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1 Introduction

Geometric notions for Riemannian metrics are often generalized to their
counterparts for pseudo-Riemannian metrics of certain signature. For in-
stance, the notion of Einstein metrics and that of Kähler metrics are straight-
forwardly extended to indefinite ones. Though Riemannian and Lorentzian
metrics are principal objects in pseudo-Riemannian geometry, indefinite met-
rics of other signatures have also their own significance. Indeed, indefinite
Kähler metrics possess non-Lorentzian signature, and in the lowest dimen-
sional case, these metrics are of neutral signature (i.e., of type (2,2)).

Throughout this thesis, we call an indefinite metric of neutral signature
simply a neutral metric. After Ooguri-Vafa [79], Ricci-flat neutral Kähler
metrics on complex surfaces have drawn considerable attention in mathe-
matical physics. Motivated by their result, recently Petean [82] studied neu-
tral Kähler Einstein metrics on compact complex surfaces and obtained a
remarkable classification of compact Ricci-flat neutral Kähler surfaces.

Next to the Ricci-flat case, then interesting are scalar-flat neutral Kähler
metrics on compact complex surfaces. Note that, as in the Riemannian
case, the notion of self-duality is similarly defined for neutral metrics on
oriented four-manifolds, and the scalar-flatness of a neutral Kähler metric
on a complex surface is equivalent to its self-duality. Hence the existence
of scalar-flat neutral Kähler metrics is closely related to that of self-dual
neutral metrics on oriented four-manifolds. The objective of this thesis is to
study the existence problem of self-dual neutral Kähler metrics on complex
surfaces. In particular, we are most concerned with the explicit construction
of these metrics.

Since the work of Atiyah-Hitchin-Singer [4], self-dual Riemannian metrics,
together with the twistor theory, have been extensively studied in various
context. It is known that many four-manifolds admit self-dual Riemannian
metrics (cf. Taubes [87]). In particular, LeBrun [60] invented a remarkable
method, called the hyperbolic ansatz, of constructing self-dual Riemannian
metrics, and then provided us with explicit self-dual Riemannian metrics on
a variety of compact oriented four-manifolds, in particular, on the connected
sum kCP2 = CP2# · · ·#CP2 of arbitrary k-copies of the complex projective
plane CP2 (see [60], LeBrun [61], [62], and Kim [49]). It should be remarked,
however, that not all four-manifolds admit self-dual Riemannian metrics; for
example, the product S2×S2 of two-spheres admits no self-dual Riemannian
metric.

In recent years, self-dual neutral metrics on four-manifolds have also been
studied from several different points of view. For instance, twistor theories
relevant to neutral metrics have been studied by Blair [8], Jensen-Rigoli [40],
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Machida-Sato [68], Mason-Woodhouse [69] and Vaisman [89]. Also, it is
known that a neutral metric on a four-manifold whose Jacobi operator sat-
isfies a certain condition, called the (pointwise) Osserman condition, should
be self-dual (and Einstein). Works on this result and related topics can be
seen in Alekseevsky et al. [2], Blažić et al. [10], Bonome et al. [13], Garćıa-Rı́o
et al. [27], and Gaŕıa-Rı́o et al. [29]. Moreover, self-dual neutral metrics are
regarded as appropriate generalizations of indefinite analogues of such met-
rics as conformally-flat metrics, hyperhermitian metrics, scalar-flat Kähler
metrics, and hyperkähler metrics (see Sections 2.1, 2.2, 3.1 and 3.2). How-
ever, compared with the Riemannian case, the existence problem of self-dual
neutral metrics has not been well explored.

Regarding the existence of such metrics, there have been known many
examples of non-compact four-manifolds with self-dual metric. For instance,
the complete lift of any Kähler metric on a Riemann surface is a self-dual
neutral metric (more precisely, a scalar-flat neutral Kähler metric) on its
tangent bundle (cf. Cendan-Verdes et al. [17], Yano-Kobayashi [93], Yano-
Ishihara [92]). For other non-compact examples, see Section 2.1 and Chapter
4.

As for compact examples, a flat torus and the product S2 × S2 of unit
round two-spheres with the product neutral metric have been known. Since
these examples are not only self-dual but also conformally-flat, it is natural
to ask the following question which is underlying in our study.

Question 1.1 Does there exist a (simply-connected) compact four-manifold

admitting a non-conformally-flat, self-dual neutral metric?

It should be remarked that, in Petean [82], several examples of non-flat,
Ricci-flat neutral Kähler metrics (thus non-conformally-flat, self-dual neutral
metrics) were constructed on certain compact complex surfaces, but they are
not simply-connected.

Note that, on a compact four-manifold, the conformal-flatness of self-
dual Riemannian metric is completely controlled by Hirzebruch signature
formula (cf. Besse [7]). In particular, one can see that any self-dual Rie-
mannian metric on the four-sphere S4 is always conformally-flat. By virtue
of Kuiper’s theorem ([55]), a compact simply-connected four-manifold with
a conformally-flat Riemannian metric is conformally equivalent to the unit
round sphere S4, and hence a (positive-definite) self-dual conformal structure
is unique on S4.

Since the signature formula is also established for compact four-manifolds
with neutral metric (see Matsushita-Law [73], Appendix 5.2), it is then nat-
ural to ask whether a similar result holds in the neutral case. With the
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help of Liouville’s theorem (see Appendix 5.3), Kuiper [55] also proved that
a compact simply-connected four-manifold with a conformally-flat indefinite
metric is conformally equivalent to the product S2 × S2 with the product
neutral metric of unit round metrics. Hence the conformal structure of a
conformally-flat neutral metric on S2 × S2 is also unique. Then, as a special
case of Question 1.1, we are interested in the following

Question 1.2 Is the conformal class of a self-dual neutral metric on S2 ×
S2 unique? In other words, does there exist a non-conformally-flat, self-dual

neutral metric on S2 × S2?

Regarding Question 1.2, we will give the following answer, which is one
of our main results in this thesis:

Theorem 1.3 ([45], [46]) There exists a family of explicit self-dual neutral

metrics on S2 ×S2, which contains non-conformally-flat ones. Furthermore,

for each self-dual metric ḡ in this family, there exists an almost complex

structure I on S2 × S2 such that (ḡ, I) is a neutral Kähler structure on the

product CP1 × CP1 of complex projective lines.

We will construct these self-dual (Kähler) metrics by employing an in-
definite analogue of LeBrun’s hyperbolic ansatz introduced in [47], which
is referred to as the de Sitter ansatz for brevity. We will also characterize
these metrics as self-dual neutral Kähler metrics with an S1-symmetry of
certain type (see Theorem 2.30). It should be remarked that neutral Kähler
surfaces CP1 × CP1 endowed with these self-dual neutral metrics are iso-
morphic to each other as symplectic manifolds, but not isometric as pseudo-
Riemannian manifolds in general. Indeed, a conformally-flat metric and a
non-conformally-flat one are never isometric, and hence at least two isom-
etry classes of self-dual neutral Kähler metrics are defined on CP1 × CP1.
Furthermore, we will prove that self-dual metrics in Theorem 1.3 yield in-
finitely many different isometry classes on S2 × S2.

As a special class of self-dual neutral metrics, we are also interested in neu-
tral hyperkähler structures, which are indefinite counterparts of hyperkähler
structures (see Section 3). Note that any neutral hyperkähler metric is Ricci-
flat and neutral Kähler (and hence self-dual). Then, similar to Question 1.1,
we can ask the following

Question 1.4 What kind of compact complex surface does admit a non-flat

neutral hyperkähler metric?
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In the positive-definite case, it is known that a compact complex surface
admitting a hyperkähler metric is biholomorphic to either a complex torus
or a K3 surface. Since any hyperkähler metric is Ricci-flat and Kähler (thus
anti-self-dual), it follows from Gauss-Bonnet formula that the flatness of a
compact hyperkähler surface is determined by its topology. For instance, any
hyperkähler metric is flat on a complex torus, but not on a K3 surface (see
Hitchin [35], cf. [7]).

In the indefinite case, it is also known that a compact complex surface
with neutral hyperkähler metric is biholomorphic to either a complex torus
or a primary Kodaira surface (see [43], cf. Section 3.2). Then, Question 1.4
reduces to the following

Question 1.5 Does there exist a non-flat neutral hyperkähler metric on a

primary Kodaira surface or a complex torus?

Regarding Question 1.5, one might expect that any neutral hyperkähler
metric on a complex torus or a primary Kodaira surface is flat, since their
Euler characteristics are zero and Gauss-Bonnet formula also holds for com-
pact four-manifolds with neutral metric (see [73], Appendix 5.2). In fact, for
an arbitrary neutral hyperkähler metric, we obtain a canonical expression of
its fundamental form, and a characterization of its flatness. For example, on
a primary Kodaira surface, any neutral hyperkähler structure is obtained in
the following fashion (see [43]):

Theorem 1.6 ([43]) Let X = C2/G be a primary Kodaira surface. Then,

with respect to suitable complex coordinates (w1, w2) of C2, the fundamental

form (ΩI ,Ω′J ,Ω′K) of any neutral hyperkähler structure (g, I, ′J, ′K) on X is

expressed as

ΩI = Im(dw1 ∧ dw2) +
√−1Re(w1)dw1 ∧ dw1 + (

√−1/2) ∂∂ϕ,

Ω′J = Re(e
√−1θdw1 ∧ dw2), Ω′K = Im(e

√−1θdw1 ∧ dw2),

where θ is a real constant and ϕ is a solution of the equation

4
√−1(Im(dw1 ∧ dw2) +

√−1Re(w1)dw1 ∧ dw1) ∧ ∂∂ϕ = ∂∂ϕ ∧ ∂∂ϕ.

Furthermore, g is flat if and only if ϕ is constant.

Since one can easily find a nonconstant solution of this equation, we have
the following answer to Question 1.5:
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Corollary 1.7 ([43]) There exists a non-flat neutral hyperkähler structure

on any primary Kodaira surface.

We also see that there exist non-flat neutral hyperkähler structures on a
complex torus, since the fundamental form of a neutral hyperkähler struc-
ture is expressed similarly (see Section 3.4). In consequence, the flatness of
compact neutral hyperkähler surfaces cannot be determined by the topology
of underlying complex surfaces.

Since a neutral hyperkähler metric is Ricci-flat and self-dual, non-flat
neutral hyperkähler metrics provide us with examples of non-conformally-
flat, self-dual neutral metrics. From those non-conformally-flat metrics in
Theorem 1.3 and Corollary 1.7, we observe that, though self-dual neutral
metrics are defined similarly, their global properties are rather different from
Riemannian ones. Note that Petean [82] also obtained non-flat, Ricci-flat
neutral Kähler metrics on primary Kodaira surfaces and complex tori, each
of which is indeed a neutral hyperkähler one (see [43]).

The present thesis is organized as follows: In Chapter 2, we first review
certain conditions which assure the existence of neutral metrics on four-
manifolds, and illustrate several examples of compact four-manifolds that
admit these metrics. We next recall briefly relevant basic definitions and
properties of self-dual neutral metrics and neutral Kähler metrics, and then
examine the existence of self-dual neutral Kähler structures on compact com-
plex surfaces. Namely, we distinguish compact complex surfaces that can
admit self-dual neutral Kähler structures (Proposition 2.7).

In Sections 2.3, 2.4 and 2.5, we study self-dual neutral Kähler surfaces
with a certain isometric S1-action, based on the results in [46] (cf. [45]).
An indefinite analogue of the generalized Gibbons-Hawking ansatz, which
provides a method of constructing self-dual neutral Kähler metrics, and its
generalization are introduced. In particular, we reexamine self-dual neutral
metrics constructed by the de Sitter ansatz, the indefinite analogue of Le-
Brun’s hyperbolic ansatz, and also obtain a characterization of this ansatz.
Indeed, we prove that a compact self-dual neutral Kähler surface with a cer-
tain S1-symmetry is biholomorphically isometric to the product CP1 × CP1

of complex projective lines with a metric constructed by the de Sitter ansatz
(see Theorem 2.30). In particular, by employing the de Sitter ansatz, we
construct a wealth of explicit self-dual neutral Kähler metrics on CP1 ×CP1.
Section 2.5 is devoted to the study of the isometry classes of self-dual neutral
metrics on S2×S2 constructed by the de Sitter ansatz. We prove a necessary
and sufficient condition for these metrics to be isometric to each other. As a
consequence, we see that there exist infinitely many different isometry classes
of self-dual neutral metrics on S2 × S2 (Theorem 2.31).
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Chapter 3 is devoted to the study of neutral hyperkähler structures on
four-manifolds (cf. [42] and [43]). We begin by recalling several basic prop-
erties of split-quaternion structures and neutral hyperkähler ones on four-
manifolds. For example, we prove that the integrability of a split-quaternion
structure implies the self-duality of a compatible neutral metric (Proposition
3.10). Furthermore, we obtain a characterization of a neutral hyperkähler
structure on a four-manifold in terms of the triplet of symplectic forms sat-
isfying certain algebraic identities (Proposition 3.6). In particular, from this
characterization, we see that a nonvanishing holomorphic two-form exists
on any neutral hyperkähler surface. Then we show that a compact neutral
hyperkähler surface should be biholomorphic to either a complex torus or
a primary Kodaira surface. In Section 3.3, we study neutral hyperkähler
structures on primary Kodaira surfaces, and obtain a canonical expression
of the fundamental form of any neutral hyperkähler structure with respect
to suitable complex coordinates. By making use of this canonical expres-
sion, we prove that every primary Kodaira surface admits non-flat neutral
hyperkähler structures (Theorems 3.16 and 3.17). We also prove the corre-
sponding results for complex tori in Section 3.4 (Theorem 3.19).

In Chapter 4, as examples of self-dual neutral Kähler metrics on non-
compact complex surfaces studied in [47], we reexamine neutral metrics of
Fubini-Study type on the indefinite complex projective space CP2

1 and of
LeBrun type on complex line bundles (e.g., the cotangent bundle T ∗H2) over
the real hyperbolic plane H2. In particular, the Fubini-Study type neutral
metric on CP2

1 is investigated from a point of view of the de Sitter ansatz.
In Appendices, we first prove Proposition 2.14, the Jones-Tod correspon-

dence. In the course of its proof, we find a certain explicit expression of the
self-dual part of the Weyl conformal curvature tensor of a metric constructed
by the de Sitter ansatz, and prove Proposition 2.25. The second appendix
is devoted to Hirzebruch signature formula and Gauss-Bonnet formula for a
compact four-manifold with neutral metric in terms of its curvature tensor
(see Matsushita [70], Avez [5] and Chern [18], Matsushita-Law [73]). Then
we apply these formulas to compact neutral Kähler surfaces (cf. [47]). In
the last appendix, Liouville’s theorem for indefinite metrics is proved, which
plays an essential role in the proof of Kuiper’s theorem ([55]).
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2 Neutral Kähler surfaces

2.1 Geometry of four-manifolds with neutral metric

We begin by recalling several conditions for the existence of neutral metrics on
four-manifolds (see Matsushita [70] and [71]). Let M be a smooth connected
four-manifold. Then M admits a neutral metric (i.e., a pseudo-Riemannian
metric of type (2,2)) if and only if there exists a two-dimensional tangential
distribution onM . IfM is simply-connected, then this condition is equivalent
to the existence of a pair (I, Ī) of almost complex structures on M , where I
is compatible with an orientation and Ī with its opposite.

Concerning the existence of almost complex structures, it is known by Wu
([91]) that a compact oriented four-manifold M admits an almost complex
structure if and only if in the second cohomology group H2(M ; Z) of M there
exists an element c satisfying

c ≡ w2(M) mod 2,(2.1)

c2 = 2χ(M) + 3τ(M),(2.2)

where w2(M), χ(M) and τ(M) denote the second Stiefel-Whitney class, the
Euler characteristic and the Hirzebruch signature of M , respectively (see also
Barth et al. [6]). The first relation means that c is an integral lift of the second
Stiefel-Whitney class w2(M), and hence implies that c is a characteristic
element, that is, c satisfies

α2 = α·α ≡ c·α mod 2

for any α ∈ H2(M ; Z), where · stands for the cup product. Then, by an
algebraic argument, we obtain c2 ≡ τ(M) mod 8, which is equivalent to

χ(M) + τ(M) ≡ 0 mod 4(2.3)

under the condition (2.2) (see Serre [86], Gompf-Stipsicz [32]). Note that ifM
admits an integrable complex structure I, then the first Chern class c1(M, I)
of (M, I) gives a characteristic element c, and that the relation (2.3) follows
from Noether’s formula:

c21(M, I) + c2(M, I) = 12(1 − q(M, I) + pg(M, I)) ≡ 0 mod 12,(2.4)

where c2(M, I) is the second Chern class, and q(M, I) and pg(M, I) denote
the irregularity and the geometric genus of (M, I), respectively.

The existence of almost complex structures I and Ī mentioned above
implies the following necessary conditions:

χ(M) + τ(M) ≡ 0, χ(M) − τ(M) ≡ 0 mod 4.(2.5)
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On the other hand, Hirzebruch-Hopf [34] obtained a necessary and suffi-
cient condition for the existence of an oriented two-dimensional tangential
distribution on a compact four-manifold. Taking account of their result,
Matsushita [70] showed that the condition (2.5) is also sufficient when M is
simply-connected (For general case, see also Matsushita [71]). Therefore we

see that the product S2×S2, the connected sum CP2#CP2 and a K3 surface
admit neutral metrics, but no connected sum kCP2 = CP2# · · ·#CP2 admits

a neutral metric, where CP2 denotes the complex projective plane CP2 with
the orientation opposite to that defined by its complex structure (and 0CP2

stands for S4).

Next, we recall the fundamental properties of the curvature tensor of the
Levi-Civita connection of a pseudo-Riemannian four-manifold with neutral
metric (see [42], Akivis-Goldberg [1], Besse [7], Mason-Woodhouse [69]). Let
(M, g) be a smooth four-manifold with neutral metric g and ∇ the Levi-
Civita connection of M = (M, g). Let X,Y, Z, Z ′ denote arbitrary vector
fields on M . Then the curvature tensor R, the Ricci tensor Ric, the scalar
curvature s, the traceless Ricci tensor Ric0 and the Weyl conformal curvature
tensor W are defined respectively as follows:

R(X,Y )Z := ∇X(∇YZ) −∇Y (∇XZ) −∇[X,Y ]Z,

Ric(Y, Z) := tr(X �→R(X,Z)Y ),

s := trgRic,

Ric0(Y, Z) := Ric(Y, Z) − s

4
g(Y, Z),

g(W (X,Y )Z,Z ′) := g(R(X,Y )Z,Z ′)

−1

2

(
Ric0(Y, Z)g(X,Z ′) − Ric0(X,Z)g(Y, Z ′)

+Ric0(X,Z
′)g(Y, Z) − Ric0(Y, Z

′)g(X,Z)
)

− s

12

(
g(X,Z ′)g(Y, Z) − g(Y, Z ′)g(X,Z)

)
,

where tr (resp. trg) means the trace (resp. the g-trace) of a (1,1)-tensor (resp. a
(2,0)-tensor). Let T be a curvature-like (4,0)-tensor field on M , that is, a
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section of ⊗4T ∗M satisfying

T (X,Y, Z ′, Z) = −T (X,Y, Z, Z ′) = T (Y,X,Z, Z ′),

T (X,Y, Z, Z ′) + T (X,Z, Z ′, Y ) + T (X,Z ′, Y, Z) = 0.

From T we define an endomorphism, called also T , on the space of two-forms
Λ2 = Λ2T ∗M by

g(T (X�∧Y �), Z�∧Z ′�) = T (X,Y, Z, Z ′),(2.6)

where X�, . . . , Z ′� denote the metric-duals of X, . . . , Z ′ (e.g., X� := g(X, ·)),
respectively. Define (4,0)-tensor fields corresponding to R, Ric0 and W by

R(X,Y, Z, Z ′) := g(R(Z,Z ′)Y,X)

Ric0(X,Y, Z, Z
′) := Ric0(Z

′, Y )g(Z,X) − Ric0(Z, Y )g(Z ′, X)

+Ric0(Z,X)g(Z ′, Y ) − Ric0(Z
′, X)g(Z, Y ),

W (X,Y, Z, Z ′) := g(W (Z,Z ′)Y,X).

Then, from the first Bianchi identity, these are curvature-like tensor fields,
since R satisfies g(R(X,Y )Z,Z ′) = −g(Z,R(X,Y )Z ′). Furthermore, R, Ric0

and W also give rise to the corresponding endomorphisms on Λ2 defined
respectively by setting T = R,Ric0 and W in (2.6). Then we have

R = W⊕1

2
Ric0⊕ s

12
Id : Λ2 → Λ2.(2.7)

In what follows, we assume that M is an oriented four-manifold. Then
the Hodge star operator ∗ on Λ2 is defined by

α∧ ∗ β = g(α, β) ∗ 1

for arbitrary two-forms α and β, where ∗1 is the volume form of M = (M, g).
Hence ∗ satisfies

∗2 = Id.

Then the space Λ2 splits as

Λ2 = Λ2
+⊕Λ2

−,(2.8)

where Λ2
± denote the ±1-eigenspaces of the Hodge star operator ∗, that is,

Λ2
± := {α ∈ Λ2| ∗ α = ±α}.

9



Since ∗W = W∗ and ∗Ric0 = −Ric0∗, the curvature operator R splits
into

R = W+⊕W−⊕1

2
Ric0⊕ s

12
Id,(2.9)

where W± := (W±∗W )/2. This splitting (2.9) then leads us to the following

Definition 2.1 An oriented pseudo-Riemannian four-manifold M with neu-

tral metric g is said to be self-dual (resp. anti-self-dual) if ∗W = W , that is,

W− ≡ 0 (resp. ∗W = −W , that is, W+ ≡ 0). In particular, if W ≡ 0 on M ,

M is said to be conformally-flat.

Most typical examples of four-manifolds with self-dual neutral metric are
the spaces of constant curvature R4

2, S
4
2 and H4

2 . These are not only self-
dual but also conformally-flat (and Einstein). Note that Rn

ν , S
n
ν and Hn

ν are
defined by

Rn
ν = (Rn, g�n

ν
), g�n

ν
:= −

ν−1∑
k=0

dx2
k +

n−1∑
l=ν

dx2
l ,

Snν =

{
(x0, . . . , xn) ∈ Rn+1

ν

∣∣∣∣∣ −
ν−1∑
k=0

x2
k +

n∑
l=ν

x2
l = +1

}
,

gSn
ν

:= (g
�

n+1
ν

)|Sn
ν
,

Hn
ν =

{
(x0, . . . , xn) ∈ Rn+1

ν+1

∣∣∣∣∣ −
ν∑
k=0

x2
k +

n∑
l=ν+1

x2
l = −1

}
,

gHn
ν

:= (g
�

n+1
ν+1

)|Hn
ν
,

and have constant curvature 0, +1 and −1, respectively.
The indefinite complex projective space CP2

1 and the indefinite complex
hyperbolic space CH2

1 are also examples of four-manifolds with (anti-)self-
dual (non-conformally-flat) metric (see Chapter 4). Concerning their com-
pact quotients, R4

2 admits a compact quotient R4
2/Γ by any lattice Γ in R4

2.
Namely, R4

2/Γ is a flat torus. However, it is known that none of S4
2 , H

4
2 , CP2

1,
CH2

1 admit compact quotients by discrete subgroups of their isometry groups
(see O’Neill [78], Wolf [90]).

As a compact example, we obtain the product S2 × S2 of unit round
two-spheres with the product neutral metric gS2×S2 = −hS2 ⊕ hS2 , which is
conformally-flat (thus self-dual). The product Σ− ×Σ+ of hyperbolic spaces
with metric gΣ−×Σ+ = −h− ⊕ h+ is also conformally-flat, where each h±
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denotes a Riemannian metric on Σ± of constant curvature −1, respectively.
But these examples are not Einstein.

It is also known that the conformal-flatness (W ≡ 0) is equivalent to
the condition that, around each point, there exist a neighborhood U and
a function f on U such that (U, e2f ·g) is isometrically embedded into R4

2

(cf. Besse [7], Lafontaine [56]). By virtue of a result of Kuiper [55], any com-
pact, simply-connected pseudo-Riemannian four-manifold with conformally-
flat metric is conformally equivalent to either the unit round sphere S4 or
the product S2 × S2 of two spheres with the product neutral metric of unit
round metrics. We will give other examples later.

We next recall the significance of the self-duality of neutral metrics in
relation to totally null planes, and give, in terms of totally null plane fields, a
sufficient condition for neutral metrics on four-manifold to be self-dual. Let
(M, g) be an oriented pseudo-Riemannian four-manifold with neutral metric
g. A tangential distribution F on (M, g) is called a totally null plane field (or
a maximal isotropic subbundle) if, at each point of M , F is a two-dimensional
distribution consisting of null vectors with respect to g (i.e., the orthogonal
complement F⊥ of F with respect to g coincides with F itself). Note that
the condition for F to be totally null is clearly conformally invariant. Let
Gr2(TM) be the Grassmannian bundle over M whose fiber at x ∈M consists
of two-dimensional subspaces in TxM , and P(Λ2) denote the bundle over M
with the real projective spaces of one-dimensional subspaces in Λ2T ∗

xM as
fibers. We now define a map Φ : Gr2(TM) −→ P(Λ2) by Φ : span{u, v} �→
[u� ∧ v�], where [·] denotes the equivalence class in P(Λ2T ∗

xM). Then the
following fact is known.

Proposition 2.2 Φ(F) belongs to P(Λ2
±) for any totally null plane field F .

Hence we have the following

Definition 2.3 A totally null plane field F is said to be self-dual (resp. anti-

self-dual) if Φ(σ) belongs to P(Λ2
+) (resp. P(Λ2

−)).

By κ(σ) we denote the sign of g(R(u, v)v, u), which is well-defined for any
plane σ = span{u, v}. It is proved by Dajczer-Nomizu [19] that if κ(σ) = 0
for any degenerate plane σ on (M, g), then all nondegenerate planes have
the same sectional curvatures, that is, (M, g) has constant curvature. Noting
that g(R(ξ, η)η, ξ) = g(W (ξ, η)η, ξ) for any totally null plane σ = span{ξ, η},
we can obtain a conformal analogue of the result in [19]. More precisely, in
the four-dimensional case, we can prove the following

11



Proposition 2.4 A neutral metric g on an oriented four-manifold M is

self-dual (resp. anti-self-dual ) if and only if κ(σ) = 0 for any anti-self-dual

(resp. self-dual ) totally null plane σ at each point of M . In particular, g is

conformally-flat if and only if κ(σ) = 0 for any totally null plane σ.

Concerning the signature of a totally null plane field, we recall the fol-
lowing lemma for later use (see [42]).

Lemma 2.5 Let (M, g) be an oriented pseudo-Riemannian four-manifold

with neutral metric g and F a totally null plane field on (M, g). If F is

integrable, then κ(F) = 0.

2.2 Hermitian geometry of neutral metrics

Let (M, g) be a real four-manifold with a neutral metric g and I an almost
complex structure on M (i.e., I2 = −Id on TM). A triplet (M, g, I) is called
a neutral Hermitian surface if I is integrable and g is invariant by I, that is,
(g, I) satisfies

NI(X,Y ) := [IX, IY ] − [X,Y ] − I[IX, Y ] − I[X, IY ] ≡ 0,(2.10)

and

g(IX, IY ) = g(X,Y )(2.11)

for arbitrary vector fields X and Y on M . Namely, a neutral Hermitian sur-
face (M, g, I) is a complex surface (M, I) with an I-invariant neutral metric
g. For a neutral Hermitian surface (M, g, I), the fundamental form ΩI of
(M, g, I) is defined to be a differential two-form given by

ΩI(X,Y ) := g(IX, Y ).(2.12)

A neutral Hermitian surface (M, g, I) is said to be neutral Kähler or a neutral
Kähler surface if ΩI is closed.

Via the usual identification R4 = C2, we can regard R4
2 as a neutral

(hyper)Kähler surface, which is denoted by C2
1. The indefinite complex pro-

jective plane CP2
1 and the indefinite complex hyperbolic plane CH2

1 are also
neutral Kähler surfaces. A complex torus C2

1/Γ with a flat neutral metric
and (CP1 × CP1, gS2×S2) and (Σ− × Σ+, gΣ−×Σ+) with the product complex
structures are examples of compact neutral Kähler surfaces.
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It should be remarked that the fundamental form ΩI is a symplectic form
on M compatible with the orientation opposite to that determined by I. To
see this, let {u1, u2} be a (local) unitary frame field, that is, {u1, u2} satisfies

Iu1 =
√−1u1, Iu2 =

√−1u2,

and

g(u1, u1) = g(u1, u2) = g(u2, u2) = 0,

g(u1, u1) = −1, g(u2, u2) = +1, g(u1, u2) = 0.

Then the metric g and the fundamental form ΩI are given respectively as

g = 2(−u1u1 + u2u2), ΩI =
√−1(−u1 ∧ u1 + u2 ∧ u2),

where {u1, u2} denotes the dual unitary coframe field of {u1, u2}. Hence ΩI

satisfies

Ω2
I = ΩI∧ΩI = −2(

√−1u1∧u1)∧(
√−1u2∧u2).

Therefore Ω2
I is compatible with the orientation opposite to that defined by

I.
Throughout this thesis, we always regard a neutral Kähler surface as being

oriented by its complex structure. For later convenience, we denote by M̄
the manifold M with the opposite orientation, and simply call a symplectic
form compatible with the orientation of M̄ an opposite symplectic form on
M .

The space Λ2 of two-forms on a neutral Hermitian surface M = (M, g, I)
decomposes into the I-invariant and the I-anti-invariant subspaces as

Λ2 = Λinv ⊕ Λanti,

where Λinv and Λanti are given respectively by

Λinv = {α ∈ Λ2 | α(IX, IY ) = α(X,Y )},
Λanti = {α ∈ Λ2 | α(IX, IY ) = −α(X,Y )}.

According to the splitting (2.8), the self-dual and the anti-self-dual subspaces
Λ2

± are also decomposed in the following fashion:

Λ2
+ = Λinv

0 , Λ2
− = RΩI ⊕ Λanti,(2.13)

where Λinv
0 consists of I-invariant two-forms on M orthogonal to ΩI .
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As in the Riemannian case, the Ricci tensor Ric of a neutral Kähler
surface (M, g, I) is known to be an I-invariant symmetric bilinear form on
M . We then define the Ricci form γ by

γ(X,Y ) := Ric(IX, Y ),(2.14)

which is a closed real (1,1)-form, and hence determines the first Chern class
c1(M, I) by

c1(M, I) =
1

2π
[γ] ∈ H1,1(M ; R),

since ∇I ≡ 0. The scalar curvature s is also determined by the Kähler
form ΩI and the Ricci form γ. In particular, on a neutral Kähler surface
(M, g, I), its scalar curvature s vanishes everywhere on M if and only if
γ ∧ ΩI ≡ 0. In regard to the self-duality of a neutral Kähler metric g,
the following expression holds for the anti-self-dual part W− of the Weyl
conformal tensor W with respect to a suitable real unitary frame field:

W− =
s

12

 2 0 0
0 −1 0
0 0 −1

 .(2.15)

Thus we have the following well-known result (cf. [47]. See Derdziński [21],
Itoh [39], LeBrun [58] for the Riemannian analogue).

Proposition 2.6 Let (M, g, I) be a neutral Kähler surface. Then g is self-

dual if and only if g is scalar-flat, that is, ΩI ∧ γ ≡ 0.

We next write the curvature form of a neutral Kähler surface (M, g, I) in
terms of local holomorphic coordinates. Let (w1, w2) be local holomorphic
coordinates of a complex surface (M, I) with neutral Kähler metric g. For
simplicity, we set

∂α := ∂/∂wα, ∂ᾱ := ∂/∂wα and gαβ̄ := 2g(∂α, ∂β̄)

(α, β = 1, 2). Let ∇ be the Levi-Civita connection of (M, g) and {ωA
B} the

connection form of ∇ with respect to {∂A} (A,B = 1, 2, 1̄, 2̄). Then ωᾱβ =
ωα
β̄
≡ 0, since ∇I ≡ 0. Moreover ωαβ (resp.ωᾱ

β̄
) is a local (1, 0)-(resp. (0, 1)-

) form, since ∇ is torsion-free. Hence, except for {ωαβ (∂γ)} and {ωᾱ
β̄
(∂γ̄)},

the components of {ωA
B} must vanish. Since the Levi-Civita connection ∇

preserves the metric g, we have

ωαβ =
∑
ε

gε̄α∂gβε̄, ωᾱβ̄ =
∑
ε

gᾱε∂gεβ̄,(2.16)
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where gᾱβ is defined by
∑

εgαε̄g
ε̄β =

∑
εg
β̄εgεᾱ = δβα. The curvature form

{RA
B
} of ∇ is given by

Rα
β = ∂ωαβ , Rᾱ

β̄ = ∂ωᾱβ̄ .(2.17)

In particular, we see that g is flat (i.e., R ≡ 0) if and only if every ωαβ is a
local holomorphic one-form on (M, I).

The Ricci form γ is expressed as

γ = −√−1∂∂ log |det(gαβ̄)|,(2.18)

which is verified in the same way as in the Riemannian case. In particular, if
there exist local holomorphic coordinates (w1, w2) at each point of a neutral
Kähler surface (M, g, I) such that |det(gαβ̄)| ≡ 1, then (M, g, I) is Ricci-flat.

We now focus our attention on the compact case. Concerning compact
self-dual neutral Kähler surfaces, we first show the following

Proposition 2.7 Let (M, g, I) be a compact self-dual neutral Kähler sur-

face, and κ(M, I) denote the Kodaira dimension of (M, I). Then (M, I) is

biholomorphic to one of the following surfaces:

(1) If c21(M, I) < 0, then (M, I) is a surface of class VII0 with no global

spherical shell and with positive even second Betti number, and hence

κ(M, I) = −∞.

(2) If c21(M, I) > 0 and τ(M) > 0, then (M, I) is a minimal surface of

general type with positive even signature, and hence κ(M, I) = 2.

(3) If c21(M, I) > 0 and τ(M) = 0, then (M, I) is either a Hirzebruch

surface when κ(M, I) = −∞, or a minimal surface of general type

uniformized by the polydisc when κ(M, I) = 2.

(4) If c21(M, I) = 0, then (M, I) is either a hyperelliptic surface, a primary

Kodaira surface or a complex torus when κ(M, I) = 0.

(5) If c21(M, I) = 0, then (M, I) is a minimal properly elliptic surface with

zero signature when κ(M, I) = 1.

No surface of type (1) has been known. Several examples of surfaces
in the case (2) are known (see Atiyah [3], Kodaira [52]), and the products
Σ × T 2 of compact Riemann surfaces Σ of genera ≥ 2 and elliptic curves
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T 2 are examples in the case (5). However, the author knows no self-dual
neutral Kähler metrics on surfaces in the cases (2) and (5). In the case
(4), all surfaces admit Ricci-flat neutral Kähler (thus self-dual) metrics (see
Petean [82]). In the case (3), the products CP1 × CP1 and Σ−×Σ+ with
the standard (indefinite) product metrics are conformally-flat neutral Kähler
surfaces, where Σ± are compact Riemann surfaces of genera ≥ 2 endowed
with Riemannian metrics of curvature −1. We will discuss self-dual neutral
Kähler metrics on CP1 × CP1 later (see Sections 2.2–2.4).

Proof. We first recall the following result due to Petean [82].

Theorem 2.8 (Petean [82]) Let (M, g, I) be a compact neutral Kähler sur-

face.

(i) If κ(M, I) = −∞, then (M, I) is either a minimal ruled surface, the

blow-up of CP2 at a point, or a surface of class VII0 with no global

spherical shell and with positive even second Betti number.

(ii) If κ(M, I) = 0, then (M, I) is either a hyperelliptic surface, a primary

Kodaira surface or a complex torus.

(iii) If κ(M, I) = 1, then (M, I) is a minimal properly elliptic surface with

zero signature.

(iv) If κ(M, I) = 2, then (M, I) is a minimal surface of general type with

nonnegative even signature.

It should be noted that the following result of Taubes ([88]) regarding the
existence of an opposite symplectic form plays an essential role in obtaining
the list above.

Theorem 2.9 (Taubes [88]) Let M̄ be a compact symplectic four-manifold

with b+2 (M̄) > 1, oriented by its symplectic structure ΩI , and let Ī be an

ΩI-compatible almost complex structure on M̄ , that is, ΩI(·, Ī ·) is a positive-

definite almost Kähler metric on (M̄, Ī). Then the first Chern class c1(M̄, Ī)

has nonzero Seiberg-Witten invariant.

Let (M, g, I) be a compact self-dual neutral Kähler surface. Then ΩI∧γ ≡
0. In particular, [ΩI ] and c1(M, I) = [γ]/2π are orthogonal to each other in
the cohomology group H1,1(M ; R) with respect to the cup product.

In the case where c21(M, I) < 0, it follows from Petean’s list above (The-
orem 2.8) that (M, I) is biholomorphic to either a minimal ruled surface
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with genus g ≥ 2 or a surface of class VII0 with certain properties. Since
c1(M, I) and [ΩI ] are orthogonal in H1,1(M ; R), the assumption c21(M, I) < 0
(and Ω2

I < 0) also implies that b−2 (M) ≥ 2. Hence M should be biholomor-
phic to the latter, that is, to a certain surface of class VII0. Indeed, sup-
pose that (M, I) would be biholomorphic to a minimal ruled surface with
genus g ≥ 2. Then, by Theorem 2.9, the Seiberg-Witten invariant for an
almost complex structure associated with (M̄,ΩI) would not vanish, since
b+2 (M̄) = b−2 (M) ≥ 2. On the other hand, since M̄ admits a Riemannian met-
ric with positive scalar curvature (see, e.g., LeBrun [64]), all Seiberg-Witten
invariants on M̄ would vanish, which is a contradiction. Therefore (M, I)
is biholomorphic to a surface of class VII0 in Petean’s list, if c21(M, I) < 0.
(Unfortunately, such a surface is not known at present.)

In the case where c21(M, I) > 0, the underlying complex surface (M, I) is
biholomorphic to either a rational ruled surface or a minimal surface of gen-
eral type with nonnegative even signature. Note that there exists a positive-
definite Kähler metric h on (M, I) in both cases. Suppose that τ(M) > 0.
Then b2+(M) > b2−(M) ≥ 1 and hence M cannot admit any Riemannian
metric with positive scalar curvature. Therefore M should be biholomor-
phic to the second candidate, that is, a minimal surface of general type
with positive even signature. Suppose that τ(M) = 0. This implies that
c21(M, I) = 2c2(M, I)(> 0). If b+2 (M) = b−2 (M) ≥ 2, then the Seiberg-Witten
invariant for (M̄,ΩI) does not vanish by Theorem 2.9. Hence M̄ cannot ad-
mit any positive scalar curvature metric. Therefore it follows from LeBrun’s
result [64] that the Kodaira dimension of (M, I) should be nonnegative, since
M admits a positive-definite Kähler metric. Hence (M, I) is biholomorphic
to a minimal surface of general type with τ(M) = 0. Furthermore, M is
uniformized by the product of unit discs D2 ×D2 (see Leung [66], Kotschick
[54]). If b+2 (M) = b−2 (M) = 1, then it follows from Petean’s list (Theorem
2.8) again that M is biholomorphic to either a minimal rational ruled sur-
face, the one-point blowing-up of the complex projective plane, or a minimal
surface of general type with b1(M) = 0 and b+2 (M) = b−2 (M) = 1. In the first
and second cases, (M, I) is biholomorphic to one of the Hirzebruch surfaces
by a result due to Qin [84]. In the third case, (M, I) is also uniformized by
the polydisc D2 ×D2 (see [54]).

The cases (4) and (5) follow from Petean’s list (Theorem 2.8). �

2.3 Kähler surfaces with time-like S1-symmetry

Let (M, g, I) be a neutral Kähler surface. Suppose that (M, g) admits a non-
trivial isometric S1-action generated by a Killing vector field ξ. Then the
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fixed point set F of this action coincides with Zero(ξ), the set of zeros of ξ,
and becomes a compact complex submanifold of (M, I). We first recall the
following

Proposition 2.10 Let ξ be a Killing vector field on a neutral Kähler surface

(M, g, I) (i.e., Lξg ≡ 0). Then ξ is a real holomorphic vector field on (M, I)

(i.e., LξI = 0).

Proof. Let ∇ denote the Levi-Civita connection of (M, g). Then, since ξ
is a Killing vector field, ξ yields an infinitesimal affine transformation on
(M,∇). Define an endomorphism Aξ : TxM → TxM by Aξv := −∇vξ for
v ∈ TxM (x ∈M). Since (M, g, I) is a neutral Kähler surface, the holonomy
algebra h is isomorphic to u(1, 1). Furthermore, its normalizer in so(2, 2) is
isomorphic to u(1, 1) itself. It then follows from Corollary 4.3 in Kobayashi-
Nomizu [50] that the endomorphism Aξ belongs to the normalizer of the
holonomy algebra u(1, 1) and hence commutes with I, which means that ξ is
a holomorphic vector field on (M, I). �

An isometric action is said to be time-like (resp. space-like) if ξ satisfies
g(ξ, ξ) < 0 (resp. g(ξ, ξ) > 0) on M , outside F . We will see in Section 2.5
that, for any neutral Kähler metric g on CP1 × CP1, the fixed point set of
a time-like isometric S1-action on (CP1 × CP1, g) has no isolated point, and
hence contains two two-dimensional connected components (see Proposition
2.32). We prove here a converse result.

Theorem 2.11 Let (M, g, I) be a compact neutral Kähler surface. Suppose

that (M, g) admits a semi-free isometric S1-action whose fixed point set F

has at least two two-dimensional connected components. If (M, g) is also self-

dual, then (M, I) should be biholomorphic to one of the Hirzebruch surfaces.

Moreover, F is a disjoint union of two holomorphic spheres. In particular,

F has no isolated fixed points.

Proof. We first recall that b−2 (M) = b+2 (M̄) ≥ 1, since the Kähler form ΩI

of (M, g, I) gives rise to an opposite symplectic structure on M . Let Ī be an
ΩI-compatible almost complex structure on M̄ . By Theorem 2.9, the first
Chern class c1(M̄, Ī) has nonzero Seiberg-Witten invariant, if b+2 (M̄) ≥ 2.

Let Σ1, . . . ,Σk and {q1}, . . . , {qm} be two-dimensional connected compo-
nents and isolated fixed points in F , respectively:

F = Σ1

∐
Σ2

∐ · · ·∐ Σk

∐ {q1}
∐ · · ·∐ {qm} (k ≥ 2).(2.19)
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Since the S1-action is semi-free, the orbit space Y := M/S1 is a com-
pact, connected three-manifold with boundary ∂Y ∼= Σ1

∐
Σ2

∐ · · ·∐Σk.
Let π : M → Y denote the natural projection. For pj ∈ Σj (j = 1, 2),
there is a smooth path c in Y connecting π(p1) and π(p2) with c

⋂
π(F ) =

{π(p1), π(p2)} such that the inverse image S := π−1(c) is an embedded two-
sphere. Then the self-intersection number of S is zero in both M and M̄ ,
and its homology class is non-trivial. Regarding the existence of such an
embedded two-sphere S, we recall the following result.

Theorem 2.12 (Kotschick [54]) Let M̄ be a compact oriented four-manifold

with b+2 (M̄) > 1 which contains a smoothly embedded two-sphere S of non-

negative self-intersection with S(�=0) ∈ H2(M̄ ; Q). Then all Seiberg-Witten

invariants of M̄ vanish.

Combining Kotschick’s result (Theorem 2.12) with a result due to Taubes
(Theorem 2.9), we obtain b−2 (M) = b+2 (M̄) ≤ 1, and hence b−2 (M) = b+2 (M̄) =
1, since b−2 (M) ≥ 1 by assumption. For a compact symplectic four-manifold
M̄ with symplectic orientation, there exists an almost complex structure
Ī compatible with the orientation of M̄ . Then it follows from (2.3) that
χ(M̄) + τ(M̄) ≡ 0 mod 4, which is equivalent to that 1 − b1(M̄) + b+2 (M̄)
is even. By b+2 (M̄) = b−2 (M) = 1, the first Betti number b1(M) = b1(M̄)
is also even. It is well-known that a compact complex surface admits a
positive-definite Kähler metric if and only if the first Betti number is even
(cf. Barth et al. [6]). Therefore M admits a positive-definite Kähler metric,
and hence b+2 (M) ≥ 1. By a similar argument, we also obtain b+2 (M) = 1.
(For compact symplectic four-manifolds with b+2 = 1, see Ohta-Ono [77] and
also McDuff-Salamon [74].)

Let ξ be the Killing vector field generating the S1-action. Then, from
Proposition 2.10, ξ� := ξ −√−1Iξ is a non-trivial holomorphic vector field
on (M, I) with zeros, under the same assumptions as in Theorem 2.11. Owing
to Carrell-Howard-Kosniowski [16], any compact complex surface admitting
such a vector field has negative Kodaira dimension. Then, from Petean’s
list (Theorem 2.8), we see that (M, I) should be biholomorphic to a ruled
surface, since b+2 (M) = 1.

We next assume that (M, g, I) is also a self-dual neutral Kähler surface.
Then, by Proposition 2.7, (M, I) should be biholomorphic to one of the
Hirzebruch surfaces.

Finally, we show that the fixed point set F is obtained as F = Σ1

∐
Σ2

for holomorphic spheres Σ1 and Σ2. Note first that, by Proposition 2.10,
the Killing vector field ξ is also a symplectic vector field with respect to
ΩI (i.e., LξΩI ≡ 0). Since a rational ruled surface M is simply-connected,
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there exists a moment map z : M → R for the given S1-action, that is, a
function z on M satisfying ιξΩI = dz. It is well-known that a moment map
z : M → R is a perfect Bott-Morse function. Hence we obtain b1(F ) =
b1(M) = 0 (cf. Frankel [26]). Therefore each component Σj in (2.19) is of
genus zero, that is, a holomorphic sphere. On the other hand, the Euler
characteristics χ(M) and χ(F ) satisfy χ(F ) = χ(M) in general. Then we
obtain 2k +m = χ(F ) = χ(M) = 4. From the assumption k ≥ 2, it follows
that k = 2 and m = 0. The proof is now complete. �

We next study a self-dual neutral Kähler surface with a time-like isometric
S1-action in a general setting. (For a Riemannian analogue of the arguments
below, see [60] and [63].)

Let (M, g, I) be a neutral Kähler surface and ΩI denote its Kähler form.
Assume that (M, g) admits a time-like isometric S1-action, and denote by F
its fixed point set and by ξ the Killing vector field generating the S1-action.
Assume also that there exists a moment map z : M → R for the action.
Note that z is unique up to an additive constant and its critical submanifold
coincides with F . By virtue of Proposition 2.10, we see that ξ and Iξ satisfy
[ξ, Iξ] ≡ 0, and hence define a holomorphic foliation F on M \ F . Since the
holomorphic structure of this foliation F is compatible with that of (M, I),
we can introduce, at least locally, a holomorphic structure on the leaf space
(M \ F )/F . Let x +

√−1y be a local holomorphic coordinate of the leaf
space. We now define data w and θ by

w := −g(ξ, ξ)−1, θ := −wg(ξ, ·) = g(ξ, ξ)−1ξ�.(2.20)

It then follows from the definition of z (i.e., ιξΩI = dz) that

Idz = −w−1θ and Idx = −dy.(2.21)

Since ξ is a Killing vector field on (M, g) and θ(ξ) ≡ 1, the one-form θ is
regarded as a connection form of an S1-bundle M \ F → (M \ F )/S1. In
particular, dθ is a basic two-form. Taking account of (2.20) and (2.21), we
can express g and ΩI respectively as

g = −(wdz2 + w−1θ2) + weu(dx2 + dy2),
ΩI = −dz ∧ θ + weudx ∧ dy,(2.22)

which are understood to define u. Let t be a fiber-coordinate satisfying
ξ = ∂/∂t. Then x, y, z, t are regarded as local coordinates of M \ F . Note
that u and w are independent of t.

The integrability condition of I is equivalent to that

0 ≡ (dx+
√−1dy) ∧ (wdz +

√−1θ) ∧ (dw ∧ dz +
√−1dθ)(2.23)

= ([wx − dθ(∂y, ∂z)] +
√−1[wy − dθ(∂z, ∂x)])dx ∧ dy ∧ dz ∧ dt,
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where ∂x = ∂/∂x, ∂y = ∂/∂y and ∂z = ∂/∂z. On the other hand, the
closedness of ΩI is equivalent to

0 ≡ dΩI = dz ∧ dθ + (weu)zdz ∧ dx ∧ dy(2.24)

= [dθ(∂x, ∂y) + (weu)z]dz ∧ dx ∧ dy.

From (2.23) and (2.24), we obtain

dθ = wxdy ∧ dz + wydz ∧ dx− (weu)zdx ∧ dy.(2.25)

Note that [dθ]/2π determines an integral cohomology class on the base space,
since θ is a connection form. By d(dθ) = 0, we have the equation:

wxx + wyy − (weu)zz ≡ 0.(2.26)

From an argument analogous to that in [60], it follows that the Ricci form γ
of (M, g, I) is given by

γ =
1

2
d(Idu),

which is rewritten as

γ = −1

2

(
uxx + uyy − (eu)zz

)
dx ∧ dy − (d(w−1uz) ∧ θ)+,(2.27)

where (d(w−1uz) ∧ θ)+ denotes the self-dual part of d(w−1uz) ∧ θ. Then
(d(w−1uz) ∧ θ)+ ∧ ΩI vanishes, since ΩI = −dz ∧ θ + weudx ∧ dy is an anti-
self-dual two-form on (M, g). Recalling that the self-duality of g is equivalent
to its scalar-flatness (i.e., γ ∧ ΩI ≡ 0), we obtain the equation:

uxx + uyy − (eu)zz ≡ 0.(2.28)

Conversely, given such data w > 0 and u on a three-manifold U , we can
reconstruct a self-dual neutral Kähler metric on an S1-bundle over U , by an
argument similar to that in [60]. Summarizing these, we obtain an indefinite
analogue of the generalized Gibbons-Hawking ansatz (cf. [60]):

Proposition 2.13 Let w > 0 and u be smooth functions on an open set U
in R3 satisfying (2.26) and (2.28). Suppose that

1

2π
α :=

1

2π

(
wxdy ∧ dz + wydz ∧ dx− (weu)zdx ∧ dy

)
(2.29)
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determines an integral cohomology class in H2(U ; R). Let π : M → U be an

S1-bundle over U with connection form θ whose curvature is given by dθ = α.

Define a metric g and an almost complex structure I by

g := −(wdz2 + w−1θ2) + weu(dx2 + dy2),

Idz := −w−1θ, Idx := −dy.(2.30)

Then (g, I) is a self-dual neutral Kähler structure on M.

Moreover, every self-dual neutral Kähler surface with a time-like isometric

S1-action is obtained, at least locally, by this construction.

We now introduce a generalization of this ansatz (Proposition 2.13), based
on the Jones-Tod correspondence (cf. Jones-Tod [41], Appendix 5.1).

Let (M, g) be an oriented pseudo-Riemannian four-manifold with neutral
metric g admitting a time-like isometric S1-action. If the S1-action under
consideration is fixed-point free, then the orbit space Y := M/S1 is a smooth
three-manifold. Let ǧ be a Lorentzian metric on Y defined by

π∗ǧ = g − ξ� ⊗ ξ�

g(ξ, ξ)
,(2.31)

where π : M → Y is the natural projection and ξ� := g(ξ, ·) denotes the
metric-dual of ξ. Then π : (M, g) → (Y, ǧ) is a pseudo-Riemannian submer-
sion. Let β̌ be a one-form on Y satisfying

π∗β̌ =
−dg(ξ, ξ) − 2 ∗g (ξ�∧dξ�)

2g(ξ, ξ)
.(2.32)

Then (ǧ,−2β̌) determines a unique torsion-free affine connection D on Y
such that

Dǧ = −2β̌ ⊗ ǧ,(2.33)

and gives a (Lorentzian) Weyl structure ([ǧ], D) on Y , where [ǧ] denotes the
conformal class of ǧ (see Appendix 5.1). Let g′ be another metric on M
defined by g′ := e2f̌◦πg for some smooth function f̌ on Y , and (ǧ′,−2β̌′)
the corresponding pair obtained by substituting g′ for g in (2.31) and (2.32).
Then (ǧ,−2β̌) and (ǧ′,−2β̌′) determine the same Weyl structure ([ǧ], D). A
Weyl structure ([ǧ], D) is said to be Einstein-Weyl if the symmetrized Ricci
tensor of D is proportional to ǧ. For later convenience, we recall the following
(see Appendix 5.1, cf. Hitchin [36], Jones-Tod [41]):

22



Proposition 2.14 (M, g) is self-dual if and only if (Y, [ǧ], D) is Einstein-

Weyl.

Concerning the converse construction of self-dual neutral metrics, we can
show the following (cf. [65]):

Proposition 2.15 Let (Y, [ǧ], D) be an oriented Lorentzian Einstein-Weyl

three-manifold, β̌ a one-form defined by Dǧ = −2β̌ ⊗ ǧ for a Lorentzian

metric ǧ in the conformal class [ǧ], and V a smooth positive function on

Y satisfying d∗̌(d − β̌)V ≡ 0, where ∗̌ denotes the Hodge star operator of

(Y, ǧ). Suppose that the cohomology class [∗̌(d− β̌)V ]/2π is integral, that is,

contained in the image of H2(Y ; Z) → H2(Y ; R). Let π : M → Y denote an

S1-bundle over Y with connection form θ whose curvature is given by

dθ = ∗̌(d− β̌)V.(2.34)

Then, for any non-vanishing function f on M , a neutral metric g defined by

g = f(−V −1θ ⊗ θ + V π∗ǧ)(2.35)

is self-dual with respect to a suitable orientation.

Proof. We first note that π : (M, (fV )−1g) → (Y, ǧ) is a pseudo-Riemannian
submersion, and the standard S1-action along the fiber yields an isome-
try of (M, (fV )−1g). The Killing vector field ξ generating the S1-action
on (M, (fV )−1g) satisfies

(fV )−1g(ξ, ξ) = −V −2, ξ� := (fV )−1g(ξ, ·) = −V −2θ.

Define a one-form β(fV )−1g by

β(fV )−1g =
−d((fV )−1g(ξ, ξ)) − 2 ∗(fV )−1g (ξ�∧dξ�)

2(fV )−1g(ξ, ξ)
.

Then we see that β(fV )−1g coincides with β̌. Indeed, noting that

∗(fV )−1g(θ ∧ π∗α) = V π∗(∗̌α)
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for any two-form α on Y , we have

β(fV )−1g =
−d((fV )−1g(ξ, ξ)) − 2 ∗(fV )−1g (ξ�∧dξ�)

2(fV )−1g(ξ, ξ)

=
dV −2 − 2 ∗(fV )−1g (V −2θ ∧ V −2dθ)

−2V −2

=
−2V −3dV − 2V −3∗̌(dθ)

−2V −2

=
−2V −3dV + 2V −3(d− β̌)V )

−2V −2

= β̌.

Thus it is verified that (ǧ,−2β(fV )−1g) and (ǧ,−2β̌) define the same Weyl
structure. By Proposition 2.14, (fV )−1g is a self-dual metric, and hence so
is g. �

Remark 2.16 If we take another connection form θ′ satisfying dθ′ = ∗̌(dV −
β̌V ) = dθ, then

g := −V −1θ ⊗ θ + V π∗ǧ and g′ := −V −1θ′ ⊗ θ′ + V π∗ǧ

are isometric to each other. Indeed, there exists a map e
√−1φ : Y → S1

satisfying θ′ − θ = dφ. Then the map e
√−1φ induces a bundle isomorphism

(gauge transformation) Φ : M →M such that g′ = Φ∗g. Namely, (M, g) and

(M, g′) are isometric via the map Φ.

If we take the de Sitter three-space S3
1 as an Einstein(-Weyl) manifold

Y in Proposition 2.15, then we obtain an analogue of LeBrun’s hyperbolic
ansatz. Recall that the de Sitter space S3

1 can be realized as a hyperquadric
in the Minkowski space-time R4

1 as follows:

S3
1 := {(x0, x1, x2, x3) ∈ R4

1 | − x2
0 + x2

1 + x2
2 + x2

3 = 1},
gS3

1
:= (−dx2

0 + dx2
1 + dx2

2 + dx2
3)|S3

1
.

(2.36)

It is well-known that the de Sitter space S3
1 = (S3

1 , gS3
1
) is a Lorentzian

space-form of constant curvature +1 (cf. Wolf [90]). Then an ansatz given in
Proposition 2.15 is rewritten in the following fashion (see [47], cf. [60]):

Proposition 2.17 Let V be a smooth positive function on the de Sitter three-

space S3
1 such that ∗̌dV/2π is a closed two-form on S3

1 that determines an
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integral class in H2(S3
1 ; R). Let M → S3

1 denote an S1-bundle over S3
1 with

connection form θ whose curvature is given by

dθ = ∗̌dV,(2.37)

where ∗̌ denotes the Hodge star operator of S3
1 . Define a metric gV,θ on M

by

gV,θ := −V −1θ⊗θ + V gS3
1
.(2.38)

Then gV,θ is a self-dual neutral metric on M, and, at least locally, is confor-

mal to a scalar-flat neutral Kähler metric with respect to a suitable complex

structure on M.

Remark 2.18 Although gV,θ depends on V and θ, the isometry class of gV,θ

is independent of the choice of θ (see Remark 2.16). Unless otherwise stated,

we shall write gV in place of gV,θ for brevity.

2.4 Construction of self-dual Kähler metrics

Let (V, θ) be a solution of (2.37) satisfying that V > 0 and [∗̌dV ]/2π = 0 in
the image Im(H2(S3

1 ; Z) → H2(S3
1 ; R)). Then we obtain a self-dual neutral

metric gV on M(∼=S1 × S3
1), the total space of a trivial S1-bundle over S3

1 .
In this section, we first study several conditions for the existence of a neutral
metric ḡV conformal to gV such that ḡV can extend smoothly to M := S2×S2.

We first identify S3
1 with R × S2 via the map

S3
1 � (x0, x1, x2, x3) = (sinh ρ, (cosh ρ)v) �→ (ρ, v) ∈ R × S2,

where v ∈ S2 ⊂ R3. Let hS2 denote the standard unit round metric on
S2 = {ρ = 0} and ωS2 its volume form. Then gS3

1
is expressed as

gS3
1

= −dρ2 + cosh2ρ hS2 (−∞ < ρ < +∞),

and the Hodge star operator ∗̌ of S3
1 is given by

∗̌dρ = − cosh2ρωS2 , ∗̌dζ =
√−1dρ∧dζ,

where ζ is a complex coordinate of S2.
Concerning smooth extensions of neutral metrics, we show the following
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Proposition 2.19 Let V be a smooth positive function on S3
1 = R×S2 such

that ∗̌dV is an exact two-form on S3
1 and (V, θ) is a smooth solution of (2.37).

Assume that θ has no dρ-component. Define a metric ḡV on M = S1×R×S2

by

ḡV := −V dρ
2 + V −1θ2

cosh2ρ
+ V hS2 .(2.39)

Then ḡV extends smoothly to M ∼= S2 × S2, via polar coordinates at r :=

eρ = 0 and at q := e−ρ = 0, if and only if V satisfies the following conditions:

V = 1 + r2F−(r2, ζ) as r → +0,

V = 1 + q2F+(q2, ζ) as q → +0
(2.40)

for smooth functions F± on R × S2 in variables r2, q2 and ζ.

Proof. Let t be a fiber-coordinate of the trivial S1-bundle M. Since the
situations around r = 0 and q = 0 are similar, we discuss only the case near
r = 0. Set x̂+

√−1ŷ := re
√−1t. Then the following relations hold:

r2 = x̂2 + ŷ2, rdr = x̂dx̂+ ŷdŷ, r2dt = −ŷdx̂+ x̂dŷ,
dr2 + r2dt2 = dx̂2 + dŷ2, rdr∧dt = dx̂∧dŷ.(2.41)

We first verify that the condition (2.40) is necessary. Suppose that ḡV
extends smoothly to M via polar coordinate x̂ +

√−1ŷ = re
√−1t. The

restriction of ḡV to S2 × {ζ} (ζ ∈ S2) is also smooth in (x̂, ŷ). In general,
a metric a(r)dr2 + 2b(r)rdrdt+ c(r)r2dt2 on R+ × S1 = {(r, e

√−1t)} extends
smoothly to R2 via x̂ +

√−1ŷ = re
√−1t if and only if a(r), b(r) and c(r)

are smooth even functions in r satisfying a(0) = c(0)(�= 0) and b(0) = 0
(cf. Kazdan-Warner [48], Besse [7]). In our case, ḡV |S2×{ζ} is given as

ḡV |S2×{ζ} = −
(

4V

(1 + r2)2
dr2 +

4V −1

(1 + r2)2
r2dt2

)
.

Therefore V should be a smooth even function in r satisfying V (0, ζ) =
V (0, ζ)−1, that is, V (0, ζ) = 1. Then V should satisfy the condition (2.40).

For sufficiency, we recall that dV is given as

dV = 2(F (r2, ζ) + r2∂r2F (r2, ζ))rdr

+r2(∂ζF (r2, ζ)dζ + ∂ζ̄F (r2, ζ)dζ),

26



where F := F−, ∂r2F := ∂F/∂r2, ∂ζF := ∂F/∂ζ and ∂ζ̄F := ∂F/∂ζ. By
(2.41), dV is a smooth one-form near r2 = 0 in variables x̂, ŷ and ζ. In terms
of (r, ζ), the Hodge star operator ∗̌ on S3

1 satisfies

∗̌rdr = −
√−1

2

(1 + r2)2

(1 + |ζ|2)2
dζ∧dζ, ∗̌dζ =

√−1

r
dr∧dζ.(2.42)

Thus we have

∗̌dV = −√−1(F (r2, ζ) + r2∂r2F (r2, ζ))
(1 + r2)2

(1 + |ζ|2)2
dζ∧dζ

+
√−1rdr∧(∂ζF (r2, ζ)dζ − ∂ζ̄F (r2, ζ)dζ).

Then the pull-back of ∗̌dV onto M is regarded as a smooth two-form near
r2 = 0. By assumption, there exists a connection form θ = dt+A such that
∗̌dV = dθ = dA for some (real) one-form A on S3

1 . Now, comparing both
sides of ∗̌dV = dA, we see that A is also smooth near r2 = 0. Then ḡV near
r2 = 0 is expressed as

ḡV = −4{(1 + r2F̃ (r2, ζ))r2(dt+ A)2 + (1 + r2F (r2, ζ))dr2}
(1 + r2)2

+(1 + r2F (r2, ζ))hS2 ,

= −4(dr2 + r2dt2)

(1 + r2)2
−4{F̃ (r2, ζ)(r2dt)2 + F (r2, ζ)(rdr)2}

(1 + r2)2

−4{1 + r2F̃ (r2, ζ)}(2(r2dt)A+ r2A2)

(1 + r2)2
+ (1 + r2F (r2, ζ))hS2 ,

where 1 + r2F̃ (r2, ζ) := (1 + r2F (r2, ζ))−1 near r2 = 0. Recall that rdr,
r2dt, dr2 + r2dt2 on R2\{(0, 0)} extends smoothly to R2 via the coordinates
(x̂, ŷ) = r(cos t, sin t). We can therefore regard ḡV as a smooth neutral metric
on R2×S2.

Similarly, we also see that ḡV extends smoothly to a neighborhood of
q2 = 0. Thus ḡV is regarded as a smooth metric on M. �

Remark 2.20 After a gauge transformation, we may assume that θ has no

dρ-component (cf. Remark 2.16).

We next prove that there exists an almost complex structure IV on M =
S2 × S2 such that (ḡV , IV ) is a neutral Kähler structure, if V satisfies the
same assumptions as those in Proposition 2.19.
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Proposition 2.21 Let ḡV be a self-dual neutral metric on M = S2 × S2 as

in Proposition 2.19. Define an almost complex structure IV and a two-form

Ω̄V on M = S1 × S3
1 = S1 × R × S2 respectively by

IV dρ := −V −1θ, IV dζ :=
√−1dζ,(2.43)

Ω̄V := ḡV (IV ·, ·).(2.44)

Then IV is integrable on M and Ω̄V extends smoothly to a symplectic form

on M. Thus (ḡV , IV ) is regarded as a self-dual neutral Kähler structure on

M.

Proof. Let Λp,q denote the space of (p, q)-forms on M with respect to IV .
Then IV is integrable if and only if dΛ1,0⊂Λ2,0⊕Λ1,1, or equivalently,

(dρ+
√−1V −1θ)∧dζ∧d(dρ+

√−1V −1θ)≡0,(2.45)

since Λ1,0 is generated by dρ +
√−1V −1θ and dζ. By using (2.37), the

integrability condition (2.45) is verified as follows:

(dρ+
√−1V −1θ)∧dζ∧d(dρ+

√−1V −1θ)

=
√−1(dρ+

√−1V −1θ)∧dζ∧(−V −2dV ∧θ + V −1dθ)

=
√−1(dρ+

√−1V −1θ)∧dζ∧(−V −2dV ∧θ + V −1∗̌dV )

=
√−1(−V −2dρ∧dζ∧dV ∧θ +

√−1V −2θ∧dζ∧∗̌dV )

= −√−1V −2(∂ζ̄V dρ∧dζ∧dζ̄∧θ −
√−1∂ζ̄V θ∧dζ∧(−√−1dρ∧dζ̄))

≡ 0.

We next examine the fundamental form Ω̄V of (ḡV , IV ). By definition,
Ω̄V is expressed as

Ω̄V = ḡV (IV ·, ·) = −d tanh ρ∧θ + V ωS2 .(2.46)

By the coordinate change r = eρ, we have

Ω̄V = − 4rdr∧θ
(1 + r2)2

+ V ωS2 .

From (2.41), we see that Ω̄V is smooth and nondegenerate near r2 = 0, and
near q2 = 0 as well. Then we can regard Ω̄V as a nondegenerate two-form on
the whole M. By definition, we can also regard IV as a complex structure
on the whole M.
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The exterior derivative of Ω̄V is computed as follows:

dΩ̄V = −d(d tanh ρ∧θ) + d(V ωS2)

= d tanh ρ∧dθ + dV ∧ωS2

= sech2ρ dρ∧∗̌dV + dV ∧ωS2

= −sech2ρ dρ∧∂ρV cosh2ρωS2 + ∂ρV dρ∧ωS2

≡ 0.

Thus (ḡV , IV ) is a neutral Kähler structure on M. �

Remark 2.22 Note that the Ricci form γV is given by

γV = d(V −1 tanh ρ θ) + ωS2 .(2.47)

It is easy to verify the scalar-flatness of ḡV by checking γV ∧ Ω̄V ≡ 0.

Remark 2.23 Given two solutions (V, θ) and (V ′, θ′) of (2.37) satisfying the

conditions in Proposition 2.19, define a one-parameter family {(Vλ, θλ)} by

Vλ := λV + (1 − λ)V ′, θλ := λθ + (1 − λ)θ′.

Then (Vλ, θλ) is also a solution of (2.37) for each λ, and hence (ḡVλ
, IVλ

)

determines a self-dual neutral Kähler structure on M = S2 × S2. Taking

V ′ ≡ 1, we see that IV is obtained as a smooth deformation of the standard

product complex structure I0 = IS2⊕IS2 on S2×S2 = CP1×CP1, the product

of two complex projective lines. Therefore it follows from Kodaira-Spencer

theory [53] that (M, IVλ
) is biholomorphic to CP1×CP1 for sufficiently small

λ. Furthermore, by using results in this section, one can prove that (M, IV )

is biholomorphic to CP1 × CP1.

Remark 2.24 The Kähler form Ωλ of ḡVλ
corresponding to Vλ = λV +

(1 − λ)1 is given by Ωλ = λΩ̄V + (1 − λ)Ω0, where Ω0 is the standard

symplectic structure: Ω0 = −ωS2(z)⊕ωS2(ζ). By the self-duality of ḡV , it is

verified that [Ωλ]·c1(CP1 × CP1) = 0, that is, the cohomology class [Ωλ] is

orthogonal to the first Chern class c1(CP1 × CP1) with respect to the cup

product inH2(CP1×CP1; R). By (2.46), it is also verified that [Ωλ]·[ωS2(ζ)] =

[Ω0]·[ωS2(ζ)]. Then we see that [Ωλ] is independent of λ, that is, [Ωλ] = [Ω0]

for any λ (0 ≤ λ ≤ 1). It follows from Moser’s theorem [76] that (M, Ω̄V ) is

symplectomorphic to (S2 × S2,Ω0).
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We next examine the Weyl conformal tensorW of ḡV . For convenience, we
first recall the following proposition, which is verified by a direct computation
(see Appendix 5.1).

Proposition 2.25 Let ḡV be a self-dual neutral metric on M = S2 × S2

defined by (2.39). Then the Weyl conformal tensor W of ḡV is completely

determined by the following quadratic form QV :

QV := V DdV − 3dV⊗dV + ‖dV ‖2gS3
1
,

where D is the Levi-Civita connection of gS3
1

and ‖ · ‖2 denotes the indefinite

squared norm with respect to gS3
1
. In particular, ḡV is conformally-flat if and

only if QV vanishes identically.

We shall next examine the conformal-flatness of ḡV . Let g′V be a metric
on M = S1×S3

1 defined by g′V := −θ2 + V 2 gS3
1

and D′ the Levi-Civita

connection of gS3
1

′ := V 2gS3
1
. Then D′ and D satisfy the following relation:

D′
XY = DXY + d log V (X)Y + d log V (Y )X − gS3

1
(X,Y )D log V,

where D log V denotes the gradient vector field of log V with respect to gS3
1
.

From this relation, we can verify that

D′dlogV = V −2(V DdV − 3dV⊗dV + ‖dV ‖2gS3
1
) = V −2QV .

Thus, ḡV is conformally-flat if and only if D′d log V≡0. Since V satisfies
V > 0 and V → 1 as ρ→ ±∞, the condition D′d log V≡0 implies that log V
is constant, thus V≡1. Summarizing these, we obtain the following

Theorem 2.26 Let ḡV be a self-dual neutral Kähler metric on M = S2×S2

defined by (2.39). Then ḡV is conformally-flat if and only if V≡1.

In the case where V ≡ 1, ḡV is not only conformally-flat but also coincides
with the standard product metric g0 on S2 × S2. Indeed, take a connection
form θ = dt and set r = eρ. Then ḡV is given as

ḡV = −dρ
2 + dt2

cosh2ρ
+ hS2 = −4(dr2 + r2dt2)

(1 + r2)2
+ hS2 ,

which is just the product metric g0 = −hS2⊕hS2 restricted to M = S1×S3
1 =

S1×R×S2.
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For a nonconstant solution V of (2.37) satisfying the conditions in Propo-
sition 2.19, we obtain a non-conformally-flat, self-dual neutral Kähler metric
on S2 × S2. Next, we construct a family of self-dual neutral Kähler metrics
on S2 × S2 from some explicit solutions (V, θ) of (2.37).

Let G0 be a smooth function on S3
1 defined by

G0 :=
1 − tanh ρ

2
.

Then G0 satisfies

∗̌dG0 =
1

2
ωS2 ,

and hence

1

2π
[∗̌dG0] = 1 ∈ Im(H2(S3

1 ; Z) → H2(S3
1 ; R)) = Z.

From Proposition 2.17, we thus obtain a self-dual neutral metric gG0 on
S3 ×R, the total space of the Hopf bundle S3 ×R → S3

1 = S2 ×R. It should
be remarked that gG0 is conformal to a restriction of the Fubini-Study type
metric on the indefinite complex projective space CP2

1 (see Chapter 4).
Let {σj}Nj=1 (resp. {τj}Nj=1) be a family of orientation-preserving isome-

tries on S3
1 such that each σj (resp. τj) preserves (resp. reverses) the time-

orientation. If we set

V :=
1

N

N∑
j=1

(G0◦σj +G0◦τj),(2.48)

then V satisfies [∗̌dV ]/2π = 0 in Im(H2(S3
1 ; Z) → H2(S3

1 ; R)). Thus we
obtain a self-dual neutral metric gV on the total space M of a trivial S1-
bundle over S3

1 . We can verify that V satisfies the conditions in Proposition
2.19 as follows: Recall that Isom+(S3

1), the group of orientation-preserving
isometries of S3

1 , is isomorphic to SO(1, 3). Let ϕ be an orientation-preserving
isometry of S3

1 and ϕ−1 denote its inverse. Then ϕ and ϕ−1 are expressed as

ϕ =

(
a b∗

c D

)
, ϕ−1 =

(
a −c∗

−b D∗

)
,

where a ∈ R, b, c ∈ R3 and D is a real 3×3-matrix such that

a2 − |c|2 = 1, −ba+D∗c = 0, −bb∗ +D∗D = E,
a2 − |b|2 = 1, ca−Db = 0, −cc∗ +DD∗ = E.
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Here E is the identity matrix, and ∗ stands for the transpose. Then ρ◦ϕ
satisfies

sinh(ρ◦ϕ) = a sinh ρ+ cosh ρ b∗v,

cosh(ρ◦ϕ) =
√

1 + (a sinh ρ+ cosh ρ b∗v)2,

tanh(ρ◦ϕ) =
a sinh ρ+ cosh ρ b∗v√

1 + (a sinh ρ+ cosh ρ b∗v)2
,

v◦ϕ =
c sinh ρ+ cosh ρD∗v√

1 + (a sinh ρ+ cosh ρ b∗v)2

for v ∈ S2 ⊂ R3. Then G0◦ϕ is expressed as

G0◦ϕ =
1 − tanh(ρ◦ϕ)

2
=

1

2

(
1 − a sinh ρ+ cosh ρ b∗v√

1 + (a sinh ρ+ cosh ρ b∗v)2

)
.

By using the coordinates r = eρ and q = e−ρ, we have

G0◦ϕ =
1

2

(
1 − a(r2 − 1) + b∗v(r2 + 1)√

4r2 + (a(r2 − 1) + b∗v(r2 + 1))2

)

=
1

2

(
1 − a(1 − q2) + b∗v(1 + q2)√

4q2 + (a(1 − q2) + b∗v(1 + q2))2

)
.

Hence G0◦ϕ is smooth near both r2 = 0 and q2 = 0. If ϕ preserves
(resp. reverses) the time-orientation of S3

1 , then we have

G0◦ϕ→ 1 (resp.G0◦ϕ→ 0) as r2 → 0,

G0◦ϕ→ 0 (resp.G0◦ϕ→ 1) as q2 → 0,

so that V = (1/N)
∑N

j=1(G0◦σj + G0◦τj) > 0 satisfies the conditions in
Proposition 2.19. Therefore (ḡV , IV ) is a self-dual neutral Kähler structure
on M = S2×S2. It follows from Remark 2.23 that (M, IV ) is biholomorphic
to CP1 × CP1. Noting Theorem 2.26, we obtain the following result, which
was referred as Theorem 1.3.

Corollary 2.27 There exists a family of self-dual neutral Kähler metrics,

which includes non-conformally-flat metrics, on CP1 × CP1.
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Remark 2.28 In the argument above, ρ is regarded as the signed distance

function from the totally geodesic sphere

Σ := {ρ = 0} = {(0, x1, x2, x3) | x2
1 + x2

2 + x2
3 = 1} ⊂ S3

1 .

In general, an oriented totally geodesic sphere in S3
1 is determined by a point

in H3
+

∐
H3

−. The sphere Σ = {ρ = 0} is indeed corresponding to a point

(1, 0, 0, 0) ∈ H3
+. Take another totally geodesic sphere Σ′ corresponding to

p ∈ H3
+ and denote by ρ′ the signed distance function from Σ′. Then gS3

1
is

also expressed as

gS3
1

= −dρ′2 + cosh2ρ′hΣ′ ,

where hΣ′ denotes the unit round metric on Σ′. Let σ be an element in

Isom+(H3) = SO+(1, 3) with σ(1, 0, 0, 0) = p. Then Σ′ = σ(Σ) and ρ′◦σ = ρ.

For a solution (V, θ) of (2.37), the metrics

ḡV := −V dρ
2 + V −1θ2

cosh2ρ
+ V hΣ, ḡ′V := −V dρ

′2 + V −1θ2

cosh2ρ′
+ V hΣ′

on M are both self-dual. Furthermore, ḡ′V is conformal to ḡV . Indeed, ḡ′V is

rewritten as

ḡ′V = sech2ρ′(−V −1θ2 + V gS3
1
) =

cosh2ρ

cosh2ρ′
ḡV .

Thus the isometry class of ḡV depends on V and the identification S3
1 =

R × S2. However, its conformal class is independent of the identification

S3
1 = R × S2, and depends only on V . For a metric ḡV = (sech2ρ)gV , we

shall call the totally geodesic sphere Σ = {ρ = 0} in S3
1 the neck sphere (or

the equatorial sphere).

Remark 2.29 For a function V defined by (2.48), let {pj}Nj=1 and {qj}Nj=1

be the points in H3
+ and H3

− corresponding to the totally geodesic spheres

{σ−1
j (S2)}Nj=1 and {τ−1

j (S2)}Nj=1, respectively. Here S2 denotes the fixed neck

sphere. Then ḡV depends on the configuration of {pj; qj}Nj=1, rather than on

{σj; τj}Nj=1.

Each metric ḡV has an obvious S1-symmetry coming from the S1-bundle

structure. According to the configuration of {pj; qj}Nj=1, the corresponding
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metric ḡV may have other extra symmetries. For example, if {qj}Nj=1 consist of

the antipodal points of {pj}Nj=1, that is, qj = −pj (j = 1, . . . , N), then V≡1.

Hence ḡV is the standard metric g0, which has a natural S(O(3)×O(3))-

symmetry. If {pj; qj}Nj=1 are simultaneously collinear, that is, if they lie on

a common two-dimensional subspace Π in R4
1, then ḡV has a T 2(= S1×S1)-

symmetry. Indeed, the extra S1-symmetry is given by the rotation around

the intersection of the subspace Π and the neck sphere S2 = {ρ = 0}. In

particular, if N = 1, then ḡV always has a T 2-symmetry (cf. Poon [83]).

Let G(x, y) be a smooth function on S3
1 × (H3

+

∐
H3

−) defined by

G(x, y) := G0◦ϕy(x)
for an isometry ϕy on S3

1 satisfying ϕy(y) = e0 = (1, 0, 0, 0) (y ∈ H3
+

∐
H3

−).
Then G(x, y) is rewritten as

G(x, y) =
1

2

(
1 +

〈ϕy(x), e0〉√
1 + 〈ϕy(x), e0〉2

)
=

1

2

(
1 +

〈x, y〉√
1 + 〈x, y〉2

)
.

Setting ϕpi
= σi and ϕqi = τi (1 ≤ i ≤ N), we can also express the data V

given by (2.48) as

V (x) =
1

N

N∑
i=1

[G(x, pi) +G(x, qi)].

Motivated by this expression, we obtain the following generalization: Let
µ+ and µ− be probability measures on H3

+ and H3
− with compact support,

respectively. Define a smooth function V on S3
1 by

V (x) =

∫
H3

+

G(x, y)dµ+(y) +

∫
H3

−

G(x, y)dµ−(y),

which satisfies the conditions in Proposition 2.19. Then the corresponding
metric ḡV is self-dual neutral metric on M.

For a solution (V, θ) of (2.37), each metric ḡV defined by (2.39) is neutral
Kähler. Therefore we can express ḡV as in (2.30):

ḡV = −(wdz2 + w−1θ2) + weu(dx2 + dy2),

by setting

dz = d tanh ρ, w = V cosh2ρ, eu =
4

cosh2ρ(1 + x2 + y2)2
.
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Since we may assume that z = tanh ρ, the data u and w are rewritten as

w =
V

1 − z2
, eu =

4(1 − z2)

(1 + x2 + y2)2
,(2.49)

and hence satisfy (2.26) and (2.28). The corresponding Einstein-Weyl struc-
ture on the quotient space is indeed induced from that of the de Sitter space
S3

1 , and then (2.25) is equivalent to (2.37) under the substitution (2.49). (In
the Riemannian case, such a solution as (2.49) appears in, e.g., Calderbank-
Pedersen [15].)

For a self-dual neutral Kähler structure (g, I) given by (2.13), we can find,
by virtue of Proposition 2.14, an Einstein-Weyl structure on U . Indeed, the
structure is determined by a pair (ǧ,−2β̌) defined to be

ǧ := −dz2 + eu(dx2 + dy2) and β̌ := −uzdz.(2.50)

We now prove the following result, which characterizes self-dual neutral
Kähler metrics constructed on CP1 × CP1 by the de Sitter ansatz.

Theorem 2.30 Let (M, g, I) be a compact self-dual neutral Kähler surface

with a time-like S1-action satisfying the same condition assumed in Theo-

rem 2.11, and F denote its fixed point set. Suppose that the Einstein-Weyl

structure determined by (ǧ,−2β̌) in (2.50) is closed on the quotient space

(M \ F )/S1 (i.e., dβ̌≡0). Then (M, I) is biholomorphic to CP1 × CP1 and

(M, g, I) is isomorphic to (CP1 × CP1, ḡV ) given in Proposition 2.21.

Proof. Recall that the orbit space Y := M/S1 is a compact three-manifold
with boundary ∂Y ∼= Σ1

∐
Σ2, where Σ1 and Σ2 denote the connected compo-

nents of F . If necessary, by rescaling and adding a constant, we may assume
that a moment map z : M → R satisfies z(M) = [−1, 1] with z−1(−1) = Σ1

and z−1(+1) = Σ2. Then z induces a smooth function ž : Y → [−1, 1], since
z is constant along each orbit of the action. By the assumption that ξ is
time-like, Iξ is a gradient-like vector field of ž : Y → [−1, 1], that is,

dž(π∗Iξ) = dz(Iξ) = ΩI(ξ, Iξ) = g(ξ, ξ) < 0 on Y \ ∂Y.

Thus ž has no critical points in the interior of Y , and hence Y is identified
with [−1, 1] × S2 = {(z, x, y) | − 1 ≤ z ≤ 1, (x, y) ∈ S2}, where S2 ∼= Σj

(j = 1, 2) is a two-sphere endowed with a holomorphic structure. In this
description, x+

√−1y is a holomorphic coordinate of S2.
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It follows from (2.22) and the smoothness of g on M that u and w on
(−1, 1) × S2 satisfy

(1 − z2)w → 1, weu → finite(> 0) as z → ±1(2.51)

by an argument similar to that in Proposition 2.19. Hence it is verified that
eu → +0 as z → ±1. By the integrality of [dθ]/2π, we obtain

− 1

2π

d

dz

∫
{z}×S2

weudx∧dy =
1

2π

∫
{z}×S2

(−weu)zdx∧dy =: n ∈ Z.

Thus there exists a real constant c such that∫
{z}×S2

weudx∧dy = −2πnz + c.(2.52)

On the other hand, by (2.28), we have

d2

dz2

∫
{z}×S2

eudx∧dy =

∫
{z}×S2

(eu)zzdx∧dy

=

∫
{z}×S2

(uxx + uyy)dx∧dy = −8π

for any fixed z ∈ (−1, 1). The last equality follows from the Gauss-Bonnet
theorem for S2 with a z-depending metric eu(dx2 + dy2), since its Ricci form
is given by −(1/2)(uxx+uyy)dx∧dy. From the asymptotic behavior of eu, we
also obtain

1

1 − z2

∫
{z}×S2

eudx∧dy = 4π.(2.53)

In what follows, we suppose that the Einstein-Weyl structure on Y \∂Y =
(−1, 1) × S2 determined by (ǧ,−2β̌) in (2.50) is closed, that is, dβ̌ ≡ 0.
By arguments similar to those in [63] and [15], we can express u as u =
a(z) + b(x, y). Here a(z) ∈ C∞([−1, 1]) and b(x, y) ∈ C∞(S2) satisfy

bxx + byy = keb, (ea)zz = k(2.54)

for some negative constant k. Without loss of generality, we may assume that
k = −2. Taking account of (2.53) and (2.54), we obtain eu = (1−z2)eb, since
bxx + byy = −2eb is equivalent to that a Riemannian metric eb(dx2 + dy2)(=:
hS2) on S2 is of constant curvature +1. Define a function V on [−1, 1] × S2

by V := weue−b = w(1 − z2). It follows from (2.51) that

lim
z→±1

∫
{z}×S2

weudx ∧ dy(2.55)

= lim
z→±1

∫
{z}×S2

w(1 − z2)ebdx ∧ dy = 4π.
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From (2.52), it also follows that

lim
z→±1

∫
{z}×S2

weudx∧dy = ∓2πn+ c.(2.56)

Comparing (2.55) with (2.56), we obtain

4π = −2πn+ c, 4π = +2πn+ c,

which imply that n = 0 and c = 4π. Therefore, dθ is an exact two-form
on (−1, 1) × S2, so that the corresponding S1-bundle is trivial. Hence M is
biholomorphic to CP1 × CP1.

Recalling w = V (1 − z2)−1 and weu = V eb, and setting z = tanh ρ, we
can rewrite g as

g = −V dz
2 + V −1(1 − z2)2θ2

1 − z2
+ V eb(dx2 + dy2)

= −V dρ
2 + V −1θ2

cosh2ρ
+ V hS2 .

Note that gS3
1

is expressed, via the identification S3
1 = (−1, 1) × S2, as

gS3
1

= − dz2

(1 − z2)2
+

hS2

1 − z2
.

It is then verified that (V, θ) satisfies (2.37). Indeed,

dθ =
Vxdy ∧ dz

1 − z2
+
Vydz ∧ dx

1 − z2
− Vze

bdx ∧ dy = ∗̌dV.

Thus we have reexamined an analogue of LeBrun’s hyperbolic ansatz. �

2.5 Isometry classes

In this section, we investigate the isometry classes of our self-dual neutral
Kähler metrics on CP1 × CP1. Temporarily, we denote a self-dual neutral
metric ḡV defined by (2.39) as ḡV,θ:

ḡV,θ := sech2ρ(−V −1θ⊗θ + V gS3
1
).

Let φ be a smooth function on S3
1 . If (V, θ) is a solution of (2.37), then so

is (V, θ + dφ). Recall that such a modification stems from a gauge transfor-
mation Φ = e

√−1φ : M → M with Φ∗ḡV,θ = ḡV,θ+dφ. Thus ḡV,θ and ḡV,θ+dφ
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are isometric via the map Φ. Let ϕ be an orientation-preserving isometry of
S3

1 . Given a solution (V, θ) of (2.37), it is easy to see that (V ◦ϕ, ϕ∗θ) is also
a solution, and ḡV ◦ϕ,ϕ∗θ and ḡV,θ are related by

ḡV ◦ϕ,ϕ∗θ =
cosh2(ρ◦ϕ)

cosh2ρ
ϕ∗ḡV,θ.

Note that ḡV,θ depends also on the choice of a totally geodesic neck sphere
(see Remark 2.28). If ϕ preserves the neck sphere S2 = {ρ = 0}, then
ϕ∗ḡV,θ = ḡV ◦ϕ,ϕ∗θ, that is, ḡV,θ and ḡV ◦ϕ,ϕ∗θ are isometric.

It is natural to ask, for solutions (V, θ) and (V ′, θ′) of (2.37), when the
corresponding metrics ḡV,θ and ḡV ′,θ′ are isometric. The main goal in this
section is to prove the following

Theorem 2.31 Let ḡV,θ and ḡV ′,θ′ be non-conformally-flat, self-dual neutral

Kähler metrics on (M, I) = CP1 × CP1 corresponding respectively to (V, θ)

and (V ′, θ′), which are solutions of (2.37). Let ϕ be an orientation-preserving

diffeomorphism on M and suppose ϕ∗ḡV ′,θ′ = ḡV,θ. Then ϕ should be induced

from an isometry of S3
1 preserving the neck sphere S2. In particular, V ′◦ϕ =

V holds.

From Theorem 2.31 above, we see that self-dual metrics obtained in Sec-
tion 2.4 give rise to infinitely many different isometry classes on S2 × S2.
For example, let q be a point in H3

−. Then the isometry class of the metric
ḡV corresponding to {e0 = (1, 0, 0, 0); q} is parameterized by the hyperbolic
distance between e0 and −q in H3

+.
Before proving Theorem 2.31, we first recall basic properties of holomor-

phic vector fields on CP1×CP1. Let (U0, z) and (U∞, z′) be local holomorphic
coordinate charts of the first CP1 satisfying z′ = 1/z on U0

⋂
U∞, and (V0, ζ)

and (V∞, ζ ′) be local holomorphic coordinate charts of the second CP1 sat-
isfying ζ ′ = 1/ζ on V0

⋂
V∞. It is well-known that any holomorphic vector

field on CP1 × CP1 can be expressed in terms of (z, ζ) as α(z)∂z + β(ζ)∂ζ ,
where ∂z := ∂/∂z and ∂ζ := ∂/∂ζ. Here α(z) and β(ζ) are polynomials in z
and ζ of degree at most two, respectively.

In regard to time-like Killing vector fields, we first prove the following

Proposition 2.32 Let g be a neutral Kähler metric on CP1×CP1 and ξ �≡ 0

a time-like Killing vector field on (CP1×CP1, g). Then ξ has no isolated zero.

Moreover, taking suitable holomorphic coordinates, we may regard ξ as the

real part of ξ − √−1Iξ =
√−1az∂z for some a ∈ R. In particular, we can

identify Zero(ξ) with {0,∞}× CP1.
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Proof. Let ξ� denote the holomorphic vector field on CP1 × CP1 associated
with ξ, that is, ξ� := ξ − √−1Iξ. At a point p ∈ Zero(ξ), taking suitable
holomorphic coordinates (z, ζ) with (z(p), ζ(p)) = (0, 0), we may assume that
ξ� = α(z)∂z + β(ζ)∂ζ for α(z) = z(a1 + a2z) and β(ζ) = ζ(b1 + b2ζ), where
a1, a2, b1, b2 ∈ C. Since ξ is a time-like vector field, we have

2g(ξ, ξ) = |α(z)|2g11̄(z, ζ) + α(z)β(ζ)g12̄(z, ζ)(2.57)

+β(ζ)α(z)g21̄(z, ζ) + |β(ζ)|2g22̄(z, ζ) < 0

for (z, ζ) /∈ Zero(ξ). Here gjl̄ = g(∂zj , ∂zl) (j, l = 1, 2) denote the components
of g with respect to {∂z1 := ∂z, ∂z2 := ∂ζ}. Then, since g is an I-invariant
neutral metric, the determinant of the matrix (gjl̄) is negative, that is,

g11̄(z, ζ)g22̄(z, ζ) − |g12̄(z, ζ)|2 < 0.(2.58)

The assumption that ξ is Killing (i.e., Lξg ≡ 0) is equivalent to

2ξg11̄ + (α′(z) + α′(z))g11̄ = 0, 2ξg12̄ + (α′(z) + β′(ζ))g12̄ = 0,

2ξg22̄ + (β′(ζ) + β′(ζ))g22̄ = 0.
(2.59)

In particular, we obtain

(a1 + a1)g11̄ = (a1 + b1)g12̄ = (b1 + b1)g22̄ = 0(2.60)

at (z, ζ) = (0, 0).
First, we show that |a1|2 + |b1|2 > 0. Indeed, if we suppose a1 = b1 = 0,

then (2.59) is rewritten as

Re(a2z
2∂z + b2ζ

2∂ζ)g11̄ = −(a2z + a2z)g11̄,

Re(a2z
2∂z + b2ζ

2∂ζ)g12̄ = −(a2z + b2ζ)g12̄,

Re(a2z
2∂z + b2ζ

2∂ζ)g22̄ = −(b2ζ + b2ζ)g22̄.

If (z, ζ) → (0, 0) along z = ζ ∈ R and along z = ζ ∈ √−1R, then we have

(a2 + a2)g11̄ = (a2 + b2)g12̄ = (b2 + b2)g22̄ = 0,

(a2 − a2)g11̄ = (a2 − b2)g12̄ = (b2 − b2)g22̄ = 0

at (z, ζ) = (0, 0). From (2.58), it follows that a2 = b2 = 0, which contradicts
ξ �≡ 0. Thus we obtain that |a1|2 + |b1|2 > 0.

Setting ζ = λz in (2.57) for an arbitrary λ ∈ C and z → 0, we have

|a1|2g11̄ + λa1b1g12̄ + λa1b1g21̄ + |λ|2|b1|2g22̄ ≤ 0(2.61)
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at (z, ζ) = (0, 0). In particular, we obtain

|a1|2g11̄(0, 0) ≤ 0 and |b1|2g22̄(0, 0) ≤ 0.(2.62)

Furthermore, (2.61) also implies that

|a1b1|4|g12̄(0, 0)|2(|g12̄(0, 0)|2 − g11̄(0, 0)g22̄(0, 0)) ≤ 0.

Then it follows from (2.58) that |a1b1|4|g12̄(0, 0)|2 = 0. By (2.60), we obtain

g12̄(0, 0) = 0, and hence g11̄(0, 0)g22̄(0, 0) < 0,(2.63)

since |a1|2 + |b1|2 > 0. Then |a1|2|b1|2 = 0 follows from (2.62). Furthermore,
(2.63) implies that ξ has no isolated zero. To show this, we would suppose
the contrary, that is, (|a1|2 + |a2|2)(|b1|2 + |b2|2) > 0. Setting either z = 0
or ζ = 0 in (2.57), we would have g11̄(z, 0) ≤ 0 and g22̄(0, ζ) ≤ 0, which
contradicts (2.63). Therefore (z, ζ) = (0, 0) is not an isolated zero of ξ.

Thus we may assume that ξ� = z(a1 + a2z)∂z for a1 �=0. Setting z̃ :=
z/(a1 + a2z), we have ξ� = a1z̃∂z̃. Here a1 + a1 = 0 follows from (2.60). �

Next, we study the case where two linearly independent time-like Killing
vector fields exist.

Proposition 2.33 Let ξ1 and ξ2 be time-like Killing vector fields on a neutral

Kähler surface (CP1 × CP1, g). Suppose that ξ1 and ξ2 are linearly indepen-

dent over R. Then [ξ1, ξ2] �= 0, and ξ1, ξ2, [ξ1, ξ2] are linearly independent

over R.

Proof. We may assume that ξ�1 =
√−1az∂z for some real number a�=0. Since

ξ2 is also a Killing vector field on (CP1×CP1, g), the holomorphic vector field
ξ�2 is expressed as either

ξ�2 = (a0 + a1z + a2z
2)∂z or ξ�2 = (b0 + b1ζ + b2ζ

2)∂ζ .

In the second case, ξ1 and ξ2 clearly commute, and we may also assume
that ξ�2 =

√−1bζ∂ζ for some real constant b �= 0. It follows from (2.60) that
g12̄(0, 0) = 0, and hence from (2.57) that g11̄(0, 0) < 0 and g22̄(0, 0) < 0.
Then we have

g11̄(0, 0)g22̄(0, 0) − |g12̄(0, 0)|2 = g11̄(0, 0)g22̄(0, 0) > 0.

However, this contradicts (2.58).
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Now, consider the case where ξ�2 = (a0 + a1z + a2z
2)∂z. We first notice

that [ξ1, ξ2] ≡ 0 if and only if [ξ�1 , ξ
�

2 ] ≡ 0. Here [ξ�1 , ξ
�

2 ] is computed as

[ξ�1 , ξ
�

2 ] =
√−1a(a2z

2 − a0)∂z.

Then we have ξ�2 = a1z∂z if [ξ1, ξ2] ≡ 0 everywhere on CP1 ×CP1. By (2.60),
we also see that a1 should be a nonzero pure imaginary. This means that ξ1
and ξ2 are linearly dependent over R. If [ξ1, ξ2] �≡ 0, then it can be verified
that ξ1, ξ2, [ξ1, ξ2] are linearly independent over R. �
Proof of Theorem 2.31: Let ḡV := ḡV,θ and ḡV ′ := ḡV ′,θ′ be non-conformally-
flat, self-dual neutral Kähler metrics on M = CP1 × CP1 given by

ḡV = sech2ρ(−V −1θ2 + V gS3
1
), ḡV ′ = sech2ρ(−V ′−1

θ′2 + V ′ gS3
1
),

respectively. Then the pull-back metric ϕ∗ḡV ′ is written as

ϕ∗ḡV ′ = sech2(ρ◦ϕ)
(
−(V ′◦ϕ)−1(ϕ∗θ′)2 + (V ′◦ϕ)ϕ∗gS3

1

)
.(2.64)

We now suppose that there exists an orientation-preserving isometry ϕ :
(M, ḡV ) → (M, ḡV ′). Let ξ and ξ′ be the Killing vector fields tangent to
the fibers on (M, ḡV ) and (M, ḡV ′) satisfying θ(ξ) = θ′(ξ′) = 1, respectively.
Since ϕ∗ḡV ′ = ḡV , the pull-back vector field ϕ∗ξ′ of ξ′ is also a time-like
Killing vector field on (M, ḡV ). We have to consider the following two cases:

(1) [ξ, ϕ∗ξ′] ≡ 0, (2) [ξ, ϕ∗ξ′] �≡ 0.

In the case (1), we see from Proposition 2.33 that ξ and ϕ∗ξ′ are linearly
dependent, that is, ξ′ = kϕ∗ξ for some real constant k �=0. It is clear that

ϕ∗θ′(ξ) = k−1θ(ξ), ϕ∗ḡV ′(ϕ∗ξ′, ·) = kḡV (ξ, ·).(2.65)

Comparing the same quantity

ϕ∗ḡV ′(ϕ∗ξ′, ϕ∗ξ′) = − (V ′◦ϕ)−1

cosh2(ρ◦ϕ)
and k2ḡV (ξ, ξ) = −k

2V −1

cosh2ρ
,

we then have

k2(V ′◦ϕ) cosh2(ρ◦ϕ) = V cosh2ρ.(2.66)

Thus ϕ∗ḡV ′ is rewritten as

ϕ∗ḡV ′ = − V −1

cosh2ρ
(kϕ∗θ′)2 +

V ′◦ϕ
cosh2(ρ◦ϕ)

ϕ∗gS3
1
.(2.67)
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It follows from (2.65), (2.66) and (2.67) that

ϕ∗θ′ = k−1θ, ϕ∗gS3
1

=
k2 cosh4 (ρ◦ϕ)

cosh4ρ
gS3

1
.(2.68)

In particular, ϕ determines a conformal transformation of the de Sitter space
S3

1 .
It is well-known that Conf(S3

1), the group of (orientation-preserving) con-
formal transformations of S3

1 , is isomorphic to SO(2, 3). Indeed, if we realize
S3

1 as a hypersurface of RP4:

S3
1 =

{
(x0 : x1 : x2 : x3 : x4)

∣∣∣∣ −x2
0 + x2

1 + x2
2 + x2

3 − x2
4 = 0,

x4 = 1

}
,

then the action of Conf(S3
1) on S3

1 is induced from a linear transformation
on R5 preserving the quadratic form −x2

0 + x2
1 + x2

2 + x2
3 − x2

4. This action is
also given by a linear fractional transformation as follows:

ϕ(x) =
Px+ q

r∗x+ s
(x ∈ S3

1 ⊂ R4
1),(2.69)

where P is a 4×4-matrix, q, r are column vectors of R4 and s ∈ R such that

P ∗P − rr∗ = E, P ∗q − rs = 0, −q∗q + s2 = 1,
PP ∗ − qq∗ = E, −Pr + qs = 0, −r∗r + s2 = 1.

(2.70)

Here ∗ means the metric dual in R4
1. Then we have

ϕ∗gS3
1

= (r∗x+ s)−2gS3
1
.(2.71)

In (2.69), we may express P , q, r, x respectively as

P =

(
a b∗

c D

)
, q =

(
q0
q

)
, r =

( −r0
r

)
, x =

(
sinh ρ

(cosh ρ)v

)
,

where a, q0, r0 ∈ R, b, c, q, r ∈ R3 and D is a 3× 3-matrix and x ∈ S3
1 . Then,

from (2.69), we obtain

cosh2(ρ◦ϕ) = 1 +

(
a sinh ρ+ cosh ρ b∗v + q0
r0 sinh ρ+ cosh ρ r∗v + s

)2

.(2.72)

On the other hand, comparing (2.68) and (2.71), we also obtain

cosh2(ρ◦ϕ) =
cosh2ρ

|k(r0 sinh ρ+ cosh ρ r∗v + s)| .(2.73)
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Therefore we have

1 +

(
a sinh ρ+ cosh ρ b∗v + q0
r0 sinh ρ+ cosh ρ r∗v + s

)2

=
cosh2ρ

|k(r0 sinh ρ+ cosh ρ r∗v + s)| .(2.74)

As ρ→ ±∞, we can see that r0 = 0 and r = 0, that is, r = 0. Indeed, unless
r = 0, the limit of the left hand side is finite for some v ∈ S2, but that of
the right hand side is always infinite. This is a contradiction. Since r = 0,
it follows from (2.70) that q = 0, s2 = 1 and P ∈ O(1, 3). Then (2.74) is
equivalent to

k2(1 + (a sinh ρ+ cosh ρ b∗v)2)2 = cosh4ρ.(2.75)

Dividing both sides of (2.75) by cosh4ρ and taking ρ → ±∞, and setting
ρ = 0, we have

k2(±a+ b∗v)4 = lim
ρ→±∞

k2(sech2ρ+ (a tanh ρ+ b∗v)2)2 = 1,(2.76)

k2(1 + (b∗v)2)2 = 1(2.77)

for any v ∈ S2. Then (2.76) and (2.77) imply that k2 = 1, b = 0 and a2 = 1,
and hence c = 0 and D ∈ O(3). It turns out that ϕ is induced from an
element of S(O(1) × O(3) ×O(1)). Namely,

(
P q
r∗ s

)
=

 ±1 0 0
0 D 0
0 0 ±1

 , or equivalently, ϕ(x) =
1

±1

( ±1 0
0 D

)
x

for x ∈ S3
1 . Therefore ḡV and ḡV ′ are isometric if and only if ϕ belongs to

S(O(1) × O(3)), since ϕ is orientation-preserving. Thus, we have verified
Theorem 2.31 in the case (1).

We next consider the case (2). In this case, since ξ1 := ξ and ξ2 := ϕ∗ξ′

do not commute, ξ1, ξ2 and ξ3 := [ξ1, ξ2](�≡0) are linearly independent, and
the corresponding holomorphic vector fields may be given by

ξ�1 =
√−1az∂z, ξ�2 = (a0 + a1z + a2z

2)∂z, ξ�3 =
√−1a(a2z

2 − a0)∂z.

The restrictions of ξ1, ξ2, ξ3 to the first factor S2 × {ζ}, the z-sphere, are
linearly independent Killing vector fields on S2×{ζ} with a negative definite
metric ḡV |S2×{ζ}. It is well-known that if a two-dimensional Riemannian man-
ifold admits three linearly independent Killing vector fields, then it should
be of constant curvature. Thus (S2×{ζ}, ḡV |S2×{ζ}) is of constant curvature.
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Let Ω̄V denote the Kähler form of (ḡV , IV ), and ωS2(z) and ωS2(ζ) the
volume forms of the unit round spheres S2 ×{ζ} and {z}× S2, respectively.
Then the Lie derivatives LξaωS2(ζ), LξaωS2(z) and LξaΩ̄V vanish identically
(a = 1, 2, 3). In particular, we see that Lξa(ωS2(z) ∧ Ω̄V ) = (ξaV )ωS2(z) ∧
ωS2(ζ) ≡ 0 (a = 1, 2, 3). Thus V is independent of z, so that the equation
d∗̌dV ≡ 0 is reduced to the Laplace equation on {z}×S2. It then follows that
V is a constant function, namely, V ≡ 1, and hence that ḡV is the standard
product metric on S2 × S2. However, this contradicts the assumption that
ḡV is non-conformally-flat. �
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3 Neutral hyperkähler surfaces

3.1 Split-quaternions

We will introduce the notion of a split-quaternion structure, which is also
called under several different names such as an almost quaternionic structure
of the second kind, a paraquaternionic structure or a biparacomplex structure,
on a smooth manifold (see [42], cf. Libermann [67], Ianus [38]; Blažić [9],
Garćıa-Rı́o et al. [28]; Etayo-Santamaria [24]). We begin by recalling the
definition of the split-quaternion algebra ′H.

The split-quaternion algebra ′H is an R-algebra with the unit 1, generated
by 1, i, �j, �k as a vector space over R:

′H = {p+ qi + r�j + s�k | p, q, r, s ∈ R}.

Here i, �j, �k are assumed to satisfy the following relations:

i2 = −1, �j2 = �k2 = 1,

i�j = −�ji = �k, �j�k = −�k�j = −i, �ki = −i�k = �j.

It is known that ′H can be realized as the Clifford algebra Cliff(R2) asso-
ciated with the usual Euclidean space R2. To be precise, let e1 and e2 be
an orthonormal basis for R2. Then (e1)

2 = (e2)
2 = 1 and (e1·e2)2 = −1 in

Cliff(R2), where · denotes the Clifford multiplication. Therefore the map

p+ qi + r�j + s�k �→ p+ q(−e1·e2) + re1 + se2

gives an isomorphism from ′H to Cliff(R2). Note that ′H is also identified with
the Clifford algebra Cliff(R2

1) associated with the pseudo-Euclidean space R2
1

of type (1,1), via the map

p+ qi + r�j + s�k �→ p+ qε1 + rε2 + sε1·ε2,

where {ε1, ε2} is an orthonormal basis for R2
1 which satisfies 〈ε1, ε1〉 = −1,

〈ε2, ε2〉 = +1 and 〈ε1, ε2〉 = 0. Then ′H is also isomorphic to the algebra
M2(R) of real 2×2-matrices. For example, an isomorphism ′ H∼=M2(R) is
given by

ι : p+ qi + r�j + s�k �→
(
p+ r −q + s
q + s p− r

)
.

A geometric structure corresponding to ′H is defined in the following way.
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Definition 3.1 Let M be an n-dimensional manifold. A triplet (I, ′J, ′K) of

endomorphisms on the tangent bundle TM of M is called a split-quaternion

structure if I, ′J, ′K satisfy the following relation:

I2 = −Id, ′J2
= ′K2

= Id and I ′J = −′JI = ′K.

A metric g on M with a split-quaternion structure (I, ′J, ′K) is said to be

compatible if the quadruplet (g, I, ′J, ′K) satisfies the following I-invariance

and ′J, ′K-skew-invariance:

g(X,Y ) = g(IX, IY ) = −g(′JX, ′JY ) = −g(′KX, ′KY )(3.1)

for arbitrary vector fields X and Y on M .

Let (M, g) be a pseudo-Riemannian manifold compatible with a split-
quaternion structure (I, ′J, ′K). Then, such a quadruplet (g, I, ′J, ′K) is called
a neutral almost hyperhermitian structure (or an almost paraquaternionic
Hermitian structure) on M . By (3.1), we can define three kinds of two-forms
ΩI , Ω′J , Ω′K as follows:

ΩI := g(I·, ·), Ω′J := g(′J ·, ·), Ω′K := g(′K·, ·).(3.2)

The triplet (ΩI ,Ω′J ,Ω′K) is called the fundamental form of (g, I, ′J, ′K).
We now examine the existence of a neutral almost hyperhermitian struc-

ture (g, I, ′J, ′K) on a smooth manifold M . We first show that there exists
a suitable orthonormal frame field associated with the given neutral almost
hyperhermitian structure. In particular, we see that the dimension of M is
divisible by 4.

Proposition 3.2 Let (M, g, I, ′J, ′K) be an n-dimensional neutral almost hy-

perhermitian manifold (n ≥ 1). Then n = 4k for some positive integer k,

and there exists a local oriented frame field {e±1 , . . . , e±2k} on M such that

Ie+
A

= e−
A

(1 ≤ A ≤ 2k),(3.3)

g(e+A , e
+
B ) = g(e−A , e

−
B ) = 0 (1 ≤ A,B ≤ 2k),(3.4)

g(e−2i−1, e
+
2j) = −g(e+2i−1, e

−
2j) = δij (1 ≤ i, j ≤ k).(3.5)
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With respect to this local frame field {e+1 , . . . , e+2k; e−1 , . . . , e−2k}, we can express

I, ′J, ′K and g respectively as

I =

(
O2k −E2k

E2k O2k

)
, ′J =

(
E2k O2k

O2k −E2k

)
, ′K =

(
O2k E2k

E2k O2k

)
,

g =

(
O2k −tJ2k

−J2k O2k

)
=

(
O2k J2k

−J2k O2k

)
,

where E2k and J2k denote respectively the following 2k×2k-matrices:

E2k :=


1 0

0 1
. . .

1 0

0 1

 , J2k :=


0 −1

1 0
. . .

0 −1

1 0

 .

Proof. Let F±
′J (resp.F±

′K) be a tangential distribution on M defined by

F±
′J := {v ∈ TM | ′Jv = ±v} (resp.F±

′K := {v ∈ TM | ′Kv = ±v}).

Then F+
′J and F−

′J are isotropic with respect to g, that is, g = 0 on F+
′J ×F+

′J
and on F−

′J ×F−
′J . Note that F+

′J and F−
′J are isomorphic to each other, as real

vector bundles, since the almost complex structure I gives an isomorphism
I : F+

′J → F−
′J . If we identify F−

′J with F+
′J by I and if we set F+

′J (∼=F−
′J ) =: E,

then the tangent bundle TM is isomorphic to E⊕E.
We can construct an orthonormal frame field required above by using a

modified Gram-Schmidt process: Take a nonzero vector v+
1 ∈ F+

′J . Set e+1 :=
v+
1 and e−1 := Ie+1 . Then g(e+1 , e

+
1 ) = g(e−1 , e

−
1 ) = 0 and g(e+1 , e

−
1 ) = 0. Hence

there exists a vector v+
2 ∈ F+

′J such that g(e−1 , v
+
2 )�=0. Indeed, if we would

suppose that g(e−1 , v
+) = 0 for any v+ ∈ F+

′J , then g(e−1 , v) = 0 for any v ∈
TM , since F−

′J is an isotropic subspace. By the nondegeneracy of g, we would
have e−1 = 0, which contradicts e−1 �=0. Set e+2 := (1/g(e−1 , v

+
2 ))v+

2 and e−2 :=
Ie+2 . Then g(e−1 , e

+
2 ) = 1 and g(e+1 , e

−
2 ) = −1. If the dimension is greater than

four, we can take a nonzero vector v+
3 ∈ F+

′J such that {e+1 , e+2 , v+
3 } is linearly

independent. Set e+3 := v+
3 + g(v+

3 , e
−
2 )e+1 − g(v+

3 , e
−
1 )e+2 and e−3 := Ie+3 . Then

g(e+3 , e
−
1 ) = g(e+3 , e

−
2 ) = g(e−3 , e

+
1 ) = g(e−3 , e

+
2 ) = 0. By a similar argument,

we can show that there exists a vector v+
4 ∈ F+

′J with g(e−3 , v
+
4 ) = 1. Set

e+4 := v+
4 + g(v+

4 , e
−
2 )e+1 − g(v+

4 , e
−
1 )e+2 . Then g(e+4 , e

−
1 ) = g(e+4 , e

−
2 ) = 0 and

g(e+4 , e
−
3 ) = 1. Repeating this process, we see that the dimension is divisible
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by four, so we set dim�M = 4k. Then we obtain a basis {e±1 , . . . , e±2k}
satisfying the required properties. �

As a corollary of Proposition 3.2, we have the following

Corollary 3.3 There exists a local orthonormal frame field {e1, . . . , e4k} on

a 4k-dimensional neutral almost hyperhermitian manifold (M, g, I, ′J, ′K) such

that

e1, e2 := Ie1, e3 := ′Je1, e4 := ′Ke1, . . .

. . . , e4k−3, e4k−2 := Ie4k−3, e4k−1 := ′Je4k−3, e4k := ′Ke4k−3

satisfy

g(e1, e1) = g(e2, e2) = · · · = g(e4k−3, e4k−3) = g(e4k−2, e4k−2) = −1,

g(e3, e3) = g(e4, e4) = · · · = g(e4k−1, e4k−1) = g(e4k, e4k) = +1.

Proof. Let {e±1 , . . . , e±2k} be as in Proposition 3.2. Define a local orthonormal
frame field on (M, g) by

e1 :=
e+2 − e−1√

2
, e2 :=

e−2 + e+1√
2

= Ie1,

e3 :=
e−1 + e+2√

2
= ′Je1, e4 :=

e−2 − e+1√
2

= Ie3 = ′Ke1,

· · · · · ·
e4k−3 :=

e+2k − e−2k−1√
2

, e4k−2 :=
e−2k + e+2k−1√

2
= Ie4k−3

e4k−1 :=
e−2k−1 + e+2k√

2
= ′Je4k−3, e4k :=

e−2k − e+2k−1√
2

= Ie4k−1,

= ′Ke4k−3.

Then {e1, . . . , e4k} satisfies the required conditions. �
Let E be a subbundle of the tangent bundle TM consisting of (+1)-

eigenvectors of ′J and ω the fundamental form ΩI restricted to E. Then
ω is a nondegenerate smooth section of Λ2E∗, that is, E := (E,ω) is a
symplectic vector bundle over M . Indeed, the nondegeneracy of ω is verified
in the following way: Suppose that ω(X,Y ) = 0 for arbitrary vector field Y
tangent to E (X is also a vector field tangent to E). Then g(IX, Y ) = 0
for arbitrary Y ∈ E. On the other hand, if Y is tangent to I(E), then
g(IX, Y ) = −g(X, IY ) = 0, since X and IY are tangent to a totally null
distribution E. Thus we have g(IX, Y ) = 0 for any vector field Y on M .
Therefore X ≡ 0 by the nondegeneracy of g. Summarizing the above, we
have the following
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Proposition 3.4 Let (g, I, ′J, ′K) be a neutral almost hyperhermitian struc-

ture on a real n = 4k-dimensional manifold M . Then there exists a 2k-

dimensional symplectic vector subbundle E = (E,ω) of TM such that

(TM,ΩI)∼=(E⊕E,ω⊕ω).(3.6)

Furthermore, via the identification (3.6), we can express I, ′J, ′K, g,ΩI ,Ω′J ,Ω′K

respectively as

I =

(
O −Id

Id O

)
, ′J =

(
Id O

O −Id

)
, ′K =

(
O Id

Id O

)
,(3.7)

g =

(
O ω

−ω O

)
,(3.8)

ΩI =

(
ω O

O ω

)
, Ω′J =

(
O −ω
−ω O

)
, Ω′K =

(
ω O

O −ω

)
.(3.9)

Conversely, if there exists a subbundle E with a symplectic structure ω of

the tangent bundle TM such that TM ∼= E ⊕ E, then M admits a neutral

almost hyperhermitian structure (g, I, ′J, ′K) defined by (3.7) and (3.8).

Proposition 3.2 allows us to give a description of Proposition 3.4, the
existence of neutral almost hyperhermitian structures, from the viewpoint of
G-structures as follows: Let {e±1 , . . . , e±2k} and {ẽ±1 , . . . , ẽ±2k} be local oriented
frame fields satisfying the conditions (3.3), (3.4) and (3.5). Then there exists
a local matrix-valued function T such that

(ẽ+1 , . . . , ẽ
+
2k, ẽ

−
1 , . . . , ẽ

−
2k) = (e+1 , . . . , e

+
2k, e

−
1 , . . . , e

−
2k)

(
T O2k

O2k T

)
,

where T takes values in 2k×2k-matrices and satisfies tTJ2kT = J2k. There-
fore the existence of neutral almost hyperhermitian structure is equivalent to
that of ∆(Sp(k,R))-structure, where ∆(Sp(k,R)) denotes the image of the
diagonal embedding of the real symplectic group Sp(k,R) into Sp(k,R) ×
Sp(k,R). In other words, a 4k-dimensional manifold M admits a neutral
almost hyperhermitian structure (g, I, ′J, ′K) if and only if there exists a sym-
plectic vector bundle E = (E,ω) over M of rank 2k such that TM ∼= E ⊕E
with three almost symplectic structures:

Ω1(X,Y ) := ω(X+, Y +) + ω(X−, Y −),
Ω2(X,Y ) := −ω(X+, Y −) + ω(Y +, X−),
Ω3(X,Y ) := ω(X+, Y +) − ω(X−, Y −)
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for arbitrary vector fields X = (X+, X−), Y = (Y +, Y −) ∈ E⊕E. In Hitchin
[37], such a structure (Ω1,Ω2,Ω3) is called a hypersymplectic structure, if Ω1,
Ω2 and Ω3 are closed forms.

Remark 3.5 The dimension of a manifold M admitting a split-quaternion

structure (I, ′J, ′K) should be even, since I is an almost complex structure

on M . However, the dimension is not necessarily divisible by 4. In fact, the

Euclidean space R2 admits a split-quaternion structure:

I =

(
0 −1

1 0

)
, ′J =

(
1 0

0 −1

)
, ′K =

(
0 1

1 0

)
.

In this case, there exists no metric on R2 compatible with the split-quaternion

structure (I, ′J, ′K) above.

We can generalize this example to arbitrary even-dimensional Euclidean

space R2m, by replacing 1 with the identity matrix Em. In general, a 2m-

dimensional manifold M admits a split-quaternion structure (I, ′J, ′K) if and

only if there exists a subbundle E such that TM ∼= E ⊕ E(∼= E ⊗� C).

Hence we see that all odd Chern classes c2j+1(TM, I) of a split-quaternion

manifold (M, I, ′J, ′K) are two-torsion elements in the cohomology groups

H4j+2(M ; Z), that is, 2c2j+1(TM, I) = 0 (see Milnor-Stasheff [75]). In par-

ticular, c2j+1(TM, I) = 0 in the de Rham cohomology group H4j+2(M ; R)

(2 ≤ 4j + 2 ≤ 2m). Furthermore, it follows that any split-quaternion mani-

fold (M, I, ′J, ′K) admits a Norden metric g compatible with I (see Bonome

et al. [12]).

Suppose that E has an almost complex structure JE (e.g., E is a symplec-

tic vector bundle). Then the given almost complex structure I is homotopic

to JE ⊕ (−JE), via the identification TM = E ⊕ E. Indeed,

I(t) := cos t

(
O −Id

Id O

)
+ sin t

(
JE O

O −JE

)
gives a smooth family of almost complex structures on M with I(0) = I

and I(π/2) = JE ⊕ (−JE). If m = 2k and k is odd, then c2j+1(E,−JE) =

−c2j+1(E, JE). Therefore c2j+1(TM, I) = c2j+1(E ⊕ E, JE⊕(−JE)) = 0 in

H4j+2(M ; Z) (1 ≤ 2j+1 ≤ m). In particular, the first Chern class c1(TM, I)

of a neutral almost hyperhermitian four-manifold (M, g, I, ′J, ′K) is zero in the

cohomology group H2(M ; Z).

50



We now focus our attention on the four-dimensional case. A four-manifold
M with a split-quaternion structure (I, ′J, ′K) admits a compatible metric g
if and only if the structure group of TM can reduce to GL+

1 (′H) := {p+ qi+
r�j + s�k | p2 + q2 > r2 + s2, p, q, r, s ∈ R}. Note that GL+

1 (′H) is isomorphic
to the general linear group GL+

2 (R) with positive determinants. When we
regard GL+

1 (′H) as a subgroup of GL2(C)(⊂ GL4(R)) by a homomorphism

ι : p+ qi + r�j + s�k �→√
p2 + q2 − r2 − s2 · 1√

p2 + q2 − r2 − s2

(
p+

√−1q r +
√−1s

r −√−1s p−√−1q

)
,

the image of ι is isomorphic to R+ × SU(1, 1), which is contained in the
conformal group CO(2, 2). Therefore we see that the conformal class of a
neutral metric g on a four-manifold compatible with (I, ′J, ′K) is uniquely
determined by the triplet (I, ′J, ′K).

Now, we give a characterization of the fundamental form (ΩI ,Ω′J ,Ω′K)
of a neutral almost hyperhermitian structure (M, g, I, ′J, ′K) (cf. Geiges [30],
Geiges-Gonzalo [31]):

Proposition 3.6 Let (M, g, I, ′J, ′K) be a neutral almost hyperhermitian four-

manifold. Then the fundamental form (Ω1,Ω2,Ω3) := (ΩI ,Ω′J ,Ω′K) satisfies

the following relation:

−Ω2
1 = Ω2

2 = Ω2
3, Ωl ∧ Ωm ≡ 0 (l �= m; l,m = 1, 2, 3).(3.10)

Conversely, for any triplet (Ω1,Ω2,Ω3) satisfying (3.10), there exists a unique

neutral almost hermitian structure (g, I, ′J, ′K) such that ΩI = Ω1,Ω′J = Ω2

and Ω′K = Ω3.

Proof. Let (M, g, I, ′J, ′K) be a neutral almost hyperhermitian four-manifold.
Proposition 3.2 implies the existence of a local orthonormal coframe field
{e1, e2, e3, e4} on (M, g) satisfying

e2 = −Ie1, e3 = ′Je1, e4 = ′Ke1,

g = −(e1)2 − (e2)2 + (e3)3 + (e4)2.

Then ΩI ,Ω′J ,Ω′K are expressed respectively as

ΩI := −e1∧e2 + e3 ∧ e4, Ω′J := e1∧e3 − e2 ∧ e4, Ω′K := e1∧e4 − e3 ∧ e2,
which satisfy the required condition (3.10).
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Conversely, we suppose that (Ω1,Ω2,Ω3) satisfies (3.10). Then we define
(I, ′J, ′K) by

Ω3(I·, ·) = Ω2, Ω1(
′J ·, ·) = Ω3, Ω2(

′K·, ·) = −Ω1.(3.11)

It follows from Ω2
2 = Ω2

3 and Ω2 ∧ Ω3 ≡ 0 that I2 = −Id. Similarly, it also
follows from −Ω2

1 = Ω2
3 and Ω1 ∧ Ω3 ≡ 0 that ′J2 = Id. By definition, we see

that (I, ′J, ′K) is a split-quaternion structure. It can be also verified that Ω1

is invariant by I, Ω′J and Ω′K are skew-invariant by ′J and ′K, respectively.
Indeed, by (3.11), we have

Ω1(IX, IY ) = −Ω3(IX,
′KY ) = −Ω2(X,

′KY ) = Ω1(X,Y ),

Ω2(
′JX, ′JY ) = −Ω1(IX,

′JY ) = −Ω3(IX, Y ) = −Ω2(X,Y ),

Ω3(
′KX, ′KY ) = Ω2(

′JX, ′KY )) = −Ω1(
′JX, Y ) = −Ω3(X,Y ).

By a similar computation, we also obtain

Ω1(·, I·) = −Ω2(·, ′J ·) = −Ω3(·, ′K·) =: g.

Therefore g is compatible with (I, ′J, ′K) and hence (g, I, ′J, ′K) is a neutral
almost hyperhermitian structure with the desired properties. �

The fundamental form (Ω1,Ω2,Ω3) := (ΩI ,Ω′J ,Ω′K) of a neutral almost
hyperhermitian four-manifold (M, g, I, ′J, ′K) gives rise to three isomorphisms

∧Ωl : Λ1 −→ Λ3 (l = 1, 2, 3).

Then we define one-forms β1, β2, β3 by

dΩl = βl ∧ Ωl (l = 1, 2, 3).

These one-forms β1, β2, β3, called the Lee forms, are related to the integrabil-
ity of I, ′J, ′K. An almost product structure (or an involution) S on TM (i.e.,
S2 = Id, S �= Id) is said to be integrable if the bundles F±

S := {v ∈ TM | Sv =
±v} are integrable. The integrability of S is equivalent to NS ≡ 0, where NS

is the Nijenhuis tensor of S defined by

NS(X,Y ) := [SX, SY ] + S2[X,Y ] − S[SX, Y ] − S[X,SY ],

for arbitrary vector fields X,Y on M . This is also true for the integrability
of an almost complex structure I. Namely, I is integrable if and only if
the Nijenhuis tensor NI of I, which is defined by replacing S with I in the
definition above, satisfies NI ≡ 0. A neutral almost hyperhermitian four-
manifold (M, g, I, ′J, ′K) is called a neutral hyperhermitian surface if I, ′J and
′K are integrable. We show the following proposition for later use (cf. Boyer
[14]).
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Proposition 3.7 Let (g, I, ′J, ′K) be a neutral almost hyperhermitian struc-

ture on a four-manifold M . Then I, ′J and ′K are integrable if and only if

the Lee forms satisfy β1 = β2 = β3.

Remark 3.8 When I, ′J, ′K are integrable, we set β := β1 = β2 = β3, and

call β the Lee form.

To show Proposition 3.7, we need the following

Lemma 3.9 Let (Ω1,Ω2,Ω3) := (ΩI ,Ω′J ,Ω′K) be the fundamental form of a

neutral almost hyperhermitian structure (g, I, ′J, ′K) on M and (N1, N2, N3) :=

(NI , N′J , N′K) a triplet of the three kinds of the Nijenhuis tensors. Then they

satisfy (3.11) and the following equations:

Ω1(X,Y ) = Ω1(IX, IY ) = Ω1(
′JX, ′JY ) = Ω1(

′KX, ′KY ),

Ω2(X,Y ) = −Ω2(IX, IY ) = −Ω2(
′JX, ′JY ) = Ω2(

′KX, ′KY ),

Ω3(X,Y ) = −Ω3(IX, IY ) = Ω3(
′JX, ′JY ) = −Ω3(

′KX, ′KY ),

dΩ2(X,Y, Z) + dΩ2(IX, IY, Z)

= dΩ3(X,Y, IZ) + dΩ3(IX, IY, IZ)

+Ω3(N1(Y, Z), IX) + Ω3(N1(Z,X), IY ),

dΩ3(X,Y, Z) − dΩ3(
′JX, ′JY, Z)

= dΩ1(X,Y,
′JZ) − dΩ1(

′JX, ′JY, ′JZ)

−Ω1(N2(Y, Z), ′JX) − Ω1(N2(Z,X), ′JY ),

−dΩ1(X,Y, Z) + dΩ1(
′KX, ′KY,Z)

= dΩ2(X,Y,
′KZ) − dΩ2(

′KX, ′KY, ′KZ)

−Ω2(N3(Y, Z), ′KX) − Ω2(N3(Z,X), ′KY ),

where X,Y, Z are arbitrary vector fields on M .

Lemma 3.9 can be verified by a direct computation.

Proof of Proposition 3.7. We only show that I is integrable if and only if
β2 = β3. Set β23 := β2 − β3 and define B23(X,Y ) := β23(X)Y − β23(Y )X.
From Lemma 3.9, we see that

Ω2(B23(X,Y ) +B23(IX, IY ), Z) = Ω2(N1(Y, Z), X) + Ω2(N1(Z,X), Y ),

where X,Y, Z are arbitrary vector fields on M .
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If β2 = β3, then we have Ω2(N1(Y, Z), X) + Ω2(N1(Z,X), Y ) ≡ 0. By
changing X,Y, Z cyclically, we also have

Ω2(N1(Z,X), Y ) + Ω2(N1(X,Y ), Z) ≡ 0,
Ω2(N1(X,Y ), Z) + Ω2(N1(Y, Z), X) ≡ 0.

So we see that Ω2(N1(X,Y ), Z) ≡ 0 for any vector fields X,Y, Z on M .
Therefore N1 ≡ 0, that is, I is integrable.

Conversely, if I is integrable, then we have B23(X,Y )+B23(IX, IY ) ≡ 0.
If we set Y = IX, then B23(X, IX) = β23(X)IX − β23(IX)X ≡ 0. Note
that if X is nonzero at a point x ∈M , then {X, IX} is linearly independent
in TxM and hence β23(X) = β23(IX) = 0 at x. Since X is arbitrary, we see
that β23 ≡ 0, namely, β2 = β3. This completes the proof. �

In regard to the self-duality of neutral hyperhermitian metrics, we prove
the following (see [42]. For the Riemannian analogue, see, e.g., Pedersen-
Swann [80]):

Proposition 3.10 Let (g, I, ′J, ′K) be a neutral almost hyperhermitian struc-

ture on a four-manifold M . If I, ′J and ′K are integrable, then g is self-dual.

Proof. For any constant θ, set ′Jθ := cos θ·′J + sin θ·′K and ′Kθ := − sin θ·′J +
cos θ·′K. Then (g, I, ′Jθ, ′Kθ) is also a neutral almost hyperhermitian structure
on M . Furthermore, its fundamental form (ΩI ,Ω′Jθ

,Ω′Kθ
) satisfies

dΩI = β ∧ ΩI , dΩ′Jθ
= β ∧ Ω′Jθ

, dΩ′Kθ
= β ∧ Ω′Kθ

,

since I, ′J, ′K are integrable. It then follows from Proposition 4.3 that these
I, ′Jθ, ′Kθ are integrable.

Since ′Kθ = ′J (θ+π/2) for any θ, we may consider only ′Jθ. Setting F±
θ :=

F±
′Jθ

for simplicity, we see that each F±
θ is an integrable totally null plane

field (a completely integrable distribution consisting of maximal isotropic
planes) on (M, g). From Lemma 2.5, the signature κ(F±

θ ) vanishes for each
θ. Moreover, it is verified that each F±

θ is an anti-self-dual totally null plane
field, since Φ(F±

′J ) = [−ΩI ±Ω′K ] ∈ P(Λ2
−) and Φ(F±

θ ) depends continuously
on θ. Note that for any anti-self-dual totally null plane σx (x ∈ M), there
exists a constant θ such that (F±

θ )x = σx. Thus we see that κ(σ) = 0 for
any anti-self-dual totally null plane σ, and from Proposition 2.4, that g is
self-dual. �

We remark that if two of I, ′J, ′K (e.g., I and ′J) are integrable, then so is
the other one (e.g., ′K). This can be verified from the proof of Proposition 3.7.
Here, we give another proof, which is valid for higher dimensions. Let A,B,C
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be endomorphisms on the tangent bundle TM satisfying AB = −BA =
C, and NA, NB, NC denote tensor fields defined by replacing S in NS with
A,B,C, respectively. Then we have the following identity:

2NC(X,Y ) =(3.12)

NA(BX,BY ) −B2NA(X,Y ) −BNA(BX, Y ) − BNA(X,BY )

+NB(AX,AY ) − A2NB(X,Y ) − ANB(AX, Y ) − ANB(X,AY )

for arbitrary vector fields X,Y on M . Hence if NA = NB ≡ 0, then NC ≡ 0.
By setting (A,B,C) = (I, ′J, ′K), (′J, ′K, I), (′K, I, ′J), we obtain the desired
result.

3.2 Neutral hyperkähler structures

The notion of neutral hyperkähler structures is defined as follows:

Definition 3.11 A neutral almost hyperhermitian manifold (M, g, I, ′J, ′K)

is called a neutral hyperkähler surface if I, ′J and ′K are parallel with respect

to the Levi-Civita connection ∇ of (M, g).

It is easy to see that this definition is equivalent to the following

Proposition 3.12 A neutral almost hyperhermitian structure (g, I, ′J, ′K) on

a manifold M is neutral hyperkähler (i.e., ∇I = ∇′J = ∇′K = 0) if and only

if I, ′J, ′K are integrable and ΩI ,Ω′J ,Ω′K are closed.

Proof. We only show that ∇′J ≡ 0 if and only if Ω′J = N′J ≡ 0. First, note
that for arbitrary vector fields X,Y, Z on M , the following identities hold:

∇Ω′J(X,Y ) = g((∇′J)X,Y ),(3.13)

2g((∇X
′J)Y, Z) = dΩ′J(X,Y, Z) + dΩ′J(X,

′JY, ′JZ)(3.14)

−g(′JX,N′J(Y, Z)).

If ∇′J ≡ 0, then we see from (3.13) that Ω′J is closed, since ∇ is torsion-free.
From (3.14), we also see that N′J ≡ 0. Conversely, if Ω′J = N′J ≡ 0, then it
follows from (3.14) that ∇′J ≡ 0. �

Remark 3.13 A neutral hyperhermitian surface is hyperkähler if and only

if its Lee form vanishes identically. Furthermore, if the Lee form is closed

(resp. exact), then a neutral hyperhermitian surface is locally (resp. globally)

conformal to a neutral hyperkähler surface.
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Noting the remark above and Proposition 3.6, we obtain the following

Proposition 3.14 Let (Ω1,Ω2,Ω3) be a triplet of symplectic structures on

a four-manifold M satisfying the relation (3.10). Then there exists a unique

neutral hyperkähler structure (g, I, ′J, ′K) on M such that

ΩI = Ω1, Ω′J = Ω2, Ω′K = Ω3.

Proof. We can define the neutral hyperhermitian structure (g, I, ′J, ′K) by
(3.11). It follows from the closedness of Ωl that βl ≡ 0 (l = 1, 2, 3). By
Proposition 3.7, we see that I, ′J, ′K are integrable, and hence that (g, I, ′J, ′K)
is a neutral hyperkähler structure on M satisfying the required conditions.

�
Let (M, g, I, ′J, ′K) be a neutral hyperkähler surface. Then (Ω′J ,Ω′K) is a

conformal symplectic couple on M in the sense of Geiges [30]. Therefore the
complex-valued two-form Ω′J +

√−1Ω′K is a nonvanishing closed (2, 0)-form
(i.e., holomorphic two-form) on (M, I), which gives a trivialization of the
canonical bundle K(M,I), as a holomorphic vector bundle. In particular, we
have c1(M, I) = 0.

We can also prove that any neutral hyperkähler metric g is Ricci-flat and
self-dual. Indeed, the self-duality of g follows from Proposition 3.10 or Propo-
sition 2.6. To show the Ricci-flatness, set (λ1

−, λ
2
−, λ

3
−) := (−ΩI ,Ω′J ,Ω′K).

Then λ1
−, λ

2
−, λ

3
− form a basis of Λ2

−. From Proposition 3.12, it follows that
λ1
−, λ

2
−, λ

3
− are parallel with respect to ∇. On the other hand, for a neu-

tral Kähler surface (M, I), the Ricci form of (M, g, I) is determined by the
curvature form R∇ of the connection on Λ2

− induced by the Levi-Civita con-
nection ∇ of (M, g). Thus we see that the Ricci curvature of (M, g) vanishes.
Summarizing these, we obtain the following

Proposition 3.15 Any neutral hyperkähler surface (M, g, I, ′J, ′K) is Ricci-

flat and self-dual, and possesses a nonvanishing holomorphic two-form Ω′J +√−1Ω′K with respect to I. In particular, the canonical bundle K(M,I) is

trivial as a holomorphic vector bundle.

To close this section, we remark the following matters on a compact neu-
tral hyperkähler surface (M, g, I, ′J, ′K). It follows from Proposition 3.15 that
there exists a nonvanishing holomorphic two-form Ω′J +

√−1Ω′K on (M, I).
In consequence, owing to the Enriques-Kodaira classification (cf. Barth et
al. [6]), a compact complex surface (M, I) admitting a neutral hyperkähler
structure (g, I, ′J, ′K) is biholomorphic to one of the following possibilities:
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(a) a complex torus, (b) a K3 surface, (c) a primary Kodaira surface.

It is clear that any complex torus has the standard flat neutral hyperkähler
structure induced from that of the complex plane C2. As mentioned in Sec-
tion 2.1, Matsushita’s result ([70]) implies that K3 surfaces admit many
neutral metrics (see also Bonome et al. [11]). However, it is known that
no K3 surface admits a neutral Kähler structure, so the case (b) does not
occur (see Draghici [22], Kotschick [54] and Petean [82]). For the case (c),
Fernández et al. [25] and de Andrés et al. [20] constructed examples of flat
neutral Kähler structures on primary Kodaira surfaces of particular type. We
will see later that any primary Kodaira surface admits a neutral hyperkähler
structure. Furthermore, we will also discuss the existence of non-flat neutral
hyperkähler structures on a primary Kodaira surface and a complex torus.

3.3 Primary Kodaira surfaces

A primary Kodaira surface X = (M, I) is a compact complex surface with
κ(X) = 0, b1(X) = 3, c1(X) = 0, c2(X) = 0. Moreover the other numerical
characters of X are given as follows:

h1,0(X) = 1, q(X) = 2, pg(X) = 1, b+2 (X) = b−2 (X) = 2,

where h1,0(X), q(X) and pg(X) denote the complex dimension of the space
of holomorphic one-forms, the irregularity and the geometric genus of X,
respectively (see Barth et al. [6]). Any primary Kodaira surface admits no
positive-definite Kähler metric, since its first Betti number b1(X) is three.
It is well-known that every primary Kodaira surface X is covered by the
complex plane C2 and its fundamental group π1(X) is represented injectively
into the complex affine transformation group Affine(C2) on C2:

ρ : π1(X) −→ Affine(C2), γ �→ ργ ,

ργ(z1, z2) = (z1 + αγ, z2 + αγz1 + βγ),

where (z1, z2) are the standard complex coordinates of C2 and αγ, βγ are
constants in C depending only on γ. Setting G := ρ(π1(X)), we can then
identify X with C2/G, as a complex surface (see Kodaira [51]).

We are now in a position to state one of our main results in this chapter.

Theorem 3.16 Let X = C2/G be a primary Kodaira surface. Then the

following two-forms Ω1,Ω2,Ω3 define a neutral hyperkähler structure on X:

Ω1 = Im(dw1 ∧ dw2) +
√−1Re(w1)dw1 ∧ dw1 + (

√−1/2)∂∂ϕ,

Ω2 = Re(e
√−1θdw1 ∧ dw2), Ω3 = Im(e

√−1θdw1 ∧ dw2),
(3.15)
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where (w1, w2) is the standard complex coordinate system of C2, θ is a real

constant and ϕ is a solution of the equation

4
√−1(Im(dw1 ∧ dw2) +

√−1Re(w1)dw1 ∧ dw1) ∧ ∂∂ϕ = ∂∂ϕ ∧ ∂∂ϕ.(3.16)

In particular, any primary Kodaira surface admits a neutral hyperkähler

structure. Conversely, under suitable complex coordinates (w1, w2) of C2,

the fundamental form of any neutral hyperkähler structure on X is expressed

as (3.15).

Proof. Let Ψ : X → ∆ be an elliptic fiber bundle structure over the base
elliptic curve ∆. Then we have the following commutative diagram:

C2 ��−−−−→ X��Ψ
�Ψ

C −−−−→
�

∆

where Ψ̃ is the projection from C2 to the first factor C, and �̃,� are the
covering maps. Let (z1, z2) denote the standard complex coordinate system of
C2 above. Then φ := dz1 gives rise to a nonvanishing holomorphic one-form
on X, and generates the cohomology group H0(X; Ω1

X) ∼= H1,0

∂
(X), where

Ω1
X denotes the sheaf of germs of holomorphic one-forms on X. Furthermore,

σ0,1 := dz2 − z1dz1 is a ∂-closed (0, 1)-form on X, and the ∂-cohomology
classes of φ̄ and σ0,1 generate the Dolbeault cohomology group H1(X;OX) ∼=
H0,1

∂
(X), where OX denotes the structure sheaf of X. Since dσ0,1 = −dz1 ∧

dz1, a real one-form σ := σ0,1 + σ0,1 on X is d-closed. Furthermore, we see
that the cohomology classes of φ, φ̄ and σ generate H1(X; C). Note that
dz1 ∧ (dz2 − z1dz1) yields a nonvanishing holomorphic two-form on X.

Let (Ω1,Ω2,Ω3) := (ΩI ,Ω′J ,Ω′K) be the fundamental form of a neutral
hyperkähler structure (g, I, ′J, ′K) onX = C2/G. As mentioned in Proposition
3.15, Ω2 +

√−1Ω3 is a nonvanishing holomorphic two-form on X, and hence
defines a global section of the canonical bundle KX . Therefore there exists
a nonzero constant c0 = |c0|e

√−1ψ ∈ C (ψ ∈ R) such that

Ω2 +
√−1Ω3 = c0dz1 ∧ (dz2 − z1dz1),

since X is compact.
Now, define real d-closed two-forms Ω2

− and Ω3
− respectively by

Ω2
− +

√−1Ω3
− :=

√−1dz1 ∧ (dz2 − z1dz1).
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It follows from Proposition 3.6 and the definitions of Ω2
− and Ω3

− that

−Ω2
1 = Ω2

2 = Ω2
3 = −|c0|2(Ω2

−)2 = −|c0|2(Ω3
−)2,

Ω2
− ∧ Ω3

− ≡ 0, Ωa ∧ Ωb
− ≡ 0 (2 ≤ a, b ≤ 3).

(3.17)

We then verify that (|c0|Ω2
−,Ω2,Ω3) and (|c0|Ω3

−,Ω2,Ω3) define neutral hy-
perkähler structures on X, respectively. Note that the cohomology classes of
Ω2,Ω3,Ω2

−,Ω3
− generate the cohomology group H2(X; R) and satisfy relations

similar to those in (3.17). Recall that the Kähler form Ω1 is a closed real
(1, 1)-form on X and its cohomology class [Ω1] in H2(X; R) is orthogonal
to [Ω2] and [Ω3] with respect to the cup product. Hence there exist a real
one-form η and real constants a, b such that

Ω1 = |c0|(aΩ2
− + bΩ3

−) + dη.

It then follows from (3.17) that

(1 − a2 − b2)Ω1
2 = d(η ∧ [2|c0|(aΩ2

− + bΩ3
−) + dη]).

By integrating the equation above, we obtain a2 + b2 = 1, so we may set
a = cos ε and b = sin ε for some real constant ε.

Recalling the decomposition η = η1,0 + η0,1 (η0,1 = η1,0), we see that η0,1

is ∂-closed, since Ω1,Ω2
−,Ω3

− are real (1, 1)-forms, and hence that

η0,1 = kφ+ lσ0,1 + ∂µ, dη = (l̄ − l)dz1 ∧ dz1 + ∂∂(µ− µ̄),

where k and l are constants, and µ is a complex-valued function onX. Setting√−1c|c0|2/3 := l̄ − l (c ∈ R) and
√−1ϕ := 2(µ− µ̄), we then see that

Ω1 = |c0|(cos ε Ω2
− + sin ε Ω3

−) +
√−1c|c0|2/3 dz1 ∧ dz1 + (

√−1/2)∂∂ϕ.

By making use of the coordinates

(w1, w2) := (|c0|1/3e
√−1εz1 + c, |c0|2/3z2),

we can express Ω1,Ω2,Ω3 as

Ω1 = Ω0 + (
√−1/2)∂∂ϕ,

Ω2 +
√−1Ω3 = e

√−1(ψ−ε)dw1 ∧ dw2 =: e
√−1θdw1 ∧ dw2,

where Ω0 is given by

Ω0 := (
√−1/2)(dw1 ∧ dw2 − dw1 ∧ dw2 + (w1 + w1)dw1 ∧ dw1).
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Therefore we see that (Ω1,Ω2,Ω3) defines a neutral hyperkähler structure on
X if and only if ϕ satisfies the following equation:

4
√−1Ω0 ∧ ∂∂ϕ = ∂∂ϕ ∧ ∂∂ϕ.

This completes the proof. �
We note that the corresponding metric g = gϕ is explicitly given by

gϕ = (w1 + w1)|dw1|2 − (dw1dw2 + dw1dw2) +D2ϕ,(3.18)

where D2ϕ denotes the complex Hessian of ϕ. Clearly, the pull-back of any
function on the base torus ∆ is a solution of (3.16).

By using the expression (3.15), we may give a characterization of flat
neutral hyperkähler structures on a primary Kodaira surface in terms of
the potential function ϕ, which shows that each nonconstant function ϕ on
the base torus of any primary Kodaira surface defines a non-flat neutral
hyperkähler metric gϕ (cf. Petean [82]).

Theorem 3.17 Let gϕ be the neutral hyperkähler metric on a primary Ko-

daira surface X defined by (3.18), where ϕ is a solution of (3.16). Then gϕ

is flat if and only if ϕ is constant.

Proof. Let X = C2/G be a primary Kodaira surface, g a neutral hyperkähler
metric on X, and (Ω1,Ω2,Ω3) the fundamental form. In terms of complex
coordinates (w1, w2) satisfying Ω2 +

√−1Ω3 = e
√−1θdw1 ∧ dw2 (θ is a real

constant), the condition −Ω2
1 = Ω2

2 = Ω2
3 is written as

g11̄g22̄ − g12̄g21̄ ≡ −1.(3.19)

Thus the components gᾱβ satisfy

g1̄1 = −g22̄, g1̄2 = g12̄, g2̄1 = g21̄, g2̄2 = −g11̄.

The connection form {ωαβ} is given by

ω1
1 = −g22̄∂g11̄ + g21̄∂g12̄, ω1

2 = −g22̄∂g21̄ + g21̄∂g22̄,
ω2

1 = g12̄∂g11̄ − g11̄∂g12̄, ω2
2 = g12̄∂g21̄ − g11̄∂g22̄.

(3.20)

In particular, it follows from (3.19) that

ω1
1 + ω2

2 ≡ 0.(3.21)
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Recall that the fundamental form Ω1 may be written as

Ω1 = (
√−1/2)(−dw1 ∧ dw2 − dw2 ∧ dw1 + (w1 + w1)dw1 ∧ dw1 + ∂∂ϕ),

where ϕ is a certain smooth function on X. The components gαβ̄ are given
explicitly by

g11̄ = w1 + w1 +
∂2ϕ

∂w1∂w1

, g12̄ = −1 +
∂2ϕ

∂w1∂w2

(= g21̄), g22̄ =
∂2ϕ

∂w2∂w2

.

From (3.20) and (2.17), we see that g is flat if ϕ is constant.
For any γ ∈ G, we define ργ : C2 −→ C2 by

ργ(w1, w2) = (w1 + αγ , w2 + αγw1 + βγ).

It then follows that

ρ∗γ(dw1) = dw1, ρ∗γ(dw2) = dw2 + αγdw1,(3.22)

ργ∗(∂1) = ∂1 + αγ∂2, ργ∗(∂2) = ∂2.(3.23)

Then we can verify the following relations:

g11̄ ◦ ργ = g11̄ − αγg12̄ − αγg21̄ + |αγ|2g22̄, g22̄ ◦ ργ = g22̄,
g12̄ ◦ ργ = g12̄ − αγg22̄, g21̄ ◦ ργ = g21̄ − αγg22̄.

(3.24)

By making use of these relations, we also have

ρ∗γω
1
1 = ω1

1 − αγω
1
2, ρ

∗
γω

1
2 = ω1

2, ρ
∗
γω

2
1 = ω2

1 + 2αγω
1
1 − αγ

2ω1
2 .(3.25)

If we set

η1 := ω1
1 + w1ω

1
2 , η2 := ω1

2 , η3 := ω2
1 − 2w1ω

1
1 − w1

2ω1
2 ,

then η1, η2, η3 may be regarded as one-forms on X = C2/G.
In what follows, we suppose that g is flat. Then η2 is a holomorphic

one-form on X. Since h1,0(X) = 1, we can write η2 as

η2 = Adw1,

where A is a constant. In particular,

dη2 = ∂η2 = ∂η2 ≡ 0.

Lemma 3.18 η2 ≡ 0.
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Proof. From the flatness of g and (3.21), we have

0 ≡ dη2 = dω1
2 = −(ω1

1 ∧ ω1
2 + ω1

2 ∧ ω2
2) = −2ω1

1 ∧ ω1
2 .

Thus we also have

η1 ∧ η2 = (ω1
1 + w1ω

1
2) ∧ ω1

2 ≡ 0.

If A �= 0, then η1∧dw1 ≡ 0. Since η1 is a (1, 0)-form on X, we have a function
F on X such that

η1 = Fdw1, i.e., ω1
1 = (F − Aw1)dw1.

By the flatness of g again, we then obtain

0 ≡ ∂ω1
1 = (∂F − Adw1) ∧ dw1.

Namely, we see that ∂F = Adw1 and hence ∂∂F ≡ 0. From the mean value
property for the operator ∂∂, we then conclude that F must be constant.
Thus Adw1 = ∂F ≡ 0, that is, A = 0. This contradicts the assumption
A �= 0. �

It follows from Lemma 3.18 and (3.25) that there exists a constant B
such that

η1 = Bdw1.

Then it is easy to see that

∂η3 = 2Bdw1 ∧ dw1, ∂η3 = 2Bdw1 ∧ η3.(3.26)

We may assume that η3 is expressed as

η3 = f1dw1 + f2(dw2 − w1dw1)

for smooth functions f1, f2 on X. It then follows from (3.26) that

∂(f1 − w1f2) + 2Bdw1 ≡ 0, ∂f2 ≡ 0.(3.27)

In particular, f2 is a holomorphic function on X, and must be a constant,
say C. It follows from (3.27) that

∂∂f1 = ∂((−2B + C)dw1) ≡ 0.
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From the mean value property for ∂∂ again, we see that f1 is also constant,
say K. It is then easy to see from (3.26) that

2Bdw1 ∧ dw1 = ∂η3 = ∂(Kdw1 + C(dw2 − w1dw1)) = Cdw1∧dw1,

2BCdw1 ∧ dw2 = ∂η3 = ∂(Kdw1 + C(dw2 − w1dw1)) ≡ 0,

and hence B = C = 0. Thus we obtain

η1 = η2 ≡ 0, η3 = Kdw1.

Using (3.19) and (3.20), we also have

∂g22̄ = −∂g21̄ ≡ 0, ∂g12̄ = −Kg22̄dw1, ∂g11̄ = −Kg21̄dw1.

In particular, g22̄ is a constant, since ∂g22̄ = ∂g22̄ ≡ 0.
By integrating g22̄ = ∂2ϕ/∂w2∂w2 on each fiber T of Ψ : X −→ ∆, we

obtain

g22̄

∫
T

dw2 ∧ dw2 =

∫
T

∂2ϕ

∂w2∂w2
dw2 ∧ dw2 = 0,

and hence g22̄ ≡ 0. Thus ϕ depends only on the variable w1, so that ϕ may
be regarded as a function on ∆. In particular, g12̄ = g21̄ ≡ −1. On the other
hand, we can regard g11̄ − (w1 + w1) as a function on X, satisfying

∂∂(g11̄ − (w1 + w1)) = −∂(∂g11̄ − dw1) = −∂(K − 1)dw1 ≡ 0.

Hence g11̄−(w1 +w1) must be constant, say L. Integrating L = ∂2ϕ/∂w1∂w1

on ∆, we also have L = 0. Therefore ϕ is constant. Namely, g must coincide
with g0. �

3.4 Complex tori

In this section, we give a description of a neutral hyperkähler structure on
a complex torus, by arguments similar to those in Section 3.3. We also
obtain an analogous characterization of flat neutral hyperkähler structures
on complex tori. In particular, we will see that complex tori of particular
type (e.g., the product of elliptic curves) admit non-flat neutral hyperkähler
structures (see Petean [82]).

Let X = C2/Γ be a complex torus, where Γ is a lattice in C2. Then it is
well-known that

b1(X) = 4, b+2 (X) = b−2 (X) = 3, c1(X) = c2(X) = 0,

h1,0(X) = q(X) = 2, pg(X) = 1.

By a similar but slightly different argument from that in the previous
section, we can show the following result.
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Theorem 3.19 Let X = C2/Γ be a complex torus and (w1, w2) the stan-

dard complex coordinate system of C2. Define a triplet (Ω1,Ω2,Ω3) of three

symplectic forms on X by

Ω1 = Im(dw1 ∧ dw2) + (
√−1/2)∂∂ϕ,

Ω2 = Re(dw1 ∧ dw2), Ω3 = Im(dw1 ∧ dw2).
(3.28)

If ϕ is a solution of the equation

4
√−1Im(dw1 ∧ dw2) ∧ ∂∂ϕ = ∂∂ϕ ∧ ∂∂ϕ,(3.29)

then Ω1,Ω2 and Ω3 give rise to a neutral hyperkähler structure on X. Con-

versely, under suitable complex coordinates (w1, w2) of C2, the fundamental

form of any neutral hyperkähler structure on X is expressed as (3.28).

Furthermore, a neutral hyperkähler metric g determined by the triplet

(Ω1,Ω2,Ω3) in (3.28) is flat if and only if ϕ is constant.

Proof. Let (z1, z2) denote the standard holomorphic coordinates of C2.
Then dz1 and dz2 generate the cohomology group H0(X; Ω1

X) ∼= H1,0

∂
(X),

and dz1, dz2, dz1, dz2 generate H1(X; C). Note that dz1 ∧ dz2 is a nonvan-
ishing holomorphic two-form on X. Define a triplet (Ω1

−,Ω2
−,Ω3

−) of opposite
symplectic forms on X by

Ω1
− := (

√−1/2)(−dz1 ∧ dz1 + dz2 ∧ dz2), Ω2
− +

√−1Ω3
− :=

√−1dz2 ∧ dz1,

and a positive-definite Kähler form Ω1
+ by

Ω1
+ := (

√−1/2)(dz1 ∧ dz1 + dz2 ∧ dz2).

Let (Ω1,Ω2,Ω3) = (ΩI ,Ω′J ,Ω′K) be the fundamental form of an arbitrary
neutral hyperkähler structure on X. By Proposition 3.15, a nonvanishing
holomorphic two-form Ω2 +

√−1Ω3 on X is given by

Ω2 +
√−1Ω3 = c0dz1 ∧ dz2 = |c0|e

√−1θdz1 ∧ dz2

for some nonzero constant c0 ∈ C. Taking account of the cohomology class
of Ω1, we may express Ω1 as

Ω1 = |c0|(a0Ω1
+ + a1Ω1

− + a2Ω2
− + a3Ω3

−) + (
√−1/2)∂∂ϕ

for some real constants a0, a1, a2, a3. Since (|c0|Ω1
−,Ω2,Ω3), (|c0|Ω2

−,Ω2,Ω3)
and (|c0|Ω3

−,Ω2,Ω3) are neutral hyperkähler structures on X, we have

−a2
0 + a2

1 + a2
2 + a2

3 = 1,
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that is, (a0, a1, a2, a3) is a point on S3
1 . Identifying S3

1 with u(2)
⋂

SL2(C)
equipped with the metric induced from the determinant det, we obtain
Isom(S3

1)
∼= PSL2(C), and hence S3

1 = SL2(C)/SU(1, 1) as a homogeneous
space. Indeed, this identification is given by

S3
1 � (a0, a1, a2, a3) �→

√−1

(
a0 + a1 a2 −

√−1a3

a2 +
√−1a3 a0 − a1

)
∈ u(2)

⋂
SL2(C),

and the action of SL2(C) on S3
1 is given by

A·T :=

(
s̄ −q̄

−r̄ p̄

)√−1

(
a0 + a1 a2 −

√−1a3

a2 +
√−1a3 a0 − a1

)(
s −r

−q p

)
for

T =

(
p q
r s

)
, A =

√−1

(
a0 + a1 a2 −

√−1a3

a2 +
√−1a3 a0 − a1

)
.

This action A·T induces a natural linear action, say ρ(T ), on R4. Let T be
an element in SL2(C) such that

ρ(T )


a0

a1

a2

a3

 =


0
0
1
0

 .

Then, introducing the new coordinates (w1, w2) by

|c0|1/2e
√−1θ/2

(
z1

z2

)
= T

(
w1

w2

)
,

we obtain the following expression of Ω1:

Ω1 = (−√−1/2)(dw1 ∧ dw2 + dw2 ∧ dw1) + (
√−1/2)∂∂ϕ,

and also

Ω2 +
√−1Ω3 = dw1 ∧ dw2,

since T ∈ SL2(C) preserves the complex volume on C2. The equation (3.29)
follows from the characterization result (Proposition 3.14) of a neutral hy-
perkähler structure.

65



We now examine the flatness of a neutral hyperkähler metric g on a
complex torus X. Assume that (Ω1,Ω2,Ω3) is expressed as (3.28) in terms
of holomorphic coordinates (w1, w2) of C:

Ω1 = (−√−1/2)(dw1 ∧ dw2 + dw2 ∧ dw1) + (
√−1/2)∂∂ϕ,

Ω2 +
√−1Ω3 = dw1 ∧ dw2

for a smooth function ϕ satisfying (3.29). Let gαβ̄ = 2g(∂α, ∂β) be the com-
ponents of g with respect to (w1, w2) (α, β = 1, 2), and {ωA

B} the connection
form of the Levi-Civita connection ∇ with respect to {∂A} (A,B = 1, 2, 1̄, 2̄).
Recalling (2.17):

Rα
β = ∂ωαβ , R

ᾱ
β̄ = ∂ωᾱβ̄ ,

we see that g is flat if and only if every ωαβ is a global holomorphic one-form
on X.

Now, suppose that g is flat. Then ω1
1, ω

1
2 , ω

2
1 are holomorphic, and hence

d-closed, one-forms on X. It follows from the flatness of g that

ω1
1 ∧ ω1

2 = ω1
2 ∧ ω2

1 = ω2
1 ∧ ω1

1 ≡ 0.

Then there exists a nonzero holomorphic one-form φ such that

ωαβ = Aαβφ, A1
1 + A2

2 = 0

for suitable constants Aαβ (α, β = 1, 2). By (2.16), we then obtain

∂gαβ̄ = Aαβ̄ φ, or equivalently, ∂gαβ̄ = Aβᾱ φ.

where Aαβ̄ :=
∑2

γ=1A
γ
αgγβ̄. In the Dolbeault cohomology group H0,1

∂
(X), we

see that 0 = [∂gαβ̄] = Aβᾱ [φ] (α, β = 1, 2), which imply that all the coeffi-
cients Aαβ̄, and hence Aαβ , vanish. Thus all components gαβ̄ are constants.

Then we can write ∂∂ϕ as

∂∂ϕ =
∑
α,β

Cαβ̄dwα ∧ dwβ

for constants Cαβ̄. In the second cohomology group H2(X; C), the left hand
side is clearly zero, so that all Cαβ̄ vanish. Thus ϕ should also be constant.
With respect to (w1, w2), we have the required expression of the flat metric
g. �
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From Theorem 3.19, we see that there exist non-flat neutral hyperkähler
structures on X = E1×E2, the product of elliptic curves E1 and E2. Indeed,
let w1 and w2 be holomorphic coordinates of E1 and E2, respectively, and
let ϕ be the pull-back of any nonconstant smooth function on each factor
of X = E1 × E2, that is, ϕ = ϕ(w1) or ϕ = ϕ(w2). Then, since ϕ is
a nonconstant solution of (3.29), the triplet (Ω1,Ω2,Ω3) defined by (3.28)
yields a non-flat neutral hyperkähler structure on X = E1 × E2 (cf. Petean
[82]).
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4 Examples

We give two different types of examples of self-dual neutral Hermitian sur-
faces, that is, the indefinite complex projective space CP2

1 with the Fubini-
Study type metric and complex line bundles over the real hyperbolic plane
with LeBrun type neutral metrics.

The Fubini-Study type metric on CP2
1 is known as a homogeneous pseudo-

Riemannian metric with constant holomorphic sectional curvature +1. Thus
its curvature operator restricted to Λ2

+
∼= Λinv

0 is a constant multiple of the
identity map. Therefore the self-dual part W+ of the Weyl conformal cur-
vature tensor vanishes everywhere, that is, the metric is anti-self-dual. This
metric has also been studied in [47] as a metric of Bianchi type VIII. How-
ever, we examine here another description of the Fubini-Study type metric
from a point of view of the de Sitter ansatz. In [47], LeBrun type neutral
metrics were already treated as those of Bianchi type VIII. We hope that
these examples will be helpful for finding other construction of self-dual neu-
tral metrics. For further examples, see also [13], [17], [42] and references
therein.

Fubini-Study type metric The indefinite complex projective space CP2
1

is defined as a homogeneous space U(1, 2)/U(1, 1)×U(1), where U(p, q) de-
notes the indefinite unitary group. We can also describe CP2

1 as

CP2
1 = {(z0 : z1 : z2) ∈ CP2 | − |z0|2 + |z1|2 + |z2|2 = +1},

since U(1, 2) acts transitively on CP2
1 in a natural way and U(1, 1) × U(1)

is the isotropy subgroup of this action at (0 : 0 : 1). Therefore CP2
1 is

diffeomorphic to CP2\{|z1/z0|2 + |z2/z0|2 < 1}. Let � : S5
2 → CP2

1 be the
natural projection (z0, z1, z2) �→ (z0 : z1 : z2), which is an indefinite analogue
of the Hopf fibration. We can define a pseudo-Riemannian metric g on CP2

1

such that� : (S5
2 , gS5

2
) → (CP2

1, g) is a pseudo-Riemannian submersion. Then

a metric gFS := g on CP2
1 is called the Fubini-Study type neutral metric. It

is known that gFS is an anti-self-dual, Einstein neutral Kähler metric with
respect to the natural complex orientation (cf. [47]).

In terms of the homogeneous coordinates (z0 : z1 : z2), we can express gFS

as

�∗gFS = −|dz0|2 + |dz1|2 + |dz2|2 − |−z0dz0 + z1dz1 + z2dz2|2,
where −|z0|2 + |z1|2 + |z2|2 = 1. Setting

ζ0 := z0, (ζ1, ζ2) := (1 + |z0|2)−1/2(z1, z2)
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for (z0, z1, z2) ∈ S5
3 and noting the following diagram:

S5
3

∼=−−−−→ C×S3�e
√−1t

�e√−1t

S5
3 −−−−→∼=

C×S3

(z0, z1, z2) �→ (ζ0, (ζ1, ζ2))�e
√−1t

�e√−1t

e
√−1t(z0, z1, z2) �→ (e

√−1tζ0, e
√−1t(ζ1, ζ2)),

we can identify CP2
1 with the total space of the tautological line bundle

L→ CP1, as smooth manifolds. Let σ1, σ2, σ3 be the left-invariant one-forms
on SU(2) = S3 satisfying

dσ1 = 2σ2 ∧ σ3, dσ2 = 2σ3 ∧ σ1, dσ3 = 2σ1 ∧ σ2.(4.1)

Set z0 := re
√−1σ and σ̃1 := dσ+σ1, σ̃2 := σ2, σ̃3 := σ3. Then σ̃1, σ̃2, σ̃3 satisfy

the same condition as (4.1) and gFS is expressed in terms of r, σ̃1, σ̃2, σ̃3 as

gFS = − dr2

1 + r2
− r2(1 + r2)σ̃2

1 + (1 + r2)(σ̃2
2 + σ̃2

3).

Let Ī be an almost complex structure defined by Īdr = r(1+r2)σ̃1, Ī σ̃2 =
−σ̃3. Then Ī is integrable, and moreover (gFS, Ī) defines a neutral Kähler
structure on CP2

1.
Setting r = eρ and noting σ2

2 + σ2
3 = hS2/4, we obtain the following

expression of gFS:

gFS = e2ρ
(
−(V dρ2 + V −1θ2) + V cosh2 ρ hS2

)
(4.2)

= e2ρ(−V −1θ2 + V gS3
1
),

where hS2 denotes the unit round metric on S2, V := (1 + e2ρ)−1, and θ :=
σ̃1 being the connection form of the Hopf fibration S3 → S2. It should
be remarked that (V, θ) satisfies (2.37): ∗̌dV = dθ. Let I be an almost
complex structure defined by Idρ = −V −1θ, Idζ =

√−1dζ, where ζ denotes
a holomorphic coordinate of S2 = CP1. From Proposition 2.17, it follows that
gFS is a self-dual neutral metric with respect to the orientation determined
by I. (Note that gFS is an anti-self-dual neutral metric with respect to the
orientation defined by Ī.) In Section 2.4, this function V was denoted by
G0, and used for constructing self-dual neutral metrics on S2 × S2. By a
similar argument in Section 2.4, we see that I is integrable and (gFS, I) is
locally conformal neutral Kähler. However, gFS itself is not neutral Kähler
with respect to I.

Note that the indefinite complex hyperbolic space CH2
1 is identified with

CH2
1 = (CP2

1,−gFS). At least locally, we can also express gFS as a neutral
metric of Bianchi type VIII (see [47]).
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LeBrun type neutral metrics LeBrun type neutral metrics, which we
introduce here, are indefinite counterparts of positive-definite anti-self-dual
Kähler metrics on the total spaces L of complex vector bundles L → CP1

constructed in LeBrun [59]. For details, see [47].
Let τ1, τ2, τ3 be left-invariant one-forms on the special linear group SL2(R)

such that

dτ1 = −2τ2 ∧ τ3, dτ2 = 2τ3 ∧ τ1, dτ3 = 2τ1 ∧ τ2.(4.3)

LeBrun type neutral metrics are defined to be

gLB = − dr2

(1 − (a/r)2)(1 + k(a/r)2)
(4.4)

−r2(1 − (a/r)2)(1 + k(a/r)2)τ 2
1 + r2(τ 2

2 + τ 2
3 )

for r ∈ (a,+∞), a > 0 and k ∈ Z≥0. Then each gLB is a self-dual neutral
Kähler metric on (a,∞)×SL2(R). Taking its quotient by Zk+1, we can re-
gard gLB as a neutral metric on the total space of the complex line bundle
L

⊗(k+1)

H2 → H2, where LH2 → H2 denotes a complex line bundle induced from
the indefinite Hopf bundle H3

1 = SL2(R) → H2. Since gLB has an SL2(R)-

symmetry, it is also regarded as a metric on the quotient of L
⊗(k+1)

H2 → H2

by a Fuchsian group Γ. When k = 1, we can show that gLB is a Ricci-flat
neutral Kähler (thus self-dual) metric on T ∗H2 or T ∗(H2/Γ), which is an
indefinite analogue of the Eguchi-Hanson metric on the cotangent bundle
T ∗CP1 (cf. Eguchi-Hanson [23]). In [47], this metric is called the Eguchi-
Hanson type neutral metric and is also denoted by gEH. For this metric gEH,
see also Ooguri-Vafa [79]. When k = 0, we can show that gLB is conformal
to the Fubini-Study type neutral metric −gFS on CH2

1 (see [47]).
Note that Riemannian analogues of these self-dual neutral metrics of

Bianchi type VIII are obtained as Riemannian metrics of Bianchi type IX.
Between neutral metrics of Bianchi type VIII and Riemannian metrics of
Bianchi type IX, we obtain the following correspondence in general (see [47]):

Theorem 4.1 Let g (resp.h) be a neutral (resp. Riemannian) metric on

R+ × SL2(R) (resp. R+ × SU(2)) defined by

g = −f(r)2dr2 − a(r)2τ 2
1 + b(r)2τ 2

2 + c(r)2τ 2
3

(resp. h := f(r)dr2 + a(r)2σ2
1 + b(r)2σ2

2 + c(r)2σ2
3)

for the same data f(r), a(r), b(r), c(r). Define an almost complex structure I
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(resp. J) by

If(r)dr = −a(r)τ1, Ib(r)τ2 = −c(r)τ3
(resp. Jf(r)dr = −a(r)σ1, Jb(r)σ2 = −c(r)σ3).

Then the following correspondences hold:

(1) g is self-dual if and only if h is anti-self-dual.

(2) g is Einstein if and only if so is h.

(3) (g, I) is neutral Kähler if and only if (h, J) is Kähler.
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5 Appendices

5.1 The Jones-Tod correspondence

We here give a proof of Proposition 2.14, by using O’Neill’s formula for
pseudo-Riemannian submersions induced by time-like S1-symmetries, and
also prove Proposition 2.25.

We first recall the assumption of Proposition 2.14: Let (M, g) be an ori-
ented pseudo-Riemannian manifold with neutral metric g admitting a time-
like isometric S1-action. Suppose that the S1-action is fixed-point free. Then
the orbit space N := M/S1 is a smooth pseudo-Riemannian manifold with
metric ǧ defined by

π∗ǧ = g − ξ� ⊗ ξ�

g(ξ, ξ)
.(5.1)

where π : M → N is the natural projection, ξ is the Killing vector field on
(M, g) generating the S1-action, and ξ� := g(ξ, ·) denotes the metric-dual of
ξ. Hence π : (M, g) → (N, ǧ) is a pseudo-Riemannian submersion. (Note
that the orbit space M/S1 was denoted by Y in Chapter 2. However, to
avoid confusion, it is denoted by N in this appendix.)

Let g′ be another neutral metric on M defined by g′ := |g(ξ, ξ)|−1g, and
let ǧ′ denote the corresponding Lorentzian metric on N defined as (5.1) by
replacing g with g′. Then π : (M, g′) → (N, ǧ′) is a pseudo-Riemannian
submersion with g′(ξ, ξ) ≡ −1, and ξ becomes a Killing vector field with
respect to g′. Furthermore, it is easy to see that all the fibers of π : M → N
are totally geodesic with respect to g′. Let θ be a one-form on M defined by

θ := −g′(ξ, ·).
Note that θ satisfies the conditions:

ιξθ ≡ 1, Lξθ ≡ 0,

where ιξ and Lξ denote the inner derivation and the Lie derivative with
respect to ξ, respectively. These conditions imply that dθ is a basic two-form
on π : M → N , that is, dθ satisfies

ιξdθ ≡ 0, Lξdθ ≡ 0.

Hence there exists a closed two-form Ω on N such that dθ = π∗Ω. Recall
that the O’Neill tensor field A is defined by

AEF := (∇′
EhF

v)h + (∇′
EhF

h)v,
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where ∇′ is the Levi-Civita connection of g′, E and F are vector fields on
M , and Ev (resp.Eh) denotes the vertical (resp. horizontal) component of E.
Note that in our case the O’Neill tensor field A satisfies

g′(AXY, ξ) =
1

2
dθ(X,Y ), or equivalently, AXY = −1

2
dθ(X,Y )ξ

and

g′((∇′
ξA)XY, ξ) ≡ 0

for horizontal vector fields X,Y . Regarding the curvature tensors of (M, g′)
and (N, ǧ′), we have the following O’Neill’s formula (cf. Besse [7]).

Proposition 5.1 Let π : (M, g′) → (N, ǧ′) be a pseudo-Riemannian submer-

sion with totally geodesic fibers, where M is an (n+1)-dimensional manifold

and N is an n-dimensional manifold, and ξ a Killing vector field on (M, g′)

tangent to the fibers with g′(ξ, ξ) ≡ −1. Let R′ and Ř′ denote the curvature

tensors of g′ and ǧ′, respectively. Then, for arbitrary vector fields X,Y, Z, Z ′

on M orthogonal to the fibers, the following hold:

g′(R′(ξ,X)Y, ξ) =
1

4
trg′(dθ⊗dθ)(X,Y ),(5.2)

g′(R′(X,Y )Z, ξ) = −1

2
(∇′

Zdθ)(X,Y ),(5.3)

g′(R(X,Y )Z,Z ′) = g′(Ř′(X,Y )Z,Z ′) − 1

2
dθ(X,Y )dθ(Z,Z ′)(5.4)

−1

4
dθ(X,Z)dθ(Y, Z ′) +

1

4
dθ(Y, Z)dθ(X,Z ′),

where trg′(dθ⊗dθ)(X,Y ) = g′(ιXdθ, ιY dθ), and Ř′(X,Y )Z denotes the hori-

zontal lift of Ř′(π∗X,π∗Y )π∗Z.

It should be remarked here that our definition of the curvature tensor R
is different in sign from that in Besse [7].

By taking contraction, we obtain the following formula for the Ricci cur-
vatures.

Proposition 5.2 Let π : (M, g′) → (N, ǧ′) and ξ be as in Proposition 5.1,

and r′ := Ric′ and ř′ := Řic
′
be the Ricci curvature tensors of g′ and ǧ′,
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respectively. Then they satisfy the following:

r′(ξ, ξ) =
1

2
g′(dθ, dθ),(5.5)

r′(ξ, Y ) = −1

2
trg′ [(∇′dθ)(Y, ·)],(5.6)

r′(Y, Z) = ř′(Y, Z) +
1

2
trg′(dθ⊗dθ)(Y, Z)(5.7)

for arbitrary vectors Y and Z orthogonal to the fiber at a point in M , where

ř′(Y, Z) = ř′(π∗Y, π∗Z)◦π.
By taking contraction again, we have the relation between the scalar

curvatures s and š.

Corollary 5.3

s = š◦π +
1

2
g′(dθ, dθ).(5.8)

The traceless Ricci tensors then satisfy the following

Proposition 5.4 Let r′0 and ř′0 denote the traceless Ricci tensors of g′ and

ǧ′, respectively. Then the following hold:

r′0(ξ, ξ) =
1

2(n+ 1)

(
2š+ (n+ 2)g′(dθ, dθ)

)
,(5.9)

r′0(ξ, Y ) = −1

2
trg′ [(∇′dθ)(Y, ·)],(5.10)

r′0(Y, Z) = ř′0(Y, Z) +
š

n(n+ 1)
g′(Y, Z)(5.11)

+
1

2

(
trg′(dθ⊗dθ)(Y, Z) − 1

n+ 1
g′(dθ, dθ)g′(Y, Z)

)
.

Also, similar formulas for the Weyl conformal curvature tensors can be
derived as follows:

g′(W ′(ξ, Y )Z, ξ) =
1

n− 1
ř′0(Y, Z)(5.12)

+
n+ 1

4(n− 1)

(
trg′(dθ⊗dθ)(Y, Z) − 2

n
g′(dθ, dθ)g′(Y, Z)

)
,

g′(W ′(X,Y )Z, ξ) = −1

2
(∇′

Zdθ)(X,Y )(5.13)

+
1

2(n− 1)

(
trg′ [(∇′dθ)(X, ·)]g′(Y, Z)

−trg′ [(∇′dθ)(Y, ·)]g′(X,Z)
)
,
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g′(W ′(X,Y )Z,Z ′) = g′(W̌ ′(X,Y )Z,Z ′)(5.14)

+
1

(n− 1)(n− 2)
g′ �∧ ř′(X,Y, Z, Z ′)

− š

n(n− 1)(n− 2)
g′ �∧ g′(X,Y, Z, Z ′)

−1

2
dθ(X,Y )dθ(Z,Z ′)

+
1

4

(
dθ(X,Z ′)dθ(Y, Z) − dθ(X,Z)dθ(Y, Z ′)

)
+

1

2(n− 1)
g′ �∧ trg′(dθ⊗dθ)(X,Y, Z, Z ′)

+
1

4n(n− 1)
g′(dθ, dθ)g′ �∧ g′(X,Y, Z, Z ′),

where �∧ denotes the Kulkarni-Nomizu product, which is defined by

(h �∧ k)(X,Y, Z, Z ′) := h(X,Z ′)k(Y, Z) − h(Y, Z ′)k(X,Z)

+h(Y, Z)k(X,Z ′) − h(X,Z)k(Y, Z ′)

for symmetric (2, 0)-tensor fields h and k.
We now return to the situation in Proposition 2.14. Let π : (M, g′) →

(N, ǧ′) be a pseudo-Riemannian submersion with totally geodesic fibers,
where (M, g′) is an oriented pseudo-Riemannian four-manifold with neutral
metric g′ and (N, ǧ′) is a Lorentzian three-manifold, and ξ the unit time-like
vector field tangent to the fibers. Let {e1, e2, e3, e4 := θ} be a local oriented
orthonormal coframe field on (M, g′) such that

g′ = (e1)2 + (e2)2 − (e3)2 − (e4)2,

where {e1, e2, e3} is the pull-back of a local oriented orthonormal coframe
field {ě1, ě2, ě3} on (N, ǧ′) satisfying

ǧ′ = (ě1)2 + (ě2)2 − (ě3)2.

For simplicity, we write ěa as ea (a = 1, 2, 3). Since dθ is a basic two-form,
there exists a two-form α on N such that dθ = π∗α. We also write α as dθ
for brevity. By the relations

(∗̌′dθ)(e1) = −dθ(e2, e3), (∗̌′dθ)(e2) = dθ(e1, e3), (∗̌′dθ)(e3) = dθ(e1, e2),

it is verified that

trg′ [dθ⊗dθ] = (∗̌′dθ⊗∗̌′dθ) − ǧ′(∗̌′dθ, ∗̌′dθ)ǧ,(5.15)

∗̌′(∇′
Xdθ) = ∇′

X ∗̌′dθ(5.16)
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for any vector field X on N , where ∗̌′ denotes the Hodge star operator on
(N, ǧ′).

For any (4,0)-tensor field T , we denote by TABCD the components of T
with respect to a local frame field {eA}. For example, W ′

ABCD is defined to
be

W ′
ABCD := g′(W ′(eC, eD)eB, eA)

(1 ≤ A,B,C,D ≤ 4). Then the components of the Weyl conformal tensor
W ′ of (M, g′) are given by

W ′
4b4d =

1

2
(r′ + ∗̌′dθ⊗∗̌′dθ)0(eb, ed),

W ′
4bcd =

1

2
(∇′∗̌′dθ)sym

(eb, eb),

(b, c, d) = (1, 2, 3), (2, 3, 1), (3, 2, 1),

W ′
4121 = W ′

4323 =
1

2
(∇′∗̌′dθ)sym

(e1, e3),

W ′
4131 = −W ′

4232 =
1

2
(∇′∗̌′dθ)sym

(e1, e2),

W ′
4212 = W ′

4313 = −1

2
(∇′∗̌′dθ)sym

(e2, e3),

W ′
abab =

1

2
(ř′ + ∗̌′dθ⊗∗̌′dθ)0(ec, ec),

(a, b, c) = (1, 2, 3), (2, 3, 1), (3, 1, 2),

W ′
1213 =

1

2
(ř′ + ∗̌′dθ⊗∗̌′dθ)0(e2, e3),

W ′
2123 =

1

2
(ř′ + ∗̌′dθ⊗∗̌′dθ)0(e1, e3),

W ′
3132 =

1

2
(ř′ + ∗̌′dθ⊗∗̌′dθ)0(e1, e2),

where (ř′ + ∗̌′dθ⊗∗̌′dθ)0 denotes the traceless part of ř′ + ∗̌′dθ⊗∗̌′dθ.
A direct computation shows that g′ (and thus g) is self-dual if and only

if

W ′
1212 −W ′

1234 = W ′
1312 −W ′

1334 = W ′
1412 −W ′

1434 = 0,

W ′
1213 −W ′

1224 = W ′
1313 −W ′

1324 = W ′
1413 −W ′

1424 = 0,

W ′
1214 −W ′

1232 = W ′
1314 −W ′

1332 = W ′
1414 −W ′

1432 = 0,

which are also equivalent to the following condition:

(ř′ + ∗̌′dθ⊗∗̌′dθ)0 − (∇′∗̌′dθ)sym ≡ 0.(5.17)
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Next, we recall the definition of Einstein-Weyl structures (see Higa [33],
Pedersen-Swann [81], cf. [44]). LetN be a smooth three-dimensional manifold
equipped with a conformal structure Č of Lorentzian metrics. An affine
connection D on N is called a Weyl connection on (N, Č) if D is torsion-free
and preserves the conformal structure Č. Then, for a metric representative
ǧ of Č, there exists a one-form β̌ such that

Dǧ = −2β̌⊗ǧ.
Conversely, for a metric ǧ of Č and a one-form β̌, there exists a unique Weyl
connection D such that Dǧ = −2β̌⊗ǧ. Now, take another metric ǧ′ = u2ǧ
of Č and a one-form β̌′. Then (ǧ,−2β̌) and (ǧ′,−2β̌′) define the same Weyl
connection D if and only if they satisfy the following gauge relation:

β̌′ = −d log u+ β̌.

Let RD, rD and sDǧ denote the curvature tensor, the Ricci tensor, and the

scalar curvature with respect to ǧ ∈ Č, respectively:

RD(X,Y )Z := DX(DYZ) −DY (DXZ) −D[X,Y ]Z,

rD(Y, Z) := tr(X �→ RD(X,Z)Y ), sDǧ := trǧ(r
D).

A Weyl structure (C,D) on N is said to be Einstein-Weyl if the sym-
metrized Ricci tensor rD(sym) of D is proportional to a (hence any) metric

representative ǧ of Č, that is, r
D(sym)
0 ≡ 0, where the subscription 0 means

the traceless part. The relationship between the Ricci curvatures rD and ř
of the Weyl connection D and that of the Levi-Civita connection ∇ of ǧ is
given by

r
D(sym)
0 = (ř + β̌⊗β̌)0 − (∇β̌)

sym

0 , rD(skew) =
3

2
dβ̌.(5.18)

Therefore, a Weyl structure (C,D) on N is Einstein-Weyl if and only if

(ř + β̌⊗β̌)0 − (∇β̌)
sym

0 ≡ 0.(5.19)

In our situation, the one-form β̌, induced from g and ξ, is defined by
(2.32) in Section 2.3:

π∗β̌ =
−dg(ξ, ξ) − 2 ∗g (ξ�∧dξ�)

2g(ξ, ξ)
.

For the metric g′ = |g(ξ, ξ)|−1g, we have ξ′� = −θ and the corresponding
one-form β̌′ is given by

π∗β̌′ = ∗g′(θ ∧ dθ) = π∗(∗̌′dθ).(5.20)
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Here dθ in the last term is identified with the corresponding two-form on N .
If the relation (5.20) holds (i.e., β̌′ = ∗̌′dθ), then we have

trǧ′(∇′β̌′) = ±δ̌′β̌′ = ±∗̌′d(dθ) ≡ 0,

that is, (∇′β̌′)
sym

0 = (∇′β̌′)
sym

. Therefore, (5.19) and (5.17) are equivalent,
and hence Proposition 2.14 is proved. �

We next prove Proposition 2.25. Under the situation in Proposition 2.25,
we may assume that g′ = −θ2 + V 2gS3

1
and ǧ′ = V 2gS3

1
. Then the Levi-

Civita connection D of gS3
1

satisfies that Dǧ′ = 2d log V⊗ǧ′. Since the de

Sitter space S3
1 is Einstein, we have r

D(sym)
0 ≡ 0. Hence g is self-dual, that

is, W− ≡ 0. By (5.18), this is equivalent to (ř′ + β̌)0 = (∇′β̌)
sym

0 , where
β̌ = −d log V . (Note that the Levi-Civita connection ∇′ of ǧ′ = V 2gS3

1
was

denoted by D′ in Section 2.4.) Taking account of (5.17), we see that the
self-dual part W+ is determined by (∇′∗̌′dθ)sym

. Since (V, θ) satisfies (2.37):
∗̌dV = dθ, we have

∗̌′dθ = V −1∗̌dθ = −V −1dV = −d log V,

where ∗̌ denotes the Hodge star operator of S3
1 . By the relation between ∇′

and D, we obtain

∇′∗̌′dθ = −∇′d log V

= −(Dd log V − 2d log V⊗d log V + ‖d log V ‖2gS3
1
)

= −V −2(V DdV − 3dV⊗dV + ‖dV ‖2gS3
1
),

where ‖ · ‖2 denotes the indefinite squared norm with respect to gS3
1
. This

completes the proof of Proposition 2.25. �

5.2 Hirzebruch signature and Euler characteristic

We recall Hirzebruch signature and Gauss-Bonnet formulas for a compact
four-manifold with a neutral metric in terms of its curvature tensor (see,
e.g., Avez [5] and Chern [18] for Gauss-Bonnet formula, Matsushita [72] for
signature formula, and Law [57] and Matsushita-Law [73] for both formulas).

Let (M, g) be a compact oriented pseudo-Riemannian four-manifold with
neutral metric g, and let {e1, e2, e3, e4} be a local oriented orthonormal frame
field on (M, g) and {e1, e2, e3, e4} its dual coframe field such that

g = (e1)2 + (e2)2 − (e3)2 − (e4)2.(5.21)
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Let ∇ be the Levi-Civita connection of (M, g) and Ωj
k the components of the

curvature form of ∇ with respect to {e1, e2, e3, e4}. Then the first Pontrjagin
form p1(M,∇) can be expressed as

p1(M,∇) = − 1

8π2
tr(Ω∧Ω) = − 1

8π2

∑
j,k

Ωj
k∧Ωk

j

= − 1

8π2

∑
j,k,l,m

gjmgklΩ
jl∧Ωkm =

1

8π2

∑
j,k

gjjgkkΩ
jk∧Ωjk

=
1

4π2
(Ω12∧Ω12 − Ω13∧Ω13 − Ω14∧Ω14

−Ω23∧Ω23 − Ω24∧Ω24 + Ω34∧Ω34).

Let {λ1
+, λ

2
+, λ

3
+} and {λ1

−, λ
2
−, λ

3
−} be local orthonormal frame fields defined

by

λ1
+ = (e1∧e2 + e3∧e4)/√2, λ1

− = (e1∧e2 − e3∧e4)/√2,

λ2
+ = (e1∧e3 + e2∧e4)/√2, λ2

− = (e1∧e3 − e2∧e4)/√2,

λ3
+ = (e1∧e4 + e3∧e2)/√2, λ3

− = (e1∧e4 − e3∧e2)/√2,

which satisfy

λ1
+∧λ1

+ = −λ2
+∧λ2

+ = −λ3
+∧λ3

+ = −λ1
−∧λ1

− = λ2
−∧λ2

− = λ3
−∧λ3

− = ∗1;

λp+∧λq+ = λp−∧λq− = 0 (p �=q), λp+∧λq− = 0 (for any p, q = 1, 2, 3).

By using {λ1
±, λ

2
±, λ

3
±}, the first Pontrjagin form p1(M,∇) is given as

p1(M,∇)

=
1

8π2
{(R(λ1

+) +R(λ1
−))2 − (R(λ2

+) +R(λ2
−))2 − (R(λ3

+) +R(λ3
−))2

−(R(λ3
+) −R(λ3

−))2 − (R(λ2
+) − R(λ2

−))2 + (R(λ1
+) − R(λ1

−))2}
=

1

4π2
{R(λ1

+)2 −R(λ2
+)2 −R(λ3

+)2 +R(λ1
−)2 −R(λ2

−)2 − R(λ3
−)2}.

where R is the curvature operator. Note that R has the following matrix
representation:

R



λ1
+

λ2
+

λ3
+

λ1
−
λ2
−
λ3
−

 =



a11 a12 a13 b11 b12 b13
−a12 a22 a23 b21 b22 b23
−a13 a23 a33 b31 b32 b33
b11 −b21 −b31 d11 d12 d13

−b12 b22 b32 −d12 d22 d23

−b13 b23 b33 −d13 d23 d33





λ1
+

λ2
+

λ3
+

λ1
−
λ2
−
λ3
−

 .

79



Hence it follows from the first Bianchi identity that

a11 + a22 + a33 = d11 + d22 + d33 = s/4,

where s denotes the scalar curvature of (M, g). The components bpq are
related to the traceless Ricci tensor Ric0 of (M, g). Let (Zij) be the matrix
representation of Ric0 with respect to {e1, e2, e3, e4} (i.e., Zij = Ric0(ei, ej))
and (Z i

j) = (
∑4

k=1g
ikZkj) denote the corresponding endomorphism on TM .

By definition, the components Z i
j are expressed as

Z1
1 =

1

2
(R12

12 +R13
13 +R14

14 −R32
32 − R24

24 −R34
34),

Z1
2 = −R13

32 +R14
24 = Z2

1,

Z1
3 = R12

32 +R14
34 = −Z3

1,

Z1
4 = −R12

24 −R13
34 = −Z4

1,

Z2
2 =

1

2
(R12

12 −R13
13 −R14

14 +R32
32 +R24

24 −R34
34),

Z2
3 = R12

13 +R24
34 = −Z3

2,

Z2
4 = R12

14 +R32
34 = −Z4

2,

Z3
3 =

1

2
(−R12

12 +R13
13 − R14

14 +R32
32 −R24

24 +R43
43),

Z3
4 = R13

14 −R32
24 = Z4

3,

Z4
4 =

1

2
(−R12

12 −R13
13 +R14

14 −R32
32 +R24

24 +R34
34)

= −(Z1
1 + Z2

2 + Z3
3).

Then we have the following relation between the components bpq and Z i
j:

b11 = (Z1
1 + Z2

2)/2, b12 = (Z1
4 + Z2

3)/2, b13 = −(Z1
3 − Z2

4)/2,
b21 = (Z1

4 − Z2
3)/2, b22 = (Z1

1 + Z3
3)/2, b23 = (Z1

2 + Z3
4)/2,

b31 = −(Z1
3 + Z2

4)/2, b32 = −(Z1
2 − Z3

4)/2, b33 = −(Z2
2 + Z3

3)/2.

By using the expression above, we have

R(λ1
+)2 = {(a11)

2 − (a12)
2 − (a13)

2 − (b11)
2 + (b12)

2 + (b13)
2} ∗ 1,

R(λ2
+)2 = {(a12)

2 − (a22)
2 − (a23)

2 − (b21)
2 + (b22)

2 + (b23)
2} ∗ 1,

R(λ3
+)2 = {(a13)

2 − (a23)
2 − (a33)

2 − (b31)
2 + (b32)

2 + (b33)
2} ∗ 1,

R(λ1
−)2 = {(b11)2 − (b21)

2 − (b31)
2 − (d11)

2 + (d12)
2 + (d13)

2} ∗ 1,

R(λ2
−)2 = {(b12)2 − (b22)

2 − (b32)
2 − (d12)

2 + (d22)
2 + (d23)

2} ∗ 1,

R(λ3
−)2 = {(b13)2 − (b23)

2 − (b33)
2 − (d13)

2 + (d23)
2 + (d33)

2} ∗ 1.
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We therefore obtain the following expression of p1(M,∇):

p1(M,∇) =
1

4π2
{(a11)

2 − (a12)
2 − (a13)

2 − (a12)
2 + (a22)

2 + (a23)
2

−(a13)
2 + (a23)

2 + (a33)
2 − (d11)

2 + (d12)
2 + (d13)

2

+(d12)
2 − (d22)

2 − (d23)
2 + (d13)

2 − (d23)
2 − (d33)

2} ∗ 1.

We may write the matrices A = (apq) and D = (dpq) as

A = W+ + (s/12)Id, D = W− + (s/12)Id,

where W+ = (w+
pq) (resp.W− = (w−

pq)) denotes the self-dual (resp. anti-self-
dual) part of the Weyl conformal tensor W . Then we have

p1(M,∇)

=
1

4π2

[(
w+

11 +
s

12

)2

− (w+
12)

2 − (w+
13)

2 − (w+
12)

2 +
(
w+

22 +
s

12

)2

+ (w+
23)

2

−(w+
13)

2 + (w+
23)

2 +
(
w+

33 +
s

12

)2

−
(
w−

11 +
s

12

)2

+ (w−
12)

2 + (w−
13)

2

+(w−
12)

2 −
(
w−

22 +
s

12

)2

− (w−
23)

2 + (w−
13)

2 − (w−
23)

2 −
(
w−

33 +
s

12

)2
]
∗ 1

=
1

4π2

[
(w+

11)
2 − (w+

12)
2 − (w+

13)
2 − (w+

12)
2 + (w+

22)
2 + (w+

23)
2

−(w+
13)

2 + (w+
23)

2 + (w+
33)

2 +
s

6
(w+

11 + w+
22 + w+

33) +
s2

48
−(w−

11)
2 + (w−

12)
2 + (w−

13)
2 + (w−

12)
2 − (w−

22)
2 − (w−

23)
2

+(w−
13)

2 − (w−
23)

2 − (w−
33)

2 − s

6
(w−

11 + w−
22 + w−

33) −
s2

48

]
∗ 1

=
1

4π2

{
[(w+

11)
2 + (w+

22)
2 + (w+

33)
2 + 2(−(w+

12)
2 − (w+

13)
2 + (w+

23)
2)]

−[(w−
11)

2 + (w−
22)

2 + (w−
33)

2 + 2(−(w−
12)

2 − (w−
13)

2 + (w−
23)

2)]
} ∗ 1.

By Hirzebruch signature theorem, the signature τ(M) is expressed as
τ(M) = (1/3)p1(M), so we have the following

Proposition 5.5 Let (M, g) be a compact oriented four-manifold with a neu-

tral metric g. Then its signature τ(M) is expressed as

τ(M) =
1

12π2

∫
M

(
|W+|2 − |W−|2

)
∗ 1,(5.22)

where the squared norms |W±|2 are given respectively by

|W±|2 := (w±
11)

2 + (w±
22)

2 + (w±
33)

2 + 2(−(w±
12)

2 − (w±
13)

2 + (w±
23)

2).
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As an application, we obtain the following (cf. [47]):

Proposition 5.6 Let (M, g, I) be a compact neutral Kähler surface. If g

is anti-self-dual with respect to the complex orientation, then the signature

τ(M) is nonpositive, and τ(M) = 0 only if g is conformally-flat.

We next recall Gauss-Bonnet formula (cf. Avez [5], Chern [18]). Let (M, g)
be a compact oriented pseudo-Riemannian manifold with neutral metric g
and ∇ its Levi-Civita connection. Let {e1, e2, e3, e4} and {e1, e2, e3, e4} be
local orthonormal frame field on (M, g) and its dual coframe field expressed
as (5.21), respectively. Then the Euler form e(M,∇) of (M, g) is given by

e(M,∇) =
−1

32π2

∑
i,j,k,l

εijklΩ
ij∧Ωkl

=
−1

4π2
(Ω12∧Ω34 − Ω13∧Ω24 − Ω14∧Ω32)

=
−1

8π2
{(R(λ1

+) +R(λ1
−))∧(R(λ1

+) − R(λ1
−))

−(R(λ2
+) +R(λ2

−))∧(R(λ2
+) −R(λ2

−))

−(R(λ3
+) +R(λ3

−))∧(R(λ3
+) −R(λ3

−))}
=

−1

8π2
{R(λ1

+)2 −R(λ2
+)2 −R(λ3

+)2

−R(λ1
−)2 +R(λ2

−)2 +R(λ3
−)2}.

By a computation similar to that done for the signature, we obtain

e(M,∇)

=
−1

8π2
{[(a11)

2 + (a22)
2 + (a33)

2 + 2(−(a12)
2 − (a13)

2 + (a23)
2)]

+[(d11)
2 + (d22)

2 + (d33)
2 + 2(−(d12)

2 − (d13)
2 + (d23)

2)]

−2[(b11)
2 + (b22)

2 + (b33)
2 − (b12)

2 − (b21)
2 − (b13)

2

−(b31)
2 + (b23)

2) + (b32)
2]} ∗ 1

=
−1

8π2

(
|W+|2 + |W−|2 − 1

2
|Z|2 +

s2

24

)
∗ 1,

where Z is the traceless Ricci tensor and | · |2 denotes the indefinite squared
norm.

Summing up these formulas, we obtain
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Proposition 5.7 Let (M, g) be a compact oriented four-manifold with a neu-

tral metric g. Then its Euler characteristic χ(M) is expressed as

χ(M) = − 1

8π2

∫
M

(
|W+|2 + |W−|2 − 1

2
|Z|2 +

s2

24

)
∗ 1.(5.23)

The formulas (5.23) and (5.22) together with (2.15) show the following
proposition (cf. [42]):

Proposition 5.8 Let (M, g, I) be a compact neutral Kähler surface. If g

is Einstein, then the squared first Chern class c21(M, I) is nonpositive, and

c21(M, I) = 0 only if g is Ricci-flat.

Note that Petean [82] observed this result by taking account of c1(M, I) =
(1/2π)[γ] = (sg/8π)[ΩI ] and [ΩI ]

2 < 0, and obtained an interesting result for
the existence of neutral Kähler Einstein metrics on compact complex surfaces.

5.3 Liouville’s theorem

The following result is referred to as Liouville’s theorem in Introduction:

Proposition 5.9 Let U ,V be open subsets of Rn (n ≥ 3) and

g =
n∑

j,k=1

gjkdx
jdxk

a pseudo-Riemannian metric on Rn such that all gjk are constant (1 ≤ j, k ≤
n). Let ϕ : U → V be a conformal diffeomorphism. Then ϕ is given as the

composition of inversions, similarities and isometries on (Rn, g).

For the sake of completeness, we give a proof of Proposition 5.9. The
following proof is based on the argument, referred to as that due to Haantjes,
in Sasaki [85]. We first recall the following

Lemma 5.10 Let R and R′ denote the curvature tensors of g and g′ = e2fg,

respectively. Then the following relation is satisfied:

R′ = R+
(
∇df − df⊗df +

1

2
‖df‖2g

)
�∧ g,

where �∧ denotes the Kulkarni-Nomizu product.
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Proof of Proposition 5.9. Set g′ := ϕ∗g = e2fg and

τ := ∇df − df⊗df +
1

2
‖df‖2g.

Then, since ϕ : (U , g′) → (V, g) is an isometry, the corresponding curvature
tensors R′ and R satisfy

ϕ∗(R′(X,Y )Z) = R(ϕ∗X,ϕ∗Y )ϕ∗Z

for arbitrary vector fields X,Y, Z on U . Since gjk are constants by assump-
tion, we have R = 0, and thus R′ = 0. Then it follows from Lemma 5.10
that

τ �∧ g = 0.

Taking the g-trace of this identity, we have

(n− 2)τ = −(trgτ)g, (n− 2)trgτ = −ntrgτ.

The second relation implies that trgτ = 0, and hence by the first we have
τ = 0, since n ≥ 3. By the definition of τ , we obtain

∇df − df⊗df +
1

2
‖df‖2g = 0.

In terms of the standard coordinates (x1, . . . , xn) of Rn, this relation is equiv-
alent to

∂2f

∂xj∂xk
− ∂f

∂xj
∂f

∂xk
+

1

2
g(df, df)gjk = 0.(5.24)

In the case where df ≡ 0, that is, when f is constant, we obtain an
isometry ψ := λc−1◦ϕ : (U , g) → (c−1V, g), where c := ef , λc : Rn → Rn is
the homothety defined by x �→ λc(x) := cx and c−1V := {c−1x ∈ Rn | x ∈ V}.

In the case where ‖df‖2 = g(df, df) �= 0, it follows from the relation (5.24)
that

xi +
2

g(df, df)

n∑
j=1

gij
∂f

∂xj
= bi

for constants bi (i = 1, 2, . . . , n). By changing variables x̃i := xi− bi, we have

∂f

∂x̃k
= −1

2
g(df, df)

n∑
i=1

gikx̃
i.
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Then

g(df, df) =

n∑
j,k=1

gjk
∂f

∂x̃j
∂f

∂x̃k
=

1

4
g(df, df)2‖x̃‖2,

that is,

g(df, df) =
4

‖x̃‖2
,

where ‖x̃‖2 is defined by ‖x̃‖2 :=
∑n

j,k=1 gjkx̃
jx̃k. Noting that

∂(‖x̃‖2)

∂x̃j
= 2

n∑
k=1

gjkx̃
k,

we obtain

∂f

∂x̃j
= − 1

‖x̃‖2

∂(‖x̃‖2)

∂x̃j
= −∂(log|‖x̃‖2|)

∂x̃j
,

which implies that

e2f =

(
c

‖x̃‖2

)2

.

Let Tb : Rn → Rn and I : Rn\N → Rn\N be maps defined by

Tb(x) := x+ b, I(x) :=
x

‖x‖2
,

where x = (x1, . . . , xn), b = (b1, . . . , bn) and N := {x ∈ Rn | ‖x‖2 = 0}.
Then, in our case, ψ := T−1

b ◦ϕ◦(λc◦I)−1◦Tb is an isometry of Rn.
Finally, we consider the case where ‖df‖2 = g(df, df) ≡ 0 but df �≡ 0 on

some domain in U . Then the condition g(df, df) ≡ 0 implies that

∂2f

∂xj∂xk
=

∂f

∂xj
∂f

∂xk
.

This is equivalent to

∂fk
∂xj

= fk
∂f

∂xj
,

∂fj
∂xk

= fj
∂f

∂xk
,

where fj := ∂f/∂xj. Then we obtain

∂f

∂xj
= bje

f , or equivalently,
∂(e−f)
∂xj

= −bj
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for some constant bj (j = 1, 2, . . . , n). Set bj =
∑n

k=1 g
jkbk and 〈b, x〉 :=∑n

j,k=1 gjkb
jxk. Then d(e−f ) = −d(〈b, x〉). Therefore we obtain e2f = (c −

〈b, x〉)−2 for some constant c. By translation if necessary, we may assume
that c = 1. Indeed, by setting x̃ := x + a for a constant vector a satisfying
〈a, b〉 = c− 1, we have e2f = (1 − 〈b, x̃〉)−2(> 0).

Let Φb : {1 − 〈b, x〉 �= 0} → {1 − 〈b, x〉 �= 0} be a map defined by

Φb(x) :=
1

1 − 〈b, x〉
(
x− 1

2
‖x‖2b

)
for b := (b1, . . . , bn). Then Φb restricted to (Rn\N )

⋂{〈b, x〉 �= 1} is obtained
as

Φb(x) = I◦T− 1
2
b◦I(x).

Since ψ := ϕ◦Φ−1
b is an isometry between subsets in (Rn, g), the original map

ϕ is obtained as the composition of inversions, translations and isometries of
(Rn, g). �
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espèce, C. R. Acad. Sci. Paris 234 (1952), 1030–1032.

[68] Y. Machida and H. Sato, Twistor theory of manifolds with Grassmannian
structures, Nagoya Math. J. 160 (2000), 17–102.

[69] L. J. Mason and N. M. J. Woodhouse, Integrability, self-duality and twistor
theory, London Math. Soc. Monogr. (N.S.) 15, The Clarendon Press, Oxford
University Press, Oxford, New York, 1996.

[70] Y. Matsushita, Fields of 2-planes on compact simply-connected smooth 4-
manifolds, Math. Ann. 280 (1988), 687–689.

[71] Y. Matsushita, Fields of 2-planes and two kinds of almost complex structures
on compact 4-dimensional manifolds, Math. Z. 207 (1991), 281–291.

[72] Y. Matsushita, Thorpe-Hitchin inequality for compact Einstein 4-manifolds
of metric signature (++−−) and the generalized Hirzebruch index formula,
J. Math. Phys. 24 (1983), 36–40.

[73] Y. Matsushita and P. Law, Hitchin-Thorpe type inequalities for pseudo-
Riemannian 4-manifolds of metric signature (+ + −−), Geom. Dedicata
87 (2001), 65–89.

92



[74] D. McDuff and D. Salamon, A survey of symplectic 4-manifolds with b+ = 1,
Turkish J. Math. 20 (1996), 47–60.

[75] J. Milnor and J. Stasheff, Characteristic classes, Ann. of Math. Stud. 76,
Princeton University Press, Princeton, NJ.; University of Tokyo Press,
Tokyo, 1974.

[76] J. Moser, On the volume elements on a manifold, Trans. Amer. Math. Soc.
120 (1965), 286–294.

[77] H. Ohta and K. Ono, Notes on symplectic 4-manifolds with b+
2 = 1, II,

Internat. J. Math. 7 (1996), 755–770.

[78] B. O’Neill, Semi-Riemannian geometry. With applications to relativity, Pure
and Applied Mathematics 103, Academic Press, Inc., New York, 1983.

[79] H. Ooguri and C. Vafa, Geometry of N = 2 strings, Nuclear Phys. B 361
(1991), 469–518.

[80] H. Pedersen and A. Swann, Riemannian submersions, four-manifolds and
Einstein-Weyl geometry, Proc. London Math. Soc. 66 (1993), 381–399.

[81] H. Pedersen and A. Swann, Einstein-Weyl geometry, the Bach tensor and
conformal scalar curvature, J. Reine Angew. Math. 441 (1993), 99–113.

[82] J. Petean, Indefinite Kähler-Einstein metrics on compact complex surfaces,
Comm. Math. Phys. 189 (1997), 227–235.

[83] Y. S. Poon, Compact self-dual manifolds with positive scalar curvature, J.
Differential Geom. 24 (1986), 97–132.

[84] Z. Qin, Complex structures on certain differentiable 4-manifolds, Topology
32 (1993), 551–566.

[85] S. Sasaki, Geometry of conformal connection (in Japanese), Kawade-Shobo,
Tokyo, 1948.

[86] J. P. Serre, A course in arithmetic, Grad. Texts in Math. 7, Springer-Verlag,
New York, Berlin, Heidelberg, 1993.

[87] C. H. Taubes, The existence of anti-self-dual conformal structures, J. Dif-
ferential Geom. 36 (1992), 163–253.

93



[88] C. H. Taubes, The Seiberg-Witten invariants and symplectic forms, Math.
Res. Lett. 1 (1994), 809–822.

[89] I. Vaisman, Variation on the theme of twistor spaces, Balkan J. Geom. Appl.
3 (1998), 135–156.

[90] J. A. Wolf, Spaces of constant curvature, Publish or Perish, Inc., Houston,
TX, 1984.
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