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Preface

This monograph is based on the author’s doctoral thesis [27] submitted to
the Mathematical Institute, Tohoku University in 2002. In that thesis, the
author studied the relation between singularities and stability of harmonic
maps from domains in the 4-dimensional Euclidean space into 3-spheres. We
shall give basic notation and review the history of study for harmonic maps
briefly in the first two chapters, especially several known results closely related
to ours. In Chapter 3, we shall prove a theorem on energies of harmonic maps
between spheres following Ramanathan’s paper [29]. This plays an important
role in proving the main result in the thesis [27]. In Chpater 4, we shall prove

the main theorem following the author’s papers [25] and [26].

Harmonic maps are the critical points of the Dirichlet energy functional
defined for maps between Riemannian manifolds, and they play very important
roles in various context in differential geometry as well as in physics.

Let €2 be a bounded domain with smooth boundary in the m-dimensional
Euclidean space R™ and S™ denote the n-dimensional unit sphere in R"*!,
where m and n are integers greater than or equal to 2. We define the Sobolev

space W12(Q, R"™!) of maps from Q to R"™! to be

| i e L2O,R), 2% ¢ 12(,R)
WE2(Q,R™™) = S u = (u')1<icnia Oz ,

for1<i<n+4+1 1<a<m

where Ou’/dz is the derivative in distribution sense. The inner product
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(-, w2 of Wh2(Q, R""1) is defined by

(u, V)12 = /Qu ~vdr + /Q<Vu, V) dx.

Here and in what follows, we use the notation:

ou'
oz

Y

n+1
u-UIZuivi, u* = u-u, VUI( )
i=1 1<i<n+1, 1<a<m
n+l m % 2
(Vu, Vo) => 3 ggagil, |Vul? = (Vu, Vu).

i=1 a=1

Also, W, (€, R"*1) denotes the closure of C£°(€, R**1) in Wh2(Q, R**1). Fur-
thermore we define the class W12(Q,S") of Sobolev maps to be

Wh2(Q,8") = {u € WH(Q,R"™)| |u(z)| = 1 for almost every z € Q}.
Also, for any ¢ € C*°(012,S™), we define the class WS’Q(Q,S") to be
W, 8") = {u € WH(Q,S") | u= ¢ on 90}
To every element u € W%(,S"), we associate a non-negative real number
B(u) =, [ [Vul*d
w =g | IVul”dz,

which is called the Dirichlet energy of u, and E is referred to as the Dirichlet
enerqy functional. In the present monograph, we investigate the variational
problem of E. More precisely, for a given { € C*°(0€2,S"), we look for mini-

mum points and critical points of E in the class Wg ’Z(Q, S™). Namely,

Problem 1. Find a map i, € WCI ’Z(Q, S™) which satisfies

E(tmin) = }gf E(u),
ueW,’ (£2,5™)

and study its regularity.

We call the map uny;, an energy minimizing map, which is a natural gener-

alization of the notion of harmonic functions. When VVC1 (€2, S™) is non-empty,
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the existence of such maps can be proved by the direct method in the calculus
of variations. Since elements of W12(€),S") are not necessarily continuous, it
is important to study the regularity of energy minimizing maps. In accordance
with custom, we use the word regularity when we discuss the differentiability

of a Sobolev map. Also, the word smooth means being infinitely differentiable.

In contrast to harmonic functions, energy minimizing maps are not neces-
sarily continuous. For an energy minimizing map u, a point of Q is said to be a
singular point of u if u is discontinuous at a. A typical example of discontinuous

energy minimizing maps is given by the map z/|z| € W,y*>  (B™,S™ 1) (m >

1dsm—l
3) ([21]), where B™ is an m-dimensional unit open ball in R™. Obviously,
this is discontinuous at 0. On the regularity of energy minimizing maps, the

following facts have been already established.

(1) There exists a neighborhood of 02 in which wy,;, is smooth (see Schoen-
Uhlenbeck [34]).

(2) If m = 2, then uy,;, is smooth in Q (see Morrey [23]).

(3) If m > 3, there exists a closed set ¥ C © with dimy(X) < m — 3 such
that upy;, is smooth on Q\X. Moreover, ¥ is a discrete set if m = 3 (see

Schoen-Uhlenbeck [33]). Here, dimy, stands for the Hausdorff dimension.

By the very definition, an energy minimizing map is a minimum point of the
Dirichlet energy functional, and hence it is also a critical point, that is, a weak
solution to the Euler-Lagrange equation of the Dirichlet energy functional.
Here, two types of the Euler-Lagrange equations are to be considered. One
is obtained by the variation in the target S™, and the other is obtained by
the variation in the domain 2. The Euler-Lagrange equation obtained by the

former variation is given by

/Q{<Vu, V) — [Vul?u - ¢} dr =0 for all ¢ € C(Q,R™), (1)
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and that for the latter variation is given by

m a8
/Q{\Vu\QdiV(n)—Z On_ Ou  Ou

or® 9z« OxB

} dr =0 for all n € C3°(£2,R™).
(2)

a’ﬁzl

We call u € W2(Q,S") a weakly harmonic map if u satisfies (1); and w is said
to be a stationary harmonic map if u satisfies both (1) and (2). If u is smooth
and satisfies (1), we call u a smooth harmonic map. In the present monograph,
we use the terminology “harmonic maps” to mean both in the regular sense and
in the weak sense. Energy minimizing maps are always stationary harmonic
maps, and it is immediate by the definition that stationary harmonic maps are
always weakly harmonic maps. The converse, however, is not true.

Now we state a natural problem on harmonic maps.

Problem 2. Given any ¢ € C*(952,S"), find harmonic maps u € WS’Q(Q, S™)
and study the regularity of them.

Contrary to the case of energy minimizing maps, weakly harmonic maps
may be discontinuous on larger sets. Indeed, Riviere [30] constructed a weakly
harmonic map from B? into S? which is discontinuous everywhere on B3. On
the other hand, Bethuel [3] and Evans [9] proved that any stationary harmonic
map u € W12(€,S") is smooth on € except for an H™ 2-null set, where H™ >
is the (m — 2)-dimensional Hausdorff measure.

Recall that the harmonicity is a condition on the first variation of the
Dirichlet energy functional, and harmonic maps correspond to critical points
of the Dirichlet energy functional. Thus we next consider the second variation
of the Dirichlet energy functional at a harmonic map. Let u € WH2(Q,S") be

a weakly harmonic map. Then the second variation of E at u is given by

SE(W) = [ (VU = [Vull} da

for ¢ € Wy> N L=(Q, R") satisfying ¢(z) - u(z) = 0 for almost every z € Q. A
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harmonic map u € W2(Q2,S") is said to be weakly stable if
0LEW) >0

for all ¢ € Wy* N L>(Q, R™1) satisfying u(z) - ¥(z) = 0 for almost every
x € €. Otherwise, we call u unstable. The orthogonality condition means that
Y is a vector field along u.

An energy minimizing map is weakly stable because it is a minimum point
of the Dirichlet energy functional. Hong [17] and Hong-Wang [18] proved that
a weakly stable stationary harmonic map u € W12?(Q,S") is smooth on € if
n > 3 except for a closed set ¥ with dimy(X) < m — 3.

There have been many other results on the regularity of harmonic maps.
Most of them, however, are concerned with the estimate of the size of the
singular set (the set of points of discontinuity).

In 1987, Brezis-Coron-Lieb [5] investigated the behavior of an energy mini-
mizing map from a domain in R? into S?, and showed that its mapping degree
around a singular point is equal to +1 or —1. Indeed, they analyzed the pre-
cise behavior around the singular point. Subsequently, many people made use
of the technique of Brezis-Coron-Lieb and developed a deep theory. Typical
results are obtained on estimates of the number of singular points (due to
Almgren-Lieb [1], Hardt-Lin [14]), and the existence of infinitely many weakly
harmonic maps (due to Bethuel-Brezis-Coron [4]). Now we have a natural

problem.

Problem 3. Analyze the behavior of an energy minimizing map around its

singular points.

The work of Brezis-Coron-Lieb, however, depends heavily on the fact that
their target manifold is S?, which is a Riemann surface. Therefore it seems
rather difficult to apply their techniques in higher dimensional cases. Since
spheres of different dimensions have distinct geometric properties, we must

use different techniques. In the present monograph, we consider the weakly
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stable stationary harmonic maps from a domain in R* into S3. In this case, due

to Hong-Wang [18], Okayasu [28] and Schoen-Uhlenbeck [35], the set of interior

singular points of a weakly stable stationary harmonic map is a discrete set.
Now, let us state the main theorem of the present monograph (Theorem

1.9 (1) in Chapter 1). This result was proved in [26].

Theorem 0.1 (Mapping degree around a singular point) Let Q C R* be a
bounded domain with smooth boundary. If a weakly stable stationary harmonic
map u € WH2(Q,S?) has a singular point & € 2, then the mapping degree of u
around & 1s equal to +1, —1 or 0.

As a consequence, if a stationary harmonic map from a 4-dimensional do-
main in R* into S® has an isolated singular point & € Q and if the mapping
degree of u at & is neither £1 nor 0, then wu is revealed to be unstable.

Unfortunately, we do not know whether there exists a weakly stable station-
ary harmonic map having a singular point around which the mapping degree
of u is equal to 0. Although we do not know such an example, we cannot
exclude the possibility from our proof at present. It is the author’s personal
opinion that we may exclude the possibility by another consideration. This is
one of our future problems.

The assumption of weak stability of u is essential for determining the map-
ping degree around a singular point in Theorem 0.1. Indeed, for any integer
d, there exists a stationary harmonic map uy; € WH?(B*4 S?) having an iso-
lated singular point at the origin, at which the mapping degree of u is equal
to d (see Theorem 1.10 in Chapter 1). Therefore, in the case of maps from
a 4-dimensional domain into S3, the weak stability effects the behavior of a
stationary harmonic map around its isolated singular points.

In addition to the mapping degree, the exact behavior of a stable stationary
harmonic map around a singular point can be determined if the mapping degree
there is equal to +1 or —1. To state the results precisely, we now introduce a

rescaled map. For a point £ € Q and 0 < p < dist(£, 02) we define the map
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ug,, € WH(B™,S"1) to be

ug p() = u(€ + pr),

where B™ is the unit ball in R™ with center at the origin. It can be thought
that wue, emphasizes the behavior of u around & if p is small. We have the

following result (Theorem 1.9 (2) in Chapter 1) (see [26]).

Theorem 0.2 Let Q C R* be a bounded domain. Suppose that a weakly stable
stationary harmonic map u € W2(Q,S3) has an isolated singular point £ € Q,
and that its mapping degree around & is equal to +1 or —1. Then there exist
a sequence {pj};?‘;l of positive numbers tending to 0, and a 4 X 4 constant
orthogonal matriz S such that for any multi-index (11, 1o, 3,1y), where each

18 @ non-negative integer,

8 A 8 lo a I3 a Iy
<5$1> <0$2> (03:3) (8:134) Ug p;
( 0 >l1( 0 >l2< o >l3< o >l45£

oxt) \ox?) \0x3) \0z*) ||

uniformly on every compact subset of BY\{0} as j tends to cc.

converges to

Theorem 0.1 and Theorem 0.2 correspond to Theorem 1.9 in Chapter 1 and
the proofs will be given in Chapter 4. The proofs are done by using the so-
called blow-up technique and a precise analysis of the second variation. Beside
these, we are obliged to set a stronger condition on the second variation, called
strict stability, as follows. Suppose that the singular set of a weakly harmonic
map u € WH2(£2,S™) consists of a finite number of interior points. Then u is

said to be strictly stable if there exists a positive number A > 0 such that

SEW) = A [ d(a) |yl de

for any ¢ € Wy> N L>(Q, R™) satisfying u(z) -1(x) = 0 for almost every z €
Q. Here d(x) = dist(z, Sing(u)) denotes the distance from z to Sing(u), where
Sing(u) is the set of points of discontinuity of u. The weight function d(z)~>
reflects the behavior of u near Sing(u). We denote by A(u) the supremum of

such A\. We use the following curious phenomenon (Theorem 1.9 (1)) (see [26]).
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Theorem 0.3 Let Q C R* be a bounded domain with smooth boundary. Sup-
pose that a weakly stable stationary harmonic map u € Wh2(Q,S®) has an
1solated singular point & and that the mapping degree of u around & is equal to

+1 or —1. Then u 1is not strictly stable.

It is known that an energy minimizing map z/|z| € W12?(B™, S™~!) satisfies

2
A(:r;):(mél) for m > 3.
|| 4

Therefore our method seems neither to be used for higher dimensional cases
nor to give a new proof of Brezis-Coron-Lieb’s result.

Study of the behavior of a harmonic map around a singular point is very
interesting not only from analytical point of view, but also from geometrical
point of view. Also, it is important to investigate what type of conditions on
harmonic maps influences the behavior of harmonic maps around a singular
point. Theorems mentioned above are the first result which clarifies the effect
of stability on the behavior of a stationary harmonic map around an isolated
singular point in a simple setting. Although our method seems not applicable
to the case of maps from an m-dimensional domain into an (m — 1)-sphere if
m # 4, the author believes that the precise analysis of the second variation is
an efficient method in the study of singularity of harmonic maps. Also, the
non-strict stability appearing in Theorem 0.3 reflects some special structure of
maps from a 4-dimensional domain into a 3-sphere.

The present monograph is organized as follows.

In Chapter 1, we collect several definitions used throughout the monograph
and review relevant known results on harmonic maps. We state the main
theorem (Theorem 1.9) in the author’s thesis [27] and some corollaries derived
from it.

In Chapter 2, we prove the energy identity for stationary harmonic maps
and introduce the blow-up technique. By virtue of this technique, the proof
of Theorem 1.9 is reduced to the study of smooth harmonic maps between

3-spheres. In the course of the discussion of the blow-up, we prove a simple
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inequality (Lemma 2.1) that relates the upper bound of the Dirichlet energy
of a weakly stable stationary harmonic map.

In Chapter 3, we present some relevant results on conformal geometry and
discuss the energy of harmonic maps between spheres. Theorems obtained in
this Chapter are used to obtain the lower bound of the Dirichlet energy of
weakly harmonic maps satisfying some additional conditions.

In Chapter 4, we prove Theorem 1.9 by applying the estimate of the Dirich-
let energy and the stability condition. Also, we make several remarks and

comments on some of our future problems.
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List of Basic Notation

Let Q be a bounded domain in R™ and M and N denote smooth compact

Riemannian manifolds.

1]

8]

For a point & = (£4,&€2%,--- ,&é™) € R™ and a constant p > 0, we set
B (&) = {z = («', 2%, ,2™) € R™| X0 (% — &%) < p?}. We simply
write B™ for BY(0).

For vectors x = (z,2%--- ™), y = (y', 9% - ,y™) € R™ and u =

(ut,u?, - uP), v = (v1, 02 .- vP) € RP, the notation - stands for
the standard Euclidean inner product of R™ and RP. That is, x -y =
S ay® u-v = Y2 wv'. Also, | | denotes the standard norm |z| =

(- 2)12, fu] = (u-u)2.

For matrices A = (A°), B=(B!) (1 <a <m,1 <i < D), we define
(A,B) to be (A, B) = trace(A'B) = Y™ 2, A B! and |A| to be
4] = (4,472

For s,t € R, we denote sVt = Max{s,t} and s At = Min{s, t}.

For a map v : R™ — R""! we define the gradient Vu of u to be

ou’
Vu= )
dz ) . .
<am, 1<i<n+1

C>(Q,R™"1) is the space of R"-valued infinitely differentiable maps
in Q. D(Q) = C5°(2,R™™) is the space of infinitely differentiable maps

with compact support in Q, and D'(Q) is the dual space of D(f). For
T € D'(Q) and ¢ € D(Q), (T, $) is the pairing of T and ¢.

We denote by T'M a tangent bundle of M and by T*M a cotangent
bundle. For p € M, T,M is a tangent space of M at p and T;M a
cotangent space of M at p.

C>°(M, N) is the set of smooth maps from M into N.
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QO If 7 : E — M and n : F — M are two vector bundles, we denote by
E ® F' the tensor product of E¥ and F'.

[10] Let m# : E — M be a smooth vector bundle over M. We denote by

C>(FE) the vector space of smooth sections of E.

[11] Tf w: M — N is a smooth map and n : FF — N a smooth vector bundle,
we denote by u~'F the pull back bundle.

[12] The Sobolev space W2(Q, R"™!) is defined to be
i € AQ.R), 2

Wi2(Q,R™) = {u = () 1<icnst or®
forl<a<m,and1<i<n+1

€ L*(Q,R)

where du’/0z is the derivative in distribution sense. W,?(Q,R"1) is

the closure of C§°(Q, R™*1) in W12(Q, R" ).

[13] For {u;}32, € WH(Q,R™) and ue € WH(Q,R™1), by u; — uy in
WH2(Q,R") we mean that u; converges strongly to ue, in W2(Q, R™H1).
Also, uj — us in WH(Q,R™™) means that u; converges weakly to o,

in W12(Q,R"*1).
[14] We define the set W2(£2,S™) of sphere-valued Sobolev maps to be

W2(Q,S") = {u € WH(Q,R"™)| |u(z)| = 1 for almost every z € Q}.

[15] For a map v € WH2(Q,S"), £ € Q and 0 < p < dist(£,09), we define the
rescaled map ug,, € WH2(B™,S") to be ug ,(x) = u(€ + px).

[16] M () is the set of Radon measures on §2. Given u € M(2) and any Borel
set A C (2, we define another Radon measure u|A to be (u|A)(B) =
(AN B) for a Borel set B in .

[17] For {p;}32, € M(Q) and pp € M(Q), by p1; — p in M(£2) we mean that
jlggo/ﬂfduj Z/Qfdu
for any f € Cp(Q2).
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[18]

[19]

For 0 < s < o0, 0 < § < oo, we define the s-dimensional Hausdorff

premeasure Hj by

H;(A) = Inf { iws (dlarr;(cj)>

for each A C R™, where w, = ©/2/T(s/2 + 1). ‘H*® denotes the s-

o0

AC U Cj, dlam(Cj) < 5},

Jj=1

dimensional Hausdorff measure given by

HO(A) = lim H3(A) = Sup H3(A).

6>0

for each A C R™.

For 1 < p < oo, we define the p-capacity Cap, to be

Cap,(A) = Inf{ /R IVlPde| ¢ € CP(R™ R), AC Int{¢p > 1}}

for each A C R™, where {¢ > 1} = {x € R™|¢(x) > 1} and Int{¢ > 1}
is the interior of {¢ > 1}.
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Chapter 1

Introduction

§1.1 Smooth harmonic maps

Let M be an m-dimensional compact Riemannian manifold with metric g
(with or without boundary), and N be an n-dimensional compact Riemannian
manifold with metric h (without boundary). By Nash’s embedding theorem,
we may assume that N is isometrically embedded in a D-dimensional Euclidean
space RP for some positive integer D. Let du, be the canonical measure
on M induced by the metric g. We define the Dirichlet energy functional
E:C>®(M,N)— R to be

1
E(u) = 5 [ |dul*du,

where, in terms of a local coordinate system (z%)1<q<m in M and a local

coordinate system (y');<i<, in N, the energy density |du|? is expressed as

out ow
0z 0zb’

(29N (9 9
Gap = g 6?:1:“’ al’ﬁ y Tbig — ayza 8y3 )

and (gas) "' = (¢*°). Hereafter, we use the summation convention of Einstein.

|dul* = g (z)hyj (u)

Here

Throughout this chapter, repeated Greek indices are understood to be summed
from 1 to m, and repeated small Latin indices are to be summed from 1 to

n. The manifolds M and N are called the source and the target, respectively.
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We are interested in critical points of E. Let U C Int(M) be a compact set
with smooth boundary oU, where Int(M) is the interior of M. For a small
€ > 0 let (u¢)tes be a smooth variation of u satisfying u; = w in M\U for all
t €l = (—¢¢€). The map F(x,t) = w(x): M x I — N is smooth and uy = u,
so we can define a smooth section V € C*®(u~'TN) (here C*®°(u~'TN) is the

vector bundle induced by u) to be

V(z) =

We calculate the first variation of E at wu:

d 1d
SB(w)| = oo [l dp
dt o 2dtJu Tz
L9y duy d /(Vdd> d
= — | —(du,du = o duy,du ,
9 Ju o U tt:O Hg AR 7l N g

where du, is the differential of u, along M for a fixed t and V 2 is the covariant

derivative in T*(M x I) @ F~'TN. Let X be an element of C*(T'M). We

naturally identify X with an element (X, 0) of C*°(T'(M x I)). Also we identify

0/0t € C*°(TM) with an element (0,0/0t) of C°(T(M x I)). Then we have
(V2 dus) (X) = V5™ (duy(X)) - dug (v@“”*”x)

ot ot

= VngN(dF(X)) —0

oo () ([

— VETN (8_}7) +0.

ot
Here VTN ig the natural connection on F~'TN. Thus we have
Vo du, = v VoL
ot ot
and
ZE(ut) . = /M <VF1TN aa];, dut> . dug




For an arbitrary point p € M, we take a normal coordinate system () with

origin at p. For simplicity, we abbreviate

O = 0 Vo=V _ o .

G Eres

Then it holds that
Vads =0, Vog" =0 atp

for 1 < a, 8,7 < m. Hence we have

(VY TNV, du(8,))

I
NE

<Vu*1TNV*’ du)

Q
Il
—

I
NE

{Val(V, du(0a))) — (V, Vi TN (du(0a))) }

Q
I
—

[
NE

{Va((V, du(8a))) = (V, Vadu(0a))} -

i
I

The first term on the right-hand side is the divergence of the vector field
(V,04) 04, which has a meaning globally. Since V' vanishes in M\U, the integral

of this term vanishes. Consequently, we obtain

- —/M<V,T(u)>d,ug, (1.1)

where 7(u) is the smooth section of u TN given by
T(u)(p) = Y_ Vi, du(f,).
a=1

Here (f,)1<a<m is an orthonormal basis of T, M, and 7(u) is independent of
the choice of basis. 7(u) is said to be the tension field of u. We call (1.1) the
first variation formula. We now define the smooth harmonic map as a critical
point of the Dirichlet energy.

Definition 1.1 (Smooth harmonic map) A map u € C*(M, N) is said to

be smooth and harmonic if its tension filed 7(u) vanishes everywhere on M.

Let us give a local expression of the tension field of u. Let (z*) be a local

coordinate system in M and (y') be a local coordinate system in N. We denote
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by M "5, the Christoffel symbols of the Riemannian connection on M, and by

N F;k that on V. First we calculate the components of Vdu:

V.du =V, (g—z_;dxﬁ ® 8(?/1' o u)
- afjg;ﬁdxﬁ ® 8%@ ou— Mfﬁwg—g;dﬂ ® 8%@ ou
Nfékg—zgggidxﬁ ® % ou
- (afjg;ﬁ — ggi i er"fggi gz;) da’ a?y@' o
Therefore we have
(Vdu,, = aa?w‘ gy O g O 0wt
0P ox ik 9 §aB

This gives a local expression of 7(u):

T(U)Z = gaﬂ(VdU)gﬁ
0*u’ ou’ - Ouw OuF
— af My T af N i o
g <6m°‘8mﬁ B Oxr ) t9 13 koxe 928
—
Ik g §B”

=Ayu' +g

Here A, is the Laplacian on M.

Next, we give another expression of the equation of a smooth harmonic
map. We write the equation of a smooth harmonic map in the standard coor-
dinate system of RP. Let (uy)ie; be a smooth variation of u as above, and we

define a smooth section W € C*°(u~'TN) to be

d
W(x) = £ut(x) for x € M.
t=0

We regard u and W as RP-valued maps and denote



Then we have

iE(u) _ ! i/ 9 (dui duA>‘ d
dt ttO_QAle(?t e il Mo
D D
= > [ W autydpy = =Y [ Aautwtdy,
A=1'M A=1'M
= —/M Apu - Wdpg,
where Ayu = (Aput, Apsu?, -+, ApuP), and large Latin indices are to be

summed from 1 to D. Since we can take an arbitrary W € C*(u"'TN), u is a
smooth harmonic map if and only if the T,,(,) N-component of Asu(p) equals 0
for any p € M. For a vector v € T,R”, we denote v the T, N-component of v
and v+ the Tle -component of v, where TyLN is an orthogonal complement of

T,N in T,RP. Let () be a local coordinate system in M. Ayu is expressed

as
N 1 0 (gaﬁ\/mauA> B 1 oxA
T fdet(g,n) 02 7027 ) 7 faet(g,r) O
Here,

————0u”
X;l = gaﬁ det(gUT)W7

and we define an RP”-valued map of class C™ to be X, = (X}, X2,--- , XD).

«

Since
ou 0
— B — o8
Xa=yg \/det(gw)axﬁ = g*y/det(g,r)du (8:%) ,

X, is a smooth section of u TN, that is, X.(p) € Ty N for any p € M.
Let {Y1,Y2,---,Y,} be a local frame of TN around p. There exist smooth

2

functions &L, €2, - £ satisfying

XazfiYiou
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around p. Then we have

(At = (@(dm (ai))

_ m(w@i)(%)m our e (=)

i (4 ()
_ @5@}\5 (Y;,du (%))
i (v () o (1)

ool 2) ()
Here A" is the second fundamental form of N. That is, AY : TyN x T,N —
T;N is given by
AY(X,Y)=(VxY)" for X,Y € T,N.
Consequently, u is a smooth harmonic map if and only if
Apru— 3" Ay(du(f,), du(f.)) =0, (1.2)

a=1

where (f,) is a local orthonormal frame of TM. In the present thesis, we treat
only sphere-valued maps, so we set N = S™ C R""!. In this case, we obtain

the Euler-Lagrange equation as follows. Since |u| = 1 in M and T, j(p)S" is

spanned by u(p), we have

(Apu)" = Apu — (Apu - u)u

n+1
= Ayu— Y (W Apyut)u
A=1
n+1
= Apu— > {divy(u'grad,u?) — |grad,u’*}u
A=l

= Apru + |gradul®u,

where div), is the divergence on M, grad,, is the gradient on M,
jgrad,u?|” = g(grad,u®, grad, u’)

20



forevery 1 < A<n+1, and

n+1

lgradul® = Y |grad,u?|®.
A=1

Consequently we have the Euler-Lagrange equation
Apru+ |gradul>u =0 in M (1.3)

of a smooth harmonic map u into spheres.
We give some examples of smooth harmonic maps into spheres. See [7] for

details.

Example 1.1 Let M and N be compact Riemann surfaces. If a map u €
C>°(M, N) is holomorphic (or anti-holomorphic), then u is a smooth harmonic
map. We can construct smooth harmonic maps from S? into S? by using
this fact. Let 7 : S — C be the stereographic projection from the north pole
> € S% where we set (2°°) = oo. For any holomorphic (or anti-holomorphic)
function f: C — C, we define uy € C*°(S?,S?) to be

up(z) = (7" o fom)(x). (1.4)
Then uy is a smooth harmonic map.

Example 1.2 We give an example of a non-constant smooth harmonic map

from S? into S?. First we regard S? and S? as the sets

{(¢,) eCxR| [P +t2 =1}, (1.5)
{(z,w) € C?*| |2]* + |w|* = 1} (1.6)

respectively. We define the map uy : S* — S?, called the Hopf map, to be
UH(ZJ U)) = (22@, |Z|2 - |U}|2)
It is known that the Hopf map is smooth and harmonic.

§1.2 Existence of harmonic maps
We consider the existence problem of critical points of the Dirichlet energy
functional. There are two types of problems. One is called the homotopy

problem.
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Problem 1.1 (Homotopy problem) For any given v € C*°(M, N), does there

exist a smooth harmonic map u € C*°(M, N) which is homotopic to v?

There are several affirmative answers to this problem. If the manifolds M
and N satisfy one of the following conditions, then the homotopy problem is

affirmatively solved.

[1] The sectional curvature of N is everywhere non-positive (see Eells-Sampson

8] for the case OM = ¢ and Hamilton [12] for the case OM # ¢).

[2] dimM = 2 and the second homotopy group m(N) of N is equal to {0}
(see Sacks-Uhlenbeck [31]).

B8] M =N =S8"for 1 <m <7 (see Smith [38]).

On the other hand, there are few results for the case where m > 3 and the
sectional curvature of N is not non-positive.

Another problem is the Dirichlet problem.

Problem 1.2 (Dirichlet problem) Suppose that OM # (). For any smooth
map ¢ € C*°(OM, N), does there exist a smooth harmonic map u € C*°(M, N)
which coincides with ¢ on OM?

Although this problem seems to be natural, it does not make sense in
general. For example, if M = B™, N = S™ ! and if ( = idgm-1, a topological
argument shows that there is no continuous map from B™ into S™! which
coincides with ¢ on dB™. Therefore we should consider the problem in a weak
sense. In other words, we must treat weak solutions to the Euler-Lagrange
equation. In the present thesis, we restrict ourselves to the case where M is (a
closure of) a bounded domain € in the Euclidean space R™ and N is the unit
sphere S in R"*1. We shall write down the Euler-Lagrange equation in this
situation. At the same time we extend the domain of the functional E from
C>=(£2,S™) to the Sobolev class W2(,S"). We define the class W?(£2,S")

of Sobolev maps to be
Wh2(Q,8") = {u € WH(Q,R"™)]| |u(z)| = 1 for almost every = € Q},
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and the Dirichlet energy functional E on W12(Q,S") to be
B(u) = 5 [ [Vul*d
u) = = ul® dx.
2 Ja

Here, we use the notation

Vo <8u

(Y, Vo) = ou’ Ov

ox® = Ox Oz’

) 1<a<m, 1<i<n+1

\Vul? = (Vu, Vu).

We shall look for minimum points and critical points of E. First, we define a

minimum point of E, that is to say, an energy minimizing map.

Definition 1.2 (Energy minimizing map) A map u € W12(Q,S") is said to

be an energy minimizing map, if
E(u) < E(v) for any v € WH(Q,S") satisfying v — v € Wy (Q, R™1),
where W, (€, R"*1) is the closure of C§°(Q, R"+1) in Wh2(Q, R*H1).

This is a natural generalization of the notion of harmonic functions. Then,
the existence, uniqueness and regularity of energy minimizing maps are to be

discussed. For ¢ € W12(Q,S"), we define the class W/*(€,S") to be
W2(Q,8") = {u e WH(Q,8")| u = ¢ on 0Q}.
Problem 1.3 For given ¢ € W2(Q,S"), find a map up;, satisfying

E(umin) = Inf E(u),
ueWw, 2(Q,5m)

and study its properties.

By the direct method of calculus of variations, we can prove the existence

of such u,;,. The uniqueness, however, is not guaranteed in general.

Example 1.3 Hardt-Kinderlehrer-Lin [13] constructed a map ¢ € W?(B3, S?)
such that there exists a continuum of energy minimizing maps which coincide

with ¢ on OB3.
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Next, we consider the question of regularity. When m = 2, Morrey proved

the following fact.

Theorem 1.1 ([23]) Let Q be a bounded domain in R?. Then every energy

minimizing map u € WH2(Q,S") is smooth on .

Remark 1.1 Morrey proved a more general fact. Theorem 1.1 is only a part

of his result.

When m > 3, there exists an energy minimizing map with points of dis-
continuity. Indeed, Lin [21] proved that the map z/|z| € WY2(B™,S™1) is
energy minimizing if m > 3. And hence, we can only expect partial regularity

results. We define the regular set Reg(u) of u to be
Reg(u) = {x € Q| u is continuous at z}.

The complement of Reg(u) in € is said to be the singular set and denoted by
Sing(u). We call a point of discontinuity of u a singular point of u. Concerning
the size of the singular set of an energy minimizing map, Schoen-Uhlenbeck

proved the following.

Theorem 1.2 ([33]) Let Q be a bounded domain in R™ and u € W2(Q,S")
be an energy minimizing map. Then the Hausdorff dimension of Sing(u) N 2
is smaller than or equal to m — 3. Moreover, Sing(u) N Q is a discrete set if

m = 3.

Schoen-Uhlenbeck [34] showed the following regularity result near the bound-

ary.

Theorem 1.3 ([34]) Let 2 be a bounded domain in R™ having smooth bound-
ary O and u € WH(Q,S™) be an energy minimizing map. Suppose that the
boundary value ulgq of u is smooth. Then there exists a neighborhood U of Of)

such that Sing(u) NU = ¢.
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In the present monograph, we always assume that the maps under consid-
eration are continuous near the boundary, and we discuss only interior singular
points.

We give the definition of weakly harmonic maps, i.e., critical points of the

Dirichlet energy functional.

Definition 1.3 (Weakly harmonic maps) A map u € WH2(Q,S") is said to

be weakly harmonic if it satisfies
Au A+ |Vul*u =0
in distribution sense, that is,
/Q{<Vu, Vo) — |[VulPu-d)de =0 for any ¢ € C(Q,RM1).

In the present monograph, we use the terminology “harmonic maps” to

mean both in the regular sense and in the weak sense.

Remark 1.2 Energy minimizing maps are always weakly harmonic. The con-
verse, however, is not true in general. Indeed if 1 < m < 7, then the equator
map (z/|z|,0) € W12(B™,S™) is not energy minimizing, but weakly harmonic

([16], [19]).

The following result on smoothness of weakly harmonic maps is due to

Schoen.

Theorem 1.4 ([32]) Let Q be a bounded domain in R™ and u € W2(Q, S")

be a weakly harmonic map. Then u is smooth on Reg(u).

Although the notion of weakly harmonic maps is a natural interpretation
of critical points, the weak harmonicity does not imply the regularity at all.

Riviere proved that

Theorem 1.5 ([30]) Let ¢ € C(0B3,S?) be an arbitrary non-constant map.
Then there exists a weakly harmonic map u € Wg’z(By’, S?) satisfying ulsps = ¢
and Sing(u) = B3.
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To exclude these pathological examples, we treat harmonic maps of a spe-
cial type. We consider another type of variation. For any n € C§°(Q2,R™), we
define a variation u' of u to be u!(z) = u(x + tn(x)). Here t € R is assumed
to be of small absolute value, and u' should not be confused with the t-th
component of u. Since

ou' ou ou on®
O () = D2 ot @) + £ o (@) 2 (),

we have
B)=, [ {IVuP(a: i)

v 5
+ Zt%(x +tn(z)) - %(m + tn(m))%(w)} dz + o(t).

If |¢] is small, then the map W(x) = x + tn(x) is a C*-diffeomorphism from
Q) into itself satisfying

o on®
W - 6aﬁ + ta ﬁ’
ox® 0>\ .
det <6w5> = det <8\If?> =1—tdiv(n) + o(t).

If we change variables from z to £ = x + tn(z), then we have

-5/, {(W )2 (e). ;;ﬁ@gg;m—l@»)

x (1 =t div(n) (¥ (§))}d§+0()

Consequently, we obtain the first variation formula with respect to u’:

1 91 ou Ou On
— 2/9( |Vl d1v(77)+28xa 6x58x5> dx.

And we define a stationary harmonic map as follows.

a
dt

(u')

t=0

Definition 1.4 (Stationary harmonic map) Let u € W2(Q2,S") be a weakly

harmonic map. wu is said to be a stationary harmonic map if it satisfies

_ Ju Ou On - m
/Q <|Vu|2d1v(77) — 28x°‘ pe (9955) dr =0 for any n € C3°(£2,R™).

(1.7)
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Remark 1.3 Energy minimizing maps are always stationary harmonic, and
stationary harmonic maps are weakly harmonic by its own definition. The
converse, however, is not true in general (see Remark 1.4 below). We note
that smooth weakly harmonic maps are stationary harmonic maps. Indeed,
for any n € C§°(2,R™), we take ¢ = (Vu)n as ¢ in Definition 1.3. Then we

have

0= [ {(Vu, V(Vu)y) = [Vulu- (Tu)n} da

ou - Ou’
81 _ 2,177«
axa oo (8:16577 ) Vultu's o }dx

/ out Ou' On™ 8ui 0%t p
Ox® QxP 0m5 Ox® axaaxﬁn *

e}

ou on® +1 0
83:“ 028 0xB | 2028

1
(1Vuln’) - §|VU|2diV(n)} s

ou  Ou on®
E ('V“' v = ana'amxﬁ)

In the third equality, we have used the equation |u| = 1.

For the case of stationary harmonic maps, we have a result on partial

regularity.

Theorem 1.6 ([3], [9]) Let Q be a bounded domain in R™ and u € W12(Q,S")
be a stationary harmonic map. Then the (m — 2)-dimensional Hausdorff mea-

sure of Sing(u) N is zero: H™ 2(Sing(u) N Q) = 0.

Remark 1.4 The singular set Sing(u) of weakly harmonic map u appearing
in Theorem 1.5 is B3. Therefore H'(Sing(u)) = oo and u is not stationary

harmonic by Theorem 1.6.

Theorem 1.6 is a consequence of the following €y-reqularity lemma.

Lemma 1.1 (¢p-regularity lemma) ([3],[9]) There exists a constant ¢ > 0

depending only on m and n satisfying the followings. If a stationary harmonic
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map u € WH2(Q,S"), £ € Q and 0 < p < dist(&,09) satisfy

2-m 2 2
p / |Vul|”dx < €,
By () °
then uw € C*( 2}2(6), S™). Moreover, an inequality
pl Sup |Dlu’ < C(l7m7n760>
B, (6)
holds for any | € N, where C(l,m,n,¢ey) is a positive number depending on

l,m,n, ey but neither on u,& nor on p.

§1.3 Behavior of a harmonic map around isolated
singular points

It is very interesting to study what kind of singularity may occur to har-
monic maps. In 1987, Brezis-Coron-Lieb [5] analyzed the singular points of
an energy minimizing map from a 3-dimensional domain into S?.. They deter-
mined the mapping degree of an energy minimizing map around its singular
points. To state their result precisely, we give definitions of the mapping de-
gree of a smooth map and that of a Sobolev map around its isolated singular

point.

Definition 1.5 (Mapping degree) Let ¥; and ¥5 be compact connected
orientable Riemannian manifolds with the same dimensions. For any u €

C1(X4,%,), we define the mapping degree deg(u) of u to be

1
deg(u) = [ s,
eg(u) vol(3y) Js, e

Here wy, is the volume form of 3, and vol(3,) is the volume of ¥.
We can define the mapping degree of u € C(X;, %), not necessarily of
class C*, as follows. Take a sequence {u;}52, C C"(Xy, X2) such that u; — u

(j — o00) uniformly on ¥, and define deg(u) to be

deg(u) = lim deg(u;).

j—0o0
It is known that the right-hand side is independent of the choice of a sequence
{u;}32,. Moreover, this is independent of metrics of ¥, ¥,. Topological ar-

guments show that deg(u) is an integer and homotopically invariant. That is,
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if u,v € C(X1,%s) are homotopic, then deg(u) = deg(v). Moreover, if 5 is a
sphere S" then u,v € C'(¥1,S™) are homotopic if and only if deg(u) = deg(v).

Next we define the mapping degree of a Sobolev map around its isolated

singular point.

Definition 1.6 (Mapping degree around an isolated singular point) Let 2 C
R™ be a bounded domain, 3 be an (m — 1)-dimensional compact orientable
Riemannian manifold, and v € W?(Q,%). Suppose that ¢ € Sing(u) is
an isolated singular point of u. Let p be a small positive number such that
B (&) N Sing(u) = {§}. Then ulapy ) € C(OB}'(£),%). We define the degree
deg(u, &) of u around & to be

deg(u, &) = deg(ulom, (¢))-

By the homotopic invariance of deg(-), this value is independent of small

Now, we state Brezis-Coron-Lieb’s result.

Theorem 1.7 ([5]) Let Q2 be a bounded domain in R®. Suppose that an energy
minimizing map u € WH2(Q,S?) has an isolated singular point & € Sing(u)NL.
(1) Then the mapping degree deg(u,§) is equal to +1 or —1.

(2) Furthermore, there exists a 3 X 3 constant orthogonal matriz S such that u
behaves like S(x — &) /|x — &| around & in the following sense. For any multi-

index (l1,12,13), where each ly is a non-negative integer, the derivative of the

Ny 0 \ey 0\
(8:131) <8:B2) <8:B3> Her
(o) (o) (as)
Ozt Ox? Ox? ||

uniformly on every compact subset of B3\{0} as p tends to 0.

rescaled map g ,

converges to

Remark 1.5 This is a complete characterization of singular points of energy

minimizing maps from a 3-dimensional domain into S?. We cannot expect
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the same result for weakly harmonic maps. By Smith’s result [38], for any
d € Z—{0}, there exists a non-constant smooth harmonic map vy € C*(S? S?)
satisfying deg(vq) = d. If we define a map ug € WH3(B3,S?) to be uy(z) =
va(x/|z]), then uy is a weakly harmonic map such that Sing(uy) = {0} and

deg(ug,0) = d.

Remark 1.6 Let ¢ be an element of C*°(S?, S?) satisfying deg({) # +1. Then,
from Theorem 1.7, {(z/|z|) € W1?(B3,S?) is not an energy minimizing map.
On the other hand, by the direct method of calculus of variations, there exists
an energy minimizing map u € VVC1 ’2(1853,82). By a theorem of elementary

topology, u has at least two singular points.

It is natural to ask whether the same result holds in higher dimensional
cases. In the present monograph we treat the case of maps from 2 C R* into
S3. In this case, we can prove a similar result on non-minimizing stationary
harmonic maps satisfying a stability condition.

The stability is a condition on the second variation defined below. First, we
calculate the second variation of E. Let u € W12(2,S™) be a weakly harmonic
map. For any map 1 € Wy~ N L®(Q,R"*) satisfying (z) - u(x) = 0 for
almost every x € Q, we denote u; = (u + tv)/|u + t1p|. Since

@ ot Jurwp T

dup (i) P

e /
at? P Juttgp T
dut d2'LLt 2

1 = sza —|¢| u,

dt |,_ de* |,

we obtain

2

d
53E(¢) = ﬁE(UQ

L
= [ L=V (L), Vo) + [V} da

A B
= [ V0P [VuP P - 20 9 T
9) oz  Oz“
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= [{IVE = [Tu |y} da.
Now, we define the weak stability, instability and strict stability as follows.

Definition 1.7 (Weak stability, instability, strict stability [15], [24]) Let u €
W12(Q,S") be a weakly harmonic map.
(1) u is said to be weakly stable if

52E(1h) > 0

for any ¢ € Wy N L®(Q, R*) satisfying u(z) - 1(z) = 0 for almost every
x € €. Otherwise u is said to be unstable.

(2) Suppose that the singular set Sing(u) of u consists of a finite number of
interior points of 2. w is said to be strictly stable if there exists a constant

A > 0 satifying

2 _ 2 _ 20,12 > —2),112

B = [ (V0P ~ [VuPlPYdr > 3 [ dw)2ldr  (18)
for any ¢ € Wy N L®(Q, R*) satisfying u(z) - 1(z) = 0 for almost every
z € Q. Here d(z) = dist(x, Sing(u)). And we define A(u) to be

SE()
A(u) = Inf o
v dl) ol de

Here, 1 runs over the set
{¢p € Wy N L=(Q,R™Y)| (z) - u(z) = 0 for almost every = € Q}.

In this notation, u is weakly stable if and only if A(u) > 0 and u is strictly
stable if and only if A\(u) > 0.

Remark 1.7 The weight function d(z)~? appearing in (1.8) is important to

study the local behavior of a harmonic map (see Remark 1.8).

To study the local property of harmonic maps around their isolated singular

points, we use a weaker condition than the strict stability.
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Definition 1.8 (Local strict stability) Let u € W12?(Q,S") be a weakly har-
monic map and £ € Sing(u) N 2 be an isolated singular point. wu is said to
be locally strictly stable at £ if there exists 0 < p < dist(&,012) satisfying
B (¢) N Sing(u) = {£} such that the rescaled map ue, € WH*(B™,S") is
strictly stable. That is, A(ug,) > 0.

Remark 1.8 If u is strictly stable, then it is locally strictly stable at any
isolated singular point ¢ € Sing(u). Thus we treat only harmonic maps
u € WH2(B™,S") such that Sing(u) = {0} and deg(u,0) = d. We note that

Mugs) > Aug,,) for two small positive numbers 0 < o < p.

Remark 1.9 In the case of maps from B? into S?, there exist many strictly
stable harmonic maps w. Indeed, Mou [24] proved that for any d € Z — {0},
there exists a strictly stable, weakly harmonic map u € W12(B3, S?) satisfying

Sing(u) = {0} and deg(u,0) = d.

We study the mapping degree of a stable stationary harmonic map from B*
into S®. Before stating results, we remark a partial regularity result on weakly

stable stationary harmonic maps from B* into S3.

Theorem 1.8 ([17], [18], [35], [28]) Let Q@ C R* be a bounded domain and
u € WH2(Q, S3) be a weakly stable, stationary harmonic map. Then Sing(u)NQ

1s a discrete set.

Now, we state the main result of the present monograph which will be

proved in Chapter 4.

Theorem 1.9 ([26]) Let Q be a bounded domain in R* with smooth boundary
and u € W12(Q,S?) be a weakly stable, stationary harmonic map. Suppose
that u has an isolated singular point & € 0 and that u is smooth near the
boundary of 2. Then,

(1) The mapping degree deg(u,&) of u around & is equal to +1, —1 or 0. In
addition if u is locally strictly stable at &, then deg(u, &) = 0.

(2) If deg(u,§) = £1, then there exist a sequence {p;}52, of positive numbers
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tending to 0 and a 4 x 4 constant orthogonal matrix S such that for any multi-

index (I, 12,13,1y), where each ly; is a non-negative integer, the derivative of the

8 A 8 lo a I3 a Iy
<5$1> <0$2> (03:3) (8:134) Ug p;
( 0 >ll( 0 >lz( o >l3( O >l4sx

It Ox? Ox3 oxt ||

uniformly on every compact subset of B*\{0} as j tends to oo.

rescaled map ug p,

converges to

(3) If u is an energy minimizing map, then S is independent of a sequence
{pj}]o-‘;l and for any multi-index (l1,1ls,13,14), where each lj. is a non-negative

integer, the derivative of the rescaled map ue,,

I Ny 0Ny 0 \ey 0\u
(8.:51) (8.252) (03:3) (03:4) e
() () () (25

Ox! Ox? Ox? Ozt ||

uniformly on every compact subset of B*\{0} as p tends to 0.

converges to

We state some corollaries derived from Theorem 1.9.

Corollary 1.1 Suppose that ¢ € C(9OB*,S?) satisfies d = deg(¢) # 0. Then,
for any energy minimizing map u € WS’Q(B‘l,SB), Sing(u) is a finite set and

the cardinal number of the singular set is greater than or equal to |d|.

From this corollary, we find that the study of singularity of harmonic maps

gives not only the local information but also a global one.

Corollary 1.2 Suppose that ¢ € C°°(0B*,S?) satisfies deg(¢) # 0. Then it
holds that AN(u) = 0 for any energy minimizing map u € WS’Q(B“, S3).

Corollary 1.2 shows that we can get the information of stability on an
energy minimizing map only from its boundary value.

In Theorem 1.9, the assumption of the weak stability of u is essential for
determination of the mapping degree and asymptotic behavior in (2). Indeed

we have the following theorem which will be proved in Chapter 4.
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Theorem 1.10 For any d € Z, there exists a stationary harmonic map ug €

Wh2(B*,S?) such that Sing(u) = {0} and deg(ug4,0) = d.

Therefore, for the case of maps from 4-dimensional domain into 3-sphere,
weak stability influences the behavior of stationary harmonic maps around

their singular points.
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Chapter 2

Monotonicity and Blow-up

In this chapter, we prove an energy identity of stationary harmonic maps
and we introduce an important technique to prove the main theorem, blow-up.
This technique has been developed in the geometric measure theory and used

in geometric variational problems ([11], [36]).
§2.1 Monotonicity identity
First, we prove an energy identity that we call the monotonicity identity.

Theorem 2.1 ([36], [37]) Let Q2 be a bounded domain in R™ and v € W12(,S™)

be a stationary harmonic map. Then it holds that
2

dx
(2.1)

%
07“5

p2_m/ Vul* do — 02_m/ Vul*dr =2 rg "
B (€) B (€) B (§)\ B (€)

for any £ € Q and 0 < 0 < p < dist(&,09). Here
0 L e,
re = |z —¢| and a—r&—z —

a=1

re  Ox®

Proof. For small ¢ > 0, we take a cut-off function x. € C*°(R,R) satisfying
Xe=1for0<t<1—¢ xe=0fort >1, X;SOinRadegﬁx(,o@,u
at every point as € — 0. Here x(_«,1 is the indicator function of the interval

(—o0,1]. For any 0 < 7 < p, we define a function n. € C*(Q,R™) to be

e

nlo) = x (%) @ =g,
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Substituting 7. into the equation (1.7) of stationary harmonic maps, we have
Ju  OJu T
— 2 el _f af
0 /Q (5ag|Vu| ana 3x5) (Xs (7‘) ) ) dx
ou Ou p (e 1ao® — &2
vt 22 ) [ (Y 1€ ),
+/Q ( sVl oxr® 8:Eﬁ> (XE T) T T (@7 = &) | de
= (m — 2)/ |Vul?x. (7‘5> dzx
Q T

ou Ou
2— _ e —
+/Q(5aﬁ|vuy 2" a:w)

Using the relations

and multiplying both sides by 7!=™, we obtain

(m — 2)7’1’"‘/Q |Vul*x. (:_—5) dx

S (5aﬁ|vu|2 - 2% . %) % (xe (%)) xar—s 3 ‘Tﬁr_g S

- 72—’”/9 (|Vu\2 _o|Ou 2) 3% (Xe (%)) dx (2.2)
_ TQ—mg{/Q (|vu\2 _g|2u dm) v (%) dx}.

87“5
dre

We take the limit as ¢ — 0 in (2.2) in distribution sense. For any ¢(7) €

Co°((a,p)), we have

lim<(m—2)7’1_m/ (Vul*x. <T—€> dz, gp> = <(m—2)7‘1_m/ |Vul? dr, gp>,
0 0 T By ()

0 T
: 2-m Y 2 e
iy (f 90 () ). o)
— qim [f 2 7"5) )3 2-m
- [ (e () ) i e

— P 2 g 2—m
= /U </Bm(£) |Vul dm) 87’<T @) dr

P

0
_ 2—-m 2
— <7‘ 57 </B;)n(£) |Vul d:v) , go>,
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ouf’
87”5

ou | Te 0 5.
Xe <?> df) 5(7 @) dr

87“5
6 2—m
d:zc) P (7% ™) dr.

0
1' 2 2—m /
el—r>%< T or ( Q

p
— _2lim ( /
e—0 Js [¢)

[ ([

]B’ITL
With the aid of Fubini’s theorem we obtain
2/
( B (¢ 87"5

ou |

p 0
- _9 Z (-2-m d =
By (€) (/rgw OT(T ?) T) Ore

ou |

67"5

9 2—m
dx) E(T @) dr

dx

=2 (re Vo) Mp(re Vo) |l=—| do

B (€)

Te

p(re) do

P 8@
arg (/g or dT) de
p 8gp
</’I’§\/O’ 87— d > d

ou |?
87’

B (6)\Br: (€) e
2—m au

= -2 r -
B (€) ¢ Ore

Again we use Fubini’s theorem to have

ou )
-2 dr | d
B (€) e dre (/QVU or T) !
P ou dyp
= —2/0. (/]B:n f 8—7“5 dl’) 87' dr
u

a 2—m
- 2<§ (/B;n(@ "¢

And hence the relation
(2 - m)Tl—m/ Vul2dg + 22 (/ |Vu|2dx>
™€) o \Jem e

(2.3)
0 ou
—9 2—-m | 77
or (/}E;n(g) "¢ Ore d:v)
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holds. Since both
2

ou s

Vul*d d 2mm |
/]B;n(g)l u|*dr an T are

B (€)

are absolutely continuous on [0, p] with respect to 7, the relation (2.3) holds

for £L1-almost every 7 € (o, p). Therefore it holds that

9 [ o 2 9 2
By de | =22 m
or (T /B:n@ [Vl x) or (/B:n@) "¢

for £1-almost every T € (o, p). Integrating both sides of (2.4) with respect to

ou
87"5

2 d:v) (2.4)

7 from o to p, we have the desired result. 1

§2.2 Blow-up

We shall prove some consequences derived from the monotonicity identity.
In this section, Q is a bounded domain in R™. Let u € W'%(Q,S") be a
stationary harmonic map, £ € Q and 0 < 0 < p < dist(£,09). From the

monotonicity identity, we have

02_"‘/ |Vul* dz < pg_m/ |Vu|® dz.
By (€) B (€)

If we replace u by rescaled maps ug ,, us, € WH*(B™,S") we have

Ve |2 d </ Ve ,|? dr,
L Ve Pde < [ Vg, [ dr

from which we deduce a uniform bound:

Sup |[Juepllwr2@n sy < Clpo)
0<p<po

for 0 < po < dist(&,052). Therefore there exists a sequence {p;}32; of small

positive numbers tending to 0 and a map u, € WH(B™,S") satisfying
Ugp, — Uso  in WH(B™, R™).

U~ may depend on the sequence {p; }‘;‘;1 We call this procedure blow-up and

Uso the blow-up limit. Since the sequence

,02-_7”/ |Vul? dx
7 B

Pj

o0

J=1
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is monotone decreasing, there exists the limit

L=l Z*m/ Vul? dz.
o0l Bm(&)' ul” dx

]
From the monotonicity identity, it holds that

ou |2

8—7'5 d.fl:'

2—m 2 2—m 2 2—m
or / Vu|*dx —p / Vul|”dx = 2/ r
T Jspe Vel b Jep e Ve By (€)\BY (6) ©

Pj
for any j, k € N with j < k. Taking the limit as £ — oo, we have

2

0
pJQ-_m/ |Vul?dr — L =2 rg " el
By (€) By (€) Ore
=2 il T

B r

Since

Ve, Qoo yy iz gm gty

or or

it follows from the weak lower semi-continuity that

Oy | Oug, |?
/ — 221 dr < liminf i TER
B~ | Or j—oo Jem | Or
Oug, |
< lim inf p2mm | 28R g
j—oo Jm or
o oul?
= lim inf T?‘m —| dx
i—oo JEp (&) or

:hjr21£f§ (pj /IB;’;(O|VU’ d:c—L) = 0.

Therefore, we have

OUo )
o = 0 for almost everywhere in B™.
r

A map u, having this property is said to be homogeneous. Next, we show that
if n > 3 and if u is weakly stable, then, taking a subsequence if necessary, ue ,,

converges to o strongly in W,22(B™, R"*1). More generally, the following fact

holds.

39



Theorem 2.2 ([18]) Let n > 3 and {u;}52, C W"*(Q,S") be a sequence of
weakly stable stationary harmonic maps. Suppose that u;’s have a uniform
energy bound:

E = Sup E(u,) < . (2.5)

jEN

Then there exist a subsequence, we denote again by {uj}‘]?‘;l, and a weakly sta-
ble, stationary harmonic map us € WH2(Q2,S"™) such that u; and Vu; converge
t0 Use and Ve, respectively, in the L?-norm on every compact subset of ) as

J — 00 .
To prove the theorem above, we need a lemma.

Lemma 2.1 ([18], [28], [35]) Let Q2 be a domain in R™. Suppose that n > 2

and that u € W12(Q,S") is a weakly stable harmonic map. Then, we have

dxg/Q|Vf|2dx for f € W2 L=(Q, R).

Proof of Lemma 2.1. Let {e4};1] be a constant orthonormal basis of R"+*.

We set
bay(@) = f(x){ea —u(x)u(x)}

for each A, where u* = u-e4 and f € Wy N L>®(Q,R). The hypothesis of
weak stability of u implies 02E(¢)(4)) > 0. A computation shows

S2E (1) / P

where

Py(x) =[Vul{2(u?)? — 1} /2 + [Vu? [ £

=TI = 3wt

Let us sum P4y with respect to A from 1 to n + 1. Since

n+1
Z aaa{(uA)Q} =0 almost everywhere in 2,
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we have

n+1
> Puy(z) = n|Vf? — (n—2)|[Vul’f* almost everywhere in Q.
A=1

Therefore we get

n+1

> BZEWw) = [ (VI = (n— 2| Vul*f} do > 0.
A=1
This is our desired inequality. 1

Remark 2.1 We do not know whether the number (n — 2)/n appearing in
Lemma 2.1 is optimal or not. However, we can prove that this constant is
optimal for the case m = 4 and n = 3. For an energy minimizing map

z/|z| € WH2(B™ S™!) the inequality in Lemma 2.1 becomes

(m — 3) /Bm 2|2 f2 d < /Bm IV f[? da.

On the other hand, by Hardy’s inequality

(m —2)? —9 49 9
- 7 <
1 /Bm |z|~ f“ dx /]Bm |V f|° dz

holds for any f € Wy N L=(B™,R) and the constant (m — 2)2/4 is optimal.

Therefore if m = 4 and n = 3, then the constant in Lemma 2.1 is optimal.

The proof of the Theorem 2.2 is organized as follows.
In Step 1, we define the set ¥ C 2 where the strong convergence may break,
and prove that ¥ N A is a closed set for any compact set A C €.
In Step 2, we prove that H™ (X N A) < oo for any compact set A C €.
In Step 3, we prove that H™ 2(X N A) = 0 for any compact set A C €.
In Step 4, we prove the strong convergence in W,2(€, R*).

In Step 5, we prove that the limit map is weakly stable stationary harmonic.

Proof of Theorem 2.2.
Step 1. By (2.5), we may assume that u; converges to the map u., € WH(2, S")
weakly in W12(Q, R"™). We define the set 3 C  to be

E:ﬂ{feQ

R>0

lim inf RQ_m/ |Vu,|? doe > e%} .
J—e0 By (£)

R
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Here, ¢y is the same constant as in Lemma 1.1, from which we may assume

that
Uj — Us a5 j — 00 in C2_ MWL Q\E, R, (2.6)

In what follows, we denote by A an arbitrary compact subset of 2. We shall
prove that ¥ N A is a closed set. Suppose that a sequence {}52, C ¥ NA

converges to a point £ € A. Since §; € ¥, we have
j—o0

lim inf Rz_m/ o) |Vu;|*dx > e; for any R > 0. (2.7)
BY? (&5

For any fixed R > 0, we set Ry, = R — | — &|. Since &, converges to &, Ry is
positive and B () C B (€) for sufficiently large & € N. And hence, we have

R2—m/ IV [? da > R2—m/ Vu,|? de
B (6 B

Ty, (E)
R 2—m
> (—) g [Vl de
Ry, BR, (&)
Taking account of (2.7), we have
R 2—m

lim inf Rz_m/ (V| doe > () e
j—oo B (€) Ry

for sufficiently large k£ € N. Taking the limit as k — oo, we obtain

lim inf RZ*’”/ |Vl > &
B (¢

J—0 2 (

Therefore £ € YN A, and ¥ N A is a closed set.
Step 2. Let us estimate the H™ 2-measure of ¥ N A. By Vitali’s covering
lemma ([10], [36]), for any § > 0, there exists a finite disjoint collection

{B%, (&) }iz, of closed balls with centers in X N A, satisfying

YNAC G BEy, (§x),
k=1
and 0 < R, < A dlSt(ém@Q) Since fk € 2,
62
R /Bm oVl =3

Ry
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for any 1 < k < K and sufficiently large j € N. For such 7, we have

K K
Z wmf2<5Rk>m72 — 5m72wm 5 Z Rm—Z

k=1

< 52 Z /m |Vuj|2 dx

(k)

2.5™M" me,
= [ Ve
. (Ek)

€0 k=1"R
25" 20,9
< 2202 [V da
€5 Q

2- 5m_2wm_2
< ————SupE(y;) < cc.
€0 jeN

Therefore H™ (X N A) is finite.
Step 3. Since H™ 2(X N A) < oo, we have Cap,(X N A) =0 (see [10], 4.7.2.
Theorem 3). That is, for any € > 0, there exists a function ¢, € C§°(£2,R)

satisfying
YNACInt{x € Q| p(x) =1} and / Vi |*dr < e (2.8)
Q

For any £ € ¥ N A, we can take by (2.8) a small constant 6(£) > 0 such that

in By, (€).

DO | —

Pe 2>

Since XNA is compact, there exists a set of a finite number of points {&; }. E)

3 N A satisfying
K(e)
YNAC kL_Jl BT e, (€)-
By using Vitali’s covering lemma, changing indices if necessarily, we may as-
sume that {BT(;(&)(&)}ZL:(? is disjoint for a subset {&}% c {&,}51) and that
5
L(e)

£nAc By, @) (2.9)
=1

By the definition of ¥, for sufficiently large J(¢) € N,

2

(@) h /Bm Vu,|? do 2%0 (2.10)

Lse
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for any 1 <[ < L(e) and j > J(e¢). Combining (2.9) and (2.10), we have for
J=J(e),

It follows from (2.8) that

|Vu,|? do < 4/]Bm . V2| pe|* da.

l
Lsee

BY (&)

G))

Combining this with Lemma 2.1, we obtain

L(e) 8
HIP A ENA) <5 w0 Y — (V2| da
=1 €0 ]BT;?(&;)(&)
8- 52w,
= #/ L(e) ‘vuj|2|90€‘2dx
EO 1=1 Tg(;(&l)(&l)
8 . 5m—2

Wmf2/ 21 12
Vu; dx
63 Q| ]| |90|

85" 2w, 5 N
T Vo |*d
€2 n—2/ﬂ| pel du

IN

Taking the limit as € — 0, we have the desired result.
Step 4. Since u; converges to u weakly in WH2(Q,R™*1), there exists a

Radon measure v € M(Q) satisfying
|Vu;Pde — |Vus[*de + v in M(Q).
We set p = |Vuo|?dz + v. From (2.6),
jllrgo g V| do = /U |Vul? dx
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for any open set U CC A\X. Therefore we have
Support(r|A) C ¥ NA.

We shall prove that v|X = 0 as an element of M(€2).
For any £ € Q and 0 < 0 < p < dist(&,09), we take a small constant

0 < e < p— 0. By the monotonicity identity, we have

o? M u( oe) < o*~™lim inf © |Vu,|? dx

j—oo JBm

< (p—€)* ™liminf 0 |Vu,|? do

J—00 ]E’Zl_é

|Vu,|? dx

= (p — €)* ™ liminf
i—e JET (©

= (p— > "uB(€)) < (p— ) "u(B(E)).

Taking the limit as € \, 0, we get

o u(BZ(€)) < P (B (E))- (2.11)

From this, there exists the (m — 2)-dimensional density function

@m72<u,€> — lim M(B;n(g))

oN\O Whyy_o0 ™2
with respect to the measure p for any & € €.
We shall give an upper bound of O(u,-) on A. Define py > 0 by py =
dist(A, 0€2)/2. It follows from (2.11) that

@m—Q(Mjg) < M(BZS(&“))Q < M(B%(g)l
B wm*QIOE)n_ N wmingn—
1 1
< ———— liminf V| de < —E.
Wm—2P0p J—oo B% 3] Wm—2p0

Hence we have a uniform upper bound

Sup ©" (i, ) < C(m, A, E),

a€A
where C'(m, A, E) is a positive number depending only on m, A and E. Since

H™2(XNA) =0, we have
0< u(ENA) <C(m, A, EYH™ 3(2NA)=0,
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and therefore
0= / V> de + v(ENA) = v(E N A).
SNA

Consequently v|A = 0 as an element of M(Q) for any compact set A C €.
For any open ball B}'(§) CC €2, we have

[Vul*dz(0B)(£)) = 0.
By the convergence of Radon measures, we obtain
lim |Vu,|? do = / |Vul? dx.
I700 JB () By (€)

This yields
lim |Vu; — Vul*dz = 0.
5 (&
0

=00 JBp (€)

By using once more a covering argument, we have the local strong convergence
as desired.

Step 5. We can prove that the limit map u., is stationary harmonic by the
strong convergence in W12(Q, R"1). We are going to prove that u, is weakly
stable. For any ¢ € W, N L®(Q, R*) with ¢(x) - use(z) = 0 almost ev-
erywhere in Q, we define ¢; € Wy* N L®(Q, R™1) to be v = ¥ — (¢ - u;)u;.
Then, 1;(x)-u;(x) = 0 holds for almost every = € Q. Since u; is weakly stable,

we have
/Q|vuj\2|¢j|2dxg/ﬂ|wj|2dx.
A simple computation gives
2
Vo — V{(@ )y}
ou;  \? & AN
=190 Vel 4 3 (59 0) - 3 (we g )

a=1

From this, we have
LIV = ;- 0)*} do
5 2
S/Q|Vw—( - U Vujlgdx—i-/Z( u]_ ) dx—/z<j 8:1,"1) dr.
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Using the dominated convergence theorem, we have

[ Va0 de < [ 90 da.
Q 0

by passing to the limit as j — oco. Consequently, u, is weakly stable. 1

Moreover, we can prove (taking a subsequence, if necessarily) that the u;

converges to Uy, locally uniformly in Q\Sing(us).

Theorem 2.3 ([32]) Let {u;};2, € W"(Q,S") be a sequence of station-
ary harmonic maps. Suppose that there exist a stationary harmonic map
Uso € WH2(Q,S™) such that u; and Vu; converge to us and Vus, respectively
in the L?-norm on every compact subset of Q0 as j tends to co. Then there ex-
ists a subsequence {u;, }52, which satisfies the following. For any multi-index

(ly,- -+ ,lm), where each ly, is a non-negative integer,

9 \b N
(@) <8:13—m) v
o \n g\
(8:);1) (arm) toe

uniformly on every compact subset of Q\Sing(us,) as v tends to co.

converges to

Proof. Let A C 2\Sing(ux) be a compact set. Since uy, € C°(2\Sing(ux ), S™),
for any £ € A, there exists a small R > 0 with

2
€

RQ*’”/ V2 de < 9,
S o Jmpe [Videe| 2

Re

where € is the constant in Lemma 1.1. The local strong convergence implies

2
lim Rg—m/ V| dz = Rg—m/ V|2 dz < D,
B (©) B (©) 2

Jj—00
Therefore, we can take a large number J¢ € N such that

RQ—m/ Vu,[?de < & if j > Jp.
3 B (€)| ]l 0 3

Re
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Since A is compact, there exists a finite number of points &;,&, -+ € € A

such that
K
k=1

where Rj, = R¢,. From Lemma 1.1, we have an inequality

ol A
Sup |Dhuy| < (’m’?g"’ )
B"%“Rk(&) Rk

lf] Z J(A) = MaX{Jl,JQ tee ,JK} (Jk = Jgk)

By Ascoli-Arzeld’s theorem, we can extract a subsequence {uf}52, C {u;}52,
which converges to u., in C*¥(A) for any non-negative integer k.
Let {A;}%2, be an increasing sequence of compact subsets of Q\Sing(uc)

satisfying

Q\Sing(us) = |J Ay
j=1

An appropriate subsequence {uj\7 };";1 satisfies the assertion. 1

Now we go back to our problem. Let Q C R* be a bounded domain, u €
W12(Q,S?) be a weakly stable, stationary harmonic map and ¢ € Sing(u) N Q
be an isolated singular point of u. By Theorem 2.2 and Theorem 2.3, there
exist a sequence {p;}32, C (0,dist(&,99)) tending to 0 and a weakly stable

homogeneous stationary harmonic map u., € W'?(B* S*) which satisfy

: . 1,24 mé
Ugp, — Uso @S j — 00 in WH5(B, RY),

. . 1,2 /md
Ugp; — Uso aS J — 00 in W.o (B, RY),

Ugp, — Uss @S j — 00 in Ol (B*\Sing(us),R*) for any k € NU {0}.
From Theorem 1.8, Sing(us,) is a discrete set, and the homogeneity of u,
implies Sing(us) = {0}. Therefore we have

uf,p]‘ — Upo as j — X in CIOC(B4\{O}7 R4),
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and
deg(uu g) = deg(uﬁ,pj ) 0) = deg(uom 0)

If u is an energy minimizing map, then u, is independent of a subsequence

{pj}32, due to the following theorem.

Theorem 2.4 ([37]) Let Q be a bounded domain of R™ and N be a real ana-
lytic compact Riemannian manifold. Suppose thatu € W12(Q2, N) is an energy
minimizing map and & € Sing(u). If there exists a blow-up limit us of u at &
satisfying Sing(u) = {0}, then us is a unique blow-up limit of w at £&. That

is, for any multi-index (ly,--- 1), where each I is a non-negative integer,

9 \b d \m
0\ 0 \m x

uniformly on every compact subset of B™\{0} as p tends to 0.

converges to

From this, for an energy minimizing map from a 4-dimensional domain 2
into S®, we need not take a sequence {p; 521 as in Theorem 2.3.

As a consequence of Theorem 2.3 and Theorem 2.4, to study the degree
of a weakly stable stationary harmonic map from a 4-dimensional domain
Q into S?* around an isolated singular point, we have only to deal with the
case 2 = B* and u is a homogeneous map satisfying Sing(u) = {0}. Since
u € C*(B*\{0},S?) in this case, there exists a map ug € C*°(S?, S?) such that

u(z) = ug(z/|x]) for z € B*\{0}. The Euler-Lagrange equation
Au+|Vul*u =0 in B"\{0},

is then reduced to
ASSUO + |VS3U0|2U0 =0 in 83.

Here Ags is the Laplacian on S?, and Vs is the gradient on S®. Therefore uq

is a smooth harmonic map from S to itself.
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Next, we consider the strict stability. If Q C R* is a bounded domain and
u € WH2(Q,S?) is a strictly stable stationary harmonic map, then for any
¢ € Sing(u) N Q, u is locally strictly stable at £&. And hence, if p > 0 is small,
the rescaled map ue, € W'*(B%S?) is strictly stable and A(uge,) > A(u).
Therefore, it is natural to expect that any blow-up limit uy, € W1?(B*, S?) of
w at £ is strictly stable and that A(u.) > A(u). (For the definition of A(u), see

Definition 1.7). Indeed, we have the following result.

Theorem 2.5 Suppose that {u;}32, C WH*(B™,S") is a sequence of strictly
stable weakly harmonic maps such that Sing(u;) = {0} and that there exists
a constant X > 0 satisfying MN(uj) > X for any j € N. If there exists a
weakly harmonic map uy, € WH2(B™,S") satisfying Sing(us) = {0} and if
u; converges to us, i W2 (B™ R™1Y), then us is also strictly stable and

AMUoo) > A.

Theorem 2.5 can be proved in the same way as in the Step 5 in the proof
of Theorem 2.2, so we omit the proof.

From these considerations, we are lead to the following problem.

Problem 2.1 Let uy € C*(S? /S?) be a smooth harmonic map. Is a map
u(z) = up(x/|z]) € WH2(B*,S?) a weakly (or strictly) stable stationary har-

monic map?

On this problem we need some additional properties of smooth harmonic
maps between S®. No results have been published on complete classification
of smooth harmonic maps between S?. However, we have a partial answer to
Problem 2.1 by analyzing the second variation precisely. In the next chapter,
we shall prove a very useful result to obtain a lower bound of the Dirichlet

energy of smooth harmonic maps between spheres.
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Chapter 3
Energies of Smooth Harmonic

Maps between Spheres

In this chapter, we shall prove Ramanathan’s theorem (Theorem 3.3) on
energies of smooth harmonic maps between spheres following his paper [29].
He considered the Dirichlet energies of composition of smooth harmonic maps
and conformal diffeomorphisms between spheres. If the source manifold is
S?, then the Dirichlet energy is invariant under composition (see Theorem
3.1 below). However, if the source manifold is S™ where m > 3, then the
Dirichlet energy decreases in general by composition. Therefore there is a
great difference between the case of the domain S? and the case of S™ with
m > 3. Although we do not need here the case of S?, we discuss both cases
for comparison.

We use a notation (£%) as a local coordinate system on S™ and (%) the stan-
dard coordinate system of R™*!. Latin indices are understood to be summed
from 1 to m and small Latin indices are from 1 to m + 1 except for the proof

of Theorem 3.1.

8§3.1 Preliminaries on conformal geometry
First, we define the notion of conformality.

Definition 3.1 Let (M, g) and (N,h) be Riemannian manifolds. An im-

mersion ¢ € C*(M,N) is said to be conformal if there exists a function
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f € C*(M,R) such that
o*h=elg in M.

Here, p*h is the pull-back of the metric h. And we define a set Conf(M) to be

Conf(M) = {¢ € C*(M, M)|

¢ is a conformal diffeomorphism from M onto itself}.

Conf(M) is a Lie group endowed with the composition of maps as law of

multiplication.

We need only Conf(S™). Conf(S™) is isomorphic to a very useful linear
group constructed below ([20], [39]). Denote the Lorentz space by L™? =
R™ x R, which is endowed with the non-degenerate bilinear form (-, -)pm+2 :

L™2 x L2 — R and where

m+1

(v, Whpmrz = ="’ + > v w®
a=1
for v = t(UO,Ul, . 7Um+1)7t(w0,w17 . 7Um+1) c Lm+2.

Let O(1,m + 1) be

O(l,m+1)={T: L™ — L™ | T is a linear transformation satisfying

(Tv, Tw)pm+> = (v, W)pm+2 for v,w € L™},

It is a Lie group with the composition of linear transformations as law of
multiplication. We shall construct a subgroup I' < O(1,m + 1) isomorphic
to Conf(S™) in the following way. Let C; be the subset of L™2  called the

positive light cone, defined to be
Cy={veL™?’ >0, (v,v)pm> = 0}.
Define a subgroup G < Conf(S™) to be
G ={y € O(1,m+1)| v preserves C and satisfies dety = 1}.

The next lemma is fundamental for our discussion in this chapter.
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Lemma 3.1 Conf(S™) is isomorphic to G as a Lie group.

See [20] for the proof. We only give here a correspondence. Let ¢ : S™ — C
and p : Cy — S™ be maps defined to be

p(t(ZEl,ZEQ, L. 7[Em+1)) — t(l,{El,[EQ L ,$m+1),
Ul U2 Um-i—l
q(t(°, ot M) = (@’ﬁ’m )

Then every element v € G corresponds to a map 4 € Conf(S™) defined to be

¥(x) =p(y-q(z)) forx e S™.

We write the matrix representation of v € G in terms of the standard basis of

Lmt2 ~ R™t! x R as

0 C1 ce Cm+1
1 1 1
b R s N
- 9
b a
bm+1 m—+1 . m—+1
a a mt1

and we identify « with this matrix. By the natural embedding

1 0
SOm+1)3 8 — € G,
0 S

we regard SO(m + 1) as a subgroup of G. Then, y~! has the expression

Q _bl _bm+1
N O i T I
7= - _te i,
—Cm+1 a1m+1 am—Hm—i-l

It holds that
(yv, Wypmi2 = (v, 7 W)L
for any v,w € L™2. Equations yy~! = vy~ 14 = I,,,» are interpreted as
02— b2 =1, 0*—|c|* =1,
Oc —'ba =0, 6b—"‘ca=0, (3.1)

taa —tcc = Ip1, ala—b'b= I,
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From these relations, we know that > 1 and that v € SO(m+ 1) if and only

if # = 1. On the other hand, the map 7 is represented as

al jzt 4 bt

n+1
where cx =tc -z = Z c;x’. Since 7 is a sphere-valued map, we have
=1

lax 4 b]* = (cx +6)* for x € S™. (3.3)

In this section, we use the notations,

aA = t(CLAl, ... 7aAm+1)’ aq = (alA, ... 7am+1A)'
By using (3.1), it is easy to check
7 gm = — (3.4)

Let H™™! be the (m + 1)-dimensional hyperbolic space given by

Herl — {t@o’ L. ,xm+1> c Rm+2

m+1

@+ Y @ = -1},
=1

We define a map ¢ : G — H™ to be

0 b 0

cC a C

Note that 75" (1(6, c)) is compact for any (6, c) € H™*L.

We need a special type of vector fields on spheres.

Definition 3.2 (Conformal vector field) A vector field V- € C*(TS™) is said
to be conformal if there exists a one-parameter family (¢;)wcr, I = (—€,¢€), of

conformal diffeomorphisms of S™ satisfying
d

V(z) = ﬁgpt(x) for any x € S™.
t=0
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The next lemma gives us typical examples of conformal vector fields.

Lemma 3.2 Let f be the restriction to S™ of a linear function on R™T!:

namely

f(x)=z-x for a fired point = € R™,

where - is the Buclidean scalar product in R™*. Then Vgmf is a conformal

vector field.

Proof. First we prove the lemma for the case z = e,,.1 = (0,---,0,1). Let

m:S™ — R™ be the stereographic projection from the north pole. Then,

a:.Ot

1 m+1\ _ 1. m o
W(ZEW"al’ )_(ga 75 )7 where 5 _1_xm+1

for 1 <a<m.

The inverse mapping is as follows.

o 28°
IR

For t € R, we define a map h; : R™ — R™ to be

where =z for 1 <a<m,

hi(€) = i€ for € € R™,
and a map H; : S™ — S™ to be
Hy(z) = (x~ o hyom)(z).

We can show that H, is a conformal diffeomorphism of S™ for any ¢ € R. The
components of H; are given precisely by

2¢el ™
(€2t — 1)am+l 42t 41
(€2 + 1)amt 42 —1
(€2t — 1)+l 4+ 2 4+ 1°

H}(x) = for 1 <a <m,

Hy" () =

By a direct calculation, we obtain
*Ht(fb) = t(—xlgpm""l, cee _:mem—f—l? 1— (Im-l-l)Q)

i m+1( xm+1) (3-5)

1
=€nmt1 — T Xy,

= em+1 — (€mt1 - T)T.
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Next we proceed to the general case. If z = 0, take ¢, = idgm for any ¢t € R. If
z # 0, then there exists an (m + 1) x (m + 1) orthogonal matrix ) satisfying
Qenmi1 = z/|z|. We define a map ¢, : S™ — S™ to be

pi(r) = QH|z|t(Q_1£E) for t € R.

Then ¢; is a conformal diffeomorphism of S™ for any ¢ € R. From (3.5) we

have
Low)| = 1elQ(emss — (enn - @)@ ')
= 1l ~ Qe - m)z)

=z — (2 -x)r = Vgnf.

Consequently Vgm f is a conformal vector field. 1

§3.2 Energies of smooth harmonic maps between spheres

Let us deal with energies of smooth harmonic maps between spheres. First,
we show that, if a source manifold is S?, then the energy of a smooth harmonic
map is invariant under any conformal action (see Theorem 3.1 below). Though
we will not use this theorem in this monograph, it is very interesting to compare

the case of S? with those of S™, m > 3 (see Theorem 3.2 below).

Remark 3.1 If v belongs to SO(m + 1), then it holds that
E(upo¥) = E(ug)

for any v € SO(m +1).

A stronger result holds if m = 2.

Theorem 3.1 Let ug € C®(S% S") be a harmonic map. Then the Dirichlet

energy 1s invariant under the composition of ug and 7y for any v € G, that is,
E(ugod) = E(ug) for any vy € G.
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Remark 3.2 In this theorem, it is not essential that the target manifold is a
sphere. The same conclusion holds if we take any two-dimensional compact

Riemannian manifold as a source manifold instead of S2.

Proof. For any v € G, there exists a function f € C*(S?) satisfying

~ %

7952 = el gso.
See (3.4) for the precise expression of f. Let (£',£?) be a local coordinate
system on S? and (y', -+ ,9") on S". It holds that

g =g 6’7 87 effga/g’ — gUTﬁa;}}B
af — Yor (95"‘ 3§5’ afg agT .

Therefore the energy density |d(ug o 7)|?

) ) N I I
|d(ug o 3)* = g ﬁhij(uoo’Y)%(uoo )W(U’%Ow
. Ou 87 ouy 0"

_ afy 0 0
g h”(uoowam" Oz Ox™ Vaxﬁ

ouly _ou
oxe ' oa

= e 19" hij(ug 0 7) e
= eI |dug|? 0 7.

On the other hand, we have

o %8
F*volg2 = det( %87 )dxl A dx?

908 97 D™

= \/det(ef gor)da' A da?

= e/ volge.

Consequently we obtain the desired result. 1

On the other hand, if the source manifold is S™, m > 3, then we have the

following theorem.

Theorem 3.2 Let ug € C*°(S™,S") be a harmonic map with m > 3. Then
the supremum of Dirichlet energies along the G-orbit of uy is attained at g,

that is,

E(up) = Sup E(ug 0 7). (3.6)

veG
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Moreover, if uy is non-constant and if v € G satisfies
E(uo) = E(ug 0 %),
then v € SO(m +1).

Remark 3.3 It is not trivial that the supremum of energies in G-orbit of wg
is attained, because G is non-compact. Theorem 3.2 shows that, if m > 3 and
if ug € C*°(S™,S") is a non-constant harmonic map, SO(m + 1) is the largest

subgroup of G' whose action preserves the Dirichlet energy of wu.

The proof of Theorem 3.2 will be given at the end of this chapter. First,

we give the precise representation of E(ug o 7).

Lemma 3.3 Let ug € C>*°(S™,S") be an arbitrary map. Then for any v € G,

we have
- 1 1 9
E(ugo7) = 3 /m m|du0| o 4 dvolgm(x), (3.7)
where mg(y) = (6, ¢).
Proof. For any p € S™, let {f,, -+, f,,} be a local orthonormal frame of

TS™ around p. It follows from (3.4) that
1

95 (Far £3) = m%ﬂ

(Y gsm)(for £5) = e+ 0

On the other hand we have

(7 g5m)(far £ 3) = gsm(dV(f o), d7(S 5))-

Therefore, {(cx + 0)dy(f,)}"™, is a local orthonormal frame of T'S™ around
7(p). Thus it holds that

m

|d(uo 0 )I* = 3 hld(uo 0 7)(fa), d(uo 0 7)(£4))

Q
Il
R

I
NE

h(duo(d¥(f o)), duo(dy(f.))

a=1
1 m
= v 2 Mduo((cx + 0)dy(f ), duo((cx + 0)d7(f,)))
(cx + 0)? O;
1 -
= m|dUO|2 o 7.
Consequently, we have the desired result. 1
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Lemma 3.4 Let uy € C*°(S™,S") be an arbitrary map with m > 3. Then for

any € > 0, there exists a compact set K C G satisfying
E(upod) <e forany v € G\K.

Remark 3.4 From this lemma, we know that the supremum of E on the

G-orbit of uq is attained.

Proof. By Lemma 3.3, we know the estimate

1 1
E 7)< = 2/ S
(o 0) < 2 Sslrlnp lduol sm (cx + 0)?

dvolgm(x). (3.8)
Since ;' (*(,¢)) is compact for any ¥(6,c) € H™*! it suffices to show that
the last integral in (3.8) tends to 0 as |¢| — oc.

Put p = |¢|. Then we have § = \/p?+ 1 by (3.1). Choose the geodesic

coordinate system of S™ centered at —c/|c| € S™, say (r,0), r € [0,7), 0 €

Sm=1. Then, gsm-1 has the form
gsm = dr @ dr + (sin®r)ggm-1.

In terms of this coordinate system, we have

m—1

1 (sinr
S dvolgn = // I volgn 1 d
/Sm(c:t—l—@) VoS sm-1 (0 — p cosr)? vOlsmoran
T m—1
— e | sinn)™
o (0 —pcosr)?
Take a small constant ¢ > 0, which will be determined later. We estimate the
integral by dividing the interval of integration into [0,4] and [§,7]. If p > 1,

then each integral is dominated as

/6 (sinn)™ dr < (sin§)"? T sir ~dr
0o (0 —pcosr)? 0 (9 pcosr

_ (sing)™
- P 0085

< %ﬁ/ﬁﬂﬂ))

p
< (14 v2)(sind)™2,
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/7T (sinr)™ d7"</ sin r dr
5 (0 —pcosr)? (60— p cosr)?

1 1
<
_p<6—pcosc5 0+p>

< 1vVp?+ 1+ pcosd
~p 14 p?sin?é
1++2

~ 1+ p2sin?s

We fix a small positive number ¢ > 0 satisfying

(14+v2)(sin6)" 2 <

DO ™

and a positive large number py > 1 satisfying

1+2 €
1+ pd sin?§ '
Then it holds that

T 3 m—1
/ )™
0o (0—pcosr)?

provided that p > po. This completes the proof. 1

We need a precise expression of the tension field of a composition map.

Lemma 3.5 Let ug € C*°(S™,S™) and v € G. Then the tension field of ugo?y
s given by
T(ug 0 7) = dug(7(%)) + trace((Vdug)(d7, d7)).
Proof. Let {f,}2*, be a local orthonormal frame of 7'S™. Then we have
(o) = (V. dluo 0 7)) (£.)
=y (A0 9)(£.)) — (o0 7) (Vs 5.

= duo(7(7)) + trace((Vduo)(d’y, d:y)). |
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To compute the tension field of ug o 4, we calculate that of 4. First, we

compute the energy density of 7.

Lemma 3.6 If vy € G is given by the matrix

0 c
b oa)
then the energy density of ¥ is given by

m

|7 (x) = (cx+0)

in the standard coordinate system of R™*L,

Proof. Let {f,,---, f,,} be an orthonormal basis of T,S™. It follows from

(3.4) that
1

(’?*gSm>az(‘fa7 fﬁ) = méaﬁ'

On the other hand, it holds that

(7 gsm)a(Fas £5) = (gsm )3 (dV(F o) d7(F5))-

Therefore {(cx+6)dy(f,)}n-, is an orthonormal basis of T5;)S™, and we have

(@) = S (£ 5 (£.)
_ ﬁ i (g5 )y ((cx + O)F(£,), (ca + 0)dH(F..))
" (cx 10> '

We calculate the tension field of 7.

Lemma 3.7 If v € G is given by the matrix

)

then the tension field of v is given by

iy m=2((cx)b' —O(a'x) a'z+b
) (x)_CI—i—@{ cx + 0 +(cx—|—9)2}

in the standard coordinate system of R™+1,
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Proof. It follows from (1.3) and Lemma 3.6 that

7(3) = Agny + |37

Using an elementary relation
gradgnr’ = e; — 2/,
and (3.1) we have

a'x +(m—2)(cx)ax+ a'xr +

Agnd' = —(m = 2)cx +0

Consequently, we can verify

Making use of the following lemma, we obtain a very useful expression of

the tension field of 4 (see (3.9) below).

Lemma 3.8 If v € G is given by the matrix

0 c
b oa)
then for the vector field V. (x) = Vsm(cx) on S™, it holds that

(cx)b' — O(a'z)  a'z + b

dy(V,) = .
(V) cx + 0 (cx +0)?

Proof. The assertion follows from (3.2) and da?(V,) = ¢; — (cx)a?, that is,

a’; ; dz+l i
T re L ()
_dle—(cx)(a'x) (| = (cx)?)(a'z + ')

o cx + 6 (C{E + 9)2

O — (cx){aia) (146 — (er)?)(a's + b)

cx + 0 (cx + 0)?

di(vv)i =
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~ (cx)b' —O(a’x) N a'z + b
B cx + 0 (cx +6)%

Here we have used (3.1) in the second and third equalities. 1§

Combining Lemma 3.7 with Lemma 3.8, we have

m— 2

(%) = dy(V5). (3.9)

cx +0

Proof of Theorem 3.2. Let uy € C>°(S™,S") be a harmonic map. Since
(3.6) holds trivially if uy is a constant map, assume that ug is non-constant.

From Theorem 3.4, there exists a v € G satisfying
E(ug 0 7) = Max E(ug 0 7). (3.10)
¥ ea

We assume that v & SO(m + 1). Let the matrix expression of v be

0 b
Lemma 3.5 gives us
7(ug 0y) = duo(7 (7 )) + trace((Vduo)(dy, dy))
1 -
—dug( )—FWT(UO)O'V
s Qduo(dv(v ),

because ug is a harmonic map. Since V, is a conformal vector field on S™,
there exists a one-parameter family of conformal diffeomorphisms (¢;)ier, I =

(—e,€) C R, satisfying

Yo = idSma

dipy ()
dt

We note that 4 o ¢, belongs to G for any t € I, and

d(uo ojo 90t>
dt

= d(ug 0 7)(V3) = duo(d¥(V5))-

t=0
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It follows from the first variation formula that

d .
%E(uo 04 0 y)

= /m <T(uo 0 %), duo(diy(vﬁy))> dvolgm
_ m — 2
~Jsmocx+6

t=0

|duo(d7(V5))|? dvolgm.

Since 7 ¢ SO(m + 1), we have § > 1 and ¢ # 0. And hence we have

cx+0>0—|cf=0—-+v6>—-1>0.

Since v is non-constant, duy(V,) is not identically equal to 0. Consequently

we have

d -
aE(uo 0 d 0 wy) . > 0.

This contradicts (3.10) and yields that v € SO(m + 1). And by Remark 3.1,

we know that

E(up) = E(ug 0 7).

And hence we have

E(up) = Meaé(E(uo o). 1
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Chapter 4
Proof of Main Result

84.1 Proof of Theorem 1.9
In this chapter, we shall prove Theorem 1.9. By the results in Chapter

2, we have only to consider a weakly stable stationary harmonic map u €
Wh2(B*S?) satisfying

ou

— =0 in B*\{0}.
o =0 B\ {0}

Let ug be the restriction of u to S®. Then, ug : S* — S? is a harmonic map

Sing(u) = {0} and

of class C'*°. The proof of Theorem 1.9 is now reduced to that of a following
simplified version.
Proposition 4.1 Let uy € C*(S?,S?) be a harmonic map such that the ex-

tenston

u(z) = u()(i) c Whi(B S?)

|z
is a weakly stable stationary harmonic map. If deg(ug) # 0, then there exists

a 4 x 4 constant orthogonal matrix S such that
up(w) = Sw  for w € S,
First we prove an upper bound of the Dirichlet energy of .

Lemma 4.1 If ug € C®(S?,S?) and u € WY2(B*,S?) satisfy the condition in

Proposition 4.1 except deg(ug) # 0, we have an inequality
/3 Vssto|? dvolss < 3ws(1 — A(u)), (4.1)
S
where AN(u) is the number defined in Definition 1.7.
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Proof. Since u is weakly stable, we can prove in the same manner as in the

proof of Lemma 2.1 that

3A(u) /B 72| fI2 dx + /B IVul?|f|2 do < 3/34 IV f[2 do

for any f € W, N L>(B* R). Here r = |z|. We set f = o(r) where ¢ is an

arbitrary function of class C§°(0,1). Since u is homogeneous, we have

1 1
3N (u)ws /37‘|<,0|2d7’+ (/3 |Vgsug|? dVOlSB) (/ r|gp|2d7") < 3w3/ || dr.
S ¢ 0 0

Therefore it holds that

1 /
1 , ; o |? dr
— | |Vssupl® volgs < g — A(u)
3ws Js3 2
3 r|p|® dr
0

for any ¢ € C§°(0, 1) which is not identically zero. Since

1
/ 3| |? dr
0

Inf i =1
peCs°(0,1)\{0} /
0

r|gp[2 dr

by Hardy’s inequality, we obtain the desired result. 1

Next we give a lower bound of the Dirichlet energy of uy,. We introduce
some notation. For p € S™ let p be the antipodal point of p, that is, p = —p.

We write the stereographic projection from p € S™ to T5S™ as
Tp 1 S — TpS™,

where we set m,(p) = co. For R > 1, let Iz g : T3S™ — T5S™ be a dilation,
that is,

L r(v) = Rv  for v e TzS™.
And for p € S™ and R > 1, we denote 7, r the map from S™ to S™ given by

Mp.r(w) = (m," 0 I g o my) (w).

For a map uy € C(S™,S™) we define the map H : S™ X [1,00) — R™! to be

H(p,R) = 1 m(uo o 1p.r)(w) dvolgm (w).

W JS
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Here we omit ug for simplicity.

Now, we prove a lemma.

Lemma 4.2 For any uy € C*(S™,S™) such that deg(ug) # 0, there ezist a

point p € S™ and a number R > 1 satisfying H(p, R) = 0.
Proof. Suppose that

H(p,R) #0 for any p € S™ and any R > 1.

Then we can define a continuous map H : S x [1,00) — S™ by H(p,R) =
H(p,R)/|H(p, R)|. We calculate the values

H(p,1) and H(p,c0) = lim H(p,R).

Since

1 1
H(p,1) = o Sm(uo 0 Np1)(w) dvolgm(w) = o Jom up(w) dvolgm (w),

H(-,1) is a constant map, and therefore deg(H(-,1)) = 0. Since H is contin-
uous on S™ x [1,00), we have deg(H(-,R)) = 0 for any R € [1,00). On the

other hand, by the Lebesgue convergence theorem, we have

|
1m1H@Ja:1m1——é(%ommxmdm@4@

R—oo R—o0 W

=AﬂMMWwM=%@’

which implies

F%im H(p, R) = ug(p) for any p € S™.

We now prove that the convergence is uniform with respect to p € S™. For

any € > 0, there exists a small constant o > 0 satisfying
Win m
volgm (D, (p)) < 4 € for any p € S™,

where D, (p) is the geodesic ball on S™ with center p and of radius o. Since ug

is uniformly continuous on S™, there exists a small constant 6 > 0 satisfying

1
luo(p) — uo(q)] < 5€ for any p,q € S™ with distsm(p, q) < 9.
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Here, distgm is the geodesic distance on S™. For a sufficiently large number

Ry > 1, we have
1p.r(S™\Dy(p)) C Ds(p) for any p € S™ and any R > Ry.

Therefore, if R > Ry, then we have

Hp, ) = uole) < - [ 102 1,)@) — 0(p) dvoln )

Sm
1
W, </]DJU(5) S™\D, (5) |(uo © 1p,r) (W) — uo(p)| dvolsm(w)
1 11
S E 2 VOISM(DU(?)) + E . 56 . VOlSm(Sm\Da(ﬁ))
< 1 + 1 _
> 26 26 = €.

Thus, H(-, R) converges to 1, uniformly on S™ as R — oo, and so does H(-, R).

Consequently we obtain
deg(ug) = F%im deg(H (-, R)) = 0.

This contradicts the assumption deg(ug) # 0. |

Proof of Proposition 4.1. By the weak stability, we know A(u) > 0. We

assume that u is strictly stable, that is, A(u) > 0. By Lemma 2.1, we have
/ Vsstio|? dvolss < 3ws(1 — Aw)). (4.2)
Sm

From Lemma 4.1, there exist p € S™ and R > 1 satisfying

wis 53(“0 o Ny, r)(w) dvolgs(w) = 0. (4.3)

Since 7, r € G it holds that

/S [ Vgoug|? dvolgs > /S Vs (ug © 155,5) () dvolsa(w) (4.4)

by Theorem 3.2. And from (4.3) the integral of every component of ug o7, g

over S? is equal to 0. Therefore making use of the Poincaré inequality, we have

/SS |Vss(ug 0 1, 1) [*(w) dvolgs(w) > 3 /SS [ug o r|?*(w) dvolgs = 3ws.
(4.5)

68



Combining (4.4) and (4.5) we have
/s3 |Vssuo|? dvolgs > 3ws. (4.6)
Since (4.2) contradicts (4.6), A(u) must be equal to 0. Furthermore, (4.2),
(4.4) and (4.5) imply
/S3 |Vss(ug 0 1, r)|? dvolgs = 3/S3 |ug © .| dvolss.

Let p1 < po < --- be the distinct eigenvalues of —Ags. We note that pu; =0
and s = 3. Let V; be the eigenspace associated with p; and P; : L*(S*) — V;

be the orthogonal projection. Because of (4.3), we have
Pi(ufon,p) =0 forl<i<d4d.
If there exist 1 < k <4 and [ > 3 satisfying
Py(ug o np,r) # 0,

then we have

4 o0
/SS ‘VgS(UO o 77P7R)|2 dVOlSS = Z Z:uj /S3 ‘Pj(’u,Z o 77p,R)|2 dVOlSS

i=1j=2

4 oo
> 322/83 |Py(uf 0 1y5) 2 dvolss

i=1j=2
= 3/83 |U0 e} np,R|2 dVOlSS.
This is a contradiction. Therefore it holds that
Pj(u'omn,) =0 forany 1 <i<4andanyj>3.

Since eigenfunctions associated with po are z* (1 <14 < 4), there exists a 4 x 4

matrix S depending on p, R such that
up o Ny r(w) =Sw forany w e S°.

And since ug o 1, r is a sphere-valued map, S" must be an orthogonal matrix.
Since S'w and uy are harmonic maps between S* and itself, we obtain Np.R €

SO(4) by Lemma 3.2. Set S = 5/77;,112’ and we have
up(w) = Sw
for any w € S3. |
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Remark 4.1 The existence of the sequence {p;}32; and the convergence of the
sequence of rescaled maps in Theorem 1.9 follow from Theorem 2.2, Theorem

2.3 and Theorem 2.4.

Remark 4.2 The Dirichlet energy E(Sz/|x|) is independent of S € O(4) and
Sz /|x| is an energy minimizing map for every S € O(4). Therefore it seems to
be very difficult to analyze the explicit form of S if we do not know the precise

behavior of v around an isolated singular point.

We prove a simple corollary to Theorem 1.9.

Proof of Corollary 1.1. From Theorem 1.2, there exists a neighborhood
U C B* of OB* where u is continuous. Also, from Theorem 1.8, Sing(u) NB* is
a discrete set. Therefore Sing(u) is itself a discrete set. A topological argument

shows that
d=deg(¢)= Y  deg(u,¢).

£eSing(u)

Since deg(u, £) is equal to +1, —1, or 0 for £ € Sing(u) from Theorem 1.9, we
obtain the desired result. 1

Proof of Corollary 1.2. Let u € VVC1 2(B*, S?) be an energy minimizing map.
By the same reason as in the proof of Corollary 1.1, Sing(u) is non-empty,

consists of a finite number of interior points and it holds that

0#deg(¢)= > deg(u,§).

£eSing(u)
Therefore there exists a singular point £ € Sing(u) around which deg(u,§) =

+1 or — 1. From Theorem 1.9, u is not strictly stable. 1
Next, we prove Theorem 1.10.

Proof of Theorem 1.10. By Smith’s result [38], for any d € Z there exists a

non-constant harmonic map vy € C*(S?,S?) such that deg(vy) = d. We define
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the map uy € WH2(B,'S?) to be ug(x) = vg(x/|x]). Then, ug is a weakly
harmonic map. We prove that uy satisfies the equation (1.7) of stationary

harmonic maps. For small € > 0, we define the cut-off function x. : [0,00) — R

to be
Xe(t) =0 for 0 <t < 2,
Xe(t) =1 for ¢ > 4e,
1
Xe(t) = 2—15 -1 for 2¢ <t < 4e.
€

For any n € C5°(B* R™), the support of x.(r)n is contained in B*\B(0).
Since  is continuous on B*\B2(0), u|g\gs(0) is a stationary harmonic map (see
Remark 1.3). x.n belongs to Wy> N L= (B*\B*(0),R*), and we can take a y.n

as a test function in Definition 1.4 by a density argument. Therefore we have

ouly duly 0
2di —2 44 = (yen®) p dz = 0.
/134\133(0){|Vud| vxen) axaaxﬁaxﬁo‘m )} r=0

The homogeneity of uy implies that

ouly ouly 0 o Ouhoul [, af on°

0x® 0xP Oxb (xen®) = Oxe OxP Xe(r) r X oxP
o owor

= Xe 0x® 0xP OxB”

Thus it holds that

out, Ouly On®
2 1; _ 9 OUa OUq 1)
/134\13? 0 { Vual divin) = 25 o 505 907 } du

1x
=— Vug|*—= - ndw
1836(0)\1336(0)' ey

1 4e
- _ —/ rdr/ | Vsug|*w - 1 dvolgs(w).
2€ J2e S8

(4.7)

Furthermore we have

1 4e
—/ rdr/ |Vssuo|? dvolgs
2¢ Jae s3

1 4e
S—Sup\m/ rdr/ |Vssug|? dvolss
2¢ B 2e S8

=3e Sup |n|/ |Vssuo|? dvolgs.
B s3
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Therefore taking the limit as € \, 0 in (4.7), we obtain the desired result. 1

84.2 Some remarks

In this section we collect some important remarks.

Theorem 4.1 The map z/|z| € WH?(B*,S?) is energy minimizing and satis-
fies A(z/|x|) = 0.

Proof. Due to [21] we know that z/|z| € W'?(B*, S?) is an energy minimizing
map. In particular, z/|z| is weakly stable and this implies A(z/|z|) > 0. On

the other hand, since deg(z/|z|| .) = deg(idss) = 1, we have A(x/|z|) = 0 by

)
Corollary 1.2. 1

From this theorem, there exists a sequence {1, }3>, € Wy N L>®(B*,S?)
satisfying 1y (z) - x/|x| = 0 for almost every x € B*\{0} and
02 1o E (V)
[ de

.0, (4.8)

where r = |z| = dist(z, Sing(x/|z|)). However we cannot get such a sequence
in the proof above. We shall give an alternative proof by constructing one
following [25].

An alternative Proof of Theorem 4.1. We set ug = idgs, and define

nj(xz) (1 <j <3) to be

x? —at -3
1| —a! 1| a° 1| —a*
ni(x) = - , na(z) = — , nz(z) = — , wherer = |z|.
| | 2 rl o
3 x! x?

For any z € B*\{0}, {u(z), ni(z), na(x), ns(xz)} is an orthonormal basis of

R*. We consider the map

3

W(x) = erj(x)nj(x), where f; € Ca(B* R).

j=1
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Then, ¢ belongs to C(B* R*) and satisfies ¢ (z)-u(x) = 0 for any x € B*\{0}.
We set

0 1,0 0 L0 0
ony, Tort T T oz T o T at )
0 1 , 0 ; 0 s O L 0
8n2_r( o 8:c1+ Ox? 8:1;3_‘_:5 oxt )’

A simple computation shows

3
r2 el =Y S (4.9)
j=1
o)t & of; of; |’
E —j:1 <|fj|2+27“fj§+7’2 E ) s (410)
ov|* of; [ ofs , 0fs
ony —jZl (|fj|2+ ? on, ) + 2r <f28—nl_f38—nl>’
(4.11)
ot 3 of,|” ofi , 0fs
s —jZl (|fj|2+7“2 s ) +2r <f38—ng_f18—ng>’
(4.12)
ov|* 2. o|of [ of, , Of
on, —jZ::l (|fj| + s ) +2r <f18ng, - Qang)'
(4.13)

From (4.9) — (4.13) we obtain by integration by parts,

3
BW) =3 [ (PIVAP =34 do

dfs dfs df1
+4/B4r <f18n3 + o +f38n2> dz. (4.14)

We choose f1, fa, f3 in such a way that

fi(z) = a(r)(—z' + 2* + 2° — 2%),
fo(z) = a(r)(a' — 2 + 2° — 2%),

fs(@) = a(r)(@' +2® —2® —2?),
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where a is a smooth function on [0, 1] satisfying a(1) = 0. Due to the symmetry

of the domain, we have

3 1
S [ 1Rde =3 [ rla()f de = 3wy [ %la(r)?d
3 fo e =3 [ )l do = 3us [ +%la(r)
(4.15)

2/134 T2|vfj|2dl’ = 3/34 (7“4|a,/(7“)|2 + 27”3&(7“)(1,(7") n 4T2|a(r)|2) .

1
= 3wy [ (7a() = 2% a(r)?) dr, (4.16)
0
where ws is the volume of S?. On the other hand, it holds that

Therefore by calculating as before, we obtain

af2 _ ! 5 2
/]B4 rfla—ng dr = —Cdg/o r’la(r)|® dr. (4.17)

Other terms can be treated in the same way. It follows from (4.14) — (4.17)
that

S2E(Y) = 3w /01(7"7|a’(7“)|2 —9r°|a(r)|?) dr. (4.18)
From (4.9), (4.15) and (4.18) we have

! apw; 2
S2E (1) _/0 rfla'(r)|* dr
/1534 r 2| dx /01 7°|a(r)|* dr

It remains to determine a(r). For a positive integer k, we define ax(r) to be

-9

a(r) = (1 —r¥)*,
In the following calculation, we use the beta and gamma functions

1
B(p,q) = /0 tr 11 —t)tdt forp >0, ¢ >0,

[(p) = /OO tr~te7tdt for p >0,
0
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and the well-known relation

I'(p)L'(q)

B — f 0 0.
(p,q) Tt q) orp>0, q>

By the change of variable s = r%, we obtain
1
/ ()2 dr = kB (6k, 2k + 1),
0
1
/ rT\a(F) 2 dr = kB (6k + 2, 2k — 1),
0
and

/0 rla(r)Pdrpek 420k —1) T8k +1)

1 =
6k(6k + 1)
= — k .
hh—1) 0 @k

Consequently along the sequence

3

V(@) =D rfix(@)n;(z),

j=1

ak(r)(—:cl + 2?43 — :L'4),

fre(z)
fo ()

for(x) = ap(r) (ot + 2% — 23 — ),

ap(r)(z' — 22+ a2t — :)34),

the ratio

S2E()
L bl do

tends to 0 as k — oo. Consequently we have A(z/|z]) = 0. 1

The global frame {n;(w),ns(w),n3(w)} on TS® makes the computation
clear. This frame corresponds to the quaternion algebra. There may be some
relation between this structure and stability of harmonic maps. This will be

one of our future problems.
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In the proof of Theorem 1.9, it is important to use the following fact:
A(u) must be equal to 0 for any weakly stable homogeneous harmonic map
u € Wh2(B*, S?) satisfying Sing(u) = {0} and deg(u,0) # 0. Here we call
this non strict stability phenomenon. We discuss whether this phenomenon is
special to the case of maps from a 4-dimenisonal domain into S* or not. In the
case of maps from B3 into S, Mou [24] proved the following result. For any

homogeneous weakly harmonic map u € W12(B3,S?), it holds that

AMu) >

] =

Therefore non strict stability phenomenon cannot occur in this case. From
this it seems to be difficult to give an alternative proof of Brezis-Coron-Lieb’s
result by using the method in the present monograph.

Next, we consider the case of maps from B™ into S™~! for m > 5. For
a homogenous harmonic map u € W'?(B™,S™ 1), any estimate on A(u) has
not yet been established by anyone except the case u(x) = z/|x|. Baldes [2]

proved an equality

A(é,) - W. (4.19)

(Baldes did not give any minimizing sequence.) From (4.19), it is natural to

conjecture that the inequality

holds for any weakly stable homogeneous harmonic map u € W1?(B™ S™1!)
satisfying Sing(u) = {0}, and that non strict stability phenomenon does not
occur. Because of this, it also seems difficult to analyze the behavior of har-
monic maps around singular points in this case by our method.

Non strict stability phenomenon is a special phenomenon for the case of
maps from a 4-dimensional domain into S®. There must be some reason for
this phenomenon. And we should try to understand what is special.

For harmonic maps from B™ into S™~! for m > 5, the author does not know

what type of singularities may occur. It seems very difficult to analyze these
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singularities. However, the author believes that these problems will reveal
interesting phenomena and will prompt the new development in the future

study of singularity of harmonic maps.
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