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Introduction

A harmonic map u : M → M ′ between Riemannian manifolds M and M ′, equipped

with metrics locally given by g =
∑m

i,j=1 gijds
idsj and g =

∑m′
β,γ=1 g

′
βγdu

βduγ , is a solution

to the harmonic map equation:

∆gu
α = −

m∑
i,j=1

m′∑
β,γ=1

gijΓ′α
βγ(u)

∂uβ

∂xi

∂uγ

∂xj
(α = 1, . . . ,m),

where {Γα
βγ

′} are the Christoffel symbols of g′ and ∆g is the Laplacian of g. The exis-

tence of a harmonic map between compact Riemannian manifolds was established in the

sixties by Eells and Sampson in their seminal paper [10], when a target manifold M ′ is of

nonpositive curvature. In the seventies, under the same curvature assumption, Hamilton

[13] investigated the Dirichlet problem for harmonic maps between compact Riemannian

manifolds with boundary. However, people have only recently begun to investigate the

noncompact analogue, for instance, the Dirichlet problem for harmonic maps between

Cartan-Hadamard manifolds which we state explicitly below. Recall that for this prob-

lem under consideration, the manifolds M are simply connected, complete, Riemannian

manifolds M of nonpositive sectional curvature. In particular, these are not compact, but

can be compactified by adding the spheres at infinity ∂M of M defined by the asymptotic

classes of geodesic rays in M , thus giving us the compactifications of M , which will be

denoted by M = M ∪ ∂M . This leads us to the following Dirichlet problem at infinity for

harmonic maps between Cartan-Hadamard manifolds.

Dirichlet problem at infinity for harmonic maps: For given Cartan-Hadamard

manifolds M , M ′ and a continuous map f : ∂M → ∂M ′, find a map u : M →M ′ satisfying

the conditions:

(1) u|∂M = f and,

(2) u|M : M →M ′ is a solution to the harmonic map equation.
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INTRODUCTION

In the early nineties, Li and Tam [18], [19] and, simultaneously, Akutagawa [2] in the

two-dimensional case, carried out ground breaking work by introducing new techniques

for existence arguments, when M and M ′ are both real hyperbolic spaces. Recently, in

order to simplify these arguments, Bando [3] combined Green’s function with Hamilton’s

method [13] as a basis for his own argument. On the other hand, Donnelly [6], [7]

extended Li and Tam’s results to prove the existence of harmonic maps between all rank

one symmetric spaces of noncompact type [namely, real, complex, quaternion hyperbolic

spaces and the Cayley hyperbolic plane]. In order to refine his own results, Donnelly [7]

later used Graham’s Hölder space [12], where derivatives are assigned weights depending

on the direction. Recently, a few attempts were made to generalize their results as can be

seen in Nishikawa and Ueno [21] and Ueno [24]. The uniqueness of a solution belonging

to C1(M,M
′
), in the work of Li and Tam, and C2(M,M

′
) or C3

β, β > 2, in the work of

Donnelly, has been established for a given non-degenerate boundary value. In order to

confirm that these regularity assumptions up to the boundaries are necessary for obtaining

the uniqueness, we need to construct more than one harmonic map [for instance, those

provided by a family] which induce a given boundary value and are only Hölder continuous

when being viewed as maps from M to M ′.

With regard to this problem, Li and Tam [19] provided an explicit example of a fam-

ily of harmonic maps between real hyperbolic planes, which induce the identity map on

the boundary; these maps are only Hölder continuous with exponent of 1/2 when being

viewed as self-maps of M . Hence, they have verified that the assumption of regulrity

cannot be removed from their uniqueness theorem [19] when the dimension is two. They

have constructed this example by, firstly, reducing the harmonic map equation to a non-

linear ordinary differential equation; and, secondly, giving explicitly expressed solutions.

In this rare example, we can express solutions for a nonlinear differential equation ex-

plicitly; but we cannot generally expect this to be the case. Subsequently, Economakis

[9] generalized Li and Tam’s example to higher dimensional cases by using a contraction

mapping theorem, but yielding no explicitly expressed solution; his examples constructed

abstractly are only Hölder continuous with exponents of less than 1/2 when being viewed

as self-maps of M . Thereby, he also verified that the assumption of regularity cannot be

removed from the uniqueness theorem when dimensions are greater than two.

In accordance with these studies, the following problem was suggested by Nishikawa:
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INTRODUCTION

Problem 0.1. Can we find a family of proper harmonic maps between complex hy-

perbolic spaces which do not satisfy the assumption of regularity in Donnelly’s uniqueness

theorems ?

In the present thesis, we shall resolve this problem by extending Li and Tam’s and

Economakis’s results to other rank one symmetric spaces. In fact, our approach is some-

what different from the one they used on the following points. Firstly, instead of using

a contraction mapping theorem as in Economakis’s existence argument, we shall simplify

the nonlinear ordinary differential equation into a translation invariant equation and then

utilize the comparison argument of solutions in conjunction with a diagonal method. We

can also use the latter method, with an additional slight modification, in the construction

of diverse families of harmonic maps between various tube domains as in Chapters 2 and

3. Secondly, in order to estimate the Hölder regularity of solutions at the boundary, Li

and Tam, and Economakis utilized the fact that the Jacobian matrix of a geodesic sym-

metry of the real hyperbolic space is expressed as a product of an orthogonal matrix and

a scalar function. However, this fact is no longer true for other rank one symmetric spaces

of noncompact type. Therefore it is necessary to provide an argument which works even

in the cases where the Jacobian matrix can not be expressed as the product described

above.

Throughout this thesis, we shall identify the boundary of a rank one symmetric space

of non-compact type [other than the real hyperbolic space] with the one-point compacti-

fication of a two-step nilpotent Lie group, whose Lie algebra admits a natural filtration.

Regarding this identification, Donnelly [6, Proposition 3.4] showed that harmonic maps

extending to C1(M,M ′) maps induce boundary values which preserve this natural fil-

tration. [As was pointed out by Donnelly [6], these boundary values are contact trans-

formations when both M and M ′ are complex hyperbolic spaces of the same dimension,

and, more commonly, when they are non-degenerate maps (cf. Definition 3.2). Hence,

later in [8], Donnelly utilized the term “contact” instead of “filtration preserving”.] This

observation attracted a great deal of attention because this statement implies that not

all maps can be boundary values of harmonic maps. Following this, Nishikawa and Ueno

[21] defined generalizations of rank one symmetric spaces, which they call k-term Carnot

spaces (cf. Definition 1.1); and studied the filtration preserving properties of the boundary

values of harmonic maps between k-term Carnot spaces.
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INTRODUCTION

In connection with the study mentioned above, Donnelly [8] provided a family of

Hölder continuous self-maps of the compactification M of a rank one symmetric space of

noncompact type, which are harmonic on the interior and assume a C1 boundary value,

being given by a homomorphism which does not preserve the filtration.

Considering that the above harmonic maps are not uniquely determined for a given

boundary value, Donnelly suggested the following question through a personal discussion:

Problem 0.2. Can we show the uniqueness of harmonic maps inducing a given bound-

ary value which is filtration preserving?

As for supporting evidences leading to an affirmative answer, we firstly refer to Don-

nelly’s uniqueness theorem [6] of harmonic maps, which extend to C2 maps up to the

boundary and induce an assigned non-degenerate boundary value; and, secondly, we refer

to the filtration preserving property of the boundary values of harmonic maps which can

be viewed as maps in C2(M,M) ⊂ C l(M,M) by Donnelly [6, Proposition 3.4]. Regarding

the problem stated above, we shall prove the following:

Theorem 0.1. Let M aud M ′ be rank one symmetric spaces of noncompact type. Sup-

pose that h : ∂M → ∂M ′ is a map obtained by extening a non-trivial filtration preserving

homomorphism which is possibly degenerate. Then, there exists a family of harmonic

maps which assume h on the boundary ∂M .

Given this theorem, the answer to the problem above is not affirmative as shall be

illustrated in Examples 1 through 6 in Chapter 3, leading us to search for a stricter

condition than that of contactness.

At this point, it should be further noted that our theorem provides harmonic maps not

only for non-degenerate boundary values but also for degenerate ones. Hence, our theorem

is also useful for constructing harmonic maps between complex hyperbolic spaces even in

the case where the dimension of the target is less than that of the source; boundary values

of which are always automatically degenerate, as the author was personally informed by

Donnelly. We shall provide families of these maps in Examples 3 through 5 in Chapter

3. In this respect, we also refer to Donnelly’s existence theorem [6, Theorem 6.2] for

non-degenerate boundary values.

Up to this point, we have discussed the Dirichlet problem between rank one symmetric

spaces of noncompact type, the compactifications of which are C∞manifolds [not neces-

sarily Riemannian ones]. In contrast, the compactifications of rank q (> 1) symmetric
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INTRODUCTION

spaces of noncompact type have the so-called corners on the boundary and, consequently,

they are not even C∞ manifolds. Hence, it is important, at this point, to consider harmonic

maps between rank q (> 1) symmetric spaces of noncompact type, a problem which has

neither seemed tractable nor been explored in the past. In this respect, the following

problem naturally arises:

Problem 0.3. Can we construct harmonic maps between rank two symmetric spaces?

In this thesis, we shall establish the existence of harmonic self-maps on rank two sym-

metric spaces of noncompact type; namely, D2,2(C), the space of 2 × 2 complex matrices

Z satisfying I2 − tZ̄Z equipped with the metric i∂∂ log det(I2 − tZ̄Z).

Theorem 0.2. There exists a family of harmonic self-maps of D2,2(C) that induce the

identity map on the corner of D2,2(C).

For more detailed definition of the terminology in the statement, we refer to Definition

8.1.

This thesis is organized as follows:

◦ In Chapter 1, seeking particular forms of solutions, we shall simplify the harmonic

map equation between warped products such as k-term Carnot spaces, thereby

obtaining an ordinary differential equation.

◦ In Chapter 2, this ordinary differential equation shall be examined and a family of

solutions for this equation shall be constructed.

◦ In Chapter 3, we shall apply our constructions from the previous two chapters to

the investigation of the Dirichlet problem at infinity, thereby providing examples of

harmonic maps inducing filtration preserving boundary values which may possibly

be degenerate.

◦ In Chapter 4, in order to study the regularity of these constructed maps in the

following chapters, we shall review relevant facts about hyperbolic geometry.

◦ In Chapter 5, by utilizing a slightly different analysis from those in Chapter 2,

we shall reconstruct one of the harmonic maps we constructed which induce the

identity map on the boundary. This approach is more convenient for regularity

estimations and for the analysis of asymptotic behavior.

◦ In Chapter 6, making full use of the results from Chapters 4 and 5, we shall make

regularity estimations of our harmonic maps constructed in Chapter 4, thereby
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INTRODUCTION

verifying that the assumption of regularity is essential for Donnelly’s uniqueness

theorem [6, Theorem 3.13].

◦ In Chapter 7, we shall re-examine the regularity of these harmonic maps by utiliz-

ing Graham’s non-isotropic Hölder spaces. [Here derivatives are assigned weights

depending on the directions and the elements of these spaces have boundary values

belonging to Folland and Stein’s Hölder space defined by means of the Heisen-

berg distance function.] Thereby, we shall verify that the assumption of regularity

cannot be removed from Donnelly’s uniqueness theorem [7, Theorem 2.8].

◦ In Chapter 8, we shall extend our investigation of the Dirichlet problem at infinity

for harmonic maps between rank one symmetric spaces, thus taking into account

rank q (> 1) symmetric spaces. By utilizing thorough computations of su(2, 2), we

shall reduce the harmonic map equation to an ordinary differential equation which

can be studied by using the result from either Chapter 2 or 5. Thereby, we prove

the existence of the family of harmonic self-maps on D2,2(C).

Throughout this thesis, C = C(∗, . . . , ∗) will always denote a constant depending only

on the quantities appearing in parenthesis. In a given context, the same letter C will, in

general, be used to denote different constants depending on the same set of arguments.
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CHAPTER 1

The harmonic map equation between k-term Carnot spaces

To begin with, we fix our notation and terminology. First, let S denote a simply

connected solvable Lie group satisfying the following conditions:

1. S is a semidirect product of a nilpotent Lie group N and a one-dimensional

abelian Lie group A.

2. If n and s = n + R{H} denote the Lie algebras of N and S respectively, then

n has a decomposition n =
∑k

i=1 ni into k-subspaces given by

ni = {X ∈ ni | ad(H)(X) = iX}, i = 1, . . . , k,

where ad(H) denotes the adjoint representation. Since ad(H) is a Lie algebra homomor-

phism, the above decomposition of n defines a graded Lie algebra structure of n, that is,

[ni, nj ] ⊂ ni+j with the convention ni = {0} for i > k; thereby, yielding a corresponding

filtration: n(1) ⊂ n(2) . . . ⊂ n(k) given by n(i) =
∑i

l=1 nl.

Utilizing these properties of S and denoting by Ψ: N × A 	 (n, exp(tH)) 
→ n ·
exp(tH) ∈ N ·A the multiplication of S, Nishikawa and Ueno observed that the pull-back

metric g = Ψ∗(g̃) of any left invariant metric g̃ on S is expressed as follows:

g = e−2tg�1 + · · · + e−2ktg�k
+ dt2,

where g�1 + · · · + g�k
denotes a left invariant metric of N satisfying

g�j
(X,X) �= 0 (X(�= 0) ∈ nj), g�i

(X,X) = 0 (X ∈ nj, i �= j),

g�l
(X,Y ) = 0 (X ∈ ni, Y ∈ nj, i �= j).

When log(ρ)/2 is substituted for t, the metric g on N × R+ is realized as

g =
g�1

ρ
+ · · · + g�k

ρk
+
dρ2

4ρ2
.
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1. THE HARMONIC MAP EQUATION BETWEEN k-TERM CARNOT SPACES

This leads us to utilize an orthogonal left invariant frame {ei}m
i=1 satisfying:

em = ∂/∂ρ, [em, eα] = 0, [eα, eβ] =
∑m−1

γ=1 a
γ
αβeγ , a

α
βγ = 0 unless α ∈ Iλ, β ∈ Iµ, γ ∈ Iλ+µ,

gii = ρ−l (i ∈ Il), gmm = ρ−24−1, gij = 0, (i �= j) for gij = g(ei, ej).

Here, the index set Il corresponding to the gradation is given by

Il = {j | 1 +
∑

1≤i≤l−1ni ≤ j ≤
∑

1≤i≤l ni}, ni = dim(ni).

Although we do not need to specify the sign of the curvature up to this point, it is known

that there exists a left invariant metric g of S whose sectional curvatures are negative

[15].

Definition 1.1 (Nishikawa and Ueno [21]). The warped product manifoldM = (S, g)

described above is called a k-term Carnot space if its sectional curvature is negative.

Nishikawa and Ueno arrived at the above notion of k-term Carnot spaces as a general-

ization of rank one symmetric spaces of noncompact type. For example, real hyperbolic

spaces are 1-term Carnot spaces, and complex or quaternion hyperbolic spaces and the

Cayley hyperbolic plane are 2-term Carnot spaces. With these symmetric spaces included,

all k-term Carnot spaces M are homogeneous Cartan-Hadamard manifolds. The R+

directions (n = Constant, ρ) define asymptotic geodesics of this space, thereby yielding a

point at infinity ∞ ∈ ∂M and allowing us to identify ∂M \ {∞} with N × {0}.

As is well-known, a map u : M → M ′ between Riemannian manifolds M and M ′

equipped with frames {ei}m
i=1 and {eγ}m′

γ=1, respectively, is harmonic if the tension field

τ(u) of u given by the following formula vanishes identically on M :

τ(u) =
m∑

i,j=1

gij
(
∇̃ei

u∗(ej) − u∗
(
∇M

ei
ej

))

=
m′∑

α=1

m∑
i,j=1

gij
(
uα

ij +
m′∑

β,γ=1

e′∗α(∇M ′
e′βe

′
γ)u

β
i u

γ
j −

m∑
l=1

e∗l (∇M
ei
ej)u

α
l

)
e′α(1)

=
m′∑

α=1

τα(u)e′α.

Here gij = g(ei, ej) is the components of the metric g of M ; (gij)
−1 = (gij); u∗(ei) =∑m′

γ=1 u
γ
i e

′
γ and uγ

ij = eiu
γ
j ; ∇M and ∇M ′

are Levi-Civita connections on TM and TM ′,
respectively; and ∇̃ is an induced connection on u−1(TM ′) (see [6, (2.1)]).
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1. THE HARMONIC MAP EQUATION BETWEEN k-TERM CARNOT SPACES

Hence, in order to compute the tension field of a map u between warped product

manifolds M = (S, g) and M ′ = (S ′, g′) described above, (preserving the prime ′ and

Greek-indices for the target, and letting ρ′◦u denote the ρ′ component of u), noting first

that gij is diagonal, we start by simplifying the components τα(u) of the tension field (1)

as follows:

τα(u) =
m∑

j=1

gjj
(
uα

jj −
m∑

l=1

e∗l (∇M
ej
ej)u

α
l +

m′∑
β=1

e′∗α(∇M ′
e′βe

′
β)uβ

j u
β
j

+
∑

1≤β<γ≤m′

(
e′∗α(∇M ′

e′βe
′
γ) + e′∗α(∇M ′

e′γ e
′
β)
)
uβ

j u
γ
j

)
.

This leads us to examine the following components of the Levi-Civita connections of M

and M ′:

e∗m(∇M
ej
ej) = 2lρ−λ+1, e∗i (∇M

ej
ej) = 0, e∗m(∇M

em
em) = −ρ−1,

e∗α(∇M ′
eβ
eγ) + e∗α(∇M ′

eγ
eβ) = −(ρ◦u)µ

(
(ρ′◦u)−λa′βγα + (ρ′◦u)−µ−λa′γβα

)
= −(ρ′◦u)−λa′γβα,

e∗α(∇M ′
eβ
em′) + e∗α(∇M ′

em′eβ) = −λ(ρ′◦u)−1,

e∗m′(∇M ′
eβ
eβ) = 2λ(ρ′◦u)−λ+1, e∗δ(∇M ′

eβ
eβ) = 0, e∗m′(∇M ′

em′em′) = −(ρ′◦u)−1

for α ∈ I ′µ, β ∈ I ′λ, γ ∈ I ′µ+λ (1 ≤ λ, µ ≤ k′), j ∈ Il (1 ≤ l ≤ k), (i �= m), (δ �= m′).
Thereby we can calculate the components of the tension field τ(u) of a map u as follows:

τm′
(u) =

m∑
j=1

gjjum′
jj − (2

k∑
l=1

lnl − 4)ρum′
m −

k∑
l=1

∑
j∈Il

ρl(ρ′◦u)−1(um′
j )2

−4ρ2(ρ′◦u)−1(um′
m )2 + 2

m∑
j=1

gjj
( k′∑

λ=1

λ(ρ′◦u)−λ+1
∑
γ∈I′λ

(uγ
j )

2
)
,

τα(u) =
m∑

j=1

gjjuα
jj − (2

k∑
l=1

lnl − 4)ρuα
m − 2

k∑
l=1

ρl
∑
j∈Il

µ(ρ′◦u)−1um′
j uα

j

−8ρ2(ρ′◦u)−1um′
m uα

m −
m∑

j=1

gjj

k′∑
λ=1

∑
β∈I′λ,γ∈′

λ+µ

(ρ′◦u)−λa′γβαu
β
j u

γ
j

for α ∈ I ′µ (1 ≤ µ ≤ k′). Hence, denoting
∑k

l=1 lnl as N , we have the following

12



1. THE HARMONIC MAP EQUATION BETWEEN k-TERM CARNOT SPACES

Lemma 1.1. Let M and M ′ be as above. A map u : M 	 (n, ρ) 
→ (h(n), ψ(ρ)) ∈ M ′

is harmonic if the following conditions hold :

0 = ρ2dψ(ρ)

dρ2
− (

1

2
N − 1)ρ

dψ(ρ)

dρ

+
1

2

k∑
l=1

ρl
( k′∑

λ=1

λψ−λ+1(ρ)
∑

j∈Il,γ∈I′λ

(hγ
j )

2
)
− ρ2ψ(ρ)−1

(dψ(ρ)

dρ

)2

(ρ > 0),

(2)

∑
j∈Il

∑
β∈I′λ,γ∈I′λ+µ

a′γβαh
β
j h

γ
j = 0 (α ∈ Iµ) on N(3)

for 1 ≤ l ≤ k, 1 ≤ µ, λ ≤ k′,

hγ
j = Constant (1 ≤ j ≤ m− 1, 1 ≤ γ ≤ m′ − 1) on N.(4)

Remark 1.1. When M and M ′ are both one-dimensional complex hyperbolic spaces

CH1, it holds that n1 = 0, n2 = 1 and that the equations (2) through (4) reduce to the

following:

0 = ρ2dψ(ρ)

dρ2
+ ρ2ψ(ρ)−1(h1

1)
2 − ρ2ψ(ρ)−1

(dψ(ρ)

dρ

)2

,

where h1
1 is a constant. ψ(ρ) = |h1

1|−1 sinh(Cρ)/C is a solution for each C > 0 and

u : (t, ρ) → (h1
1t, |h1

1|−1 sinh(Cρ)/C) is a family of harmonic maps parametrized by C.

This is Li and Tam’s [19] example when h1
1 = 1.

Remark 1.2. When h is the identity map of N , it holds that hγ
j = δγ

j for j, γ ≥ 1,

and thereby (3) follows immediately and the first equation (2) reduces to the following:

0 = ρ2dψ(ρ)

dρ2
− (

1

2
N − 1)ρ

dψ(ρ)

dρ
+

1

2

k∑
λ=1

λnλρ
λψ−λ+1(ρ) − ρ2ψ(ρ)−1

(dψ(ρ)

dρ

)2

.(5)

By providing the solutions of this equation, we can obtain a family of harmonic maps of the

form u : M 	 (n, ρ) 
→ (n, ψ(ρ)) ∈ M as was studied in [25], which utilized an argument

similar to that described in Theorem 5.2. By substituting ρ for ψ(ρ) in (5), one verifies

that the identity map is a particular member of the family, recalling that the identity map

is a harmonic map. In Chapter 2, by means of a slightly different approach, we shall prove

the existence of solutions for (2) based on the construction in Chapter 2, thereby obtaining

these harmonic maps as a particular case, as in Example 1 in Chapter 3. It should be

noted that, for this particular example, we have not assumed that sectional curvatures of

g are non-positive, and that M is not necessarily a Cartan-Hadamard manifold.
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CHAPTER 2

An existence theorem

In this chapter, in order to provide harmonic maps, for any given h satisfying (3)

and (4), we shall construct a one-parameter family of solutions to the equation (2) of the

particular form ψ(ρ) = C−1ρa exp(f(log(|ρ|))) for positive functions f . To begin with, we

observe that

dψ(ρ)

dρ
= C−1(a+ f ′)ρa−1ef ,

d2ψ(ρ)

dρ2
= C−1ρa−2ef (f ′′ + (f ′ + a)2 − a− f ′),

where f ′ = df(t)/dt, f ′′ = d2f(t)/dt2. By substituting the above into each respective

term of (2), we can obtain

ρ2d
2ψ(ρ)

dρ2
− (

1

2
N − 1)ρ

dψ(ρ)

dρ
− ρ2ψ(ρ)−1

(dψ(ρ)

dρ

)2

= C−1ρaef (f ′′ − 1

2
Na− 1

2
Nf ′),

1

2

k∑
l=1

ρl

k′∑
λ=1

λψ(ρ)−λ+1clλ =
1

2
ψ(ρ)

k∑
l=1

elt

k′∑
λ=1

λψ(ρ)−λclλ

=
1

2
C−1ρaef

( k′∑
λ=1

k∑
l=1

λclλC
λeλ(l/λ−a)t−λf

)
.

Here clλ is a constant given by

clλ =
∑

j∈Il,γ∈I′λ

(hγ
j )

2.(6)

Hence, we can conclude the following:

Given a solution f ≥ 0 for

f ′′(t) =
1

2
Nf ′(t) +

1

2
Na− 1

2

k′∑
λ=1

k∑
l=1

λclλC
λeλ(l/λ−a)t−λf(t), t ∈ R,(7)

we are able to construct a solution for (2) as ψ(ρ) = C−1ρa exp(f(log(|ρ|))). When

clλ are all zero, we find that there is an explicit solution given by f(t) = f(0)eµt for

14



2. AN EXISTENCE THEOREM

µ = (N + (N 2 + 4Na)1/2)/4. Accordingly, we shall assume that at least one of clλ is not

zero.

Continuing our construction, we shall now set

a = min{l/λ | clλ �= 0, 1 ≤ l ≤ k, 1 ≤ λ ≤ k′}(8)

so that l/λ − a ≥ 0 for all l, λ satisfying clλ �= 0, and let C be the mnimum positive

number satisfying

Na−
∑

l/λ=a

λclλC
λ = 0.

Then, for positive numbers ai, bi, αj , βj , γj (i ∈ ΛA, j ∈ ΛB, where ΛA and ΛB are index

sets of finite number of elements), we can express the right-hand side of (7) as

1

2
Nf ′(t) +

1

2
Na− 1

2

∑
l/λ=a

λclλC
λe−λf(t) − 1

2

∑
l/λ �=a

λclλC
λeλ(l/λ−a)t−λf(t)

=
1

2
Nf ′(t) +

1

2
Na− 1

2

∑
l/λ=a

λclλC
λ +

1

2

∑
l/λ=a

λclλC
λ(1 − e−λf(t))

−1

2

∑
l/λ �=a

λclλC
λeλ(l/λ−a)t−λf(t)

=
1

2
Nf ′(t) +

∑
i∈ΛA

ai(1 − e−bif(t)) −
∑
j∈ΛB

αje
βjt−γjf(t).

This leads us to examine the following:

Theorem 2.1. For positive numbers N , ai, bi, αj , βj, γj , (i ∈ ΛA, j ∈ ΛB), satisfying

N/2 > maxj∈ΛB
(βj) or ΛB = ∅, there exists a solution to the following equation :

f ′′(t) =
1

2
Nf ′(t) +

∑
i∈ΛA

ai(1 − e−bif(t)) −
∑
j∈ΛB

αje
βjt−γjf(t) (t ∈ R)(9)

satisfying : f(t) → 0 (t→ −∞), f(t) → ∞ (t→ ∞) and f(0) >
∑

j∈ΛB
αj/βj(N/2− βj).

Upon completing the proof of this theorem, we can then establish the existence of a

solution ψ(ρ) for (2) on R+ as ψ(ρ) = C−1ρa exp(f(log(|ρ|))) under the assumption that

maxj∈ΛB
(βj) < N/2 or that ΛB = ∅. These are reasonable assumptions to be satisfied

in many applications concerning the construction of harmonic maps. [For example, when

h = id, it holds that ΛB = 0. Furthermore, whenM andM ′ are rank one symmetric spaces

of noncompact type, maxj∈ΛB
(βj) < N/2 holds true for most of the homomorphisms h

15



2. AN EXISTENCE THEOREM

as shall be described in Theorem 2.2 and Lemma 3.1.] As we shall see, these assumptions

allow us to rule out the resonance condition of a barrier function (15) as a solution for

(13).

In the following, f(t) → 0 (t → −∞) and f(t) → ∞ (t → ∞) are abbreviated to

f(−∞) = 0 and f(∞) = ∞, respectively.

Proof. In the first step, we shall construct a solution f(t) of (9) for t ≤ 0 satisfying

f(−∞) = 0 and f(0) = f0 for a given sufficiently large positive number f0. In the second

step, we shall make a continuation of this solution to t ≥ 0.

Rewriting the equation (9) above as

(f ′(t)e−tN/2)′ = e−N/2
(∑

i∈ΛA

ai(1 − e−bif(t)) −
∑
j∈ΛB

αje
βjt−γjf(t)

)
,(10)

we use the following well-known result from a two-point boundary value problem of an

ordinary differential equation.

Lemma 2.1. ([27, p.262-266], [11, 175C]). Let p(t) > 0 be in C1([t1, t2]) and q(t) ∈
C0([t1, t2]). For a function f ∈ C2([t1, t2]), set Lf = (p(t)f ′)′ + q(t)f . Consider the

following second-order equation

Lf = F (t, f)(11)

with boundary conditions : f(t1) = η1 and f(t2) = η2. Suppose that we have C2 functions

f(t) and f(t) satisfying f(t) ≤ f(t), f(t1) ≤ η1 ≤ f(t1), f(t2) ≤ η2 ≤ f(t2) and

Lf(t) ≥ F (t, f),

Lf(t) ≤ F (t, f),
(t1 ≤ t ≤ t2).(12)

(Inequalities in this instance are reversed when compared with the comparison theorems

in the initial value problem.) Assume also that F (t, f) is continuous for t1 ≤ t ≤ t2 and

f ≤ f ≤ f . Then, there exists a solution f(t) for (11) with boundary values f(t1) =

η1, f(t2) = η2 and satisfying

f(t) ≤ f(t) ≤ f(t)

for t0 ≤ t ≤ t1. Moreover, the solution is unique if F (t, f) is a monotone increasing

function for f .

16



2. AN EXISTENCE THEOREM

In order to utilize the lemma stated above for our purpose, let us firstly abbreviate the

right-hand side of (10) to F (t, f). Note that F (t, f) is continuous for −∞<t≤0, −∞<

f <∞, and is monotone increasing for f . Next, we define f and f as solutions for

f
′′
(t) =

1

2
Nf

′
(t) −

∑
j∈ΛB

αje
βjt,(13)

f ′′(t) =
1

2
Nf ′(t) +

∑
i∈ΛA

aibif(t)(14)

with boundary conditions: f(0) = f(0) = f0 and f(−∞) = f(−∞) = 0. These equations

have unique solutions, which can be explicitly expressed as follows:

f(t) =
(
f0 −

∑
j∈ΛB

αj

βj(N/2 − βj)

)
eN t/2 +

∑
j∈ΛB

αj

βj(N/2 − βj)
eβjt,(15)

f(t) = f0e
λt, λ =

(
N +

(
N 2 + 16

∑
i∈ΛA

aibi
)1/2
)
.

From these explicitly expressed solutions, we can observe that

f(t) ≤ f(t) for t ≤ 0,

f(t) ≤ f(t) for t ≥ 0,
(16)

because it holds that λ ≥ N/2 > βj. Furthermore, noting that (1−e−bix)/x is a monotone

decreasing function of x ≥ 0, we find that

1 − ebif(t) =
(
(1 − e−bif(t))/f(t)

)
f(t) ≤ bif(t),(17)

and thereby it follows that

(e−tN/2f ′(t))′ = F (t, f) − e−tN/2
(∑

i∈ΛA

ai

(
(1 − e−bif(t)) − bif(t)

)
−
∑
j∈ΛB

αje
βjt−γjf(t)

)
≥ F (t, f(t)),

(e−tN/2f
′
(t))′ = F (t, f) − e−tN/2

(∑
i∈ΛA

ai(1 − e−bif(t)) +
∑
j∈ΛB

αje
βjt(1 − e−γjf(t))

)

≤ F (t, f(t)).

Given the verifications made above, we can use Lemma 2.1 in order to obtain a unique

solution fκ(t) for (9) with boundary values fκ(0) = f0 and fκ(−κ) = f(−κ), for each

positive integer κ. Thus we can obtain a sequence {fκ} which satisfies

f(t) ≤ fκ(t) ≤ f(t) on [−κ, 0].(18)

17
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It should be noted that the behavior of fκ(t) is controlled by f(t) and f(t) independently of

κ. By using a well-known lemma [14, p. 428 Lemma 5.1] for (9), we have a constant C such

that sup−κ≤t≤0 |f ′
λ| < C for all λ > κ. Combining this with (9), we have constants C ′ and

C ′′ such that sup−κ≤t≤0 |f ′
λ| < C ′ and sup−κ≤t≤0 |f ′′

λ | < C ′′ for all λ ≥ κ. Therefore, when

we examine {fκ} firstly on [−1, 0], by using the Ascoli-Arzelà theorem, we have a sub-

sequence {fκi
} of {fκ} converging in C2([−1, 0]) topology. Focusing on [−2, 0] secondly,

utilizing the Ascoli-Arzelà theorem once again, we see that there is a sub-sequence {fκil
}

of {fκi
} converging in C2([−2, 0]) topology. Continuing on, we obtain a diagonal sub-

sequence converging to f∞ locally in C2((−∞, 0]). Thus we have obtained a solution

f(t) = f(t) of (9) satisfying

f(t) ≤ f(t) ≤ f(t) on (−∞, 0].

Now we shall consider the continuation of f(t) for t ≥ 0 to obtain a global solution

f(t) on (−∞,∞). In order to prove the global existence of f on t ≥ 0, it suffices to find

functions which restrict the behavior of both f and f ′ from above and below; thereby, we

show that the local solutions f and f ′ do not diverge within a finite time. To this end, we

firstly note that f(t) ≤ f(t) for t ≥ 0 from (16). This reversal of inequality for t ≥ 0 when

compared to that for t ≤ 0 leads us to utilize solutions for (13) and (14) as a sub-solution

and a super-solution, respectively. If this seems to be contradictory, let us recall that the

directions of the inequalities (12) in Lemma 2.1 are reversed when compared with the

comparison theorem in the initial value problem. (See [4, p. 73, Theorem 5.1] and [11,

175C, 176E]. See also [27, p. 246, p. 140].)

Moreover, since we assume f0 >
∑

j∈ΛB
αj/βj(N/2− βj), we find that f, f > 0 for all

t ≥ 0.

Hence, by utilizing (7), (13), (14) and (17), we can obtain the following differential

inequalities:

(f ′ − f
′
)′ =

1

2
N (f ′ − f

′
) +

∑
i∈ΛA

aie
−bif (1 − e−bi(f−f)) +

∑
jΛB

αje
βjt−γjf (1 − e−γj(f−f))

+
∑
i∈ΛA

ai(1 − e−bif ) +
∑
j∈ΛB

αje
βjt(1 − e−γjf )

≥ 1

2
N (f ′ − f

′
) +

∑
i∈ΛA

aie
−bif (1 − e−bi(f−f)) +

∑
j∈ΛB

αje
βjt−γjf (1 − e−γj(f−f)),

18



2. AN EXISTENCE THEOREM

(f ′ − f ′)′ =
1

2
N (f ′ − f ′) +

∑
i∈ΛA

aie
−bif+bi(f−f)(1 − e−bi(f−f))

+
∑
i∈ΛA

aibif −
∑
i∈ΛA

ai(1 − e−bif) +
∑
j∈ΛB

αje
βjt−γjf+γj(f−f)

≥ 1

2
N (f ′ − f ′) +

∑
i∈ΛA

aie
−bif (1 − e−bi(f−f)).

Thereby, we find that f ′ − f
′
, f ′ − f ′ and f − f, f − f are all monotone non-decreasing,

and in particular, they are all non-negative for t ≥ 0; furthermore, they are bounded by

f ′ − f
′
and f − f , respectively, for all t ≥ 0, and in particular, none of these differences

diverge at a finite time. Hence we obtain

f(t) ≥ f(t) ≥ f(t),

f ′(t) ≥ f(t) ≥ f
′
(t)

for all t ≥ 0, thus concluding that f(t) and f ′(t), which exist locally, do not diverge at

a finite time for t ≥ 0. Since C1 > 0, we find that f(∞) = ∞ and f(∞) = ∞, thereby

completing the proof.

Consequently, we have the following:

Theorem 2.2. There exists a one-parameter family of solutions to (2) satisfying

ψ(0) = 0, ψ(∞) = ∞ and ψ(ρ) > 0 for ρ > 0 when k − a < N/2 or ΛB = ∅.

Proof. By utilizing the theorem proved above, we can obtain a family of solutions

for (2) as ψ(ρ) = C−1ρa exp(f(log(|ρ|))) parameterized by f0 >
∑

j∈ΛB
αj/βj(N/2 − βj),

if maxj∈ΛB
(βj) < N/2 or ΛB = ∅.

When ΛB �= ∅, since βj ∈ {l−λa | 1 ≤ λ ≤ k, 1 ≤ λ ≤ k′}, it follows that βj ≤ k−a;
thereby, k − a < N/2 implies that maxj∈ΛB

(βj) < N/2.
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CHAPTER 3

Applications to the Dirichlet problem

When M and M ′ are k-term Carnot spaces, we can use the result from previous

chapters to the Dirichlet problem at infinity for harmonic maps between them. Typical

examples of k-term Carnot spaces are rank one symmetric spaces of noncompact type,

which can be described as follows:

Let K = R,C,H or Ca denote real, complex, quaternion or Cayley number field. Let

us set d = dim� (K) and Im(K) = {a− ā | a ∈ K}. To begin with, we define N to be a Lie

group whose underlying manifold is Kn × Im(K) with coordinate (x, t) = (x1, . . . ,xn, t),

where the group law is given by

(x, t) · (x′, t′) = (x + x′, t + t′ + 2Im(x · x̄′)).

When K = C, N is the Lie group called the Heisenberg group. The left translation of N

by (x, t) shall be denoted as τ(x,t). Next, we define S = N ·R+ to be a semidirect product

of N and R+ given by the dilation ρ ·(x, t) = (ρ1/2x, ρt). Let τs denote the left translation

of N · R+ by s = (x, t, ρ). Now we endow S with a left invariant metric g on S so that

M = (S, g) becomes a symmetric space, which is called a real, complex or quaternion

hyperbolic space, denoted by KHn+1 where K = R,C,H, or the Cayley hyperbolic plane

denoted by CaH2.

In the following, we shall examine the explicit formula of the metric g on S in con-

junction with the canonical generator of the Lie algebra of S when (S, g) = CHn+1 or

HHn+1.

To begin with, let {ej}d
j=1 denote the canonical generator of K = C or H given

respectively by e1 = 1 and e2 =
√
−1 when K = C, and e1 = 1, e2 = i, e3 = j,

e4 = k, i2 = j2 = k2 = ijk = −1 when K = H. Utilizing these, for the coordinate

(x, t) = (x1, . . . ,xn, t) of N , we can express xj as
∑d

l=1 x
jlel and t as

∑d
l=2 t

lel. For

i > 0 we let Imi(x
j) = xji denote the ei component of xj . Then, the left invariant

extensions in N of tangent vectors ∂/∂xjl (1 ≤ j ≤ n, 1 ≤ l ≤ d), 2∂/∂tl (2 ≤ l ≤ d) at

o = (0, 0, 1) ∈ Kn × Im(K) × R+ can be computed as follows:
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3. APPLICATIONS TO THE DIRICHLET PROBLEM

For x′ ∈ Kn which is of the form

x′ = (0, . . . , 0, εel, 0, . . . , 0), ε ∈ R,
ˆj-th

we can easily observe that

τ(x,t)∗
(
∂/∂xjl

)
f =

d

dε

∣∣∣∣∣
ε=0

f((x, t) · (x′, 0))

=
d

dε

∣∣∣∣∣
ε=0

f(x1, . . . ,xj + εel, . . . ,xn, t + 2Im(xjεēl))

=
( ∂

∂xjl
+ 2

d∑
i=2

Imi(x
j ēl)

∂

∂ti

)
f

=: ed(j−1)+lf,

τ(x,t)∗
(
2∂/∂tl

)
f = 2

d

dε

∣∣∣
ε=0

f((x, t) · (0, εel)) = 2
∂

∂tl
f =: edn+l−1f.

Similarly, we observe that the left invariant extensions of ∂/∂xjl (1 ≤ j ≤ n, 1 ≤ l ≤ d),

2∂/∂tl (2 ≤ l ≤ d) and 2em = 2∂/∂ρ in N · R+ are given, respectively, by

Ld(j−1)+l = ρ1/2ed(j−1)+l (1 ≤ j ≤ n, 1 ≤ l ≤ d),

Ldn+l−1 = ρedn+l−1 (2 ≤ l ≤ d),

Lm = 2ρem.

By utilizing these, we define n1 and n2 by

n1 = Span
�
{Ld(j−1)+l}1≤j≤n,1≤l≤d, n2 = Span

�
{Lnd+l−1}2≤l≤d.

Then, for H = Lm, we have the following decomposition of the Lie algebra of S:

s = R+{H} + n1 + n2,

where nl = {X ∈ s | [H,X] = lX} (l = 1, 2). Furthermore, for m = n1 + n2 + 1, we have

[eα, eβ] =
m−1∑
γ=1

aγ
αβeγ ,

where aγ
αβ = 0 unless α, β ∈ I1 γ ∈ I2, and thereby it holds that n2 ⊂ [n, n].

Having obtained the explicit formula of the canonical generator of the Lie algebra s,

we shall consider the metric g of S. Firstly, since S acts on N · R+ transitively, an inner

product 〈·, ·〉 of the tangent space To(S) at o = (0, 0, 1) ∈ S, define the left invariant
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metric g by assigning gs·o(V, V ′) = 〈τ−1
s∗ V, τ

−1
s∗ V

′〉 for V, V ′ ∈ Ts·o(S) at each s ∈ S. At

this point, by taking the inner product above as

〈·, ·〉 = |dx|2 + |dt|2/4 + dρ2/4,

we see thatM = (S, g) gives rise to a symmetric space according to Lemma 4.1 below. Sec-

ondly, since Lj are left invariant (as defined by τs∗(Lj) = Lj), we can see that τ−1
s∗ (Lj|s·o) =

Lj|o. Thirdly, noting that {Lj|o}m
j=1 = {∂/∂x11, . . . , ∂/∂xnd, 2∂/∂t2, . . . , 2∂/∂td, 2∂/∂ρ}

is an orthonormal basis for the inner product 〈·, ·〉 (as defined above), we find that

gs·o(Li|s·e, Lj|s·o) = go(τ
−1
s∗ (Li|s·o), τ−1

s∗ (Lj|s·o)) = 〈Li|o, Lj|o〉 = δij ,

which implies that {Lj} is an orthonormal frame of g. Hence, the explicit formula of left

invariant metric g as determined by 〈·, ·〉 is finally expressed as follows:

g =
m∑

l=1

(L∗
l )

2 =

∑
l∈I1

(e∗
l
)2

ρ
+

∑
l∈I2

(e∗
l
)2

ρ2
+
dρ2

4ρ2

=
|dx|2
ρ

+
|dt − 2Im(x · dx̄)|2

4ρ2
+
dρ2

4ρ2
.

(19)

We have deduced this last equality by noting that

(dt − 2Im(x · dx̄))
( ∂

∂xjl
+ 2

d∑
i=2

Imi(x
j ēl)

∂

∂ti

)

= 2
d∑

i=2

Imi(x
j ēl)ei − 2Im(xj ēl) = 0.

Consequently, for gij = g(ei, ej), we have

gll = ρ−1 (l ∈ I1), gll = ρ−2 (l ∈ I2),

gmm = ρ−24−1, gij = 0 (i �= j).

At this point it should be noted that n1 = Ker(dt − 2Im(x · dx̄)) defines a codimension

d−1 distribution in n. When K = C, this distribution and dt−2Im(x ·dx̄) are also called

a contact structure and a contact form of N , respectively.

Definition 3.1. When n1, n
′
1, n2, n

′
2 > 0, a map h : N → N ′ is said to be a filtra-

tion preserving map if the components of the differential map of h given by h∗(ej) =∑m′−1
γ=1 hγ

j e
′
γ satisfy

hγ
j = 0 for j ∈ I1, γ ∈ I ′2.(20)
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Definition 3.2. Suppose n2, n
′
2 > 0. A map h : N → N ′ is said to be non-degenerate

if ∑
j∈I2,γ∈I′2

(hγ
j )

2 > 0 on N.

h is said to be degenerate if the left hand side vanishes at a point on N . A proper

harmonic map from N · R+ to N ′ · R+ is said to be non-degenerate if its boundary value

is non-degenerate.

A non-degenerate filtration preserving map h : N → N ′ is referred to as a contact map

when both N · R+ and N ′ · R+ are complex hyperbolic spaces of the same dimension.

Lemma 3.1. Let N ·R+ and N ′ ·R+ be rank one symmetric spaces of noncompact type.

Suppose that h : N → N ′ is any Lie group homomorphism satisfying

0 =
∑

j∈I1,β∈I′1,γ∈I′2

a′γβαh
β
j h

γ
j for any α ∈ I ′1.(21)

Then, there exists a family of harmonic maps which assume h on the boundary N , except

in the cases when n1 = 1, k = 1, a = 1/2 and n1 = 0, n2 = 1, k = 2, a = 1, where

a = min{l/λ |
∑

j∈Il

∑
γ∈I′λ

(hγ
j )

2 > 0, 1 ≤ l ≤ k, 1 ≤ λ ≤ k′} as in (8).

Proof. To begin with, from the definition of a, we find that a = 1/2, 1, 2 when both

the domain and range are rank one symmetric spaces of noncompact type. Consequently,

we obtain k − a < N/2 = n1/2 + n2 except in the cases when n1 = 1, k = 1, a = 1/2 and

n1 = 0, n2 = 1, k = 2, a = 1. [The case n1 = 0, n2 = 1, k = 2, a = 1/2 does not occur

according to the definition of a.]

Next, since h is a Lie group homomorphism, the differential map h∗ preserves the Lie

bracket product, thus it maps the center n2 into n′
2. This implies that hγ

j = 0 for j ∈ I2
and γ ∈ I ′1 except in the case when n1 = 0, n2 = 1, k = 2. Consequently, we have

0 =
∑

j∈I2,β∈I′1,γ∈I′2

a′γβαh
β
j h

γ
j for any α ∈ I ′1,

thereby, we can reduce the condition (3) into

0 =
∑

j∈I1,β∈I′1,γ∈I′2

a′γβαh
β
j h

γ
j for any α ∈ I ′1.

Moreover, since h is a Lie group homomorphism, the components of the differential

map of h are constant, see, e.g., Donnelly [8, Proposition 3.1], and thereby (4) follows

automatically.
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Now utilizing Lemma 1.1 in conjunction with Theorem 2.2 we have completed the

proof.

When h is a filtration preserving homomorphism, the condition (21) follows automat-

ically and a = 1. Therefore Lemma 3.1 implies the following:

Theorem 3.1. Let M and M ′ be rank one symmetric spaces of noncompact type.

Suppose that h : N → N ′ is any nontrivial filtration preserving homomorphism. Then,

there exists a family of harmonic maps which assume h on the boundary ∂M ∩N .

We shall now illustrate how one can apply our Lemma 3.1 and Theorem 3.1 in the

following examples:

Example 1. The identity map of N preserves the filtration; thereby we can construct

harmonic maps that induce the identity map on the boundary:

u : (x, t, ρ) → (x, t, ψ(ρ)).

The case where M = M ′ = RHn was studied by Economakis [9] but his approach was

different from our’s, which will be provided in Chapter 2 and again in Chapter 5 with

a slight modification to that of Chapter 2. Their Hölder regularity will be discussed in

Chapters 6 and 7.

Example 2. More generally, we have the following examples of harmonic maps that

assume non-degenerate filtration preserving homomorphisms on the boundary:

u : (x, t, ρ) → (Cx, C2t, ψ(ρ)).

Example 3. We can construct a harmonic map u : KHn → RHn′
(n′ ≤ n) of the

following form:

u : (x1, . . . ,xn, t, ρ) → (x11, x21, . . . , xn′1, ψ(ρ)).

Example 4. Let us consider a degenerate filtration preserving map between the bound-

aries of M = KHn and M = KHn′
(n′ ≤ n) given by

h∗(ed(j−1)+1) = e′d(j−1)+1′, h∗(ed(j−1)+1) = 0 (2 ≤ l ≤ d, 1 ≤ j ≤ n′),

h ∗ (edn+l−1) = 0 (2 ≤ l ≤ d).
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3. APPLICATIONS TO THE DIRICHLET PROBLEM

This clearly preserves the Lie bracket product and hence is a degenerate filtration pre-

serving homomorphism of the Lie algebra. By using this h, we can construct a harmonic

map u of the form:

u : (x, t, ρ) → (h(x, t), ψ(ρ)).

We can also consider a filtration preserving map given by

h∗(ed(j−1)+1) = e′d(j−1)+1 (1 ≤ j ≤ n′), h∗(edn+l−1) = 0 (2 ≤ l ≤ d).

This is another example of a degenerate Lie homomorphism that preserves the filtration.

Utilizing this homomorphism h, we obtain the harmonic maps of the form:

u : (x, t, ρ) → (h(x, t), ψ(ρ)).

Example 5. A map between the boundaries of M = KHn and M = KHn′
(n′ ≤ n)

h : (x1, . . . ,xn, t) → (ζ1

d∑
l=1

x1l, . . . , ζn′

d∑
l=1

xn′l, 0) (ζ1, . . . , ζn′ ∈ K)

is also an example of a degenerate filtration preserving Lie homomorphism. Therefore we

can utilize Theorem 3.1 to construct its harmonic extensions.

Example 6. We have an example of harmonic maps u assuming a filtration preserving

map on the boundary in the case where the dimension of the target is greater than that

of the source:

u : (x, t, ρ) → (x,x, t, ψ(ρ)).

Example 7. Let us consider a homomorphism that does not preserve the filtration of

the boundary of complex hyperbolic spaces given by

h : (x1, . . . ,xn, t) → (0, . . . , 0, x11).

This map satisfies h
n′

1+1
1 = 1 and a = 1/2. Hence we can utilize Lemma 3.1 to construct

harmonic maps inducing h on the boundary. The images of these harmonic maps are

contained in CH1’s which are totally geodesic submanifolds in CHn′
. This example was

inspired by Donnelly [8] obtained through a suitable composition of homomorphisms:

n → n1 → n. Donnelly’s approach [8] to prove the existence of harmonic maps is analogous

to that of Economakis. In his construction of harmonic maps, Donnelly [8] assumed that

h does not preserve the filtration, namely that c12 �= 0 (cf. (6)); but, our construction

in Lemma 3.1 does not assume this and we can therefore obtain harmonic maps that

induce filtration preserving homomorphisms as well. Furthermore, Donnelly provided
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3. APPLICATIONS TO THE DIRICHLET PROBLEM

other homomorphisms that do not preserve the filtration in [8] and our construction also

works when we utilize these boundary values.
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CHAPTER 4

The Cayley transform

In this chapter, we review some facts from hyperbolic geometry. In the following, K

denotes R,C or H.

1. The homogeneous model of KHn

Let V 1,n(K) be the vector space Kn+1 together with the unitary structure given by

Φ(z, w) = −z̄0w0 + z̄1w1 + · · · + z̄nwn.

The group G = SO(1, n), SU(1, n) or Sp(1, n) is a subgroup of SL(n+1,K) which satisfies

Φ(g(z), g(w)) = Φ(z, w) ∀g ∈ G.

Define V−1 by

V−1 = {ζ = (ζ0, . . . , ζn) ∈ K
n+1|Φ(ζ, ζ) = −1}.

A projection map P : V−1 → V−1/ ∼ is induced by the following equivalence relation:

ζ ∼ ζ ′ if and only if there exists a λ ∈ K \ {0} such that ζ = ζ ′λ.

Since Φ(ζ, ζ) = −1 < 0 implies that

|ζ1|2 + · · · + |ζn|2 < |ζ0|2,

we have |ζ0|2 �= 0. Hence, P (V−) is identified with

Bn
�

=
{
w = (w1, . . . , wn) ∈ K

n
∣∣∣ n∑

j=1

|wj |2 < 1
}

by assigning [ζ] ∈ P (V−) to w ∈ Bn
�
, where wj = ζj(ζ0)−1, j = 1, · · · , n. Then, in the

coordinate representation, the map P : V−1 → Bn
�

is given by

P (ζ) = w, wj = ζj(ζ0)−1.
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4. THE CAYLEY TRANSFORM

2. The Cayley transform as determined by ±kn ∈ ∂KHn

Let {k1, . . . , kn} and {e0, . . . , en} be the standard basis of P (Kn+1) and K
n+1, respec-

tively. An element g in G is said to be parabolic if g leaves exactly one point on the

boundary fixed.

Firstly, we shall focus on the particular boundary point kn = (0, . . . , 0, 1) ∈ ∂KHn.

Since kn = P (e0+en), an element g ∈ G leaves kn fixed if and only if g(e0+en) = (e0+en)λ

for λ ∈ K \ {0}. Because of this, in order to examine the parabolic subgroup, a different

basis êj =
∑n

i=1 eidij which contains a multiple of e0 + en is often of use. Following this,

we shall change the standard basis as follows:

ê0 = (e0 − en)/
√

2,

ên = (e0 + en)/
√

2,

êj = ej , 1 ≤ j ≤ n− 1,

which is provided, in the form of a matrix, by

D =


 1/

√
2 −1/

√
2

En−1

1/
√

2 1/
√

2


 ,

where En−1 is the identity matrix of the degree n−1. The linear transformation C = D−1

or the projective transformation which it induces is called a Cayley transform. In the

coordinate representation, C is given by

C : (ζ0, ζ1, . . . , ζn−1, ζn) →
(
(ζ0 − ζn)/

√
2, ζ1, . . . , ζn−1, (ζ0 + ζn)/

√
2)
)
.

Viewed as a projective transformation,

ηj = −
√

2wj(1 − wn)−1,

ηn = (1 + wn)(1 − wn)−1,

which maps an open ball

Bn
�

=
{
w ∈ K

n
∣∣∣ n∑

k=1

|wk|2 < 1
}

to the Siegel domain of type II

Σ =
{
η ∈ K

n
∣∣∣ Re(ηn) >

n−1∑
j=1

|ηj|2/2
}
.
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2. THE CAYLEY TRANSFORM AS DETERMINED BY ±kn ∈ ∂�Hn

Our convention in the case of K = C differs from that of Graham’s [12, p. 444]. Note that

his zn is
√
−1ηn, zj is

√
2ηj and his w is −w, respectively. Following Graham’s change of

variable [12, p. 444], setting a new coordinate (x, t, ρ) by

xj = ηj/
√

2, ρ = Re(ηn) −
∑n−1

j=1 |ηj |2/2, −t = Im(ηn),(22)

we obtain a diffeomorphism from Bn
�

to Kn−1 × Im(K) × R+ given as follows:

xj = −wj(1 − wn)−1,

−t + ρ = (1 + wn)(1 − wn)−1 −
n−1∑
j=1

|wj |2|1 − wn|−2.
(23)

At this point it should be noted that the group Ĝ = D−1GD preserves D−1(V−1), thereby

the action of G on Bn
�

is converted by the Cayley transform C into the action of Ĝ in Σ.

Furthermore, C maps kn to the point ∞ = C(kn) ∈ ∂Σ. Thus, the isotropy group of kn

in G corresponds to that of ∞ in Ĝ.

Secondly, we shall focus on another boundary point −kn = (0, . . . , 0,−1) ∈ ∂KHn.

Noting that P (−e0 + en) = −kn, we can perform the same computation by replacing kn

with −kn. In the coordinate representation, we have

C : (ζ0, ζ1, . . . , ζn−1, ζn) →
((

(−ζ0) − ζn
)
/
√

2, ζ1, . . . , ζn−1,
(
(−ζ0) + ζn

)
/
√

2
)
.

Viewed as a projective transformation,

ηj = −
√

2(−wj)
(
1 − (−wn)

)−1
,

ηn =
(
1 + (−wn)

)(
1 − (−wn)

)−1
.

If we set a new coordinate (x, t, ρ) according to (22) again, then the formula above is

given in the following form:

xj = −(−wj)
(
1 − (−wn)

)−1
,

−t + ρ =
(
1 + (−wn)

)(
1 − (−wn)

)−1 −
n−1∑
j=1

|wj |2|1 − (−wn)|−2.
(24)

Thus, we constructed Cayley transforms as determined by the two boundary points kn

and −kn. We shall denote these as Ψkn and Ψ−kn , respectively. They satisfy Ψkn =

(−Id)◦Ψ−kn . Hence, we have the following boundary charts of the compactification Bn
�

=
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4. THE CAYLEY TRANSFORM

Bn
�
∪ Sn1+n2 (Sn1+n2 being a n1 + n2 dimensional sphere) given by the Cayley transforms

Ψkn and Ψ−kn :

Ψkn : R
n1+n2 × R≥0 → B

n

�
\ {kn},

Ψ−kn : R
n1+n2 × R≥0 → B

n

�
\ {−kn}.

(25)

3. A linear fractional transformation

G = SO(1, n)o, SU(1, n), or Sp(1, n) acts on P (V−) = Bn
�
, as linear fractional trans-

formations Bn
�
	 w → s(w) ∈ Bn

�
given by

wi◦s(w) = (si0 +
n∑

j=1

sijw
j)(s00 +

n∑
j=1

s0jw
j)−1 for s = (sij) ∈ G.

There is an Iwasawa decomposition G = KAN , where K coincides with a stabilizer

subgroup of G that leaves the origin of P (V−) fixed. Noting that S = NA is diffeomorphic

to G/K ∼= P (V−), we shall examine the Lie algebra s of S. The a-gradation of s is given

by s = R{H} + n1 + n2,

H =


 1

1


, Xl =


 −x̄l

−xl xl

−x̄l


, T =

1

2


 −t t

−t t


,

n1 =
{n−1∑

l=1

Xl

∣∣∣ (x1, . . . ,xn−1) ∈ K
n−1
}
, n2 =

{
T
∣∣ t ∈ Im(K)

}
,

ni =
{
X ∈ s

∣∣∣ ad(H)X = iX
}

(i = 1, 2),

where, each Xl has four entries depending on xj , −xj and −x̄j placed in the (l + 1)-st

column and (l + 1)-st row and the other entries being zero. Since any element of n is

provided as linear combination
∑n−1

l=1 Xl + T, we can express each element of S [being

defined as (sij) = exp(
∑n−1

l=1 Xl + T) exp(sH)] as follows:

(sij) =




Ch(s) + e−s(|x|2 − t)/2 −x̄1 · · · −x̄n−1 Sh(s) + s−s(−|x|2 + t)/2

−e−sx1 e−sx1

· · · 1 · · ·
· · · 1 · · ·

−e−sxn−1 e−sxn−1

Sh(s) + e−s(|x|2 − t)/2 −x̄1 · · · −x̄n−1 Ch(s) + s−s(−|x|2 + t)/2



.
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3. A LINEAR FRACTIONAL TRANSFORMATION

Recognizing that an action of an element of S to Bn
�

is a linear fractional transformation,

we can observe that (sij) maps the origin of Bn
�

to

wl = −e−sxl
(
Ch(s) + e−s(|x|2 − t)/2

)−1

= −2xl
(
e2s + 1 + |x|2 − t

)−1
,

wn =
(
Sh(s) + e−s(|x|2 − t)/2

)(
Ch(s) + e−s(|x|2 − t)/2

)−1

=
(
e2s − 1 + |x|2 − t

)(
e2s + 1 + |x|2 − t

)−1
.

Hence, by substituting ρ for e2s, we obtain a diffeomorphism M 	 (x, t, ρ) 
→
(w1, . . . , wn) ∈ P (V−) given by

wl = −2xl
(
|x|2 − t + ρ+ 1

)−1
(1 ≤ l ≤ n− 1),

wn =
(
|x|2 − t + ρ− 1

)(
|x|2 − t + ρ+ 1

)−1
.

Since the point ∞ determined by R+ directions is mapped to kn ∈ ∂Bn
�
, this diffeomor-

phism shall be denoted by Φkn . Recognizing that

1 − wn = 2
(
|x|2 − t + ρ+ 1

)−1
,

1 + wn = 2
(
|x|2 − t + ρ

)(
|x|2 − t + ρ+ 1

)−1
,

the inverse of this diffeomorphism is given by

xl = −wl
(
1 − wn

)−1
,

−t + ρ =
(
1 + wn

)(
1 − wn

)−1 −
n−1∑
l=1

|wl|2
∣∣1 − wn

∣∣−2
.

At this point, it should be noted that this diffeomorphism is identical to the Cayley trans-

form (23). By setting Φ−kn = (−Id)◦Φkn , we have boundary charts of the compactification

Bn
�

= Bn
�
∪ Sn1+n2 given by

Φkn : R
n1+n2 × R≥0 → B

n

�
\ {kn},

Φ−kn : R
n1+n2 × R≥0 → B

n

�
\ {−kn}.

(26)

As we see from Chen and Greenberg [5, Proposition 2.3.1], the left invariant metric on

P (V−) = Bn
�

is dw·dw̄ at the origin 0 = (0, . . . , 0) ∈ Bn
�
. Furthermore, we can verify the

following

Lemma 4.1.

d(w◦Ψkn)·d(w◦Ψkn)|o = d(w◦Ψ−kn)·d(w◦Ψ−kn)|o = dx·dx̄ + dtdt̄/4 + dρ2/4
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4. THE CAYLEY TRANSFORM

for o = (0, 0, 1) = Ψ−1
kn

(0). This determines the canonical left invariant metric g so that

(N · R+, g) is a symmetric space.

Since the geodesic symmetry of the ball Bn
�

at the origin 0 ∈ Bn
�

is Bn
�
	 w 
→ −w ∈

Bn
�
, the geodesic symmetry of N · R+ at o = (0, 0, 1) = Φ−1

kn
(0) = Φ−1

−kn
(0) ∈ N · R+ is

provided by

σ = Φ−1
kn

◦Φ−kn = Φ−1
kn

◦(−Id)◦Φkn : R
n1+n2 × R≥0 \ {(0, 0)} → R

n1+n2 × R≥0 \ {(0, 0)}.

This will be the coordinate transformation of the coordinate system as given in (25).

Regarding the estimation in Proposition 6.3, it should be noted that σ∗(g) = g, since

w 
→ −w is an isometry of (Bn
�
, gB) and it holds that g = Ψ∗

kn
(gB) = Ψ∗

−kn
(gB).

Lemma 4.2. The explicit formula of σ is given as follows:

xl◦σ = −xl
(
|x|2 − t + ρ

)−1
,

−t◦σ + (ρ◦σ) = (t + ρ)
∣∣|x|2 + t + ρ

∣∣−2
.

Proof. Recognizing that

(1 + wn)(1 − wn)−1 =
(
1 + wn

)(
1 − wn

)(
1 − wn

)−1
(1 − wn)−1

=
(
1 − wn + wn + |wn|2

)
|1 − wn|−2,

(1 − wn)−1(1 + wn) = (1 − wn)−1
(
1 − wn

)−1(
1 − wn

)
(1 + wn)

= |1 − wn|−2
(
1 − wn + wn + |wn|2

)
,

we obtain

|x|2 − t + ρ = (1 + wn)(1 − wn)−1 = (1 − wn)−1(1 + wn),

and thereby

(
|x|2 − t + ρ

)−1
= (1 − wn)(1 + wn)−1 = (1 + wn)−1(1 − wn).
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3. A LINEAR FRACTIONAL TRANSFORMATION

Utilizing the above, we find that

xl◦σ = −(−wl)
(
1 − (−wn)

)−1

= −(−wl)
(
1 − wn

)−1(
1 − wn

)(
1 + wn

)−1

= −xl
(
|x|2 − t + ρ

)−1
,

−t◦σ + ρ◦σ =
(
1 − (−wn)

)−1(
1 + (−wn)

)
− |x◦σ|2

=
(
1 + wn

)−1(
1 − wn

)
− |x◦σ|2

=
(
|x|2 − t + ρ

)−1 − |x◦σ|2

= (t + ρ)
∣∣|x|2 + t + ρ

∣∣−2
.

Lemma 4.3. Defining the Heisenberg inversion as σ̃ := σ|ρ=0, when K = C, we have

σ̃∗(dt− 2Im(x · dx̄)) = (dt − 2Im(x · dx̄))||x|2 − t|−2.

In particular, on the overlapping region Sn1+n2 \ {kn,−kn}, Ker(dt − 2Im(x · dx̄)) ⊂
T (Sn1+n2\{kn}) on one chart given in (25) coexists with Ker(dt−2Im(xd·x̄)) ⊂ T (Sn1+n2\
{−kn}) on the other.

Proof. Note that

x◦σ̃ = −x
(
|x|2 − t

)−1
, t◦σ̃ = t

∣∣|x|2 − t
∣∣−2

.

Since d
∣∣|x|2 − t

∣∣2 = d|x|4 + d|t|2, we have

dt◦σ̃ = −dt
∣∣|x|2 − t

∣∣−2
+ t
(
d|x|4 + d|t|2

)∣∣|x|2 − t
∣∣−4

.(27)

Next, we obtain

dx◦σ̃ = −dx
(
|x|2 − t

)−1
+ x
(
d|x|2 + dt

)(
|x|2 − t

)−2
,

and furthermore

dx◦σ̃ = −
(
|x|2 − t

)−1
dx +

(
|x|2 + t

)−2(
d|x|2 + dt

)
x.

By using (|x|2 + t)−1 =
∣∣|x|2 − t

∣∣−2(|x|2 − t
)
, we have

x◦σ̃ · dx◦σ = x·dx
∣∣|x|2 − t

∣∣−2 − x·
∣∣|x|2 − t

∣∣−4(|x|2 − t
)(
d|x|2 + dt

)
x.
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In order to compute Im(x◦σ̃ · dσ◦σ̃), we must observe that

2Im
(
−x · (|x|2 − t)(d|x|2 + dt)x

)
= x·

(
|x|2 − t

)(
d|x|2 + dt

)
x − x·

(
d|x|2 − dt

)(
|x|2 + t

)
x

= x·
(
2|x|2dt − 2td|x|2 − tdt + dtt

)
x.

Combining this with the second term of (27) ×
∣∣|x|2 − t

∣∣4, we have

t
(
d|x|4 + d|t|2

)
+ x·

(
2|x|2dt − 2td|x|2 − tdt + dtt

)
x

= td|t|2 + 2x·|x|2dtx
+td|x|4 − 2x·td|x|2x + x·

(
−tdt + dtt

)
x.

In the case where K = C,

td|t|2 + 2x·|x|2dtx = 2dt
(
|x|4 + |t|2

)
= 2dt

∣∣|x|2 − t
∣∣2,

and other terms cancel out each other.
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CHAPTER 5

Harmonic maps inducing the identity map on the boundary

1. Preliminary computations

Once again, we shall prove the existence of harmonic maps in Example 1, by utilizing

a slightly different method from those in Chapter 2. This method is more convenient for

regularity estimation as well as for the analysis of asymptotic behavior.

Recall from Chapter 1 that the components of the tension field of the map u : M 	
(x, t, ρ) 
→ (x, t, ψ(ρ)) ∈M are given by

τm(u) = 4ρ2d
2ψ(ρ)

dρ2
− (2

k∑
j=1

jnj − 4)ρ
dψ(ρ)

dρ

+2
k∑

l=1

lρlψ(ρ)1−lnl − 4ρ2ψ(ρ)−1
(dψ
dρ

)2

and τ 1(u) = · · · = τn1+n2(u) ≡ 0. Remark that we observe these by noting that um
m =

dψ/dρ and uγ
i = δiγ (i, γ �= m), which are valid because u∗(em) = dψ/dρ em and u∗(ej) = ej

for j = 1, . . . , n1 + n2. Once these are observed, setting N =
∑k

j=1 jnj, ψ̇ = dψ/dρ and

ψ̈ = d2ψ/dρ2, we have the following

Lemma 5.1. Suppose ψ(ρ) is a solution to

ρψ̈(ρ) − (

1

2
N − 1)ψ̇(ρ) +

1

2

k∑
l=1

lnl

(
ρ

ψ(ρ)

)l−1

− (ψ̇(ρ))2 ρ

ψ(ρ)
= 0,

ψ(0) = 0, ψ̇(0) = 1, ψ(ρ) = −ψ(−ρ) > 0 for ρ > 0.

(28)

Then u : (x, t, ρ) 
→ (x, t, ψ(ρ)) is a harmonic self-map of M inducing the identity map

on the boundary ∂M .

In the next section, we shall establish the existence of a one-parameter family of global

solutions to the equation (28) and study their asymptotic behavior. The growth estimates
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5. HARMONIC MAPS INDUCING THE IDENTITY MAP ON THE BOUNDARY

in Proposition 5.2 will be used in Section 3 of Chapter 6 in order to prove Proposition

6.1.

2. An asymptotic analysis of the translation invariant equation

Theorem 5.1. There exists a one-parameter family of global solutions ψ(ρ) = ψλ(ρ)

parameterized by λ ≥ 0 to the equation (28).

The translation invariance of the equation (29) in the proposition below is a key to

the non-uniqueness of solutions for (28). By means of the following proposition, in order

to prove Theorem 5.1, it suffices to show that there exists a nontrivial global solution f(t)

to the equation (29).

Proposition 5.1. ψ(ρ) = ρ exp
(
f(log(|ρ|))

)
is a solution to (28) if and only if f

satisfies 

f ′′(t) − 1

2
Nf ′(t) − 1

2

k∑
l=1

lnl

(
1 − e−lf(t)

)
= 0,

f(t), f ′(t) > 0, lim
x→−∞

f(t) = 0, lim
x→−∞

f ′(t) = 0,

(29)

where f ′ = df/dt and f ′′ = d2f/dt2. Given a solution f(t) to (29), we have the

solution f(t + log(λ)) satisfying (29) for each λ > 0. In consequence, we see that

ψλ(ρ) = ρ exp
(
f(log(|ρ|λ))

)
(λ ≥ 0) form a one-parameter family of solutions of (28)

parametrized by λ ≥ 0.

Proof. Note that log(|ρ|)′ = sgn(ρ)/|ρ| = 1/ρ. By substituting ρ exp
(
f(log(|ρ|))

)
for

ψ(ρ) in equation (28), we have

ρψ̈(ρ) − (
1

2
N − 1)ψ̇(ρ) +

1

2

k∑
l=1

lnl

(
ρ

ψ(ρ)

)l−1

− (ψ̇(ρ))2 ρ

ψ(ρ)

= ρ(f ′′(t) + (f ′(t) + 1)f ′(t))ρ−1ef(t) − (
1

2
N − 1)(1 + f ′(t))ef(t)

+
1

2

k∑
l=1

lnl

(
ρ

ρef(t)

)l−1

−
(
(1 + f ′(t))ef(t)

)2 ρ

ρef(t)

= ef(t)
(
f ′′(t) − 1

2
N (1 + f ′(t)) +

1

2

k∑
l=1

lnle
−lf(t)

)
= 0,
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where t = log(|ρ|). Since f(t) > 0 and f(t) → 0 as t → −∞, we have ψ(0) = 0 and

ψ(ρ) → ∞ as ρ→ ∞. Moreover, it follows from f(t) → 0 as t→ −∞ and f ′(t) → 0 that

ψ̇(0) = 1.

Conversely, if ψ(ρ) satisfies (28), then we can verify that f(t) = log(ψ(exp(t))) − t

satisfies (29). Indeed, for ρ = et, ψ̇(0) = 1 and ψ(0) = 0 being the case, it holds

that f(t) = log(ψ(et)/et) → 0 and f ′(t) = ψ̇(et)et/ψ(et) − 1 → 0 as t → −∞. Since

e−f(t) = ρ/ψ(ρ), we have

f ′′(t) − 1

2
Nf ′(t) − 1

2

k∑
l=1

(1 − e−lf(t))lnl

=
ρ

ψ(ρ)

(
ρψ̈(ρ) − (

1

2
N − 1)ψ̇(ρ) +

1

2

k∑
l=1

( ρ

ψ(ρ)

)l−1

lnl −
ρ

ψ(ρ)
ψ̇(ρ)

2
)

= 0.

Proof of Theorem 5.1. By setting X(t) = f(t) and Y (t) = f ′(t), we can express the

equation above as a system of first-order ordinary differential equations:

dY

dt
(t) =

1

2
NY (t) +

1

2

k∑
l=1

(1 − e−lX(t))lnl,

dX

dt
(t) = Y (t).

Consequently, we have

dY

dX
=

N
2

+

∑k
l=1(1 − e−lX)lnl

2Y

=
N
2

+ E(X)
X

Y
,

where

E(X) =

∑k
l=1(1 − e−lX)lnl

2X
.

At this point, it should be noted that E(X) is a monotone decreasing function of X > 0.

In the following, in order to show the global existence of the solution Y (X) satisfying

Y (0) = 0, we shall solve the following equation:

dY

dX
=

N
2

+ E(X)
X

Y
,

Y (X) → 0, dY/dX → a (X → 0), a = N/2 + E(0)/a > 0.
(30)
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Remark that the condition dY/dX → a (X → 0) corresponds to the requirement that

limX→0 dY/dX = limX→0(N/2 + E(X)X/Y ). We shall define a constant c to be

c = E(0) =
1

2

k∑
l=1

l2nl.

Then a constant a in (30) is given by

a = (N +
√
N 2 + 16c)/4.

Our strategy to complete the proof of Theorem 5.1 is as follows: in Step 1, it will be shown

that Y (X) exists globally; in Step 2, by using Y (X), we shall solve f ′(t) = Y (f(t)) with

boundary values f, f ′ → 0 t → −∞, and thereby we will establish the global existence

of a solution f(t) to the equation (29). Once the global existence of f(t) is established,

the proof of Theorem 5.1 will be completed by using Proposition 5.1.

Step 1: Our method to show the global existence of Y (X) to (30) is as follows: Note

that the right-hand side is C∞ for the variables Y > 0 and X > 0. This means that

for any ε0 > 0, the solution Y (X) with an initial value Y (ε0) > 0 exists locally for

X > ε0 and that dY/dX does not diverge at finite X as long as X(> 0) and Y (> 0) are

finite. Accordingly, in order to prove that Y (X) exists globally on [ε0,∞), it suffices to

construct positive functions which restrict the behavior of Y (X) from above and below

for all X > ε0. We can then verify that neither Y (X) nor dY/dX diverges at any finite

time.

Supposing that c > c > c ≥ 0 and

a = N/2 + c/a > 0, a = N/2 + c/a > 0,

we have a < a < a. Next, given any ε0 > 0, we shall solve

dY (X)

dX
=

N
2

+ c
X

Y
,

dY (X)

dX
=

N
2

+ E(X)
X

Y
,

dY (X)

dX
=

N
2

+ c
X

Y

(31)

with initial values:

aε0 = Y (ε0) < Y (ε0) < Y (ε0) = aε0.

Clearly, Y (X) = aX and Y (X) = aX are solutions for the first and third equations.

38



2. AN ASYMPTOTIC ANALYSIS OF THE TRANSLATION INVARIANT EQUATION

This being understood, let us observe the following lemma:

Lemma 5.2. Given any T0 > ε0, it holds that

Y (X) < Y (X) < Y (X)(32)

on [ε0, T0] for all c and c satisfying

0 ≤ c < E(T0), c < c.

Proof. Since E(X)X/Y > 0, we have dY/dX > N/2, and thereby Y (X) > 0 is

monotone increasing. Thus we can conclude that Y is bounded by X axis and that

dY/dX does not diverge at a finite time from (30). Consequently, let us next assume that

Y cannot bound Y from above, and accordingly, there exists an initial intersection of Y

and Y at X0 <∞.

Then, since Y (ε0) > Y (ε0) and Y (X) meets Y (X) for the first time at X0, we have[
d(Y − Y )

dX

]∣∣∣∣
X=X0

≤ 0.

On the other hand, since E(X) is a monotone decreasing function of X and E(0) = c < c,

it follows that [
dY

dX
− dY

dX

]∣∣∣∣
X=X0

=
(
c− E(X0)

) X0

Y (X0)
> 0.

Hence we obtain a contradiction, which implies the global existence of Y on [ε0,∞).

Next, in order to verify (32), let us further assume that Y cannot bound Y from

below, and accordingly, there exists an initial intersection of Y and Y at X0 < T0. Then

we obtain [d(Y − Y )/dX]|X=X0 ≤ 0. On the contrary, our assumption E(X0) ≥ E(T0) > c

provides [
dY

dX
− dY

dX

]∣∣∣∣
X=X0

=
(
E(X0) − c

) X0

Y (X0)
> 0.

Therefore, we obtain another contradiction.

By making use of the Lemma above, for each integer j > 0, we can obtain the solution

Y = Yj which has an initial value Y (ε0) = aε0 on [ε0, 1], defined as ε0 = 1/j. It follows

from the conclusions made above that each element of the sequence {Yj} satisfies:

Y < Yj < Y on [1/j, 1].

Furthermore, it should be noted that the equation (30) combined with (32) provides

the upper and lower bounds for dY/dX and d2Y/dX2. Given these, when we examine
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{Yj} firstly on [1/2, 1], by using the Ascoli-Arzelà theorem, we have a sub-sequence {Yji
}

converging in C1([1/2, 1]). Then, secondly, focusing on [1/3, 1], by utilizing the Ascoli-

Arzelà theorem once again, we can select a sub-sequence {Yjil
} converging in C1([1/3, 1]).

Upon continuing, we obtain a diagonal sub-sequence converging to Y∞ locally in C1((0, 1]).

Thus we obtain a solution of (30) satisfying

Y (X) < Y∞(X) < Y (X) on (0, 1].

Having already established the existence of solution Y for (30) with an initial value

Y (1) = Y∞(1) satisfying Y (1) < Y∞(1) < Y (1) as in Lemma 5.2, the continuation of Y∞
provides a solution Y on (0,∞).

At this point, it should be noted that, when dividing (32) by X, it holds that

a <
Y (X)

X
< a.

By setting 0 < X < T0 → 0 in order to let c, c→ c and a, a→ a, we observe that

Y (X)

X
→ a X → 0.

Hence, we obtained our desired global solution Y (X) to (30) defined on (0,∞).

Step 2: It is important to note that Y (X) ∈ C∞ by induction: Firstly, (30) implies

Y (X) ∈ C1, and secondly, Y (X) ∈ Ck (k ≥ 1) implies that the left-hand side of (30)

[that is, dY/dX] is also Ck thereby giving Y (X) ∈ Ck+1. Consequently, we see that a

solution for f ′(t) = Y (f(t)) exists locally and f ′(t) does not diverge unless f(t) diverges.

We shall prove that f(t) exists globally on R by showing that f(t) does not diverge at a

finite time t.

Given t0 ∈ R, let us firstly solve

f
′
(t) = af(t), f ′(t) = Y (f(t)), f ′(t) = a f(t)

for t > t0 with initial values: f(t0) = f 0 > f(t0) = f0 > f(t0) = f
0
> 0. According to

(32), as long as 0 < f < T0, it holds that

f
′ − f ′ = af − Y (f) ≥ a(f − f), f ′ − f ′ = Y (f) − af ≥ a(f − f),

and hence

f − f ≥ e(t−t0)a(f 0 − f0), f − f ≥ e(t−t0)a(f0 − f
0
).(33)
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Substituting both f = f 0e
(t−t0)a and f = f

0
e(t−t0)a for each respective term of (33), and

noting that f0e
(t−t0)a ≤ T0 implies

t ≤ 1

a
log(T0/f0) + t0,

we find that

f0e
(t−t0)a ≥ f(t) ≥ f0e

(t−t0)a(34)

for the time interval [t0, a
−1 log(T0/f0) + t0]. Since T0 can be infinity, we can observe that

f(t) and f ′(t), which exist locally, do not diverge at a finite time. Therefore we obtain

the global solution f(t) for the time interval [t0,∞).

Secondly, in order to see the behavior of f(t) for t ≤ t0, by setting t̃0 = −t0, we shall

solve the following equations:

−g′(t) = a g(t), −g′(t) = Y (g(t)), −g′(t) = a g(t)

for t ≥ t̃0 with initial values: g(t̃0) = g0 > g(t̃0) = g0 > g(t̃0) = g
0
> 0. By adapting the

argument given in the above for t ≥ t0 to t ≥ t̃0, it holds that

−(g′ − g′) = a g − Y (g) ≥ a(g − g), −(g′ − g′) = Y (g) − a g ≥ a(g − g),

from which we obtain

g − g ≤ e−(t−t̃0)a(g0 − g0), g − g ≤ e−(t−t̃0)a(g0 − g
0
).

By substituting both g = g0e
−(t−t̃0)a and g = g

0
e−(t−t̃0)a for each respective term in the

above, we have

g0e
−(t−t̃0)a ≤ g(t) ≤ g0e

−(t−t̃0)a(35)

for t > t̃0. Since f(−t) = g(t) when t > t̃0, we obtain the solution f(t) for the time

interval (−∞, t0]. Hence, we have a positive solution f(t) for the equation (29) for all

t ∈ R, which is in C∞ by an argument similar to that in the case of Y (X). By means

of Proposition 5.1, we are led to the family of solutions ψλ(ρ) for the equation (28), and

thereby we have completed the proof of Theorem 5.1.

Theorem 5.2. There exists a family of harmonic diffeomorphisms uλ|M : M → M

which induce the identity map on the boundary.
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Proof. Since ψ̇λ(ρ) > 0 for all ρ > 0, we have Ju = (∂si◦u/∂sj) > 0 for all (x, t, ρ) ∈
N · R+, where (s1, . . . , sm) = (x11, . . . , td, ρ). Hence the result follows from Theorem 5.1

combined with Lemma 5.1.

Proposition 5.2. For C0 > 0, N =
∑k

l=1 lnl and δ > 1, there exist positive constants

C1(C0,N ), C2(C0,N ) and C3(C0,N , δ) so that, for ρ > C0, the following inequalities hold :

ψ(ρ) ≥ ρ exp(C1ρ
N/2),(36)

ψ̇(ρ) ≤ C2ρ
3N/2ψ(ρ),(37)

ψ̇(ρ) ≤ C3ψ(ρ)δ (δ > 1).(38)

Proof. Firstly, let us set f0 := f(log(t0)) for t0 = log(λC0).

By setting c = 0 and a = N/2, accordingly, we may set T0 = ∞, so that the inequality

(34) holds for the time interval [t0,∞). Owing to this inequality, we have

ψ(ρ) ≥ ρ exp
(
f0e

N (log(λρ)−log(λC0))/2
)

= ρ exp(f0(C
−1
0
ρ)N/2) = ρ exp(C1ρ

N/2),

where C1 = f0C
−N/2
0 . Thus, we obtain the inequality (36).

Secondly, since each nl is a non-negative integer, it holds that

k∑
l=1

l2nl ≤
k∑

l=1

l2n2
l ≤ (

k∑
l=1

lnl)
2 = N 2,

from which it follows that

a =
(
N +

√
N 2 + 8

∑k
l=1 l

2nl

)/
4 ≤ N .

Recognizing that a in (32) and (34) can be arbitrarily close to a, we may set a so that

N < a ≤ 3N/2

holds. Since C−1
0 ρ ≥ 1 from our assumption ρ ≥ C0, we have

C−(3N/2)+ a−1
0 ρ(3N/2)− a+1 ≥ 1.(39)
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Moreover, by using (32) and (34), we have f ′(t) = Y (f(t)) ≤ af(t) ≤ af0e
a(t−t0). Hence,

ψ̇(ρ) = (1 + f ′(log(λρ)))ρ−1ψ(ρ)

≤
(
1 + af0e

(log(λρ)−log(λC0))a
)
ρ−1ψ(ρ)

≤
(
1 + max(1, af0)

(
ρC−1

0

)a)
ρ−1ψ(ρ)

≤ 2 max(1, af0)C
−a
0 ρa−1ψ(ρ)

≤ C4C
−(3N/2)−1
0 ρ3N/2ψ(ρ) = C2ρ

3N/2ψ(ρ),

where C4 = 2 max(1, af0) and C2 = C4C
−(3N/2)−1
0 . Thus, we obtain (37).

Thirdly, combining the inequality (36) with our assumption ρ > C0, we have ψ(ρ) ≥
ρ exp(C1ρ

N/2) > C0 exp(C1ρ
N/2). Hence

ρN/2 ≤ C−1
1 log(ψ(ρ)C−1

0 ).(40)

Combining (40) with (37) and setting η(ρ) = ψ(ρ)C−1
0 , we have a constant C3 so that

ψ̇(ρ) ≤ C2ρ
3N/2ψ(ρ) ≤ C2C

−1
0

(
C−1

1
log(η(ρ))

)3
(η(ρ))1−δη(ρ)δ

= C2C
−1
0 C−3

1

(
3

δ − 1

log(η(ρ)
δ−1
3 )

η(ρ)
δ−1
3

)3

η(ρ)δ ≤ C3ψ(ρ)δ (δ > 1),

where the last inequality is deduced by observing that η(ρ) = C−1
0
ψ(ρ) ≥ exp(C1C

αN
0

)

for ρ > C0 according to (36), and that log(x)/x is a bounded function on x > C0. Hence,

we have (38).

Lemma 5.3. There exists C5 = C5(N ) so that

lim
ρ→∞

f(log(λρ))

(N/2)−1λN/2ρN/2
= C5.

Proof. Let h be the solution for h′′(t) = Nh′(t)/2+N/2 with initial values: h′(t0) =

f ′(t0) > 0 and h(t0) = f(t0) > 0. Noting that

d(h′ − f ′)
dt

=
1

2
N (h′ − f ′) +

1

2

k∑
l=1

e−lf(t)lnl ≥
1

2
N (h′ − f ′),

we find that h′(t) ≥ f ′(t) for t ≥ t0, and hence

h′(t) = eN (t−t0)/2(f ′(t0) + 1) − 1 ≥ f ′(t).
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Dividing the above by eN t/2, we see that f ′(t)e−N t/2 is bounded from above. Moreover,

since f(t) > 0, we have

d(f ′(t)e−N t/2)

dt
= e−N t/2

(
f ′′(t) − 1

2
Nf ′(t)

)
=

1

2
e−N t/2

k∑
l=1

(
1 − e−lf(t)

)
lnl > 0,

which implies that f ′(t)e−N t/2 is monotone increasing. It follows from these observations

that there is a constant C5 such that

C5 = lim
t→∞

f ′(t)
eN t/2

= lim
t→∞

f(t)

(N/2)−1eN t/2
.(41)

Theorem 5.3. Let n = (x, t) denote a point on Kn × Im(K) = N . Then, for λ �= λ′

and fixed s0 = (n0, ρ0) ∈ N · R+, we have dist(uλ(s), uλ′(s)) ∼ exp(Ndist(s0, s)) as

s := (n, ρ) → ∞, while bounding |n|.

Proof. Let (n, ρ(t)) be the geodesic of N ·R+ joining (n, ρ0) and s := (n, ρ), satisfying

ρ(0) = ρ0 and ρ(1) = ρ. Noting that

dist((n, ρ0), (n, ρ)) =

∣∣∣∣∣
∫ 1

0

√
ρ′(t)2

4ρ(t)2
dt

∣∣∣∣∣ =

∣∣∣∣12
∫ ρ

ρ0

dρ

ρ

∣∣∣∣ =
∣∣log(ρ1/2/ρ1/2

0 )
∣∣(42)

by using Lemma 5.3, we have

dist(uλ(s), uλ′(s))

ρN/2
=

∣∣∣∣ log(ψ(λρ))

ρN/2
− log(ψ(λ′ρ))

ρN/2

∣∣∣∣ =

∣∣∣∣f(log(λρ))

ρN/2
− f(log(λ′ρ))

ρN/2

∣∣∣∣
→ C5(N/2)−1|(λN/2 − λ′N/2

)| as s = (n, ρ) → ∞.

(43)

Since the line segment joining (n, ρ0) and (n, ρ) is a geodesic of N · R+, we have

dist((n, ρ0), (n, ρ)) ≤ dist((n0, ρ0), (n, ρ))

≤ dist((n0, ρ0), (n, ρ0)) + dist((n, ρ0), (n, ρ)).

Applying the exponential function exp(∗) to the above, we have a constant C6 such that

exp
(
Ndist((n, ρ0), (n, ρ))

)
≤ exp

(
Ndist((n0, ρ0), (n, ρ))

)
≤ C6 exp

(
Ndist((n, ρ), (n, ρ0))

)
,

since dist((n0, ρ0), (n, ρ0)) < ∞ from our assumption |n| < ∞ when (n, ρ) → ∞. Fur-

thermore, combining this with (42), we obtain

exp
(
Ndist((n0, ρ0), (n, ρ))

)
∼ exp

(
Ndist((n, ρ), (n, ρ0))

)
= ρN/2/ρN/2

0 ,
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when we let (n, ρ) → ∞ while keeping |n| finite. Combining the above with (43), we

obtain the result.

Proposition 5.3. Near ρ = 0, we have

ψ(ρ) = ρ+ o(ρ|ρ|a) for any a < (N +

√
N 2 + 8

∑k
l=1 l

2nl )
/

4.(44)

Proof. Fix a solution f(−t) = g(t) and let t = − log(|ρ|). Dividing (34) by e−ta, we

have

g(t)eta ≥ g(t0)e
t̃0a et(a−a).

Consequently, we see that g(t)eta is bounded from below. Furthermore, we have

d(eatg(t))

dt
= aetag(t) + etag′(t) = eta

(
ag(t) + g′(t)

)
= eta

(
Y (g) − Y (g)

)
< 0.

Hence g(t)eta is monotone decreasing.

It then follows from these observations that there is a constant C7(c) such that

C7 = lim
t→∞

g(t)

e−ta
.

Now, suppose C7 �= 0. By using de l’Hôpetal’s theorem, we have

a = lim
X→0

dY

dX
= − lim

t→∞
g′′(t)
g′(t)

= − lim
t→∞

g′(t)
g(t)

= − lim
t→∞

g′(t)
e−ta

lim
t→∞

e−ta

g(t)
= a,

which contradicts a < a. Hence, we must have C7(c) = 0 and limρ→0 f(log(|ρ|))/|ρ|a = 0.

Therefore we have

exp(f(log(|ρ|))) = 1 + f(log(|ρ|))
∞∑

n=1

f(log(|ρ|))n−1

n!

= 1 + |ρ|a
(
f(log(|ρ|))

/
|ρ|a
) ∞∑

n=1

f(log(|ρ|))n−1

n!

= 1 + o(|ρ|a).

Furthermore, for a given t0 and T0 satisfying T0 > f(t0), we have

f0e
(t−t0)a ≤ f(t) ≤ f0e

(t−t0)a on [t0, a
−1 log(T0/f0) + t0],

f0e
(t−t0)a ≤ f(t) ≤ f0e

(t−t0)a on (−∞0, t0]
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for all c satisfying 0 ≤ c < E(T0). Since f(t0) → 0 as t0 → −∞, we can let T0 → 0 so

that E(T0) → c as t0, t→ −∞. This leads us to conclude the following:

ψ(ρ) = ρ+ o(ρ|ρ|a), a < (N +

√
N 2 + 8

∑k
l=1 l

2nl )
/

4.
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CHAPTER 6

The boundary regularity

1. Regularity on Bn
�
\ {kn}

Keeping the notation in previous Chapters, we denote by uλ : Kn × Im(K) × R+ →
Kn×Im(K)×R+ the maps constructed in Chapter 4; and by Φkn : Kn×Im(K)×R+ → Bn

�

the Cayley transform defined in Chapter 5.

Let us first remark that

Φkn◦uλ◦Φ−1
kn

=: uBn
�

,λ

is a harmonic map from Bn
�

to itself. Recall that Bn
�

is equipped with boundary charts

as in (26). Since uλ|∂M = id and σ2 = id, the regularity of the self-maps uBn
�

,λ of Bn
�

is

equivalent to that of

Φ−1
kn

◦(Φkn◦uλ◦Φ−1
kn

)◦Φkn = uλ,

Φ−1
−kn

◦(Φkn◦uλ◦Φ−1
kn

)◦Φ−kn = σ◦uλ◦σ

viewed as maps from R
n1+n2 ×R≥0 to itself. By using the asymptotic expansion (44), we

obtain the regularity of uλ which then implies the following

Corollary 6.1. uBn
�

λ ∈ C1+a(Bn
�
\ {kn}, Bn

�
\ {kn}) for

a <
(
N +

√
N 2 + 8

∑k
l=1 l

2nl

)
/4.

The regularity is invariant under the coordinate transformation on an overlapping

area within an atlas. Thereby, the regularity on Bn
�
\ {kn,−kn} is also given by Corollary

6.1. Hence it suffices to estimate the regularity of ũλ only near a small neighborhood of

(0, 0, 0).

In the following, we suppose K = C or H and shall abbreviate uλ, ũλ and uBn
�

,λ to ũ

and uBn
�
, respectively.
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6. THE BOUNDARY REGULARITY

2. Regularity of ũ

Definition 6.1. For s = (x, t, ρ) ∈ K
n × Im(K) × R+, let ‖ · ‖H : M → R≥0 be

‖s‖H :=
∣∣|x|2 + t + ρ

∣∣1/2
=
(
(|x|2 + ρ)2 + |t|2

)1/ 4
.

Here | · | denotes the Euclidean norm.

Remark 6.1. It holds that ρ◦σ = ρ/‖s‖4
H .

The following observation will be useful in order to prove Lemma 6.8.

Lemma 6.1. ‖σ(s)‖H = 1/‖s‖H.

Proof.

‖σ(s)‖2
H =

∣∣|x◦σ|2 + t◦σ + ρ◦σ
∣∣

=
∣∣|x|2 − t + ρ

∣∣∣∣|x|2 + t + ρ
∣∣−2

= ‖s‖−2
H .

Lemma 6.2. For |s| ≤ 5−1/2, we have

C8|s| ≤ ‖s‖H ≤ C9|s|1/2.(45)

Proof. It is immediate that

‖s‖4
H = (|x|2 + ρ)2 + |t|2

≤ (|s|2 + |s|)2 + |s|2 ≤ 5|s|2 (≤ 1),
(46)

|s|2 = |x|2 + |t|2 + ρ2

≤ ‖s‖2
H + ‖s‖4

H + ‖s‖4
H ≤ 3‖s‖2

H.
(47)

This completes the estimate.

Lemma 6.3. ‖(u◦σ)(s)‖−1
H
‖s‖−1

H
≤ 1.

Proof. By using Definition 6.1, we have ‖(x, t, ρ′)‖H ≥ ‖(x, t, ρ)‖H when ρ′ ≥ ρ.

Since ψ(ρ) ≥ ρ, by using Lemma 6.1, we have

‖u◦σ(s)‖H = ‖(x◦σ, t◦σ, ψ(ρ◦σ))‖H ≥ ‖(x◦σ, t◦σ, ρ◦σ)‖H

= ‖σ(s)‖H = ‖s‖−1
H .

Lemma 6.4. For |s| ≤ 5−1/2, we have

|ũ(s)| ≤ C10|s|1/2.
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Proof. By using Lemmas 6.1 and 6.3, we have

‖ũ‖H = ‖σ◦u◦σ‖H = ‖u◦σ‖−1
H = ‖u◦σ‖−1

H ‖s‖−1
H ‖s‖H ≤ ‖s‖H.(48)

Note that we have ‖ũ‖H ≤ 51/4|s|1/2 by using the inequalities (46) and (48). In particular,

we also have ‖ũ‖H ≤ 1. Hence, by using the inequality (47), we have 3−1/2|ũ| ≤ ‖ũ‖H.

Summing up, we have obtained C8|ũ| ≤ C9|s|1/2, thus completing the proof of the lemma.

Proposition 6.1. For |s| ≤ 5−1/2, we have

‖Jũ‖ ≤ C11|s|−(δ+2) for any δ > 1.

Here ‖Jũ‖ =
(
Tr(tJũ·Jũ)

)1/2
=

(∑
ll′ |∂(sl◦ũ)/∂sl′|2

)1/2
for (s1, . . . , sm) =

(x11, . . . , td, ρ).

The proof of this proposition shall be made in the next section.

Lemma 6.5. Let |s1| ≤ |s2| ≤ 1/2. Let s be any point on the line segment joining s1

and s2. Suppose that we have

‖Jũ‖ ≤ C12|s|−β, |ũ(s)| ≤ C13|s|γ

with β + γ ≥ 1 + ε for ε > 0. Then

|si◦ũ(s1) − si◦ũ(s2)| < C14|s1 − s2|γ/(β+γ), i = 1, . . . ,m.

Proof. In the case of |s2|β+γ ≤ |s1 − s2|, it holds that

|ũ(s1) − ũ(s2)| ≤ |ũ(s1)| + |ũ(s2)| ≤ C13|s1|γ + C13|s2|γ ≤ 2C13|s1 − s2|γ/(β+γ).

When |s2|β+γ ≥ |s1 − s2|, for any point s on the line segment from s1 to s2, we have

|s| ≥ |s2| − |s − s2| ≥ |s2| − |s1 − s2| ≥ |s2|(1 − |s2|β+γ−1) ≥ |s2|(1 − 2−ε), and thereby

|s|−β ≤ C15|s1 − s2|−β/(β+γ). By using the mean value inequality, we have

|ũ(s1) − ũ(s2)| ≤ ‖Jũ(s)‖|s1 − s2| ≤ C12|s|−β|s1 − s2| ≤ C15C12|s1 − s2|γ/(β+γ).

Combining Lemmas 6.4 and 6.5 with Proposition 6.1, and noting that 2−1/(2−1 + 2 +

δ) = 1/(5 + 2δ), we can prove the following:

Proposition 6.2. uBn
�
∈ Cε(Bn

�
, Bn

�
) for ε < 1/7 and K = C,H.
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6. THE BOUNDARY REGULARITY

3. The estimate of ‖Jũ‖

The purpose of this section is to prove Proposition 6.1.

Lemma 6.6. If st is a path satisfying |st| ≤ 5−1/2 and ρ◦σ(st) → 0 as t→ ∞, then we

have Jũ→ Id (the identity matrix) as t→ ∞.

Proof. Let s∞ = (x∞, t∞, ρ∞) be any point in M so that ρ◦σ(st) → 0 as st → s∞.

Since ρ◦σ(s∞) = 0, it holds that x∞ �= 0 or t∞ �= 0. Moreover, since |st| ≤ 5−1/2, we also

have x∞◦σ �= 0 or t∞◦σ �= 0. In addition, σ ∈ C∞ near s∞ = (x∞, t∞, ρ∞) when x∞ �= 0 or

t∞ �= 0. We also have u =
(
x, t, ρ+ o(ρa+1)

)
according to Proposition 5.3.

If a function f is in C∞ near x, t �= 0, it holds that

f
(
x, t, ρ + o(ρa+1)

)
= f(x, t, ρ) + o(ρa+1)

and we therefore have

f
(
x◦σ, t◦σ, ρ◦σ + o

(
(ρ◦σ)a+1)

)
= f(x◦σ, t◦σ, ρ◦σ) + o

(
(ρ◦σ)a+1

)
.

By applying this observation to ∂(si◦σ)/∂sl, we have

∂(si◦σ)

∂sl

(
x◦σ, t◦σ, ρ◦σ + o

(
(ρ◦σ)a+1

))
=
∂(si◦σ)

∂sl
(x◦σ, t◦σ, ρ◦σ) + o

(
(ρ◦σ

)a+1)
.

Utilizing the above and the chain rule, we have

∂(si◦ũ)
∂sj

=
m∑

l,k=1

∂(si◦σ)

∂sl
(u◦σ)·

∂(sl◦u)
∂sk

(σ)·
∂(sk◦σ)

∂sj

=
m−1∑
l=1

∂(si◦σ)

∂sl
(u◦σ)·

∂(sl◦σ)

∂sj
+
∂(si◦σ)

∂sm
(u◦σ)·

∂(sm◦σ)

∂sj
·ψ̇(ρ◦σ)

=
m−1∑
l=1

(∂(si◦σ)

∂sl
(σ) + o

(
(ρ◦σ)a+1

))
·
∂(sl◦σ)

∂sj

+
(∂(si◦σ)

∂sm
(σ) + o

(
(ρ◦σ)a+1

))
·
∂(sm◦σ)

∂sj
·(1 + o

(
(ρ◦σ)a

)
)

=
m∑

l=1

∂(si◦σ)

∂sl
(σ)·

∂(sl◦σ)

∂sj
+ o
(
(ρ◦σ)a+1

)
= δij + o

(
(ρ◦σ)a+1

)
.

This completes the proof of the lemma.
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3. THE ESTIMATE OF ‖Jũ‖

Remark 6.2. Given Lemma 6.6, in order to prove Proposition 6.1, it suffices to

estimate ‖Jũ‖ for sufficiently large ρ◦σ. In what follows, we shall assume ρ◦σ = ρ/‖s‖4
H
≥

C0 for a constant C0 > 0, accordingly.

In the following, we prove Proposition 6.3, which is a key to the estimation of ‖Jũ‖.
To begin with, let us note that the left invariant orthonormal frames obtained in the

previous section can be expressed as follows:

When KHn+1 = CHn+1,


L2j−1 = ρ1/2 (∂/∂xj1+2xj2∂/∂t2) ,

L2j = ρ1/2 (∂/∂xj2−2xj1∂/∂t2) ,

L2n+1 = 2ρ∂/∂t2,

L2n+2 = 2ρ∂/∂ρ.

(1 ≤ j ≤ n).

When KHn+1 = HHn+1,


L4j−3 = ρ1/2 (∂/∂xj1+2xj2∂/∂t2+2xj3∂/∂t3+2xj4∂/∂t4) ,

L4j−2 = ρ1/2 (∂/∂xj2−2xj1∂/∂t2−2xj4∂/∂t3+2xj3∂/∂t4) ,

L4j−1 = ρ1/2 (∂/∂xj3+2xj4∂/∂t2−2xj1∂/∂t3−2xj2∂/∂t4) ,

L4j = ρ1/2 (∂/∂xj4−2xj3∂/∂t2+2xj2∂/∂t3−2xj1∂/∂t4) ,

L4n+l−1 = 2ρ∂/∂tl (2 ≤ l ≤ 4),

L4n+4 = 2ρ∂/∂ρ.

(1 ≤ j ≤ n).

Regarding these, for a point s ∈ N · R+, we define the matrices T = (τij(s)) in the

case of CHn+1 by

(τij(s)) =




1
1

· · ·
1

−2x12 2x11 · · · 2xn1 2ρ1/2

2ρ1/2




,
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6. THE BOUNDARY REGULARITY

and in the case of HHn+1 by

(τij(s)) =




1
1

1
1

· · · · · ·
1

−2x12 2x11 −2x14 2x13 · · · 2xn3 2ρ1/2

−2x13 2x14 2x11 −2x12 · · · −2xn2 2ρ1/2

−2x14 −2x13 2x12 2x11 · · · 2xn1 2ρ1/2

2ρ1/2




.

Let T −1 = (τ ij(s)) denote their inverse matrices. Utilizing these, we can express the

frame {Li} as

Li = ρ1/2
m∑

l=1

τli(s)
∂

∂sl
,

and the dual frame {L∗
j} as

L∗
j = ρ−1/2

m∑
l=1

τ jl(s)dsl,

where (s1, . . . , sm) = (x11, . . . , td, ρ). Indeed, we can see the following:

Li(L
∗
j) =

m∑
l=1

τliτ
jl = δj

i .

Next, for a column vector ds = t(ds1, . . . , dsm), we define the column vector L∗ by

L
∗ =




L∗
1
...

L∗
m


 = ρ−1/2T −1(s)




ds1

...

dsm


 = ρ−1/2T −1(s) · ds.

Utilizing this notation, we can express g = tL∗ ·L∗ because {Lj} is an orthonormal frame.

Moreover, since σ is an isometry, we have

g =t
L

∗ · L
∗ =t

((
ρ◦σ(s)

)−1/2T (σ(s))−1dσ
)
·
((
ρ◦σ(s)

)−1/2T (σ(s))−1dσ
)
.(49)
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3. THE ESTIMATE OF ‖Jũ‖

Furthermore, for the Jacobi matrix Jσ = (∂(si◦σ)/∂sj), we can express the column vector

dσ = t(d(s1◦σ), . . . , d(sm◦σ)) as follows:

dσ =




d(s1◦σ)
...

d(sm◦σ)


 = Jσ · ds = Jσ · T (s)ρ1/2ρ−1/2T (s)−1ds = Jσ · T (s)ρ1/2

L
∗.

By substituting the above dσ to each respective term in (49), we can obtain the following

Proposition 6.3.

ρ1/2
(
ρ◦σ(s)

)−1/2T (σ(s))−1·Jσ(s)·T (s)

is an orthogonal matrix.

Remark 6.3. Observing that

τs∗(
m∑

i=1

ai∂/∂s
i) =

m∑
i=1

aiτs∗(∂/∂si)

=
∑
j∈I1

ajρ1/2

m∑
l=1

τlj∂/∂s
l + 2−1

∑
j∈I2

ρ1/2aj

m∑
l=1

τlj∂/∂s
l

+2−1amρ1/2

m∑
l=1

τlm∂/∂s
l,

it is easy to confirm the following well-known fact, since (τlj(s)) is non-singular: The

linear map

τs∗ : To(M) 	 (a1, . . . , am) → (a1, . . . , am)




ρ1/2

· · ·
2−1ρ1/2

· · ·
2−1ρ1/2


 (τlj(s)) ∈ Ts·o(M)

is non-singular; this fact is in consistent with the fact that multiplication τs (the left

translation) is a diffeomorphism of the Lie group.

By means of Proposition 6.3, we have the following lemma:

Lemma 6.7. For |s| < 5−1/2 and ρ/‖s‖4
H
> C0, we have

‖Jũ‖ ≤ C17‖u◦σ‖−2
H
‖s‖−2

H
ψ(ρ◦σ)−1/2ψ̇(ρ◦σ)|s|−2.
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6. THE BOUNDARY REGULARITY

Proof. To begin with, by using the chain rule, we have

Jũ = Jσ(u◦σ)·Ju(σ)·Jσ.

Then, Proposition 6.3 leads us to rewrite the above as follows:

Jũ =
(
ρ◦σ(u◦σ)

)1/2(
ρ◦u(σ)

)−1/2T (σ(u◦σ))

·
(
ρ◦u(σ)

)1/2(
ρ◦σ(u◦σ)

)−1/2
·T (σ(u◦σ))−1·Jσ(u◦σ)·T (u◦σ)(50)

·T (u◦σ)−1·Ju(σ)·
(
ρ◦σ(s)

)1/2
ρ−1/2·T (σ(s))

·ρ1/2
(
ρ◦σ(s)

)−1/2T −1(σ(s))·Jσ(s)·T (s)(51)

·T (s)−1.

Here, factors (50) and (51) in the above product are orthogonal matrices by Proposition

6.3. Hence, by using the triangle inequality, we find that

‖Jũ‖ ≤ m2
(
ρ◦σ(u◦σ)

)1/2(
ρ◦u(σ)

)−1/2
(ρ◦σ)1/2ρ−1/2

·‖T (σ(u◦σ))‖‖T (u◦σ)−1·Ju(σ)·T (σ)‖‖T (s)−1‖,

where m = n1 + n2 + 1.

Next, we shall evaluate each term of the above inequality individually.

Firstly, by using Remark 6.1, we have(
ρ◦σ(u◦σ)

)1/2(
ρ◦u(σ)

)−1/2
(ρ◦σ)1/2ρ−1/2 = ‖u◦σ‖−2

H ‖s‖−2
H .

Secondly, we can observe that

‖T (s)‖2 = Tr(tT (s)·T (s)) = n1 + 4n2(|x|2 + ρ) + 4ρ.

Furthermore, according to the proof of Lemma 6.4, it holds that |ρ◦ũ| ≤ |x◦ũ|2 + |ρ◦ũ| ≤
‖ũ‖2

H ≤ 1. Hence we have

‖T (σ(u◦σ))‖2 ≤ n1 + 4n2 + 4.

Thirdly, we can easily see that T (u◦σ)−1·Ju(σ)·T (σ) is a diagonal matrix with entries:

1,
(
ρ◦σ/ψ(ρ◦σ)

)1/2
,
(
ρ◦σ/ψ(ρ◦σ)

)1/2
ψ̇(ρ◦σ).

In the first case, by utilizing our construction of ψ, we find that ρ◦σ/ψ(ρ◦σ) =

exp
(
−f(log(λρ◦σ))

)
≤ 1, thereby we have(

ρ◦σ/ψ(ρ◦σ)
)1/2 ≤ 1.
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3. THE ESTIMATE OF ‖Jũ‖

In the second case, since ψ(ρ) = ρ exp(f(log(λρ))) and f ′ > 0, it holds that(
ρ◦σ/ψ(ρ◦σ)

)1/2
ψ̇(ρ◦σ) =

(
1 + f ′(log(λ ρ◦σ))

)
exp(2−1f(log(λ ρ◦σ))) > 1.

Comparing them, we have

‖T (u◦σ)−1·Ju(σ)·T (σ(s))‖ ≤ mψ̇(ρ◦σ)
(
ρ◦σ/ψ(ρ◦σ)

)1/2
.

Fourthly, because |s| < 5−1/2 implies ρ < 1 and |x| < 1, we may observe

‖T (s)−1‖2 = n1 + 4−1n2(|x|2 + 1)ρ−1 + ρ−14−1

≤ n1 + (3n2 + 1)4−1ρ−1

≤ max(n1, (3n2 + 1)4−1)ρ−1.

Finally, by using the inequality (45), we obtain

(ρ◦σ)1/2ρ−1/2 = 1/‖s‖2
H ≤ C2

8
|s|−2.

Summing up these, we have completed the proof of the lemma.

Lemma 6.8. Given δ > 1, for |s| < 5−1/2 and ρ/‖s‖4
H
> C0, we have

‖(u◦σ)(s)‖−2
H
‖s‖−2

H
ψ̇(ρ◦σ)ψ(ρ◦σ)−1/2 ≤ C19/|s|2δ−1.(52)

Proof. It should be noted that it suffices to get the estimate (52) for 3/2 > δ > 1,

since we assume 1 ≤ 1/|s| (as in |s| < 5−1/2).

By using Definition 6.1, we have the following:

‖u◦σ‖−2
H
‖s‖−2

H
ψ(ρ◦σ)−1/2ψ̇(ρ◦σ)

=
ψ̇(ρ◦σ)ψ(ρ◦σ)−1/2((

‖s‖2
H
|x◦σ|2 + ‖s‖2

H
ψ(ρ◦σ)

)2
+ |t◦σ|2‖s‖4

H

)1/2
=: R3.

In what follows, for the sake of simplicity, we shall set η = ‖s‖2
H
ψ(ρ◦σ).

In order to complete our estimation, we shall discuss the following two cases separately,

with careful consideration of the following identity as in Lemma 6.1:

1 = ‖σ(s)‖4
H‖s‖4

H = ‖s‖4
H|t◦σ|2 + (‖s‖2

H|x◦σ|2 + ρ/‖s‖2
H)2.(53)
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6. THE BOUNDARY REGULARITY

In the first case when ‖s‖4
H
|t◦σ|2 ≥ 1/2, by using (38) and (45) we obtain,

R3 ≤ C3ψ(ρ◦σ)δ−1/2

(1/2 + η2)1/2
=

C3η
δ−1/2

(1/2 + η2)1/2

1

‖s‖2δ−1
H

≤ C3C21

‖s‖2δ−1
H

≤ C4C21C22

|s|2δ−1
,

where C22 = C1−2δ
8 .

In the second case when ‖s‖4
H|t◦σ|2 ≤ 1/2, it follows that

R3 ≤
ψ̇(ρ/‖s‖4

H)ψ(ρ/‖s‖4
H)−1/2

‖s‖2
H
|x◦σ|2 + ‖s‖2

H
ψ(ρ◦σ)

=: R4.

Firstly, when ‖s‖2
H|x◦σ|2 ≥ 1/2, by using (38) and (45) once again, we have

R4 ≤
C3ψ(ρ◦σ)δ−1/2

1/2 + η
=
C3η

δ−1/2

1/2 + η

1

‖s‖2δ−1
H

≤ C3C23

‖s‖2δ−1
H

≤ C3C23C22

|s|2δ−1
.

Secondly, when ‖s‖2
H|x◦σ|2 ≤ 1/2, by utilizing the identity (53) together with ‖s‖4

H|t◦σ|2 ≤
1/2, we have (‖s‖2

H|x◦σ|2 + ρ/‖s‖2
H)2 ≥ 1/2, which implies that ‖s‖2

H|x◦σ|2 + ρ/‖s‖2
H ≥

1/
√

2. Hence it follows that

ρ/‖s‖2
H
≥ 1/

√
2 − ‖s‖2

H
|x◦σ|2.

Combining this with ‖s‖2
H|x◦σ|2 ≤ 1/2, we have ρ/‖s‖2

H ≥ 1/
√

2 − 1/2, and hence

‖s‖2
H/ρ ≤ (1/

√
2 − 1/2)−1.

Making use of this inequality together with (36) and (37), we have

R4 ≤
C2

(
ρ/‖s‖4

H

)3N/2

ψ(ρ/‖s‖4
H)1/2‖s‖2

H

≤
C2

(
ρ/‖s‖4

H

)3N/2+1 (
ρ/‖s‖4

H

)−1(
ρ/‖s‖4

H

)1/2
exp
(
2−1C1

(
ρ/‖s‖4

H

)N/2)‖s‖2
H

= C2

(
‖s‖2

H/ρ
)(
ρ/‖s‖4

H

)3N/2+1/2
exp
(
−2−1C1

(
ρ/‖s‖4

H

)N/2)
<∞.

Summing up these, we have verified (52).

Proof of Proposition 6.1. By combining the estimates in Lemmas 6.7 and 6.8, we can

prove Proposition 6.1.
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4. uBn
K
�∈ Cε(Bn

�
, Bn

�
) FOR ε > 1/2

4. uBn
�
�∈ Cε(Bn

�
, Bn

�
) for ε > 1/2

Proposition 6.4. uBn
�
�∈ Cε(Bn

�
, Bn

�
) for ε > 1/2 and K = C,H.

Define two paths si(τ) (i = 1, 2) by

ρ◦s1(τ) = τ 4ψ−1(1/τ 2), ρ◦s2(τ) = 0,

‖s1(τ)‖H = τ, ‖s2(τ)‖H = (t2◦s1(τ))
1/2 = (t2◦s2(τ))

1/2,

x◦si(τ) = t3◦si(τ) = t4◦si(τ) = 0, i = 1, 2.

First, we note that ‖s1(τ)‖4
H = τ 8ψ−1(1/τ 2)2 + (t2◦s1(τ))

2 implies

(t2◦s1(τ)/‖s1(τ)‖2
H)2 = 1 − τ 4ψ−1(1/τ 2)2.

Since ρ◦ũ(s1) = ψ(ρ◦σ(s1))/(ψ(ρ◦σ(s1))
2 + (t2◦s1(τ)/‖s1(τ)‖4

H
)2), we have

|ũ(s1(τ)) − ũ(s2(τ))| ≥ |ρ◦ũ(s1) − ρ◦ũ(s2)|
= ρ◦ũ(s1) = τ 2/

(
2 − τ 4ψ−1(1/τ 2)2

)
.

If ũ is ε-Hölder continuous, we have

|ũ(s1(τ)) − ũ(s2(τ))| ≤ C28|s1(τ) − s2(τ)|ε = C28τ
4εψ−1(1/τ 2)ε.

which implies that

τ 2/(2 − τ 4ψ−1(1/τ 2)2) ≤ C28τ
4ε
(
ψ−1(1/τ 2)

)ε
.

Hence we obtain

1 ≤ (2 − τ 4ψ−1(1/τ 2)2)C28τ
2(2ε−1)

(
ψ−1(1/τ 2)

)ε
≤ 2C28τ

2(2ε−1)
(
ψ−1(1/τ 2)

)ε
.

(54)

For ρ′ = ρ◦σ(s1) = ρ◦s1/τ
4, we have 1/τ 2 = ψ(ρ′) = ρ′ exp(f(log(λρ′))). Therefore we

obtain log(1/τ 2) = log(ρ′) + f(log(λρ′)). Thus, by using (41) we have

C5 = lim
ρ′→∞

f(log(ρ′))
(N/2)−1eN log(ρ′)/2

= lim
ρ′→∞

log(1/τ 2) − log(ρ′)

(N/2)−1ρ′N/2

= lim
ρ′→∞

log(1/τ 2)

(N/2)−1ρ′N/2
.

Hence it follows that

ψ−1(1/τ 2) = ρ′ ∼
(
log(1/τ 2)

)2/N
.
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6. THE BOUNDARY REGULARITY

Combining the above with (54) and further supposing that ε > 1/2, we observe that the

right-hand side of (54) tends to be 0 when τ → 0. However, the left-hand side is one.

This leads to a contradiction.
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CHAPTER 7

Graham’s non-isotropic Hölder spaces

In this chapter, for coordinate functions of those harmonic maps we constructed in

Chapter 5, we shall estimate their regularity in terms of Graham’s non-isotropic Hölder

spaces.

To begin with, let n = (x, t) denote a point of N = Kn × Im(K) and define the

Heisenberg distance function dN of N by

dN (n0,n1) =
(
|x0 − x1|4 + |t0 − t1 − 2Im(x0 · x̄1)|2

)1/4
,

which has a good property for scaling, that is,

ρdN (n,n′) = dN (ρ · n, ρ · n′),(55)

where ρ · n = ρ · (x, t) = (ρ1/2x, ρt) is the dilation. Then, by utilizing dN , Folland and

Stein’s Hölder space Γβ is defined to be the set of functions f on N satisfying:

|f(n1) − f(n2)| ≤ C29dN(n1,n2)
β for all n1,n2 ∈ N.

Extensive research has been made regarding the properties of this Γβ space. Well-known

inclusion relationships are given below:

Lemma 7.1.

Cβ ⊂ Γβ ⊂ Cβ/2.

This can be proved by noting that

C30dN(n1,n2) ≤ |n1 − n2| ≤ C31dN (n1,n2)
1/2(56)

for small n1,n2.

Given these spaces, let us consider the boundary value h of coordinate functions of

our harmonic maps. We can easily observe the following:

|tl◦h(n1) − tl◦h(n2)| ≤ C32dN (n1,n2)
β for all β ≤ 2 (2 ≤ l ≤ d),

|xjl◦h(n1) − xjl◦h(n2)| ≤ C33dN (n1,n2)
β for all β ≤ 1 (1 ≤ j ≤ n, 1 ≤ l ≤ d),

which concludes the following:
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7. GRAHAM’S NON-ISOTROPIC HÖLDER SPACES

Corollary 7.1. u|∂M ∈ Γβ for β ≤ 1.

Taking spaces Γβ into account, Graham [12] defined Hölder spaces on M = N · R+

whose members have boundary values belonging to Γβ, by utilizing a discretization of the

invariant metric g, that is, the distance function:

d(s1, s2)
2 =

|∆x|2
ρ

+
|∆ρ|2
ρ2

+
|∆t− 2Im(x1 · ∆x̄)|2

ρ2

for si = (xi, ti, ρi) ∈M, (i = 1, 2), where

ρ = min(ρ1, ρ2), ∆x = x1 − x2, ∆t = t1 − t2 and ∆ρ = ρ1 − ρ2.

In order to identify the above with Graham’s expression [12, (6.2)], we may compute the

following:

d(s1, s2)
2 = |(ρ−1/2∆x, ρ−1∆ρ, ρ−1(∆t − 2Im(x1 · ∆x̄)))|2

= |ρ−1 · (n1 · n−1
2 , ρ1 − ρ2)|2.

By using this distance function, Graham defined a two-parameter family of Hölder spaces

Γβ
α as follows: for −∞ < β ≤ α, 0 < α < 1, a function f on M is in Γβ

α if

|f(s1) − f(s2)| ≤ C34ρ
β/2d(s1, s2)

α for all s1, s2 ∈M.

In this section, we shall assume that all functions onM∪{ρ = 0} are compactly supported,

by multiplying smooth cut-off functions if required.

Now let us recall the following theorem by Graham [12, Theorem 6.17, Proposition

6.7]:

Theorem 7.1. Suppose that α ≥ β > 0. Then we have Cα ⊂ Γβ
α. Moreover, f being

in Γβ
α implies that f(·, ρ) belongs to Γβ uniformly in ρ. Consequently, f has a boundary

value f(·, 0) belonging to Γβ.

As a consequence of this theorem, we may make a characterization of Γβ
α as a space

of functions which belong to Cα in the interior and whose boundary values belong to Γβ.

The space Cβ
k analogous to Γβ

α was examined by Graham, where the interior regularity

was measured in terms of Ck norms, rather than Cα norms. This space is defined in the

following way:

For multi indices γ = (γ1, . . . , γm), let us set

Dγ = eγ1

1 · · · eγm

m , |γ| =
m∑

i=1

γi, wt(γ) =
∑
i∈I1

γi +
∑
i∈I2

2γi + 2γm.
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7. GRAHAM’S NON-ISOTROPIC HÖLDER SPACES

Then Cβ
k is defined to be the space of functions f satisfying

|Dγf | ≤ C35ρ
(β−wt(γ))/2

for all multi indices γ satisfying |γ| ≤ k, taking into account the appropriate weight for

each derivative.

Proposition 7.1 (Proposition 6.15 [12]). Cβ
1 ⊂ Γβ

α.

It should be remarked that these spaces Γβ
α and Cβ

k are invariant under group actions.

Proposition 7.2 (Proposition 6.7 [12]). f ∈ Γβ
α if and only if f◦τs ∈ Γβ

α, and f ∈ Cβ
k

if and only if f◦τs ∈ Cβ
k .

In order to study the Dirichlet problem at infinity for harmonic maps, Donnelly [7]

adopted Graham’s space Cβ
k and proved the uniqueness of the solution within Cβ

3 for

β > 2. Following them, let us estimate the regularity of the coordinate functions of our

harmonic maps ũ near the origin on the chart given in (25).

First, we remark the following:

‖Jũ · T (s)ρ1/2‖2 =
m∑

i=1

m∑
j=1

(
Ljs

i◦ũ
)2

≥
m∑

i=1

∑
|γ|=1

(
|Dγsi◦ũ|ρwt(γ)/2

)2

.

Similar to Lemma 6.7, supposing that ρ/‖s‖4
H > C0 [as given in Remark 6.2], we have

Lemma 7.2.

‖Jũ · T (s)ρ1/2‖ ≤ C7‖u◦σ‖−2
H ‖s‖−2

H ψ̇(ρ◦σ)
(
ρ◦σ/ψ(ρ◦σ)

)1/2
ρ1/2.

Here, it should be remarked that, since T (s) is multiplied to Jũ from the right, the

troublesome term ‖T −1(s)‖ is not present at this time as it is in Lemma 6.7.

Let us now evaluate the right-hand side of the above. Firstly, ‖s‖4
H > ρ2 implies that(

ρ◦σ
)1/2

ρ1/2 = (ρ/‖s‖4
H)1/2ρ1/2 ≤ 1.

Secondly, by utilizing the proof of Lemma 6.8, we have

‖u◦σ‖−2
H ‖σ‖−2

H ψ̇(ρ ◦σ)ψ(ρ◦σ)−1/2 ≤ C38‖s‖1−2δ
H .

Finally, combining ‖s‖1−2δ
H ≤ ρ(1−2δ)/2 with the above, we obtain the following:

Proposition 7.3. ũ ∈ Cβ
1 for β < −1.
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7. GRAHAM’S NON-ISOTROPIC HÖLDER SPACES

Proposition 7.3 shows that the assumption on regularity in Donnelly’s theorem [7]

cannot be removed.

Next, let us consider the space Γα
β . First, we remark the following:

Lemma 7.3. ([12, Lemma 6.4]) Let n1,n2 ∈ N , and suppose that n1 varies over a

bounded set. Then C36|n1 − n2| ≤ |n1 · n−1
2 | ≤ C37|n1 − n2|.

Utilizing the above as in Graham’s proof [12, Proposition 6.8], we have the following

rough estimate:

|si◦ũ(s1) − si◦ũ(s2)|
≤ C38(|x1 − x2|2 + |t1 − t2|2 + |ρ1 − ρ2|2)α/2

≤ C39(|x1 − x2|2 + |t1 − t2 − 2Im(x1 · (x̄1 − x̄2))|2 + |ρ1 − ρ2|2)α/2

= C39ρ
α/2
( |x1 − x2|2

ρ
+
ρ|t1 − t2 − 2Im(x1 · (x̄1 − x̄2))|2

ρ2
+
ρ|ρ1 − ρ2|2

ρ2

)α/2

≤ C40ρ
α/2
( |x1 − x2|2

ρ
+

|t1 − t2 − 2Im(x1 · (x̄1 − x̄2))|2
ρ2

+
|ρ1 − ρ2|2

ρ2

)α/2

for α < 1/7 near the origin. In the last inequality, we remark that the right-hand side

may diverge. Hence, we find that near ρ = 0, each coordinate function of ũ is in Γβ
α for

−∞ < β ≤ α for α < 1/7. Thereby, once again, we can verify that the assumption on

regularity cannot be removed from Donnelly’s theorem [7].
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CHAPTER 8

Harmonic maps between rank two symmetric spaces of

noncompact type

The pourpose of this chapter is to establish the existence of harmonic self-maps on

rank two symmetric spaces of noncompact type; namely, D2,2(C), the space of 2 × 2

complex matrices Z satisfying I2 − tZ̄Z equipped with metric i∂∂ log det(I2 − tZ̄Z).

Theorem 8.1. There exists a family of harmonic self-maps of D2,2(C) that induce the

identity map on the nilpotent Lie group N .

Before we start our discussion, we shall explain N in the statement above in con-

junction with the outline of this Chapter. To begin with, we recall that an element in

SU(2, 2)

(
A B

C D

)

acts on D2,2(C) = {Z ∈ M2(C) | I2 − tZ̄Z > 0} isometrically as a linear fractional

transformation:

Z → (AZ +B)(CZ +D)−1.

In Section 8.1, we describe an Iwasawa decomposition of su(2, 2), corresponding to the

Iwasawa decomposition of SU(2, 2) = KAN , whose K coincides with the isotropy sub-

group which fixes the zero matrix. Thus, D2,2(C) is diffeomorphic to AN through linear

fractional transformation. N in the statement above is the locus N ⊂ AN in this realiza-

tion of D2,2(C). In Section 8.2, we compute the invariant metric of D2,2(C) and, in Section

8.3, we compute the tension field. Finally in Section 8.4, we prove Theorem 8.1. This

N appears on the ideal boundary of D2,2(C) as codimension one subspace. In particular,

this proves Theorem 0.2 in the introduction.
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8. HARMONIC MAPS BETWEEN RANK TWO SYMMETRIC SPACES OF NONCOMPACT TYPE

1. An Iwasawa decomposition of su(2, 2)

Firstly, we recall that an element in su(2, 2) is of the form




a11 a12 a13 a14

−ā12 a22 a23 a24

ā13 ā23 a33 a34

ā14 ā24 −ā34 a44


 ,

where a11, a22, a33 and a44 are in
√
−1R and satisfy a11 + a22 + a33 + a44 = 0. Next, we set

I2,2 =




1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1


 ,

making Θg = I2,2gI2,2 a Cartan involution. The decomposition k + p of su(2, 2), through

the utilization of this Cartan involution, is given by




a11 a12

−ā12 a22

a33 a34

−ā34 a44


+




a13 a14

a23 a24

ā13 ā23

ā14 ā24


 .

Given this p ⊂ su(2, 2), we can select two generators of the maximal abelian subspace a

in p given by

H1 =




0 0 0 1

0 0 0 0

0 0 0 0

1 0 0 0


 , H2 =




0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0


 .
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1. AN IWASAWA DECOMPOSITION OF ��(2, 2)

Furthermore, considering the eigenspace decomposition of su(2, 2) by ad(H1) and ad(H2),

we set

X11 =
1√
2




0 1 1 0

−1 0 0 1

1 0 0 −1

0 1 1 0


 , X21 =

1√
2




0 1 −1 0

−1 0 0 1

−1 0 0 1

0 1 −1 0


 ,

X22 =
1√
2




0 i i 0

i 0 0 −i
−i 0 0 i

0 i i 0


 , X12 =

1√
2




0 i −i 0

i 0 0 −i
i 0 0 −i
0 i −i 0


 ,

T1 =
1

2




−i 0 0 i

0 0 0 0

0 0 0 0

−i 0 0 i


 , T2 =

1

2




0 0 0 0

0 −i i 0

0 −i i 0

0 0 0 0


 .

Consequently, we have the following Lie bracket relation:

[H1, X11] = X11, [H1, X21] = X21, [H1, X22] = X22,

[H1, X12] = X12, [H1, T1] = 2T1,

[H2, X11] = −X11, [H2, X21] = X21, [H2, X22] = −X22,

[H2, X12] = X12, [H2, T2] = 2T2,

[X11, X12] = −4T1, [X21, X22] = −4T1,

[X11, T2] = −X12, [X22, T2] = X21,

(57)

and all the other Lie bracket products vanish.

Furthermore, let us observe that n = Span
�
{X11, X12, X21, X22, T1, T2} is closed under

the Lie bracket product [∗, ∗] and that

n(1) = [n, n] = Span
�
{T1, X21, X12},

n(2) = [n, n(1)] = R{T1},
n(3) = [n, n(2)] = {0},

which verifies that n is a nilpotent Lie algebra. Similarly, we can check that a + n is a

solvable Lie algebra. Furthermore, we can also observe that there is a vector space direct
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8. HARMONIC MAPS BETWEEN RANK TWO SYMMETRIC SPACES OF NONCOMPACT TYPE

sum decomposition of g = su(2, 2) in the following form:

g = k + a + n.

This is an Iwasawa decomposition. If we denoteK, A andN the subgroup of G = SU(2, 2)

corresponding to the Lie algebra k, a and n, respectively, then, K × A×N 	 (k, a, n) →
kan ∈ G is a diffeomorphism. Hence S = A ·N is diffeomorphic to G/K. We should note

here that K is the isotropy subgroup of G = SU(2, 2) at the origin Z = O (zero matrix).

Hence, we can identify D2,2(C) with N · A through the fractional transformation to the

origin. That is, we have obtained a diffeomorphism

R
6 × R

2
+ 	 (x11, x12, x21, x22, t1, t2, ρ1, ρ2) → Z = BD−1 ∈ D2,2(C),

where B and D are submatrix of(
A B

C D

)
= exp

( ∑
1≤i,j≤2

xijXij +
∑

1≤i≤2

tiTi

)
· exp

( ∑
1≤i≤2

2−1 log(ρi)Hi

)
.

2. The invariant metric

At this point, we should note that the left invariant metric i∂∂ log det(I −t ZZ) of

D2,2(C) coincides with Trace(tdZ̄ · dZ) at the origin Z = O (zero matrix).

Given the computation made above, we shall substitute Z = (Zij) = BD−1 to the

origin. If we set o = (0, 0, 0, 0, 0, 0, 1, 1) ∈ R6 × R2
+, then (Zij)|o = O. Then we find that

Trace(tdZ̄ · dZ)|o =
∑

1≤i,j≤2

(dxij)
2 +

∑
1≤i≤2

(dti)
2/4 +

∑
1≤i≤2

(dρi)
2/4.

Accordingly, an orthonormal basis of this inner product 〈∗, ∗〉 = Trace(tdZ̄ ·dZ)|o is given

by

{∂/∂x11, ∂/∂x22, ∂/∂x12, ∂/∂x21, 2∂/∂t1, 2∂/∂t2, 2∂/∂ρ1, 2∂/∂ρ2}.

Then we obtain the left invariant extensions of the orthonormal basis given above,

which we can denote as follows:

X11 = ρ
1/2
1 ρ

−1/2
2 e3, X22 = ρ

1/2
1 ρ

−1/2
2 e4, X12 = ρ

1/2
1 ρ

1/2
2 e5,

X21 = ρ
1/2
1 ρ

1/2
2 e6, T1 = 2ρ1e7, T2 = 2ρ2e8, H1 = 2ρ1e1, H2 = 2ρ2e2.

Here e1 = ∂/∂ρ1, e2 = ∂/∂ρ2; and e3, . . . , e8 span the nilpotent Lie algebra of left invariant

vector fields corresponding to n. Since G = SU(2, 2) acts on D2,2(C) transitively, an inner

product 〈·, ·〉 of the tangent space To(D2,2(C)) at o ∈ D2,2(C) defines a left invariant

metric g by assigning gs·o(V, V ′) = 〈τ−1
s (V ), τ−1

s (V ′)〉 for V, V ′ ∈ Ts·o(D2,2(C)) at each
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3. THE TENSION FIELD

s·o ∈ D2,2(C) for s ∈ SU(2, 2), where τs is the left translation. Hence, the above invariant

vector fields are orthonormal frame. Thus, the components of the metric gij = g(ei, ej),

(gij) = (gij)
−1 are given by

g11 = 4−1ρ−2
1 ,

g22 = 4−1ρ−2
2 ,

g33 = g44 = ρ2ρ
−1
1 ,

g55 = g66 = ρ−1
2 ρ−1

1 ,

g77 = 4−1ρ−2
1 ,

g88 = 4−1ρ−2
2 ,

gij = gij = 0, (i �= j).

3. The tension field

Noting that gij is diagonal, we start by simplifying the components τα(u) of the tension

field as follows:

τα(u) =
8∑

j=1

gjj
(
uα

jj −
8∑

l=1

e∗l (∇M
ej
ej)u

α
l +

8∑
β=1

e′∗α(∇M ′
e′βe

′
β)uβ

j u
β
j

+
( ∑

1≤β≤2,β<γ≤8

+
∑

3≤β<γ≤8

)(
e′∗α(∇M ′

e′βe
′
γ) + e′∗α(∇M ′

e′γe
′
β)
)
uβ

j u
γ
j

)
.

This leads us to examine the following components of the Levi-Civita connection with

respect to this frame:

∇e1e1 = −ρ−1
1 e1,

∇e2e2 = −ρ−1
2 e2,

∇e3e3 = ∇e4e4 = 2ρ2e1 − 2ρ2
2ρ

−1
1 e2,

∇e5e5 = ∇e6e6 = 2ρ−1
2 e1 + 2ρ−1

1 e2,

∇e7e7 = ρ−1
1 e1,

∇e8e8 = ρ−1
2 e2,

∇e1ej = −ρ−1
1 ej/2, j = 3, . . . , 6,

∇e2ej = ρ−1
2 ej/2, j = 3, 4,

∇e2ej = −ρ−1
2 ej/2, j = 5, 6,

and for α, β, γ ≥ 3,

e∗α(∇eβ
eγ) + e∗α(∇eγeβ) = g′αα

g′γγa
′γ
αβ + g′αα

g′ββa
′β
αγ =: Qα

βγ ,
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8. HARMONIC MAPS BETWEEN RANK TWO SYMMETRIC SPACES OF NONCOMPACT TYPE

where

[eβ, eγ ] =
8∑

α=3

a′αβγe
′
α, 3 ≤ β, γ ≤ 8.

Since e3, . . . , e8 span the nilpotent Lie algebra of left invariant vector fields corresponding

to the nilpotent Lie algebra n, we find that ai
ij = 0. Thereby, we find that

τ 1(u) =
8∑

j=1

gjju1
jj − 8ρ1u

1
1

+
8∑

j=1

gjj
(
−(u1

j)
2(ρ1◦u)−1 + 2

(
(u3

j)
2 + (u4

j)
2
)
(ρ2◦u)

+2
(
(u5

j)
2 + (u6

j)
2
)
(ρ2◦u)−1 + (u7

j)
2(ρ1◦u)−1

)
,

τ 2(u) =
8∑

j=1

gjju2
jj − 8ρ1u

2
1

+
8∑

j=1

gjj
(
−(u2

j)
2(ρ2◦u)−1 − 2

(
(u3

j)
2 + (u4

j)
2
)
(ρ1◦u)−1(ρ2◦u)2

+2
(
(u5

j)
2 + (u6

j)
2
)
(ρ1◦u)−1 + (u8

j)
2(ρ2◦u)−1

)
,

τα(u) =
8∑

j=1

gjjuα
jj − 8ρ1u

α
1

+
8∑

j=1

gjj
(
Rα1u

α
j u

1
j +Rα2u

α
j u

2
j +

∑
3≤β<γ≤8

Qα
βγu

β
j u

γ
j

)
for 3 ≤ α ≤ 8,

where Rα1 and Rα2 are functions of ρ1◦u and ρ2◦u.

4. Proof of the Theorems 8.1 and 8.2

Proof of the Theorem 8.1:

Given these computations, we shall consider the tension field of the map u in the

following form:

u : (n, ρ1, ρ2) → (h(n), ψ1(ρ1), C
2
2ρ2),

68
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where h is a homomorphism satisfying h3
3 = h4

4 = C1C
−1
2 , h5

5 = h6
6 = C1C2, h

7
7 = C2

1 ,

h8
8 = C2

2 , and hγ
j = 0 (j �= γ). Here C1 and C2 are constants. When C1 = C2 = 1, h = id.

From τ 1(u) = 0, we must have

0 = 4ρ2
1

d2ψ1(ρ1)

dρ2
1

− 8ρ1
dψ1(ρ1)

dρ1

−
(
dψ1(ρ1)

dρ1

)2
4ρ2

1

ψ1(ρ1)
+

4C4
1ρ

2
1

ψ1(ρ1)
+ 8C2

1ρ1.

Next, we find that τ 2(u) = −4ρ2
2C

4
2(C2

2ρ2)
−1 − 4ρ1ρ

−1
2 (C1C

−1
2 )2(C2

2ρ2)
2ψ1(ρ1)

−1 +

4ρ1ρ2(C1C2)
2ψ1(ρ1)

−1 + 4ρ2
2C

4
2(C2

2ρ2)
−1 = 0. Moreover, the other components of the

tension fields vanish.

By substituting ρ1C
2
1 exp(f(log(ρ1))) for ψ1(ρ1), we have

0 = f ′′ − 3f ′ + (e−2f − 1) + 2(e−f − 1).

The existence of the solution for this equation is confirmed by Theorem 2.1; alternatively,

this being a translation invariant equation, the proof method of Theorem 5.1 or [25,

Proposition 2.1] can be used in order to establish the global existence of the solution.

Remark 8.1. Dn,n(C) is rank n, but its cohomogeneity is one.

Remark 8.2. ∇ρ1e1ρ1e1 = ∇ρ2e2ρ2e2 = 0 together with g11 = 4−1ρ−2
1 and g22 = 4−1ρ−2

2

implies that ({ρ1 = 0} ∪ {ρ2 = 0}) ∪ ({ρ1 = ∞} ∪ {ρ2 = ∞}) correspond to the ideal

boundary.

Definition 8.1. We call the locus ({ρ1 = 0} ∩ {ρ2 = 0}) ∪ ({ρ1 = ∞} ∩ {ρ2 = ∞})
the corner of D2,2(C).

Proof of the Theorem 0.2:

The statement follows immediately from Theorem 8.1 and Definition 8.1.
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Math. J. 49 (1997), 565–575.

[25] D. Watabe, Singular harmonic maps between rank one symmetric spaces of noncompact type,
Nihonkai Math J. 11, (2000), 11–46.

[26] D. Watabe, Harmonic self-maps of rank two symmetric spaces, submitted.
[27] W. Walter, Ordinary Differential Equations, Graduate Texts in Mathematics 182, Springer-

Verlag, New York 1998.

Mathematical Institute

Tohoku University

Sendai 980-8578

Japan

71



TOHOKU MATHEMATICAL PUBLICATIONS

No.1 Hitoshi Furuhata: Isometric pluriharmonic immersions of Kähler manifolds

into semi-Euclidean spaces, 1995.

No.2 Tomokuni Takahashi: Certain algebraic surfaces of general type with irreg-

ularity one and their canonical mappings, 1996.

No.3 Takeshi Ikeda: Coset constructions of conformal blocks, 1996.

No.4 Masami Fujimori: Integral and rational points on algebraic curves of certain

types and their Jacobian varieties over number fields, 1997.

No.5 Hisatoshi Ikai: Some prehomogeneous representations defined by cubic forms,

1997.
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