies that

G([ZLQ,A*],C*) — G([ZHQ + ZaklAkl*,A*],C*)
k<l

= G([Z2"0, A%,C") + ) aMG([AW", A7), C7) = D (A%a™)G(Aw*, C) =0,

k<l k<l
where G([Ak*, A*],C*) = 0 and G(Ak*,C*) = 0 hold, because [Ay, A] and Ay are in
o(n —1). By these formulas, we see that L .,G(A%, C*) = —G(A*, [ZFe C*]). Since C*

is an infinitesimal isometry, we further have
(4.3.4) Lo G(A*,C*) = C*G(A*, ZMe) — G([C*, A*], Z").

When A = A;j, i # j,and C = A;, it is verified that C*G(A*, ZLe) = G([C*, A*], ZE<)

in the following way: From Lemma 4.3.2 and the assumption of Z, we have

A*G(Z1e Aij*) = A*G(Da-ZM2, Aj*) = —A"G(Da, 2%, AY)
= —Ai*Aj*G(ZHQ, Al*) + AZ*G(ZHQ, DAj*Ai*),

where D« A;" is vertical on @) by Lemmas 4.3.4 and 4.3.1. Hence the second term in the
right hand side of the above formula equals zero. On the other hand, for the first term,

we compute that

—AAFG(ZMe A7) = Aj*G(ZMe A7) — AT AFG(ZMe, A
= A;i*G(ZM9, A7) — Aj*G(DaZM9, A7) — Aj*G(Z72, D g A¥).
Since Z is an infinitesimal isometry of TAM, we see G(Da,«Z"2, A;*) = 0 by (ii) of

Theorem 4.2.1. The formula D4+ A;* = 0 holds trivally by Lemmas 4.3.1 and 4.3.4.

Since Aj;* is an infinitesimal isometry, we have

Aji*G(ZMe, Ai*) = G([A;*, Z21R], Ai¥) + G219, [A;*, A%))
= G(0,A") + G(Z"e, —[Ay*, Ai))
= G([Ai*7Aij*]’ZLQ)v
where we use (4.3.1) and the fact that [A;;*, A;*] = A;* is horizontal on (). Hence we

have Al*G(AU*, ZLQ) = G([AZ*, Aij*]a ZLQ), and LZLQG(Aij*aAi*) =0 by (434)
When A = A;; and C = Ay, with k # ¢, j, we see from Lemma 4.3.1 that

(4.3.5) [Ar*, Aij*] = 0.
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* is an infinitesimal isometry, we have by (4.3.5) that

Since Ag;
(4.3.6) Ap*G(Z19, A7) = G([Aw*, 219, Aj*) + G279, [Aw*, Aj*]) = 0.
Applying (4.3.5) to (4.3.4) and using Lemma 4.3.2, we see

L,ioG(Aij*, Ay*) = A" G(Daq 210, A7),

and, by (4.3.6), we further have that

A G(DaZMe A7) = A AFG(ZHQ, A7)
= Ap*G(ZHe Aj) + AT A G (21, A%
= Ai*G(DaZM, Aj%).

Therefore Lz, G(Ai;*, Ar*) is symmetric with respect to 4, k, and skew-symmetric with
respect to i, j. Hence we must have that L., G(A;;", Ax*) = 0. Q.E.D.
We are now in a position to complete the proof of Proposition 4.3.3. At each point u

in SO(M), the tangent space T,,SO(M) is decomposed ([9]) as a direct sum:
(4.3.7) T,SO(M) = (Hp), ® {A*y; Aco(n—1)*}@{C*,; Cco(n—1)}.

Lemmas 4.3.5, 4.3.6 and 4.3.7 together with this decomposition (4.3.7) imply that Z%< is
an infinitesimal isometry of SO(M) if and only if it satisfies the equation of Proposition

4.3.3. We thus proved Proposition 4.3.3.

4.4. Proof of Theorem 4.1.1.
In this section, we prove Theorem 4.1.1. Let Z be a fiber preserving infinitesimal

isometry of TAM. We first show that the lift ZZ@ is also an infinitesimal isometry of
(SO(M), G).

LEMMA 4.4.1. Let Z be an infinitesimal isometry of T*M. Then we have
Lo G(XTP, Aij*) = G([A", 219, Dynp Aj*) = G([A;%, Z219], D ynp A7)

for any X in X(M) and A;j; with 1 <i,j <n—1.

29



PROOF. Recall that Z1@ is represented as (4.3.3). We first list the following formulas:

(4.4.1) AFG([ZHe, x P A% = A A G(XHP, ZHQ),
(4.4.2)  G(A* [ZHe, XHP)], Aj*) = 2G([As*, ZH9], Dynp A;Y) — XHPG (259, Ay,

(4.4.3) G(D_a"Ap*, xHr), Ay*) = -XHrG(Z25e, A7),
k<l
(4.4.4)  G([zHe, xHr] A"y = A A G(XTP ZzHe) — 2G (A, Z1R), Dyrp Aj¥)

_‘_XHPG(ZLQ’AU*)‘
Proof of (4.4.1): Since Z € i(T*M, g°) and A;* € i((SO(M),G), we have

AFG([ZHe, x P A7) = A ZHeG(XHP, A7) — A G(XHP (712, A7)
= 0+ A G(XHr (A%, ZH))
= AAFG(XHP ZHQ) — AFG([A;*, XTP), ZH)
= AFASG(XTP, Ze) — 4%G(0, Z2Me).
This shows (4.4.1).

(4.4.2) is proved as follows: Using [A;*, XHP] = 0 together with Jacobi’s identity, we

have

G([A*, [27e, XTP)), A7) = G(([[A;*, Z7e], XTTP], A7)
=G(Dyy,. g1 X117, A7) = G(Dynp [Ai", 211, A}Y)
= —G(Xxr, Dy - 77 A5") = XArG([A*, Z1e), Aj*) + G([A*, ZHQ], Dynp A7),

Since A;* and A;* are in i(SO(M), G), we have

~G(X"P Dy, . grgAi") = G(Dymp A", (A, 27<)),

~XHrQ(Ax, ZHe) A7) = —XHr A G (29, A7) + XHPG(ZHe A, A7)
= —XPGQ(Da 712, A7) + %XHPG(ZHQ, [A*, A;*])
= —X"rg(zle, A;).

Hence (4.4.2) follows.
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Proof of (4.4.3): It follows from (4.3.3) that

G a" A", XTr] Ay") = =Y (XHra")G(An, Ay")
k<l k<l

= —XHPG(Z aklAkl*,Aij*)
k<l
= —xtrg(zte, A,

which proves (4.4.3).
Proof of (4.4.4): Since A;* is an infinitesimal isometry, we have, by (4.4.1) and (4.4.2),
that

G([z"e, XTP], Ay*) = G([Z7e, XTP] (A, A))
= A”G([Z1e, XTTP] A%) — G([A, [Z21e, X TTP]], A7)
= AFAFG(xTP ZzHe) —2G([A*, ZHQ), Dyvnp AjF) + XHPG(Z12 AY).

This proves (4.4.4).
Using these formulas (4.4.3) and (4.4.4), we prove Lemma 4.4.1. By (4.3.3), we obtain

Lo G(XHr Ay¥)
= ZLQG(XHpaAij*) - G([ZLQaXHP]’Aij*) - G(XHP’ [ZLQ?Aij*])

= —G(1Z%, X17), A7) = —G((2"2 + 3 aMAy*, X7, A7)
k<l

= —G([ZHQ,XHP],AU*) — G([Z aklAkl*,XHP],Aij*).
k<l

From (4.4.3) and (4.4.4), we see that the right hand side of the above formula equals
—AFAFG(XHP ZHa) 1 2G([A*, Z12), Dynp AjY).

We then have

Ly G(XTP, A7) = _%Ai*Aj*G(XHPa Z1Q) + G([Ai*, ZM4], Dynp Aj)
+%A1*A1*G(XHP7 z"e) — G([A*, 219, Dynp AT")
B _%Aij*G(XHpv z10) + G([A7", 2119, Dxnp Aj) = G([4;%, Z219), Dynp A7)
— G(A*, 279), Dy Ay") — G(IAS", 2M9), Dy A7),
which shows Lemma 4.4.1. Q.E.D.
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Using Lemma 4.4.1, we next show that LZLQG(XHP7 A;;*) =0, which is a condition
that ZL@ is in i(SO(M), G) by Proposition 4.3.3. From Lemma 4.3.4, each DynpA;* is
horizontal on P, so that, due to Lemma 4.4.1, it suffices to show that [4;*, ZHQ], i =
1,...,n, are vertical on P. Let U (resp. W) be a horizontal (resp. vertical) vector field on
T*M. By the assumption that Z preserves the fibers of T* M, we have by Theorem 4.2.1
that

G(DugWhe, Uute) — G(D,ny 210, UM)

= g5 (VI W,U) = ¢°(VowZ,U) = ¢°([2,W],U) = 0,
and hence we have

(4.4.5) G(D ugWhe Uule) = G(D, gy Z2"e,UMe).

w
On a local neighborhood of T*M, there are horizontal (resp. vertical) vector fields U;

with i = 1,...,n (resp. W; with i = 1,...,n — 1) and functions b*; with k,l = 1,...,n (resp.
a*; with k,1 =1,...,n — 1) such that

B(ej) = Zblj(Ul)HQ forj=1,...,n,
=1

n—1

<resp. A = Zaki(Wk)HQ fori=1,..,n— 1).
k=1

Then, from (4.4.5), it turns out that

n—1 n

G(Da,-Z"2 B(e;)) = kz_:l ; a" b jG(Dyy, g 279, (U)9)
n—1 n
=3 D dGD g (Wi) 12, (U1)9) = G(D i A", Bley)),
k=1 1=1
and hence
(4.4.6) G([A*, Z1?], B(e;)) =0 (or G([A;*, Z12), B(e;)) = 0).

It follows from (4.4.6) that [A;*, Z7@] is a vertical vector field on P. Therefore we have
LZLQG(XHP7 A;*) = 0, and ZLe is an infinitesimal isometry of (SO(M),G) by Propo-
sition 4.3.3.

32



For each ¢ € ©%(M), there exists a unique vector field ¢* on T*M such that

(7l pann)(0"y) = 0, (Kl|p ) (@hy) = ¢(Y)  forany Y € TPM,

where K is the connection map given by (2.1.1). Given an infinitesimal isometry X of
(M, g), the tensor field VX is regarded as an element of ®?(M), and we then define a
vector field X~ on T*M by

(4.4.7) Xt =x" 4 (vx)E,

where X denotes the horizontal lift of X. We remark that X* = X%|;x,, and ¢F =
LP|pxpy hold for X € i(M,g) and ¢ € D%(M)o, respectively. It follows from Theorem
3.1.2 that X and ¢’ are fiber preserving infinitesimal isometries of (T*M, g° ). We
recall that Wpa,, is the mapping of i(M, g) into i(TAM, g%) defined by Wy, (X) = X*
for X € i(M,g), and that $pa,, is the mapping of D%(M)g into i(T*M, g%) defined by
Ppapg(¢) = ¢ for ¢ € D (M),

Next, we show a lemma which completes the proof of Theorem 4.1.1.

LEMMA 4.4.2. (XD)le = XIP and (¢¥)Fe = ¢FP for any X in i(M,g) and ¢ in
D2(M).

PrOOF. From (2.2.1), we recall that given a vector field W on M, there exists
uniquely the vector field WV on TM, called the vertical lift of W. For any Y in TM,
the vector WVy at Y depends only on the the given vector Wr(v)- Let Vy denote the
vertical space of Ty TM. We define Iy := K|y, which is an isomorphism from V3 to
the tangent space Tr(y)yM. Let u = (Y1,...,Y,) be an arbitrary point in SO(M). Set
exptA; = (a(i)kl(t)). Then we obtain

(m@)e(A") = () (S A(Raper )| ) = S {(m@) o (Respra) @)} _,
n—1 n—1
= %{)\ Z a(i)kn(t)Yk} )t:O = Iyn_l ()\ Z d(i)kn(O)Yk>
k=1 k=1
n—1
= A a0y, T (Vi) = Ay, (V) = Ay, = (u(e))y,,,
k=1
which implies that
(4.4.8) Az*u = {(Au(ei))vyn}HQu .
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We shall use this in the following argument.

To prove the first formula in Lemma 4.4.2, it suffices to show that
(4.4.9) () ((XEYEQ) = (mp)o(XE7), wp((XE)E0) = wp(XTP).
Note that, putting F' = F(X1), we get
(Xhhe = (XM 4 F* = (X7 + (VX)h)Te 4 F* = XMTr 4 (VX))o + F*,

which provides the decomposition of (4.3.7) for (X*)F@. Then the first part of (4.4.9)
follows from (4.2.2) and the decomposition above.
For the second part of (4.4.9), it suffices to prove the following formulas for each u in

SO(M) and I, 4, j with 1 <1, 4, j <n-—1,

(4.4.10) (wr (VX)) ) en, &) = ((VX)H(w))en, &),

(4.4.11) (wp(F*)ei e5) = ((VX)H(w))es €5),

where (VX)*# is the o(n)-valued function on P defined by (4.2.1).
Indeed, setting

(4.4.12) (vx)L)e = gﬁ’%k*, " e F(sO(M)),
we see that .
(VX))o = (70)- (§5k<u> A = :Z_isk(u) - (70)+ (S {(Rexpea) )} )
Y ). IXn_1<§d(k)ln(0)Xl) A ) 1, ),
and hence - - -
¢ (u) = Z&k 9( Xy, X1) = ng F(Ix, N (Xe)s Ix, (X))

n—1
_ ()\ng ) Ix, "N (X), Ix, ™ (Xl)):%gs(((VX)L)ﬂQ(u),IXn’l(Xl))

k=1
= S (VX)) ) K (I, ™ (X0))) = 59 ((TX)(AX0), X)
= (( X)X, X1) = (( “HoVX) (ulen)), u (X0))
= ((u o VX)(ulen)),er) = (™o (VX)ou)en, e) = (((VX)ﬁ(u))en,el).
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Therefore it follows that

(or (T30 Jense) = (or (et A r) = ka (Axenser)
k=1

which proves (4.4.10).
Next, we show (4.4.11): Using (4.3.1), (4.4.8), (ii) of Theorem 4.2.1, and (4.4.7) in
order, we obtain

iG(DAi*(XL)HQ,Aj*)u

(wP(F*)‘ei,ej) = (Fei,ej) = /\2

1 H i
= 320D e 5, (X9, ((Mule) x,) ")

1

)\QQS(VS ule Z.)VAXVL, )\u(ej)v)Xn

1 1

)\295(V /\u(ei)VXH7)\u(ej)V)Xn n pQS(VS,\u(ei)V(VX)L,Au(ej)v)xn-

Note here that the first term in the right hand side above vanishes. In fact, by (4.4.8)

and Theorem 4.2.1, we see

gs(vs)\u(ei)VXH7 Au(ej)V)Xn = G(DAi*(XH)HQ7Aj*)u
= G(Da- X7, 45%), = —G(XT7 Do 457,

because X 7 is horizontal and D4+ A;* is vertical on P. On the other hand, we see

=05 (Vo e (VX)E e, ) = 65(V5 0 (VXOE XY )

29
:gs<%{(VX)L tXi 4+ AXy, }’ )
ZQS(%{IXH_l( (EXi4AX0) H ) 9° (Ix, M (Vx,X), X;/)Xn
= 9(K (Ix, 7 (Vx, X)), K(X])) ; x —QVXXX><Xn>

9
= g(vu(ei)X, Xj)ﬂ'(Xn) = (’U,_ Vu(ei)X,u Xj) = (’U,_lvu(ei)X, €j)
((u'o(VX)ou)esej) = (((VX)ﬁ(u))ei, €j)-

In consequence, we obtain (4.4.11), which completes the proof of the first formula of
Lemma 4.4.2. The proof of the second formula proceeds in the same way as that of the
first one. Q.E.D.
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Now we prove Theorem 4.1.1. From the fact proved in the beginning of this section,
the mapping ¥ defined in Section 4.3 is regarded as a mapping of the Lie algebra of fiber
preserving infinitesimal isometries of T M into i(SO(M),G). Let Z be a fiber preserving
infinitesimal isometry of TAM. It is easy to see that the image ¥(Z) = Z@ preserves

the fibers of P. In fact, using (4.3.3), we have the following for 1 <4, j <n — 1:

G([Z%, Aiy], Bler)) = G([Z172 + 3" a A", Ayj*], Bler))

k<l
= G([ZHQ, Aij*], B(ek)) + G([Z aklAkl*, Aij*], B(ek)) = 0.
k<l
This formula and (4.4.6) imply
(4.4.13) G ([Z2%9, Aij*], Bey)) =0  for 1 <i,j k<n,

hence ZL@ preserves the fibers of P.

The mapping ¥ is a homomorphism, that can be proved in the following way: Note
that each TAM is an integral manifold of the distribution {TT*M ; A > 0}. Using the
chart (2.2.2) of the tangent bundle T'M, we get by (2.2.3) that

(4.4.14) (XE YR =X YT ot et = )t [XE¢M] = —[VX, g"

for any X, Y € i(M,g) and ¢, 1» € D3(M)o. On the other hand, in the same manner as
in [13], it is verified that

(4.4'15) [XLp7pr] — [X, Y]LP) [(pr,,l/]Lp] — _w)’ w]Lp) [XLP,¢LP] — —[VX, ¢]LP

for X, Y € i(M,g) and ¢, v € D?(M)g. From Theorem 3.1.2, there exist uniquely
X € i(M,g) and ¢ € D?(M)g such that Z = X + ¢F, it follows from the formulas
(4.4.14), (4.4.15), and Lemma 4.4.2 that ¥ is a homomorphism. Since ¥ satisfies Wgo(nr) =
W oWpay and Psoar) = ¥ o Ppayy, the uniqueness of such homomorphism follows from
that of the decompositions of the fiber preserving infinitesimal isometries of (T*M, g°)

and (SO(M),G). This completes the proof of Theorem 4.1.1.

REMARK. When Z is a fiber preserving infinitesimal isometries of (T*M, ¢°), any

local one-parameter group of local transformations generated by ¥(Z) is given

(X1, Xp) — (fi(X1), .., ft(Xp)) € SO(M), —e<t<e,
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where (X1,...,X,) is in SO(M) and f;, —e < t < e (for some € > 0), is the local one-

parameter groups of local transformations generated by Z.

4.5. The case of dimension two

In this section we assume that (M, g) is two-dimensional. Since the connection form
of the bundle @) then vanishes, Theorem 4.2.1 says that G = (WQ)*QS and the mapping
mo: (SO(M),G) — (T*M,g°) is an isometry. From Proposition 4.3.3, we can define
the one-to-one homomorphism ¥: i(TAM, g°) — i(SO(M),G) by ¥(Z) = Z'e for Z ¢
i{(T*M, g°). Moreover, we obtain the following.

THEOREM 4.5.1. Let (M, g) be a connected, orientable two-dimensional Riemannian
manifold and A a positive number.
(i) If(M,g) is not a space of constant curvature 1/)\2, then any infinitesimal isometry

of (TAM, ¢g°) is of fiber preserving, and we have
(TAM, g%) [Wraps ((M, g)) 2 Do (D*(M)o).

In this case, the center of (TAM, g%) is & (D2(M)o).

(i) If (M, g) is a space of constant curvature 1/\2, then we have
(TM, g°%) [Wran(i(M, g)) = span {Pran (@), S, [@ran(6), 5] 6 € D*(M)o},
where S denotes the geodesic spray on (T M, g%). In this case, the center of i(T*M, g°)

1s trivial.

To prove the first part of Theorem 4.5.1, we suppose that there exists an infinitesimal
isometry Z of T*M which does not preserve fibers. Set J = (mg)«(A41*), which is a
vertical infinitesimal isometry of T*M satisfying ||.J|| = A. For each positive integer [, let

us define infinitesimal isometry W; of (T*M, ¢°) and the open set U; of TAM as follows:
Wi =12, Wia=[W], U={YeT*M; (W)y #0}.

Then, we have the following lemma.

LEMMA 4.5.2. (i) W, is a horizontal infinitesimal isometry of (T*M,g%), which
satisfies g% (Wi, Wig1) = 0 and g% (Wig1, Wig1) = —g° (Wi, Wiya) for 1 > 1.
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(ii) U =T M, and ||W,|| is a constant function on T M for 1 > 1.
(iii) [|[W||? = MW, W;_1), A1) forl > 2.

Proor. (i) Put Wy = Z. Since the infinitesimal isometries constitute the Lie
algebra, it is proved by induction that W} is an infinitesimal isometry of (T*M, ¢%). It

follows from
G5 (W) = 051, Wia]) = 5 Wiag(J. ) = 0
that W is horizontal on T*M. Hence we have
95 (Wi, Wir) = g5 (Wi, [1.Wil) = =Wig® (Wi, ) + g% (Wi, Wil, ) = 0.
Since J is an infinitesimal isometry of (T*M, ¢g°), we have
9% (Wisr, Wigr) = Jg5 (Wi, Wiga) = 9% (Wi, [, Wisa]) = =% (Wi, Wisa).

(ii) Using the second formula of (i), it is proved by an induction that U,, D Up+1
for m > 1 and Uy, C Up41 for m > 2. It follows that U, = Us for m > 2.

We next show that Us is not empty. To do this, we suppose, on the contrary, that
Us is an empty set, and derive a contradiction. Since we have [J, Wi] = 0 on TAM, the
infinitesimal isometry W; preserves the fibers of 7M. Hence, by Theorem 3.1.2, there
exist X in i(M,g) and ¢ in ©?(M)g such that

Wy = XE 4ol = X7 (VX +¢)l.

Since W is horizontal by (i), we have VX + ¢ = 0. It follows that VVX = —V¢ = 0,
and hence R(Y,Y')X =0on M for any Y, Y’ € X(M), that is, (7(Uy), g) is flat. But this
contradicts the fact that an infinitesimal isometry Z|y,, which does not preserve fibers,
exists on U;. Because, if (7(Uy), g) is flat, then the distribution Hp is integrable, and
(7| papg) " H(w(UY)), g°) is also flat, which can be easily seen from the formula for the
curvature tensor of (T*M, g%) (cf. Blair [1] and Section 3.2). Hence there exists an open
set U1’ of Uy such that ((7|7,,) "1 (7(U1)), ¢°) is isometric to an open set of R®/I", where
I is the free group generated by 27 \es € R?, which contains a whole fiber. But, on such
an open set, there exists no infinitesimal isometry which does not preserve fibers. On

account of these facts, we conclude that Us is not empty.
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Since W; and J are infinitesimal isometries, it follows that

Wi(IlWil?) = 25 (Wi, W], Wi) = 0,
(4.5.1) Wi ([Will?) = =2Wig® (Wiga, Wi) + 295 (Wi, (Wi, W) = 0,

J(IWil[?) = 2¢5([J, Wi}, Wi) = 2% (W41, Wy) = 0.

So, ||Wp| is a constant function on each connected component of Uy, for m > 2. Then,
the continuity of the vector field W, implies that U,, = T*M. Hence we conclude that
U; = T*M for any | > 1. This proves the assertion (ii).

(iii) Since W; and J are in i(T*M, ¢%), we have by Lemma 4.3.4 that

97 (Wipr, Wiga) = g7 ([J, Wil Wisn) = 6% (V2 Wi, Wig) = 97 (V5w ], Wia)
= =0" (Vi Wi, J) + 9% (V7w ] W0) = X(2(Wiga, W), Av).

This completes the proof of Lemma 4.5.2. Q.E.D.

It follows from (i) of Lemma 4.5.2 that ||[W;41]|/||W;]| is independent of the number I.
Hence, from (ii) and (iii) of Lemma 4.5.2, we know that the Gaussian curvature of (M, g)

is equal to the constant ¢ = ||[Wyyq||-(A\2[|W;]])~! on M.

We show that the constant ¢ can be computed in a different way:

LEMMA 4.5.3. For each l > 1, we have

V5w Wi =0 and  g°(R® (Wi, Wig)Wier, Wi) = (AWl - [[Wiga]l/2).

Proor. It follows from (4.5.1) and (i) of Lemma 4.5.2 that
(4.5.2) PV WL, W) =0, ¢ (Vi W, Wis1) =0, ¢V, W, J) =0.
Hence we get V°y,W; = 0, which implies that (VSWHIVSVVl)VVlH = VSWZHVSWHIVVZ.
Since any infinitesimal isometry W of (T*M, g°) satisfies the following differential equa-
tion
(VI VIW)Y) + REW, Y)Y =0, Y, Y eXx(T'M),
we have
g% (R (Wi, Wi ) Wi, W) = —g° (V¥ VIW) Wiga, W)
= —QS(VSW,HVSWMWI,WI)
= Wit (W lWilR) + 5w, Wil
IV 5w, Wil
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where (4.5.1) is used. From the second formula of (4.5.2) toghther with the fact that W,
is an infinitesimal isometry, we know that Ve Wy, Wi is vertical on T*M, and hence it

follows from Lemma 4.3.4 that
S ]. S S )\ CA
195w Will = |59 (P wi Wi )| = | 52000 Wi). AD)| = Wl - (Wi

Q.E.D.

On the other hand, by the formula of the curvature tensor of (T*M, ¢g°) (Blair [1] and

Section 3.2), we have the following: For an arbitrary point Y in TAM, put (7|, )(Y) =
Y? and (7|7 p0)«((W))y) = X; for I > 1. Then it holds that

9% (R* (Wi, W) Wiy1, W)y
1
= g(R(Xy, Xi41) X141, Xy) + ZQ(R(Yb, R(Xi41, X141)Y") Xy, X))

1 1
+29(ROY7, R(X0, Xi)Y?) Xi1, X0) + S (RO, R(XG, Xi0)Y7) X, X))

B (c B 3c2\2
N 4

) - I Wi

From Lemma 4.5.3 and the formula above, we get ¢ = 0 or ¢ = 1/A\2. However, in the
proof of Lemma 4.5.2, we see that if ¢ = 0, then there exists no infinitesimal isometry Z
which does not preserve the fibers. Hence (M, g) is a space of constant curvature 1/)\2,
which proves the first part of Theorem 4.5.1.

Now we decompose the infinitesimal isometry Z of TA*M and prove the second part
of Theorem 4.5.1. There exists a unique vector field S on T*M, called the geodesic spray
on T*M, such that

(mlpan)«(Sy) =Y, (Klppap)(Sy) =0 for any Y € TAM.

Since the mapping mg is an isometry, Theorem E in [14] says that - B(e2), which is the

lift of S, is an infinitesimal isometry of SO(M). Indeed, we can see

(wlrann)s ({(rQ)-AB(e2))}y) = ¥

for each Y in T* M. Tt should be noted that this formula holds for M with n = dim M > 1.
In fact, for any Y in T*M, there are tangent vectors Y7, ...,Y,_; in Tr(yyM such that
(Y1, ., Y1, A7Y) is in SO(M). Set u = (Y1, ..., Yn_1,A"1Y). Then we have

(mlranr)« ({(7Q)«(AB(en)) }y) = ((wlrans) © mQ)« (AB(en)u) = (mp)«(AB(en)u) =Y,
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and hence
(4.5.3) Ste = §Ho = \.B(e,),  n=dim M.
It then follows that both
Bi:=117,8]= (ng)u(Bler) and By:= <8 = (mq).(B(en))

are in i(T)‘M , gs ). Since W, is horizontal, there exist functions bl; and b2, on T*M such
that W, = b';B; + b%B>. We show that both b!; and b%; are constant on T*M. In fact,

for m = 1,2, we have
0= g5V, Wi, Bn) + ¢°(J, V55, W) = 1m(JbY)) + Gam (Jb%),
from which we get
(4.5.4) Jb™; = 0.
For arbitrary vector fields Y and Y’ on T*M, we have

0= g>(VSyW,Y") + g% (Y, Vo W)
= g%(Vy (0" B1 + V% B2),Y') + ¢° (Y, V73 (b, By + 1% Bs))
= (Yb')g%(B1,Y') + (Y0*)g® (B, Y') + (V') g% (Y, B1) + (Y'0%) g% (Y, Ba).

Setting Y =Y’ = B; (resp. Y =Y’ = By) in the formulas above, we get
(4.5.5) Bib'; =0 (resp. Bob* = 0).
Moreover, we have

0= g°(Viy W1, Y') + ¢°(V, VS Wiy1)

g
- gS(vSY[Jv I/Vl]v Y/) + gS(Y7 VSY’ [J’ Wl])
g% (VEy (b"1By — b1 By),Y") + g%(Y, Voy (b°, By — b, By))
= (Y*)g®(B1,Y') = (Y0'1)g5 (B2, Y') + (Y'0%)g° (B1,Y) = (Y'b'1)g° (B2, Y).

Setting Y =Y’ = B; (resp. Y =Y’ = By) in the formulas above, we get
(4.5.6) Blb2l =0 (resp. ngll = O).

These formulas (4.5.4), (4.5.5) and (4.5.6) imply that both b!; and b? are constant on
TAM, and hence W, = (7¢).(B(b}e1 + b2je2)).
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Setting Z/ = Z — Wy, we have

(1.2 = [J,Z - Wi = [J, Z] — [J, W]
= Wi —[J[J[J.[J,[J, Z]]]]]

= Wi —[J[J [, [, WA]l]

= W1 — (mq) ([A1*, [Ar", [A1", [A1", B(b'1e1 + b*1e2)]]]])
= W1 — (mQ)«(B((A1-A1-A1- A1) (b'1eq + b 1e2)))

= (mQ)« (B((b 161 + b*1e2)))

= W, — W, =0,

which implies that Z’ is a fiber preserving infinitesimal isometry of T*M. Tt follows that
there exist X in i(M, g) and v in ©2(M)g such that Z’ = X% 41)%. Hence we decompose
Z as

Z=Wy+2Z =a-S+3-[J,S]+ XL +yr,

where a = A2g5(1J, [, Z]], §) and 8 = A"2¢5([, [, Z]}, |, 5)).
The following formulas for the bracket products are proved in the same manner as in
[13].

LEMMA 4.5.4. Let (M,g) be a connected, orientable two-dimensional Riemannian
manifold and \ a positive number. Then for X, Y € i(M,g) and ¢, € D*(M)q it holds
that

[XL7YL] = [X, Y]La [QbLawL] =0, [XL7¢L] = 0.

Furthermore, if (M, g) is a space of constant curvature 1/\2, then for m = 1, 2, it holds
that

1
—J, [XI,Bn] =0, [J,Bn]=061mB1 — domBo.

Accordingly, these facts and Theorem 3.1.2 lead us to the second part of Theorem
4.5.1.
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5. Appendix

5.1. Geodesics and infinitesimal isometries of the tangent sphere bundles over
space forms

In this section, we prove an extended version of Theorem 3.1.1 for the tangent sphere
bundles over space forms M and characterize the geodesics in the total spaces TAM in
terms of the vector fields along the curves in the base space M satisfying appropriate
properties. Let (T*M, ¢g%) be the tangent sphere bundle with Sasaki metric ¢° over a
Riemannian manifold (M, g). If (M(k),g) is a space of constant curvature k, then the
geodesic spray & of (TAM(k), %) is an infinitesimal isometry if and only if & = 1/\?
(Tanno [14]). It is important to note that & is not of fiber preserving. When k # 1/)2,

we obtain the following:

THEOREM 5.1.1 ([4]). Let (T*M(k),g®) be the tangent sphere bundle over a space
of constant curvature k. If k#1/\%, then any infinitesimal isometry of (TAM(k), g%) is

of fiber preserving.

From Theorem 3.1.1, every infinitesimal isometry Z of the tangent sphere bundle
(T*M, g°) over a Riemannian manifold (M, g) can be extended to an infinitesimal iso-
metry of the tangent bundle (T'M, ¢°) if Z is of fiber preserving. So, by Theorem 5.1.1

we have the following:

THEOREM 5.1.2 ([4]). Let (M(k),qg) be a space of constant curvature k. Every in-
finitesimal isometry of the tangent sphere bundle (TM(k),g°) can be extended to an
infinitesimal isometry of the tangent bundle (TM(k),g°) if k # 1/\2.

To prove Theorem 5.1.1 we study some properties of geodesics in (T*M (k), g°). The
basic references of the geometry on the tangent bundles are Dombrowski [2] and Sasaki
[12].

Let (T*M, g°) be the tangent sphere bundle with Sasaki metric ¢° over a Riemannian
manifold (M, g). By 7 we denote the projection from T*M to M. Let

C ={(z(0),y(0)); 0< o<1}
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be a curve in (T*M, g°) with the arc-length parameter o, where

y(0) € TyyM,  g(y(0),y(0)) = N

It is a geodesic if and only if

(5.1.1) (Vai)(0) = —R(y(0), (Vay)(0))i(o),  (ViVay)(o) = plo)y(o)

hold for some function p(c), where V and R denote the Riemannian connection and
Riemannian curvature tensor of (M, g), respectively, and #(c) = dz(o)/do (Sasaki [12,
II, p. 152]).

Geodesics on the unit tangent bundle (75%(1), g%) over the unit two-sphere (S%(1), g)
were studied by Klingenberg and Sasaki ([3]). Nagy [9] studied the geodesics in the unit
tangent bundle over space forms by using the generalized Frenet formulas. For any space

form (M (k), g), we have the following;:

THEOREM 5.1.3 ([4]). Let A be a positive number, (T*M (k), g%) the tangent sphere

bundle over a space of constant curvature k, and let
C = {(x(0),y(0)); 0< o <1}

be a geodesic with the arc-length parameter o in (T*M(k), g%). By C = {x(c)} we denote
the image of the projection 7C of C. Then ||&||*> = 1 — ¢? is constant, where 0 < |¢| < 1.
(i) If |c| = 1, that is, C reduces to a point, then C is a (piece of) great circle in a
fiber and y is rotated in a two-plane at x(0).
(ii) If 0 < |c| < 1, then we have the following:
(ii-a-1) The geodesic curvature kg of C' is constant.
(ii-a-2) C satisfies

(5.1.2) ViViVai = —\N2k2c?V i

(ii-b-1) If k =0, then k4 = 0 and we have the parallel orthonormal vector fields
{E1, Ex} along C such that

(5.1.3) y(o) = Acos (%7) - Fq1(0) + Asin (%) - Ey(0).

(ii-b-2) Ifk # 0 and kg = 0, then we have the parallel orthonormal vector fields
{E1, Eo, ©/|z||} along C such that y is of the form (5.1.3).
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(ii-b-3) Ifk # 0 and kg # 0, then we have the parallel orthonormal vector fields
{E1, Ex} along C such that y is of the form (5.1.3).
(ii-c) The angle 0(o) between y(o) and (o) is given by

1— 2
! sin c(1 — \°k)

M1 —c? A

where o and 3 are constant. o is given by (5.1.9) and a = 0 for (ii-b-2).

(5.1.4) cosf(o) = o+ B,

(ili) If c=0, then C = {x(0)} is a geodesic with the arc-length parameter o, and y
is a parallel vector field along C.

PRrROOF. By (5.1.1) the equations of geodesic in (TAM (k), g°) are given by
(5.1.5) Vit = —kby + kaV ;y, V:Viy = py,
where we put
(5.1.6) a=a(o) =g(&,y), b=>bo)=g(& Viy).
We sometimes omit the parameter o from the expression for simplicity. We put
(5.1.7) & =c2(0) = g(Viy, Viy).
By g(y,y) = A2, we have g(y, Viy) = 0 and

9(Viy, Vay) + g(y, ViViy) =0,

in other words, we get ¢ + A?p = 0. Differentiating (5.1.7) and using (5.1.5)2 we see that
c is constant.

Let X be a tangent vector at a point of (M(k),g). By X and X", we denote the
horizontal lift and the vertical lift of X to (T'M(k), g%), respectively. Since the tangent
vector field of C' is expressed as
we have 1 = ||dC/do||?> = ||z||> + ¢2. Therefore ||&||2 = 1 — ¢? is constant, and the
parameter o of C' = {z(0)} is proportional to the arc-length.

If |¢| = 1, that is, ||| = 0, then C is a geodesic in a fiber. Since each fiber is totally
geodesic and isometric to the unit (m — 1)-sphere, it is a (piece of) great circle. So, y is

expressed as y(o) = Acoso - e; + Asino - ez for some orthonormal vectors {ej, ea} at z(0).
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Next we assume 0 < |¢| < 1. Calculating @ = Vza and b = Vb, we obtain
(5.1.8) a=(1-Xkb,  b=(k-IHac’
Operating V; to the first equation of (5.1.5) twice, we obtain (5.1.2). By (5.1.5) we see
|Vai|* = k2 (c?a® + \2b?).

By (5.1.8) we can show that c?a® + A%b? is constant, and the geodesic curvature k, of C

given by
5 Kk2(ca® + \2?)
Mo T T - 2)

is also constant. This proves (ii-a-1) and the first part of (ii-b-1). By using (5.1.8) again,

we have

c(1 — N2k)
A

-a+ﬁ], b(cr):—cos{6(1_7/\)‘2]“>

h\ 'O-+ﬁ:|7

a(o) = asin

where o and [ are constant functions. Here, a? is expressed as
2 2 272 2\2,. 2

The angle 6(c) between y(o) and (o) is given by

cos0(0) = g(#/ |l y) = ===

and we obtain (5.1.4).
Now we define the vector fields £ and Es along C' by

By(o) = 150 () -9(0) + = cos (5) - (Van) (o).

Then E; and Es are parallel orthonormal vector fields along C, and define a parallel

two-plane field II along C'. y is rotated in II as
co . [CcOo
y(o) = Acos <7> - Fq1(0) + Asin (T) - Ey(0).

This proves (ii-b-1) and (ii-b-3). If k # 0 and k4 = 0, then @ = b = 0. So, {E1, E», @/| ||}
are orthonormal and we have (ii-b-2).

Finally, if ¢ = 0, then we have V;y = 0, V;& = 0 and (iii). We proved Theorem 5.1.3.
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The converse of Theorem 5.1.3 is given by

THEOREM 5.1.4 ([4]). Let (M(k),qg) be a space of constant curvature k. Let C =
{z(c); 0 <o <1} be a curve of constant geodesic curvature kg with ||@|?> =1 —c?, 0 <

lc| < 1. Assume that C satisfies
(5.1.10) ViViVai = —\N2k2c?V i

(ii*-1) When k = 0, we assume kg = 0. Let {E1, Es} be parallel orthonormal vector
fields along C and define the vector field y along C' by

(5.1.11) y(o) = Acos (%) - By (o) + Asin (%) . Ex(0).

Then C = {(x(0),y(0))} is a geodesic in (T*M (k), g%).

(ii*-2) When k # 0 and kg = 0, let {E1, Eq,&/||Z||} be parallel orthonormal vec-
tor fields along C. Define y by (5.1.11). Then C = {(x(c),y(c))} is a geodesic in
(TAM(E), %),

(ii*-3) When k # 0 and k4 # 0, let ey = (V32)(0)/(1 — ¢*)ky and

1

2= Aee(1 — 2Ry g

V:Vi2)(0).

Define {E1, Eo} along C by the parallel translation of e1 and eg. Next we define y by
co . [CO

(5.1.12) y(o) = Acos (7 + 'y) - E1(0) 4+ Asin (7 + 7) - Es (o)

for a constant . Then C = {(z(c),y(c))} is a geodesic in (T*M(k), g%).

Proor. First we prove (ii*-1) and (ii*-2). By k4 = 0 we have V& = 0. By (3.2) we
obtain V;V;y = —(¢/\)?y and, using g(i, y) = g(&, Viy) = 0 for (ii*-2), we have (5.1.5).
Next, we show (ii*-3). Since {(1 — ¢?)r,} 'V is a unit vector field along C, we see

that V;& and V;V ;4 are orthogonal. Using (5.1.10), we obtain
9(ViViai, ViVied) = N2k*c?g(Vai, Vi)

and {Mkc(l — ?)ky} V43 Vad is a unit vector field along C. Therefore, {e1,e2} and
hence the parallel vector fields {F1, E2} are orthonormal. Then {(z(0),y(c))} defined by
(5.1.12) satisfies the second equation of (5.1.5). The differential equation (5.1.10) yields

(Vai) (o)

ﬁ = cos A\kco - Eq(0) + sin Akco - Eq(0).
— )Ry
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By (5.1.12) and ¢ 'V;y = —sin(co /X + 7) E1 + cos(co /A + v) Ea, we obtain

_ 2 )2
(5.1.13) Vpi = L= (e =AR) ],
X\ X\
_ 2 _ )2
_a CC )ty sin [C(l )\)\ k) 'O'+’Y:| -Viy.

We put a = g(i,y) and b = g(&, V;y). It follows from (5.1.13) and V;V;y = —(c/\)%y
that
c(1 — \%k)

1= \(1—c?
a (1 —c)kgcos [ 3

-U—l—’y] +b,

b= —c(1 - c*)kysin [6(1_7)\/\%) o —l—fy] - <§)2a.

Solving the differential equations above with the initial condition

0(0) = g(i(0), y(0)) = — L= g s

ck ’
we get
(1= A)rg . el = N%k)
a= ok Sin \ o+,
(1= P)ky c(1 — N\2k)
b= 5\ cos 3 o+ |-

So, (5.1.13) is rewritten as Vi = —kby + kaVy. This completes the proof of Theorem
5.1.4.

The converses of the two cases (i) and (iii) of Theorem 5.1.3 are trivial.

Now we prove Theorem 5.1.1. Assume that an infinitesimal isometry Z of (T*M (k), g°)
is not of fiber preserving. Let {¢;} be a (local) one-parameter group of local isometries
generated by Z. Since each fiber is totally geodesic in (T*M (k), ¢°) and isometric to the
unit (m — 1)-sphere, we can choose a great circle C' = {(z(0),y(0)); 0 < o0 < 27} of
length 27 in a fiber and a positive number & > 0, such that ¢,C' is not contained in a fiber
for ¢t with 0 < ¢t < €. Here we can assume that the domain of definition of ¢; contains the
fiber containing C. In this case, for small ¢t with 0 < t < ¢, Cy = 7¢,C is a small closed
curve, and it can not be a geodesic in (M (k),g). We have 0 < |¢;|] < 1. By Theorem
5.1.13, (ii-b-1), and (5.1.9) we see that k # 0 and ay # 0. It follows from (ii-c) that the
angle 0:(c) between y;(0) and C is given by

o ci(1 — M%k)

cosby(0) = ———=-+in

-0+ .
A 1—c§ A &
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Ast — 0, we have |¢;| — 1. So we have small ¢ such that (1 — A?k)c;/\ is not an integer.
This means 6;(0) # 0:(o + 27) for such ¢t. This contradicts the fact that C; is a closed
geodesic for any t. We proved Theorem 5.1.1.

5.2. Infinitesimal isometries of frame bundles
In this section, using Theorem 4.1.1 and an extended version of the results in [13], we
prove Theorem E in [14] and Theorem 3.1.2 for orientable Riemannian manifolds.

We first explain the extended version of the results of Takagi and Yawata in [13].

THEOREM 5.2.1. Let (M, g) be a connected, orientable Riemannian manifold of di-
mension 1 > 2 and X a non-zero number.

(i) For every Y € i(M,g), ¢ € D*>(M)y and A € o(n), YEP, ¢FP and A* are all
infinitesimal isometries of (SO(M),G).

(ii) If B(&) is an infinitesimal isometry for some non-zero & € R", then M is a space
of constant curvature 1/)\2.

Conversely, if M is a space of constant curvature 1/\?, then B(€) is an infinitesimal
isometry for any £ € R".

(iii) Given an infinitesimal isometry X of (SO(M),G), we have the following:

(iii-1)  If M is complete, then there exist unique Y € i(M,g), ¢ € D*>(M)g, A €
o(n) and & € R" such that X = YIP + ¢tP + A* + B(€), except when the dimension of
M is 2, 3,4 or8.

(iii-2)  If X s of fiber preserving on P, then there exist unique Y € i(M,g), ¢ €
D2(M)o and A € o(n) such that X = YEP +¢LP 4+ A* when the dimension of M is greter
than two.

(iv) For everyY, Z € (M, g), ¢, ¥ € D?(M)y and A, C € o(n), we have [VY, ] €
D%(M)o, and

[A*,C*] - [A7C]*7 [¢LP7¢LP] = _[¢7 ¢]LP7 [YLP7ZLP] = [Y7 Z]va

[Yir otr] = —[DY,¢]*r, [Y'r AT =0, [o'7 A"]=0.
In particular, if M is a space of constant curvature 1/X\?, then D%(M )y = {0}, and

[BE), BO)] = — 55 (€ An)', 4% BE)] = BA, [YP, BE)] =0
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for all &, n € R", when dim M > 3.

Theorem 5.2.1 was proved by Takagi and Yawata in [13] when A = V2. Since their
method of the proof can be directly extended for any A\, we omit the proof of Theorem
5.2.1.

Considering the Jacobi fields along geodesics in (M, g), Tanno [14] proved the following

theorem:

THEOREM 5.2.2 (Tanno [14]). Let (M,g) be a Riemannian manifold. The geodesic
spray on TAM is an infinitesimal isometry of (T*M,g°) if and only if (M, g) is a space

of constant curvature 1/)\2.

As an application of Theorem 4.1.1, we provide another proof of this theorem. Our proof
is based on Theorems 4.1.1 and 5.2.1 as follows.

PrOOF. We may assume that M is connected and orientable. Suppose that the
geodesic spray S is an infinitesimal isometry of 7M. Then, from (4.5.3) and (i) of
Theorem 4.2.1, we know that

G(Da;»B(en), B(ej)) + G(Ai", Dpe;yBlen)) =0  for1<i<n-—land1<j<n.
Lemma 4.3.4 with the formula above implies that

A2 A2

(5.2.1) 5 (2(Blen), Blej)), Ai) + (Aien, €j) — - {£2(B(ej), Blen)), Ai) = 0,

where we get

3

(5.22) (2Bew). Bley), Ai) = Y (Aier, QB(en), B(e;))er)
k=1
= —2(02(B(en), B(ej))ei, en).

Applying (5.2.2) to (5.2.1), we have (202(B(en), B(e;))ei, en) = 6;ij/A2. Setting i = j here,

we have
(5.2.3) (202(B(ey), B(e;))ei, en) = 1A%

For any u € SO(M), we put u = (Y1,...,Y,). Since we know (7p).(B(ex)u) = Yk, that is,
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{57}, = B(ey)y for k =1,...,n, we have by (5.2.3) that

9(R(Yy, Vi) Vi, Vo) = g(u-202(Y,Hr VP ) 0(v" ), v,)
= (2Q(YTLHPU’ YkHPu) ’ Q(Yk‘HPu)7 U_IYn)

= (22(B(en)u, B(ex)u) - 0(B(ek)u), en)
= (2Q(B(en)u7B(€k)u)ek;€n)
= \72,

which implies that (M, g) is a space of constant curvature 1/\2.

Conversely, if (M, g) is a space of constant curvature 1/A2, then, from (ii) of Theorem
5.2.1, B(ey) is an infinitesimal isometry of (SO(M),G). Since we know that B(e,) pre-
serves the fibers of @, the geodesic spray S = A(7g)«(B(ey)) is an infinitesimal isometry
of (T*M, g°). This completes the proof of Theorem 5.2.2.

REMARK. In this case, the lift S“@ of the geodesic spray S is a fiber preserving

infinitesimal isometry of (@, G).

Next, we prove Theorem 3.1.2 in a different way. Assume that (M, g) is orientable and
the dimension of M is greater than two. We determine the fiber preserving infinitesimal
isometries of (T*M, g°), which provides another proof of Theorem 3.1.2. In what follows,
we only use (iii-2) of Theorem 5.2.1, Lemma 4.4.2 and the fact that the lift Z*2 of a
fiber preserving infinitesimal isometry Z of TAM is also a fiber preserving infinitesimal
isometry of (P, G) (see the first part of Section 4.4 and (4.4.13)). From (iii-2) of Theorem
5.2.1, there exist unique X € i(M,g), ¢ € D*(M)y and A € o(n) such that Zte =
XEp 4 ¢plr + A*. By Lemma 4.4.2, we have

ZLQ :XLP+¢LP —I—A* — (XL)LQ +(¢L)LQ —I—A* — (XL+¢L)LQ +A*,
and hence
A* — ZLQ _ (XL+¢L)LQ — (Z—XL _¢L)LQ~

This implies that A* is the lift of the vector field Z — X — ¢ on TAM. Put W =
Z— XL —¢L. Let Y be an arbitrary point in 7*M and u an arbitrary point in (7g)~1(Y).
Then there exist tangent vectors Y1, ..., Yn—1 € TryyM such that u = (Y1,..., Vo1, A7Y).

o1



Setting exptA = (a’j(t)) and Y;, = A~1Y, we have
4
dt

:A%{Z?%UW”LﬂZAEF%@MFVﬂ)

Wy = (1) (WH2,) = (7). (4") = (1) (5 {(Rexpra) @)} )

Since Wy is independent of the choice of u € (mg)~(Y), it is necessary to have @*,,(0) = 0

for k =1,...,n — 1. Hence we see that A is in o(n — 1), and we have
Wy = (mq)«(WH2,) = (mq)s(W'ey) = (mq).(A") = 0.

It follows that Z = X© + ¢, Thus, we have determined all fiber preserving infinitesimal

isometries of TAM, which provides another proof of Theorem 3.1.2.
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