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Chapter 1

Introduction

Asymptotic behavior of random walks on various infinite graphs has been studied in

many fields such as probability, harmonic analysis, geometry and so on. Especially, many

authors have investigated the problem of what kind of structure of underlying graphs

affects the behavior of the random walks. For example, it is known that the notion of

volume growth plays an important role in the behavior of the symmetric random walks

on finitely generated infinite discrete groups ([30], [35], [36]).

In this thesis, we study long time asymptotics of random walks on nilpotent cover-

ing graphs and investigate their applications. In our arguments, the polynomial volume

growth and the periodicity of the nilpotent covering graphs play an essential role.

On graphs of polynomial volume growth, various estimates for the transition prob-

ability are controlled by analytic properties of the graphs. For instance, Coulhon and

Grigor’yan [8] proved the equivalence between the Gaussian upper estimate for the tran-

sition probability with volume doubling property and an isoperimetric type inequality

known as the relative Faber-Krahn inequality (see also Delmotte [10], Hebisch and Saloff-

Coste [15], Russ [28]). Moreover, the Gaussian upper estimate is equivalent to the on-

diagonal upper bound ([15]), which is applicable to our arguments (see Section 4.1).

On the other hand, Kotani and Sunada obtained several long time asymptotics for

random walks on the graphs with abelian periodic structure by certain homogenization

([19], [21], [22]). Generally speaking, the homogenization is a method which relates a long
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time asymptotic behavior of the heat kernel of a periodic system to the behavior of the

heat kernel of the corresponding homogenized system by making use of a scaling relation

between the time and the underlying space (see [4], [5], [9]). However, since the notion

of the scale change on graphs is not defined, it is not possible to apply them directly to

the case of graphs. In order to overcome this difficulty, Kotani and Sunada considered

the realization of the graph, preserving the periodicity, in a space on which a scaling is

defined. In their method, it is very important to find a suitable space in which the graph

is realized.

In view of these on graphs having the geometric structures such as the polynomial

volume growth and the periodicity, we may expect to obtain more sophisticated estimates

for long time behavior of the random walks than those obtained assuming only one of these

structures. This leads us to study the random walks on nilpotent covering graphs. Indeed,

we can regard every covering graph of polynomial volume growth as a nilpotent covering

graph. To be more precise, let X be a covering graph whose covering transformation

group Γ is a finitely generated group of polynomial growth. Then Gromov ([14]) showed

that Γ has a finitely generated torsion-free nilpotent subgroup N of finite index so that

X is a covering of the finite quotient graph N\X with covering transformation group N

(see also [1]). This is the reason why we consider the nilpotent covering graphs.

In this thesis, we first study a central limit theorem on nilpotent covering graphs fol-

lowing the method of Kotani and Sunada ([19], [21], [22]). Realizing the graph in question

in a corresponding nilpotent Lie group, we obtain a geometric characterization of the limit

operator on the nilpotent Lie group appearing in the limit of the discrete semigroup of

the transition operators, as time goes to infinity with a suitable scale change (Theorems

1 and 2). Next, we consider a long time asymptotics of the transition probability which

is called a local central limit theorem or a Berry-Esseen type estimate (Theorem 3). This

is the main result of this thesis. In the proof of Theorem 3, certain Gaussian bounds

for the transition probability is of essential use (Theorem 4). Finally, as an application

of Theorems 3 and 4, we prove the Lp boundedness of the Riesz transform on nilpotent

covering graphs (Theorem 5) .

6



1.1 Notation and Results

Let X = (V,E) be a locally finite connected graph, where V represents the set of vertices

and E the set of oriented edges. For each oriented edge e ∈ E, the origin and the terminus
of e are denoted by o(e) and t(e), respectively, whereas the inverse edge is denoted by e.

Throughout this thesis, we shall assume that X is a nilpotent covering graph, that is, X

is a covering graph of a finite graph X0 = (V0, E0), whose covering transformation group

Γ is a finitely generated nilpotent group. Without loss of generality, we may assume that

Γ is torsion-free (see Alexopoulos [1]).

A symmetric random walk on X with a weight m : V → R>0 is, by definition, given

by a function p : E → R>0 satisfyingX
e∈Ex

p(e) = 1,

p(e)m(o(e)) = p(e)m(t(e)),

where Ex = {e ∈ E | o(e) = x}. We assume that m and p are Γ-invariant. Then the

transition probability for a particle starting at x to reach y at time n is given by

pn(x, y) =
X

c=(e1,e2,...,en)

p(e1)p(e2) · · · p(en),

where the sum is taken over all paths c = (e1, e2, . . . , en) of length n with origin o(c) = x

and terminus t(c) = y. The transition operator L associated with the random walk is an

operator acting on a function f on V defined by

Lf(x) =
X
e∈Ex

f(t(e))p(e).

It is easy to check that the function kn(x, y) = pn(x, y)m(y)
−1 gives rise to the kernel

function of Ln, namely, Lnf(x) =
P

y∈V kn(x, y)f(y)m(y). The assumption of m and p

implies that kn(x, y) = kn(y, x).

The purpose of Chapter 2 is to analyze the long time behavior of the discrete semigroup

{Ln}∞n=0 on X by using certain homogenization method, which is developed by Kotani
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and Sunada ([19], [21], [22]). To be more precise, suppose that X is realized in a suitable

space M . Let C∞(X) be the set of functions on V vanishing at infinity, and C∞(M) the

set of continuous functions on M vanishing at infinity, respectively. Then we show that

Ln on C∞(X) converges to a continuous semigroup on C∞(M), as n goes to infinity with

a suitable scale change on M .

In [19] and [22], Kotani and Sunada studied the case of a crystal lattice X , which is

an abelian covering of a finite graph. In this case, X is realized in an Euclidean space on

which the abelian action of X is isomorphic to a lattice.

In the case of a nilpotent covering graph X with covering transformation group Γ,

we realize X in a connected and simply connected nilpotent Lie group GΓ, in which Γ

is isomorphic to a lattice. It is known by Malćev [23] that there exists uniquely such a

nilpotent Lie group up to isomorphism. Let g be the Lie algebra of GΓ and exp : g→ GΓ

the exponential map. Set n1 = g and ni+1 = [g, ni] for i ≥ 1. Since g is nilpotent, we
then have the filtration :

g = n1 ⊃ n2 ⊃ · · · ⊃ nr 6= {0} ⊃ nr+1 = {0}.

We also consider the subspaces g(1), . . . , g(r) ⊂ g defined by

(1.1) nk = g
(k) ⊕ nk+1.

A piecewise smooth Γ-equivariant map Φ : X → GΓ is said to be a realization of X .

In particular, the following notion of the harmonic realization is important to consider

the long time behavior of the discrete semigroup {Ln}∞n=0.

Definition (cf. [21]). A realization Φh : X → GΓ is said to be harmonic on g
(1) if for

each x ∈ V , X
e∈Ex

m(e)
n
exp−1Φh(t(e))

¯̄
g(1)
− exp−1Φh(o(e))

¯̄
g(1)

o
= 0,

where m(e) = p(e)m(o(e)).

According to the result in [21] of harmonic maps from a graph to a Riemannian

manifold, we have the existence and uniqueness of Φh on g(1) (see also Section 2.3). By
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making use of the harmonic realization Φh, the limit operator, that is, the limit of the

infinitesimal generator of Ln (see Lemma 2.5), is written as

(1.2) Ω∗ = −
1

2

X
e∈E0

m(e)
³
exp−1Φh(o(e))−1Φh(t(e))

¯̄
g(1)

´2
∗
,

where
³
exp−1Φh(o(e))−1Φh(t(e))

¯̄
g(1)

´
∗
is the extension of an element of the Lie alge-

bra exp−1Φh(o(e))−1Φh(t(e))
¯̄
g(1)
∈ g to a left invariant vector field on the limit group

(GΓ, ∗) (see Section 2.1). Then, by using Trotter’s approximation theory [33], we have
the following

Theorem 1 (Central limit theorem). Let X be the covering graph of a finite graph X0

whose covering transformation group Γ is a finitely generated torsion-free nilpotent group

and Φ : X → GΓ a realization of X. Then, for any f ∈ C∞(GΓ), as n ↑ ∞, δ ↓ 0 and
nδ2 → m(X0)t, we have

(1.3)
°°Ln(f ◦ (τδΦ))− (e−tΩ∗f) ◦ (τδΦ)°°∞ → 0,

where τδ is the dilation on GΓ (see Section 2.1). In particular, for a sequence {xδ}δ>0 in
X with limδ↓0 τδΦ(xδ) = x,

(1.4) limLn(f ◦ (τδΦ))(xδ) = e−tΩ∗f(x).

The proof of Theorem 1 is reduced to the case when the realization is harmonic (see

the proof).

We remark that Batty, Bratteli, Jørgensen and Robinson considered a homogenization

for periodic subelliptic operators on stratified Lie groups in [5]. In their case, a scaling

relation between the time and the stratified Lie group (see Section 2.1) is indispensable

to obtain the convergence to the homogenized operator. In our proof of Theorem 1, an

invariance under the stratifying process (see Lemma 2.2) plays an important role . We

also note that, by Pansu [24], the limit group (GΓ, ∗) is the Gromov-Hausdorff limit of
the sequence of metric spaces (X, ²dX) as ² goes to 0, where dX is the graph distance of

X .
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By using a relation between g(1) and H1(X0,R), the first cohomology group of X0 (see

Section 2.4), we prove the following geometric characterization of the limit operator Ω∗:

Theorem 2. Ω∗ is the sub-Laplacian with respect to the Albanese metric on g(1) (see

Section 2.4), namely

Ω∗ = −
d1X
i=1

X
(1)
i∗ X

(1)
i∗ ,

where {X(1)
1 , . . . , X

(1)
d1
} is an orthonormal basis for the Albanese metric on g(1) and X(1)

i∗

is the extension of X
(1)
i ∈ g to a left invariant vector field on the limit group (GΓ, ∗).

In Chapter 3, we prove a Berry-Esseen type theorem, which gives an estimate for the

speed of convergence of the transition probability to the heat kernel on GΓ as time goes

to infinity. We remark that Alexopoulos proved a Berry-Esseen type theorem on a Cayley

graph of a finitely generated discrete group of polynomial growth Γ ([1]). To explain it, let

pn(x, y) be a transition probability associated with the symmetric probability measure on

Γ, whose support is finite and generates Γ. Let ht be the heat kernel of the limit operator

associated with the probability measure on the nilpotent Lie group GΓ (see [1]). Then we

have the following

Theorem(Alexopoulos [1, Theorem 10]). Let Γ be a finitely generated discrete group

of polynomial volume growth of order D. Then there exists a constant C > 0 such that

sup
x,y∈Γ

|pn(x, y)− |GΓ/Γ|hn(x, y)| ≤ Cn−
D+1
2 .

On the other hand, when X is a crystal lattice, a local central limit theorem is proved

by Kotani and Sunada [22].

Theorem(Kotani and Sunada [22]). Let X be a crystal lattice whose covering trans-

formation group is Γ. For simplicity, we assume that X is non-bipartite. Then we have

lim
n↑∞

∙
(4πn)D/2pn(x, y)m(y)

−1 − C(X) exp
µ
−m(X0)

4n
dΓ(x, y)

2

¶¸
= 0,

uniformly for all x, y ∈ V , where C(X) is a constant depends on X and dΓ is the Albanese

distance.
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We study a generalization of these results to the case of nilpotent covering graphs.

Our strategy for the proof of a Berry-Esseen type theorem on nilpotent covering graphs

is much inspired by Alexopoulos [1]. Let pn be the transition probability on X and ht the

heat kernel of the sub-Laplacian Ω on GΓ for the Albanese metric on g
(1) (see Theorem

2, Section 2.4 and [16], [21]). Namely, Ω is defined by

Ω = − 1

2m(X0)

X
e∈E0

m(e)
³
exp−1Φh(o(e))−1Φh(t(e))

¯̄
g(1)

´2
,

where Φh : X → GΓ is a harmonic realization of X and
³
exp−1Φh(o(e))−1Φh(t(e))

¯̄
g(1)

´
is

a left invariant vector field on GΓ identified with exp
−1Φh(o(e))−1Φh(t(e))

¯̄
g(1)
∈ g. Then

we have

Theorem 3 (Berry-Esseen type theorem). Let X be a nilpotent covering graph with

covering transformation group Γ and Φh : X → GΓ a harmonic realization of X in the

nilpotent Lie group GΓ. Let D denote the exponent of polynomial growth of X. Then, for

any 0 < ² < 1/2, there exists a constant C > 0 such that the following hold:

1. If X is a non-bipartite graph, then

sup
x,y∈V

¯̄̄̄
pn(x, y)m(y)

−1 − |GΓ/Γ|
m(X0)

hn(Φ
h(x),Φh(y))

¯̄̄̄
≤ Cn−D+1/2−²

2 .

2. If X is a bipartite graph with a bipartition V = A
`
B, and

(a) if x, y ∈ A or x, y ∈ B, then pn(x, y) = 0 for odd n and

sup
x,y

¯̄̄̄
pn(x, y)m(y)

−1 − 2 |GΓ/Γ|
m(X0)

hn(Φ
h(x),Φh(y))

¯̄̄̄
≤ Cn−D+1/2−²

2

for even n,

(b) if x ∈ A, y ∈ B or x ∈ B, y ∈ A, then pn(x, y) = 0 for even n and

sup
x,y

¯̄̄̄
pn(x, y)m(y)

−1 − 2 |GΓ/Γ|
m(X0)

hn(Φ
h(x),Φh(y))

¯̄̄̄
≤ Cn−D+1/2−²

2

for odd n.
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We remark that Alexopoulos proved the following estimate of the difference between

ht and h∗t, the heat kernel of Ω∗:

Theorem (Alexopoulos [2, Theorem 1.14.5]). There is a constant c > 0 such that

|ht(x, y)− h∗t(x, y)| ≤ ct−(D+1)/2

for x, y ∈ GΓ and t ≥ 1.

It is not known whether the estimate of Theorem 3 is best possible. In our approach,

we have not been able to improve the speed of the convergence better than Cn−
D+1/2−²

2 ,

in general. However, if

(1.5)
X
e∈Ex

p(e) exp−1 Φh(o(e))−1Φh(t(e))
¯̄
g(2)
= 0

for all x ∈ V , and the second order differential operator on GΓ

(1.6)
X
e∈Ex

p(e)
³
exp−1Φh(o(e))−1Φh(t(e))

¯̄
g(1)

´2
is independent of the choice of x ∈ V , then the speed of the convergence in Theorem 3

is estimated by Cn−
D+1
2 . Indeed, a simple random walk on a Cayley graph of Γ satisfies

(1.5) and (1.6). The triangular lattice and the hexagonal lattice (see Figure 1 and [22])

also satisfy these conditions. However, there exist graphs which do not satisfy them. For

example, the Kagome lattice and the Z-lattice with a loop on even vertices (see Figure 2

and [22]) do not satisfy (1.6).

The triangular lattice The hexagonal lattice

Figure 1. Examples which satisfy (1.5) and (1.6).
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The Kagome lattice The Z-lattice with a loop on even vertices

0−1−2−3 1 2 3

Figure 2. Examples which do not satisfy (1.5) and (1.6).

In the proof of Theorem 3, we employ Gaussian upper estimates for the kernel kn of

Ln and its gradient on nilpotent covering graphs which are obtained in Chapter 4. The

definition of the gradient of kn is given as follows:

1. If X is a non-bipartite graph, then

∇ykn(x, y) = sup
dX(y,z)=1

|kn(x, z)− kn(x, y)|.

2. If X is a bipartite graph, then

∇ykn(x, y) = sup
dX(y,z)=2

|kn(x, z)− kn(x, y)|.

We remark that Hebisch and Saloff-Coste [15] gave Gaussian upper estimates for kn and

∇kn on a Cayley graph of Γ. Furthermore, Pittet and Saloff-Coste [25] showed that the
decay order of the probability of return after 2n-steps to the starting point does not change

under the quasi-isometry. Since a nilpotent covering graph X and its covering transfor-

mation group Γ are quasi-isometric, the Gaussian upper bound for kn on X (Theorem 4,

(1.7)) is deduced from their results (see also Saloff-Coste [29]). In this thesis, for the sake

of completeness, we give a proof of Gaussian estimates for kn and ∇kn on X , following
the argument by Hebisch and Saloff-Coste [15]. Then we have

Theorem 4 (Gaussian estimates cf. [25], [15]). There exist constants C and C 0 > 0

such that the following hold:

13



1. If X is a non-bipartite graph,

kn(x, y) ≤ Cn−
D
2 exp

¡
−dX(x, y)2/C 0n

¢
(1.7)

∇ykn(x, y) ≤ Cn−
D+1
2 exp

¡
−dX(x, y)2/C 0n

¢
(1.8)

for all x, y ∈ V , and all n = 1, 2, . . ..

2. If X is a bipartite graph with a bipartition V = A
`
B, and

(a) if x, y ∈ A or x, y ∈ B, then kn(x, y) = 0 for odd n and

kn(x, y) ≤ Cn−
D
2 exp

¡
dX(x, y)

2/C 0n
¢
,

∇ykn(x, y) ≤ Cn−
D+1
2 exp

¡
−dX(x, y)2/C 0n

¢
for even n,

(b) if x ∈ A, y ∈ B or x ∈ B, y ∈ A, then kn(x, y) = 0 for even n and

kn(x, y) ≤ Cn−
D
2 exp

¡
−dX(x, y)2/C 0n

¢
,

∇ykn(x, y) ≤ Cn−
D+1
2 exp

¡
−dX(x, y)2/C 0n

¢
for odd n.

As a corollary of Theorem 4, by using the same argument as in [15], we prove a

Gaussian lower bound for kn.

Corollary (cf. [15]). There exist constants C,C 0 and C 00 > 0 such that the following

hold:

1. If X is non-bipartite graph, then

kn(x, y) ≥ Cn−
D
2 exp

¡
−dX(x, y)2/C 0n

¢
for all n ≥ maxx∈V min{length of the odd cycle from x} and dX(x, y) ≤ n/C 00.

2. If X is a bipartite graph with a bipartition V = A
`
B, and
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(a) if x, y ∈ A or x, y ∈ B, then kn(x, y) = 0 for odd n and

kn(x, y) ≥ Cn−
D
2 exp

¡
−dX(x, y)2/C 0n

¢
for even n ≥ 2 and dX(x, y) ≤ n/C 00,

(b) if x ∈ A, y ∈ B or x ∈ B, y ∈ A, then kn(x, y) = 0 for even n and

kn(x, y) ≥ Cn−
D
2 exp

¡
−dX(x, y)2/C 0n

¢
for odd n ≥ 3 and dX(x, y) ≤ n/C 00.

We note that various applications of this type of estimates have been discussed (for

instance, see [8], [10], [34] and [36]).

In Chapter 5, we study the Lp boundedness of the Riesz transform on nilpotent cov-

ering graphs which is defined by ∇∆−1/2. This is a discrete analogue of ∂/∂xj∆−1/2, the
Riesz transform on Rd. It is known that the Riesz transform on Rd is bounded on Lp for

1 < p < ∞, which gives an equivalence of the Sobolev space defined by ∂/∂xj and ∆1/2

in Lp (see Duoandikoetxea [13], Stein [32]). When X is a Cayley graph of Γ, Alexopoulos

[1] proved the Lp boundedness for 1 < p < ∞ and weak-(1, 1). When X is a graph with

volume doubling property and the Gaussian upper estimate (1.7) holds, Russ [28] proved

that the Riesz transform is bounded on Lp for 1 < p ≤ 2 and weak-(1, 1). We remark
that nilpotent covering graphs satisfy the assumptions of Russ’s theorem.

Consequently, we prove the following result:

Theorem 5 (Lp boundedness of the Riesz transform). Let X be a nilpotent covering

graph and assume that X is non-bipartite. Then the Riesz transform is bounded on Lp

for 1 < p <∞ and weak-(1, 1), which means that there exists a constant Cp > 0 such that

for all finitely supported functions f on V ,

k∇fkp ≤ Cpk∆1/2fkp, 1 < p <∞,

and

sup
λ>0

λm ({x ∈ V : |∇f(x)| > λ}) ≤ C1k∆1/2fk1.
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Remark 1. There are some developments for the Riesz transform on complete Rieman-

nian manifolds. In [11], Dungey proved that the Riesz transform is Lp bounded for

1 < p <∞ on nilpotent covering manifolds. His argument can be adapted to the case of

nilpotent covering graphs. Moreover, Auscher, Coulhon, Duong, Hofmann [3] obtained a

sufficient and necessary condition to be the Lp boundedness for the Riesz transform on

some complete Riemannian manifolds (see also [7]).

Throughout this thesis, unless necessary, different constants may be denoted by the

same letter C. When their dependence or independence is significant, it will be clearly

stated.

16



Chapter 2

Central limit theorem

In this chapter, we prove a central limit theorem on nilpotent covering graphs by the

method of Kotani and Sunada. To prove the convergence of the semigroup, we use

the approximation theory due to Trotter [33], that is, we show the convergence of its

infinitesimal generator (Lemma 2.5).

First, we will introduce the notion of the limit group, which is obtained by stratifying

the original product on a nilpotent Lie group (see also [1], [12]). We remark that an

invariance under the stratifying process (see Lemma 2.2) plays an important role in our

proof of the central limit theorem.

2.1 Limit group

Let (G, ·) be a connected, simply connected nilpotent Lie group and g its Lie algebra.
We set n1 = g and ni+1 = [g, ni] for i ≥ 1. Since g is nilpotent, we have the filtration :
g = n1 ⊃ n2 ⊃ . . . ⊃ nr 6= {0} ⊃ nr+1 = {0}. We consider subspaces g(1), . . . , g(r) ⊂ g
defined by

nk = g
(k) ⊕ nk+1.

By this decomposition, each element X ∈ g can be written uniquely as X = X(1)+X(2)+

· · ·+X(k) + · · ·+X(r) with X(k) ∈ g(k). For ² > 0, we define a linear operator T² : g→ g

17



by

T²(X
(1) +X(2) + · · ·+X(k) + · · ·+X(r)) = ²X(1) + ²2X(2) + · · ·+ ²kX(k) + · · ·+ ²rX(r).

We also define a Lie bracket [ , ]∗ on g by setting

[X,Y ]∗ = lim
²→0

T²[T²−1X,T²−1Y ].

Then, for any X(k) ∈ g(k) and X(`) ∈ g(`), we have

(2.1) [X(k), X(`)]∗ = [X(k), X(`)]
¯̄
g(k+`)

.

Define the dilation τ² : G→ G by

(2.2) τ²(x) = exp
¡
T²
¡
exp−1 x

¢¢
,

where exp : g→ G is the exponential map. We define a product ∗ on G by setting

x ∗ y = lim
²→0

τ²(τ²−1x · τ²−1y).

Then it is known that (G, ∗) is a nilpotent Lie group, whose Lie algebra is isomorphic to
(g, [ , ]∗). We call (G, ∗) the limit group of (G, ·). We note that the limit group (G, ∗) has
the following properties (see Alexopoulos [1]):

(a) For X,Y ∈ g, expX ∗ expY = exp
¡
X + Y + 1

2
[X,Y ]∗ + · · · [ , ]∗ · · ·

¢
.

(b) The exponential map from (g, [ , ]∗) to (G, ∗) coincides with the original exponential
map.

(c) (G, ∗) is a stratified Lie group. Namely, the Lie algebra (g, [ , ]∗) of (G, ∗) has a
direct sum decomposition ⊕rk=1g(k) satisfying

(i) if k + ` ≤ r, then [g(k), g(`)]∗ ⊂ g(k+`),
if k + ` > r, then [g(k), g(`)]∗ = {0},

(ii) g(1) generates g.

(d) τδ(x ∗ y) = τδx ∗ τδy.

18



For the sake of completeness, we prove (d). For a fixed δ > 0, we have

τδ(x ∗ y) = τδ lim
²→0

τ² (τ²−1x · τ²−1y)

= lim
²→0

τδ²
¡
τ(δ²)−1τδx · τ(δ²)−1τδy

¢
= τδx ∗ τδy.

By the definition of ∗, we easily obtain

exp−1(x ∗ y)
¯̄
g(1)
= exp−1(x · y)

¯̄
g(1)
,

exp−1(x ∗ y)
¯̄
g(2)
= exp−1(x · y)

¯̄
g(2)

for any x, y ∈ G. Note that for k ≥ 3, exp−1(x ∗ y)|g(k) does not coincide with exp−1(x · y)|g(k)
in general. The above invariance for k = 1, 2 is important to show the central limit theo-

rem.

For each k ≤ r, let {X(k)
1 , X

(k)
2 , . . . , X

(k)
dk
} be a basis of g(k). We have the following two

identifications of G with Rn as a differentiable manifold, given respectively by

(x
(r)
dr
, x
(r)
dr−1, . . . , x

(1)
1 ) 7→ exp x

(r)
dr
X
(r)
dr
· exp x(r)dr−1X

(r)
dr−1 · · · · · expx

(1)
1 X

(1)
1 ,

and

(x
(r)
dr∗, x

(r)
dr−1∗, . . . , x

(1)
1∗ ) 7→ expx

(r)
dr∗X

(r)
dr
∗ exp x(r)dr−1∗X

(r)
dr−1 ∗ · · · ∗ expx

(1)
1∗X

(1)
1 .

We call them (·)-coordinates and (∗)-coordinates of second kind, respectively. For x ∈ G,
we denote P

(k)
i (x) = x

(k)
i and P

(k)
i∗ (x) = x

(k)
i∗ . The following lemma illustrates the relation

among these coordinates.

Lemma 2.1. For x ∈ G, we have

P
(1)
i∗ (x) = P

(1)
i (x),(2.3)

P
(2)
i∗ (x) = P

(2)
i (x),(2.4)

P
(k)
i∗ (x) = P

(k)
i (x) +

X
0<|K|≤k−1

CKP
K(x)(2.5)

for some constants CK, where K denotes a multi-index ((i1, k1), . . . , (in, kn)) and P
K(x) =

P
(k1)
i1
(x)P

(k2)
i2
(x) · · ·P (kn)in

(x). We call |K| =Pn
i=1 kn the order of P

K(x).
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Proof. (2.3) and (2.4) are immediate by comparing (·)-coordinates and (∗)-coordinates
of x ∈ G. We will show (2.5) by induction in k of P (k)i∗ (x). Note that the cases k = 1 and

k = 2 are obvious. We assume that it is true in the case P
(`)
i∗ (x) for ` ≤ k − 1. Then the

(i, k)-component of x is given by

exp−1 x
¯̄
X
(k)
i
= P

(k)
i∗ (x) +

X
|K|=k

CKPr
(k)
i [X

K ]∗PK∗ (x)

= P
(k)
i (x) +

X
0<|K|≤k

CKPr
(k)
i [X

K ]PK(x)

for some constants CK , where [X
K ] = [X

(k1)
i1
, [X

(k2)
i2
, [X

(k3)
i3
, · · · , X(kn)

in
] · · · ], [XK ]∗ =

[X
(k1)
i1
, [X

(k2)
i2
, [X

(k3)
i3
, · · · , X(kn)

in
]∗ · · · ]∗ and Pr(k)i X = X|

X
(k)
i
. By the induction hypothesis,

the lower order terms do not affect for this claim. Since CKPr
(k)
i [X

K ]∗ = CKPr
(k)
i [X

K ]

for |K| = k by (2.1), the terms of order k are cancelled. Consequently, we have

P
(k)
i∗ (x) = P

(k)
i (x) +

X
0<|K|≤k−1

CKP
K(x).

By using Lemma 2.1, we have the following relation between the (·)-coordinates and
the (∗)-coordinates:

Lemma 2.2.

P
(1)
i∗ (x ∗ y) = P (1)i (x · y),(2.6)

P
(2)
i∗ (x ∗ y) = P (2)i (x · y),(2.7)

P
(k)
i∗ (x ∗ y) = P (k)i (x · y) +

X
|K1|+|K2|≤k−1,

|K2|>0

CK1K2P
K1
∗ (x)PK2(x · y).(2.8)

Proof. From (2.1), Lemma 2.1 together with the Campbell-Hausdorff formula, (2.6)

and (2.7) are obtained easily. We will show (2.8) inductively. By the definition of ∗,
Lemma 2.1 and the induction hypothesis, the difference of P

(k)
i∗ (x ∗ y) and P (k)i (x · y) is

the terms with order less than k. Namely,

(2.9) P
(k)
i∗ (x ∗ y) = P (k)i (x · y) +

X
0<|K1|+|K2|≤k−1

CK1K2P
K1(x)PK2(y).

20



By using

P
(k)
i (y) = P

(k)
i (x · y)− P (k)i (x)−

X
0<|K1|+|K2|≤k

CK1K2P
K1(x)PK2(y),

we can replace PK2(y) with

PK2(x · y)−
X

0<|K3|+|K4|≤|K2|
CK3K4P

K3(x)PK4(x · y) +
X

0<|K|≤|K2|
CKP

K(x).

Hence we refine (2.9) to

P
(k)
i∗ (x ∗ y) = P (k)i (x · y) +

X
|K1|+|K2|≤k−1,

|K2|>0

CK1K2P
K1(x)PK2(x · y) +

X
0<|K|≤k−1

CKP
K(x).

But
P

0<|K|≤k−1CKP
K(x) vanishes, since if y = x−1, then x ∗ y = x · y = e. Moreover,

PK1(x) can be replaced with PK1∗ (x) because of Lemma 2.1. Consequently,

P
(k)
i∗ (x ∗ y) = P (k)i (x · y) +

X
|K1|+|K2|≤k−1,

|K2|>0

CK1K2P
K1
∗ (x)PK2(x · y).

Example 2.3. For k = 3, we have

P
(3)
i∗ (x) =P

(3)
i (x)− 1

2

X
i1>i2

Pr
(3)
i [X

(1)
i1
, X

(1)
i2
]P

(1)
i1
(x)P

(1)
i2
(x),

P
(3)
i∗ (x ∗ y) =P (3)i (x · y)− 1

2

X
i1>i2

Pr
(3)
i [X

(1)
i1
, X

(1)
i2
]
n
P
(1)
i1∗ (x)P

(1)
i2
(x · y)(2.10)

−P (1)i1
(x · y)P (1)i2∗ (x) + P

(1)
i1
(x · y)P (1)i2

(x · y)
o
.
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To show (2.10), we use the following:

P
(3)
i (x · y) = P (3)j (x) + P

(3)
j (y)

+
1

2

X
i1>i2

Pr
(3)
j [X

(1)
i1
, X

(1)
i2
]
³
P
(1)
i1
(x)P

(1)
i2
(x) + P

(1)
i1
(y)P

(1)
i2
(y)
´

+
1

2

X
i1,i2

Pr
(3)
i [X

(2)
i1
, X

(1)
i2
]
³
P
(2)
i1
(x)P

(1)
i2
(x) + P

(2)
i1
(y)P

(1)
i2
(y)
´

+
1

2

X
i1,i2

Pr
(3)
j [X

(1)
i1
, X

(1)
i2
]P

(1)
i1
(x)P

(1)
i2
(y) +

1

2

X
i1,i2

Pr
(3)
j [X

(2)
i1
, X

(1)
i2
]P

(2)
i1
(x)P

(1)
i2
(y)

+
1

2

X
i1,i2

Pr
(3)
j [X

(1)
i1
, X

(2)
i2
]P

(1)
i1
(x)P

(2)
i2
(y)− 1

2

X
i1>i2

Pr
(3)
j [X

(1)
i1
, X

(1)
i2
]P

(1)
i1
(x · y)P (1)i2

(x · y)

− 1
2

X
i1,i2

Pr
(3)
j [X

(2)
i1
, X

(1)
i2
]

×
Ã
P
(2)
i1
(x) + P

(2)
i1
(y)−

X
ν<λ

Pr
(2)
i1
[X

(1)
λ , X

(1)
ν ]P

(1)
ν (x)P

(1)
λ (y)

!
P
(1)
i2
(x · y)

+
1

4

X
i1>i2>i3

Pr
(3)
j [X

(1)
i1
, [X

(1)
i2
, X

(1)
i3
]]
³
P
(1)
i1
(x)P

(1)
i2
(x)P

(1)
i3
(x) + P

(1)
i1
(y)P

(1)
i2
(y)P

(1)
i3
(y)
´

+
1

12

X
i>i1,i2

Pr
(3)
j [[X

(1)
i , X

(1)
i1
], X

(1)
i2
]
³
P
(1)
i (x)P

(1)
i1
(x)P

(1)
i2
(x) + P

(1)
i (y)P

(1)
i1
(y)P

(1)
i2
(y)
´

− 1

12

X
i>i1

Pr
(3)
j [[X

(1)
i , X

(1)
i1
], X

(1)
i ]
³
P
(1)
i (x)P

(1)
i1
(x)P

(1)
i (x) + P

(1)
i (y)P

(1)
i1
(y)P

(1)
i (y)

´
+
1

4

X
i,i1>i2

Pr
(3)
j [X

(1)
i , [X

(1)
i1
, X

(1)
i2
]]P

(1)
i (x)P

(1)
i1
(y)P

(1)
i2
(y)

+
1

4

X
i,i1>i2

Pr
(3)
j [[X

(1)
i1
, X

(1)
i2
], X

(1)
i ]P

(1)
i1
(x)P

(1)
i2
(x)P

(1)
i (y)

+
1

12

X
i1,i2,i3

Pr
(3)
j [[X

(1)
i1
, X

(1)
i2
], X

(1)
i3
]
³
P
(1)
i1
(x)P

(1)
i2
(y)P

(1)
i3
(y)− P (1)i1

(x)P
(1)
i2
(y)P

(1)
i3
(x)
´

− 1
4

X
i1>i2>i3

Pr
(3)
j [X

(1)
i1
, [X

(1)
i2
, X

(1)
i3
]]P

(1)
i1
(x · y)P (1)i2

(x · y)P (1)i3
(x · y)

− 1

12

X
i>i1,i2

Pr
(3)
j [[X

(1)
i , X

(1)
i1
], X

(1)
i2
]P

(1)
i (x · y)P (1)i1

(x · y)P (1)i2
(x · y)

+
1

12

X
i>i1

Pr
(3)
j [[X

(1)
i , X

(1)
i1
], X

(1)
i ]P

(1)
i (x · y)P (1)i1

(x · y)P (1)i (x · y).
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2.2 Proof of CLT

Recall that X is a nilpotent covering graph whose covering transformation group is Γ. Let

GΓ be the nilpotent Lie group such that Γ is isomorphic to a lattice of GΓ. It is known by

Malćev [23] that there exists uniquely such a connected and simply connected nilpotent

Lie group up to isomorphism, and Γ is a cocompact lattice (cf. Raghunathan [26]).

Let g be the Lie algebra of GΓ and denote by g
(1), . . . , g(r) the subspaces of g as in

Section 2.1. We define a map Pδ : C∞(GΓ) → C∞(X) by Pδf(x) = f(τδΦ(x)), where

C∞(GΓ) is the set of continuous functions on GΓ vanishing at infinity, C∞(X) is the set

of functions on V vanishing at infinity and τδ : GΓ → GΓ is the dilation defined by (2.2).

We remark that (C∞(GΓ), k · k∞) and (C∞(X), k · k∞) are Banach spaces, where k · k∞ is
the supremum norm. Take a basis {X(k)

1 , . . . , X
(k)
dk
} of g(k) for each k ≤ r and we identify

X
(k)
i with the left invariant vector field on GΓ. We denote by dcc the Carnot-Carathéodory

distance on GΓ associated with the basis {X(1)
1 , . . . , X

(1)
d1
}. More precisely, let C be the set

of all absolutely continuous paths c : [0, 1] → GΓ satisfying ċ(t) =
P

i≤d1 ai(t)X
(1)
i (c(t))

for almost every t ∈ [0, 1]. We set

|c| =
Z 1

0

ÃX
i≤d1

a2i (t)

!1/2
dt,

and define for x, y ∈ GΓ,

dcc(x, y) = inf{ |c| | c ∈ C, c(0) = x, c(1) = y}.

Then dcc gives rise to a left invariant distance, which induces the topology of GΓ (see

[35]).

Lemma 2.4. {(C∞(X), Pδ)}δ>0 is a sequence of Banach spaces approximating C∞(GΓ).
Namely, for any f ∈ C∞(GΓ), we have

kPδfk∞ ≤ kfk∞,(2.11)

kPδfk∞ → kfk∞ as δ → 0.(2.12)
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Proof. Since (2.11) is trivial, we consider (2.12). Fix a ∈ GΓ such that |f(a)| = kfk∞.
Then we have

kPδfk = sup
x∈X

|f(τδΦ(x))− f(a) + f(a)|

≥ |f(a)|− inf
x∈X

|f(a)− f(τδΦ(x))|.

On the other hand, since Γ ⊂ GΓ is a cocompact lattice and Φ is Γ-equivariant, we have

inf
x∈X

dcc(a, τδΦ(x)) = δ inf
x∈X

dcc(τδ−1a,Φ(x)) < δM

for M = supg∈D,x∈F dcc(g,Φ(x)) < ∞, where D ⊂ GΓ and F ⊂ X are fundamental

domains of GΓ and X for the action Γ, respectively. Since f is continuous at a, for any

² > 0, there exists δ0 > 0 such that if dcc(a, y) < δ0, then |f(a)− f(y)| < ². For δ = δ0/M ,

there exists x0 ∈ X such that dcc(a, τδΦ(x
0)) < δ0. Hence, for any ² > 0, there exists δ > 0

such that

inf
x∈X

|f(a)− f(τδΦ(x))| ≤ |f(a)− f(τδΦ(x0))| < ².

Consequently, we have kPδfk∞ → kfk∞ as δ → 0.

According to a theorem of Trotter ([33], Theorem 5.3), to deduce the assertion of

Theorem 1, it suffices to show the following lemma, which yields the convergence of the

sequence of the infinitesimal generators.

Lemma 2.5 (cf. Lemma 3.1, Kotani [19]). Let Φh : X → GΓ be a harmonic realization

of X. Then, for any f ∈ C∞0 (GΓ) and N ↑ ∞, δ ↓ 0 with N2δ → 0, there exists a limit

operator Ω∗ such that °°°°m(X0)Nδ2
(I − LN)P hδ f − P hδ Ω∗f

°°°°
∞
→ 0,

where P hδ f(x) = f(τδΦ
h(x)). In addition, Ω∗ is given by (1.2).

Proof. By the definition of the transition operator, we have

m(X0)

Nδ2
(I − LN )P hδ f(x) =

m(X0)

Nδ2

X
c∈Cx,N

p(c)
©
f(Φhδ (x))− f(Φhδ (t(c)))

ª
,
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where Cx,N is a set of paths (e1, . . . , eN ) with o(e1) = x, p(c) = p(e1)p(e2) · · · p(eN) and
Φhδ = τδΦ

h. By the same argument as in Alexopoulos [1] and Kotani [19], we apply

the Taylor formula for the (∗)-coordinates of second kind to f 0(g) = f(Φhδ (x) ∗ g) with
g = Φhδ (x)

−1 ∗ Φhδ (t(c)). Then we have

m(X0)

Nδ2
(I − LN )P hδ f(x) =(2.13)

m(X0)

Nδ2

X
c∈Cx,N

p(c)

(
−
X
(i,k)

X
(k)
i∗ f(Φ

h
δ (x))P

(k)
i∗ (Φ

h
δ (x)

−1 ∗ Φhδ (t(c)))

− 1
2

Ã X
(i1,k1)≥(i2,k2)

X
(k1)
i1∗ X

(k2)
i2∗ +

X
(i2,k2)>(i1,k1)

X
(k2)
i2∗ X

(k1)
i1∗

!
f(Φhδ (x))

× P (k1)i1∗ (Φ
h
δ (x)

−1 ∗ Φhδ (t(c)))P (k2)i2∗ (Φ
h
δ (x)

−1 ∗ Φhδ (t(c)))

− 1
6

X
(i1,k1),(i2,k2),(i3,k3)

∂3f 0

∂x
(k1)
i1∗ ∂x

(k2)
i2∗ ∂x

(k3)
i3∗
(θ)P

(k1)
i1∗ (Φ

h
δ (x)

−1 ∗ Φhδ (t(c)))

× P (k2)i2∗ (Φ
h
δ (x)

−1 ∗ Φhδ (t(c)))P (k3)i3∗ (Φ
h
δ (x)

−1 ∗ Φhδ (t(c)))
)

for some θ ∈ GΓ satisfying |P (k)i∗ (θ)| ≤ |P (k)i∗ (Φ
h
δ (x)

−1 ∗ Φhδ (t(c)))|, where (i1, k1) > (i2, k2)
means either k1 > k2 or k1 = k2, i1 > i2. Since (GΓ, ∗) is a stratified Lie group,

P
(k)
i∗ (Φ

h
δ (x)

−1 ∗ Φhδ (t(c))) = δkP
(k)
i∗ (Φ

h(x)−1 ∗ Φh(t(c))).

We denote by Ordδ(k) the terms of (2.13) whose order of δ is k. Then (2.13) is rewritten

as

(2.14)
m(X0)

Nδ2
(I − LN)P hδ f(x) = Ordδ(−1) + Ordδ(0) +

X
k≥1

Ordδ(k).

We will consider three terms in (2.14) separately.

Estimate of Ordδ(−1). From Lemmas 2.1 and 2.2 together with the harmonicity of
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Φh, we have inductivelyX
c∈Cx,N

p(c)P
(1)
i∗ (Φ

h(x)−1 ∗ Φh(t(c)))

=
X

c0∈Cx,N−1
p(c0)

X
e∈Et(c0)

p(e)
n
exp−1Φh(x)−1 · Φh(t(c0))

¯̄
X
(1)
i

+ exp−1Φh(o(e))−1 · Φh(t(e))
¯̄
X
(1)
i

o
=

X
c0∈Cx,N−1

p(c0)P (1)i (Φh(x)−1 ∗ Φh(t(c0))) = 0.

This shows that Ordδ(−1) vanishes.
Estimate of Ordδ(0). Let us first observe the coefficient of X

(2)
i∗ f(Φ

h
δ (x)). Then we have

m(X0)

N

X
c∈Cx,N

p(c)
n
P
(2)
i∗ (Φ

h(x)−1 ∗ Φh(t(c)))− 1
2

X
i2>i1

Pr
(2)
i [X

(1)
i1
, X

(1)
i2
]∗(2.15)

× P (1)i1∗ (Φ
h(x)−1 ∗ Φh(t(c)))P (1)i2∗ (Φ

h(x)−1 ∗ Φh(t(c)))
o

=
m(X0)

N

X
c∈Cx,N

p(c) exp−1Φh(x)−1 ∗ Φh(t(c))
¯̄
X
(2)
i

=
m(X0)

N

N−1X
k=0

X
c∈Cx,k

p(c)
X
e∈Et(c)

p(e) exp−1Φh(o(e))−1 · Φh(t(e))
¯̄
X
(2)
i

=
m(X0)

N

N−1X
k=0

X
c∈Cx,k

p(c)F (t(c)),

where F (x) =
P

e∈Ex p(e) exp
−1Φh(o(e))−1 · Φh(t(e))

¯̄
X
(2)
i
. Since F (γx) = F (x), there

exists a function f0 : X0 → R such that f0(π(x)) = F (x), where π : X → X0 is the

covering map. Let L0 be the transition operator on C(X0). By the ergodicity (cf. [19]),

we have

m(X0)

N

N−1X
k=0

X
c∈Cx,k

p(c)F (t(c)) =
m(X0)

N

N−1X
k=0

Lk0f0(π(x))

=
X
x0∈X0

f0(x0)m(x0) +O

µ
1

N

¶
=
X
e∈E0

m(e) exp−1Φh(o(e))−1 · Φh(t(e))
¯̄
X
(2)
i
+O

µ
1

N

¶
.
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SinceX
e∈E0

m(e) exp−1Φh(o(e))−1 · Φh(t(e))
¯̄
X
(2)
i
= −

X
e∈E0

m(e) exp−1Φh(o(e))−1 · Φh(t(e))
¯̄
X
(2)
i
,

P
e∈E0m(e) exp

−1Φh(o(e))−1 · Φh(t(e))
¯̄
X
(2)
i
= 0 so that (2.15) goes to 0.

By the harmonicity and ergodicity, the coefficient of X
(1)
i1∗X

(1)
i2∗f(Φ

h
δ (x)) is given by

− m(X0)

N

X
i1,i2≤d1

1

2
X
(1)
i1∗X

(1)
i2∗f(Φ

h
δ (x))

×
X
c∈Cx,N

p(c)P
(1)
i1∗ (Φ

h(x)−1 ∗ Φh(t(c)))P (1)i2∗ (Φ
h(x)−1 ∗ Φh(t(c)))

=−
X

i1,i2≤d1

1

2

X
e∈E0

m(e)P
(1)
i1
(Φh(o(e))−1 · Φh(t(e)))P (1)i2

(Φh(o(e))−1 · Φh(t(e)))

×X(1)
i1∗X

(1)
i2∗f(Φ

h
δ (x)) +O

µ
1

N

¶
.

By the definition of Ω∗ (1.2), Ordδ(0) converges to P hδ Ω∗f(x).

Estimate of
P

k≥1Ordδ(k). We observe the coefficient of X
(k)
i∗ f(Φ

h
δ (x)). By Lemma

2.2 and

|P (k)i (Φh(x)−1 · Φh(t(c)))| ≤ CNk,

we have

m(X0)δ
k−2

N

X
c∈Cx,N

p(c)P
(k)
i∗ (Φ

h(x)−1 ∗ Φh(t(c)))(2.16)

=
m(X0)δ

k−2

N

X
c∈Cx,N

p(c)

(
P
(k)
i (Φh(x)−1 · Φh(t(c)))

+
X

|K1|+|K2|≤k−1,
|K2|>0

CK1K2P
K1
∗ (Φh(x)−1)PK2(Φh(x)−1 · Φh(t(c)))

)

≤M (k)
i (Φhδ (x))

Ã
δk−2Nk−1 +

X
|K1|+|K2|≤k−1,

|K2|≥2

δk−2−|K1|N |K2|−1
!

for a continuous function M
(k)
i on GΓ, sinceX

c∈Cx,N
p(c)PK2(Φh(x)−1 · Φh(t(c))) = 0,
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when |K2| = 1. By the assumptions of N and δ, (2.16) converges to 0.

By the same argument as above, each coefficient of X
(k1)
i1∗ X

(k2)
i2∗ f(Φ

h
δ (x)) for k1+k2 ≥ 3

converges to 0.

Finally, we consider the coefficient of ∂3f 0

∂x
(k1)
i1∗ ∂x

(k2)
i2∗ ∂x

(k3)
i3∗
(θ). Since f ∈ C∞0 (GΓ) and

supp
∂3f 0

∂x
(k1)
i1∗ ∂x

(k2)
i2∗ ∂x

(k3)
i3∗
⊂ suppf 0 = Φhδ (x)−1 ∗ suppf,

it suffices to show that, for a continuous function M
(k)
i on GΓ,¯̄

P
(k)
i∗ (Φ

h
δ (x)

−1 ∗ Φhδ (t(c)))
¯̄
≤ M (k)

i (Φhδ (x) ∗ θ)δN,

if δN < 1. For k = 1 and 2, this is true. Assume that it holds up to k − 1. Then

P
(k)
i∗ (Φ

h
δ (x)

−1 ∗ Φhδ (t(c))) = δkP
(k)
i∗ (Φ

h(x)−1 ∗ Φh(t(c)))

=δk

Ã
P
(k)
i (Φh(x)−1 · Φh(t(c)))

+
X

|K1|+|K2|≤k−1,
|K2|>0

CK1K2P
K1
∗ (Φh(x)−1)PK2(Φh(x)−1 · Φh(t(c)))

!
.

Since

P
(k1)
i1∗ (Φ

h
δ (x)

−1) =P (k1)i1∗ (θ ∗ (Φhδ (x) ∗ θ)−1)

=P
(k1)
i1∗ (θ) + P

(k1)
i1∗ ((Φ

h
δ (x) ∗ θ)−1)

+
X

|L1|+|L2|=k1,
|L1|,|L2|>0

CL1L2P
L1
∗ (θ)P

L2
∗ ((Φ

h
δ (x) ∗ θ)−1),

we have inductively |P (k1)i1∗ (Φ
h
δ (x)

−1)| ≤M(Φhδ (x) ∗ θ) for k1 ≤ k − 1. So we conclude

|P (k)i∗ (Φ
h
δ (x)

−1 ∗ Φhδ (t(c)))|

≤ C
Ã
δkNk +

X
|K1|+|K2|≤k−1,

|K2|>0

M(Φhδ (x) ∗ θ)δk−|K1|N |K2|
!

≤M (k)
i (Φhδ (x) ∗ θ)δN.
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From these estimates, it follows that
P

k≥1Ordδ(k) converges to 0. Hence the proof of

the lemma is completed.

We remark that by a theorem of Robinson ([27], p.304), for some λ > 0, the range of

Ω∗+λ in C∞(GΓ) is dense. Then we apply the argument of Kotani [19] to prove Theorem

1. Let Φh be a harmonic realization of X. Then we have°°LnPδf − Pδe−tΩ∗f°°∞ ≤°°Ln(Pδf − P hδ f)°°∞(2.17)

+
°°LnP hδ f − P hδ e−tΩ∗f°°∞

+
°°P hδ e−tΩ∗f − Pδe−tΩ∗f°°∞.

Since f and e−tΩ∗f are uniformly continuous and

d(τδΦ(x), τδΦ
h(x)) = δd(Φ(x),Φh(x)) ≤ δM

for M = supx∈X d(Φ(x),Φ
h(x)) < ∞, the first and third terms of the right hand side of

(2.17) converges to 0 as δ → 0.

Take N ↑ ∞ and δ ↓ 0 such that N2δ → 0. Then it follows from Lemma 2.5, Robinson

([27]) and Trotter ([33], Theorem 5.3) that for any f ∈ C∞(GΓ),

(2.18)
°°(LN )kNP hδ f − P hδ e−tΩ∗f°°∞ → 0,

as kNNδ
2 → m(X0)t. Now we prove that the second term of the right hand side of (2.17)

converges to 0. Let N(n) be the integer with n1/5 ≤ N(n) ≤ n1/5 + 1 and kN and rN are
the quotient and remainder of n/N , respectively. Then n ↑ ∞ and δ ↓ 0 imply N → ∞,
N2δ ≤ (n1/5 + 1)2δ → 0 and kNNδ

2 = nδ2 − rNδ2. We also see kNNδ2 → m(X0)t, since

rN < N and rNδ
2 ≤ Nδ2 ≤ (n1/5 + 1)δ2 → 0. Hence we have°°LnP hδ f − P hδ e−tΩ∗f°°∞ = °°LkNN+rNP hδ f − P hδ e−tΩ∗f°°∞

≤
°°LkNN(LrN−I)P hδ f°°∞+ °°LNkNP hδ f − P hδ e−tΩ∗f°°∞.

From the property of N , δ and kN , (2.18) holds. Since r
2
Nδ ≤ (n1/5 + 1)2δ → 0 and by

Lemma 2.5, °°°m(X0)
rNδ2

(I− LrN )P hδ ϕ− P hδ Ω∗ϕ
°°°
∞
→ 0
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for any ϕ ∈ C∞0 (GΓ). This implies that
°°LkNN (LrN − I)P hδ f°°∞ → 0. Then we conclude

(1.3).

Finally, (1.4) is obtained by

¯̄
LnPδf(xδ)− e−tΩ∗f(x)

¯̄
≤
°°LnPδf − Pδe−tΩ∗f°°∞ + ¯̄e−tΩ∗f(Φδ(xδ))− e−tΩ∗f(x)

¯̄
→ 0.

Hence Theorem 1 follows.

2.3 Existence and uniqueness of the harmonic real-

ization

In the previous section, we have proved the existence of the limit operator Ω∗ by assuming

the existence of a harmonic realization. In this section, we consider the existence and

uniqueness of such harmonic realizations.

Let I be a homomorphism from GΓ to an additive group g
(1) given by

I(g) = exp−1 g
¯̄
g(1)
.

Then we have the following.

Lemma 2.6. I(Γ) is a lattice in g(1). Namely, the following hold.

(i) I(Γ) ⊂ g(1) is a Z-module, and I(Γ)⊗ R = g(1).

(ii) I(Γ) is a discrete subgroup of g(1).

Proof. It is easy to show that I(Γ) ⊂ g(1) is a Z-module. Since Γ is a cocompact lattice
of GΓ, there exists a compact subset U ⊂ GΓ such that ΓU = GΓ. By restricting ΓU to
g(1), we have

g(1) = exp−1 (ΓU)
¯̄
g(1)
= I(Γ) + exp−1 U

¯̄
g(1)
.

Since exp−1 U |g(1) is also compact, g(1)/I(Γ) is compact. So (i) is obtained.
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For (ii), we first show that 0 ∈ I(Γ) ⊂ g(1) is an isolated point. It is known that

[GΓ, GΓ] ∩ Γ ⊂ [GΓ, GΓ] is also a lattice (Raghunathan [26], p.31, Corollary 1). Hence
there exists a fundamental domain F 0 ⊂ [GΓ, GΓ] such that [GΓ, GΓ] = F 0[GΓ, GΓ] ∩ Γ.
Since F 0 ∩ (Γ\ ([GΓ, GΓ] ∩ Γ)) = ∅ and Γ is discrete, there exists a neighborhood V of

e ∈ GΓ such that (V F 0) ∩ (Γ\ ([GΓ, GΓ] ∩ Γ)) = ∅, which means that

(V F 0) ∩ Γ ⊂ [GΓ, GΓ] ∩ Γ.

As a neighborhood of 0 ∈ I(Γ), we take I(V ). If there exists γ ∈ Γ such that I(γ) 6= 0

and I(γ) ∈ I(V ), then γ ∈ I−1I(V ) = V [GΓ, GΓ] because Ker I = [GΓ, GΓ]. This implies
that γ ∈ V F 0 ([GΓ, GΓ] ∩ Γ). So there exists γ0 ∈ [GΓ, GΓ] ∩ Γ such that γγ0 ∈ V F 0,
which shows that γγ0 ∈ (V F 0) ∩ Γ ⊂ [GΓ, GΓ] ∩ Γ. However, since I(γ) 6= 0, we have

γ /∈ [GΓ, GΓ] ∩ Γ. This means that γγ0 /∈ [GΓGΓ] ∩ Γ, which is a contradiction. Hence
0 ∈ I(Γ) is an isolated point.
Next, we show that I(γ) is an isolated point for any γ ∈ Γ. Take I(γV ) as a neighbor-

hood of I(γ). If there exists η ∈ Γ such that I(η) 6= I(γ) and I(η) ∈ I(γV ), then we have
I(γ−1η) 6= 0 and I(γ−1η) ∈ I(V ), which is a contradiction. In consequence, we conclude
that I(Γ) ∈ g(1) is discrete. Hence I(Γ) is a lattice of g(1).

Let Φ : X → GΓ be a realization of X . Since Φ is Γ-equivariant, we define the

projection exp−1Φ|g(1) : X0 → g(1)/I(Γ), where g(1)/I(Γ) is compact by the previous

lemma. Hence we may apply results in [21] to the map from X0 to g
(1)/I(Γ). Fix a flat

metric on the torus g(1)/I(Γ). Given a piecewise smooth map F : X0 → g(1)/I(Γ), we

define the energy E(F ) of F by

(2.19) E(F ) =
1

2

X
e∈E0

m(e)

Z 1

0

°°°°dFedt (t)
°°°°2 dt,

where Fe : [0, 1] → g(1)/I(Γ) is the restriction of F to e ∈ E0 such that Fe(0) =

o(e), Fe(1) = t(e). Then the following facts are proved by Kotani and Sunada ([21]):

Lemma 2.7 (First variation formula). The following (a) and (b) are equivalent.

(a) F is a critical point.
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(b) For any x0 ∈ X0, it holds that⎧⎪⎪⎨⎪⎪⎩
X
e∈Ex0

m(e)
dFe
dt
(0) = 0,

D

dt

dFe
dt
(t) = 0.

We remark that critical points of the energy functional E do not depend on the choice

of a flat metric on g(1)/I(Γ). Moreover, a realization Φ : X → GΓ is harmonic on g
(1)

if and only if the projection exp−1Φ|g(1) : X0 → g(1)/I(Γ) is a critical point of E. From

these results, we have

(i) (Kotani and Sunada [22]) Each homotopy class of piecewise smooth maps of X0 into

g(1)/I(Γ) contains at least one harmonic map.

(ii) (Kotani and Sunada [22]) If two harmonic maps Fi : X0 → g(1)/I(Γ), i = 1, 2, are

homotopic, then there exists a ∈ g(1)/I(Γ) such that F1 − F2 = a.

(iii) There exists a harmonic realization Φ : X → GΓ of X . Moreover, if Φ1 and Φ2 are

harmonic realizations of X , then

exp−1Φ1
¯̄
g(1)
− exp−1Φ2

¯̄
g(1)
= constant.

We show (iii) by using (i),(ii). Let C be a homotopy class of X0 into g
(1)/I(Γ) such

that for any F ∈ C, F∗ : π1(X0)→ π1(g
(1)/I(Γ)) = I(Γ) satisfies

F∗([c]) = I(σc).

Here σc ∈ Γ satisfies σco(c̃) = t(c̃) for a lift c̃ of c to X. From (i), there exists a harmonic
map F h in C. Then the lift fF h : X → g(1) of F h is I-equivariant. Namely, fF h(γx) =fF h(x) + I(γ) for any x ∈ X and γ ∈ Γ. We define Φ such that exp−1Φ(x)|g(1) = fF h(x)
for a vertex x in a fundamental domain FX ⊂ X . Next we define Φ(γx) = γΦ(x) for

all γ ∈ Γ. Iterating these processes for all vertices in FX , we can realize all vertices of
X to GΓ. Finally, for any e ∈ E, we define a smooth map Φ(e) : [0, 1] → GΓ such that
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Φ(e)(0) = Φ(o(e)) and Φ(e)(1) = Φ(t(e)). This Φ is a harmonic realization. Also, by (ii),

if Φ1,Φ2 are both harmonic, then

exp−1Φ1
¯̄
g(1)
− exp−1Φ2

¯̄
g(1)
= constant.

2.4 The characterization of Ω∗

First, we consider the following diagram.

g(1) ' Γ/ ([GΓ, GΓ] ∩ Γ)⊗ R ←← Γ/[Γ,Γ]⊗ R ←← H1(X0,R)

l dual l dual l dual l dual

Hom(g(1),R) ' Hom(Γ/ ([GΓ, GΓ] ∩ Γ) ,R) ,→ Hom(Γ/[Γ,Γ],R) ,→ H1(X0,R),

where H1(X0,R) is the first cohomology group of X0 with real coefficients. We identify

H1(X0,R) with the set of harmonic 1-forms on X0 by the discrete analogue of Hodge-

Kodaira’s theorem. Namely,

H1(X0,R) '
n
ω : E0 → R

¯̄̄
ω(e) = −ω(e),

X
e∈Ex

ω(e) = 0
o
.

We have an inner product on the set of harmonic 1-forms given by

hhω, ηii = 1

2

X
e∈E0

m(e)ω(e)η(e)

for any harmonic 1-forms ω, η. By the above identification, we define an inner product

on H1(X0,R). The surjective homomorphisms ρ1 : Γ/[Γ,Γ] → Γ/ ([GΓ, GΓ] ∩ Γ) and ρ2 :
H1(X0,Z) → Γ/[Γ,Γ] are given respectively by ρ1(γ[Γ,Γ]) = γ[GΓ, GΓ] ∩ Γ and ρ2([c]) =
[σc], where σc ∈ Γ satisfies σco(c̃) = t(c̃) for c̃ a lift of c to X. Since I(Γ) ' Γ/([GΓ, GΓ]∩Γ)
and I(Γ) is a lattice in g(1) (Lemma 2.6), we have g(1) ' Γ/([GΓ, GΓ] ∩ Γ) ⊗ R. Hence
the surjective homomorphism ρ1 ◦ ρ2 : H1(X0,R) → g(1) is defined. By the induced

injective homomorphism t(ρ1 ◦ ρ2) : Hom(g(1),R) → H1(X0,R), we induce the metric

hh , ii to Hom(g(1),R). We call the dual metric on g(1) the Albanese metric. We define
Alb : X → g(1) by

Alb(x)ω =

Z x

x0

eω (ω ∈ Hom(g(1),R))
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for a base point x0 ∈ V , where eω is the lift of ω to X. We call Alb theAlbanese map. For
an orthonormal basis {ω1, . . . ,ωd1} of Hom(g(1),R) and the dual basis {X(1)

1 , . . . , X
(1)
d1
} on

g(1), we have

Alb(x) =

µZ x

x0

eω1, . . . ,Z x

x0

eωd1¶ =X
i≤d1

Z x

x0

eωiX(1)
i .

Since
R
c
eω = 0 for any closed path c on X and ω ∈ Hom(g(1),R), Alb is well-defined. For

any x ∈ X, γ ∈ Γ and ω ∈ Hom(g(1),R), Alb satisfies

Alb(γx)ω =

Z x

x0

eω + Z γx

x

eω = Alb(x)ω + Z
[cγ ]

ω.

Since g(1) ' Γ/ ([GΓ, GΓ] ∩ Γ) ⊗ R, we have
R
[cγ ]

ω = I(γ)ω. Thus Alb is an I-equivariant

map and the projection Alb : X0 → g(1)/I(Γ) is a critical point for the energy functional E

given by (2.19). Hence we can define a harmonic realization Φh : X → GΓ of X such that

exp−1Φh(x)
¯̄
g(1)

= Alb(x). From a theorem of Kotani and Sunada [21], for any harmonic

realization Φh : X → GΓ, there exists X
(1) ∈ g(1) such that exp−1Φh

¯̄
g(1)

= Alb + X(1).

Then we conclude

Ω∗ = −
1

2

X
e∈E0

m(e)
³
exp−1Φh(o(e))−1Φh(t(e))

¯̄
g(1)

´2
∗

= −1
2

X
e∈E0

m(e) (Alb(t(e))− Alb(o(e)))2∗

= −
X
i,j≤d1

1

2

X
e∈E0

m(e)ωi(e)ωj(e)X
(1)
i∗ X

(1)
j∗ .

Hence Theorem 2 follows.
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Chapter 3

Berry-Esseen type theorem

As we already mentioned in the introduction, Alexopoulos [1] proved a Berry-Esseen type

theorem for convolution powers on a Cayley graph of a finitely generated discrete group

of polynomial growth. In this chapter, we aim to generalize his results to our case.

In his proof, the following three results play crucial roles:

R1: An estimate established in [1, Corollary 7] (see Lemma 3.1).

R2: Gaussian estimates for the heat kernel on a nilpotent Lie group (Varopoulos [35,

Theorem IV. 4.2]) .

R3: Gaussian estimates for convolution powers on a discrete group of polynomial growth

(Hebisch, Saloff-Coste [15, Theorem 5.1]).

Hence we consider an analogue of these results for a nilpotent covering graph.

Let ht be the heat kernel of the sub-Laplacian on a nilpotent Lie group GΓ with respect

to an inner product on g(1). Then we use R2:

Theorem (Varopoulos [35, Theorem IV. 4.2]). Let |K| = k1 + k2 + · · ·+ k`. Then

(3.1)
¯̄̄
∂stX

(k1)
i1
X
(k2)
i2

· · ·X(k`)
i`
ht(g1, g2)

¯̄̄
≤ CtD+2s+|K|2 exp(−dcc(g1, g2)2/c0t),

where X
(k)
i is the left invariant vector field identified with X

(k)
i ∈ g(k) (see section (2.1))

and dcc(g1, g2) is the Carnot-Carathèodory distance associated with the sub-Laplacian on

GΓ (see [35]).
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We will show a similar result to R3 for a nilpotent covering graph in the next chapter.

Now we try to establish R1 in our case.

Let Φ : X → GΓ be a harmonic realization of X. For u ∈ C∞(R≥0 ×GΓ) and x ∈ V ,
let ∂Nu(t,Φ(x)) = u(t+N,Φ(x))− u(t,Φ(x)) and Φ∗u(t, x) = u(t,Φ(x)). We denote

Cx,n = {c = (e1, e2, . . . , en) | ei ∈ E, o(e1) = x, t(ei) = o(ei+1), i = 1, . . . , n− 1},

and t(c) = t(en) for c = (e1, e2, . . . , en) ∈ Cx,n. As an analogue of R1, we have

Lemma 3.1 (cf. Lemma 2.5, [1, Corollary 7] and [19, Theorem 3]). There exists

a constant C > 0 such that, for any u ∈ C∞(R≥0 ×GΓ) and J ≥ 4, the following hold:¯̄¡
∂N + (I − LN)

¢
Φ∗u(t, x)−N (∂t + Ω) u(t,Φ(x))

¯̄
(3.2)

≤C sup
θ∈[0,1], g∈UN

³
N2

¯̄̄̄
∂2

∂t2
u(t+ θN,Φ(x))

¯̄̄̄
+X2u(t,Φ(x))

+

J−1X
j=3

N j−1Xju(t,Φ(x)) +

JrX
k=J

NkXku(t,Φ(x)g)
´
.

Here,

Xku(t,Φ(x)) =

kX
`=1

X
k1+k2+···+k`=k

¯̄̄
X
(k1)
i1
X
(k2)
i2

· · ·X(k`)
i`
u(t,Φ(x))

¯̄̄
,

and UN is a set of all g ∈ GΓ satisfying that there exists c ∈ Cx,N such that¯̄
P
(k)
i (g)

¯̄
≤
¯̄
P
(k)
i (Φ(x)−1Φ(t(c)))

¯̄
for all (i, k).

Proof. Let u0(t, g) = u(t,Φ(x)g). By Taylor’s formula with respect to the (·)-
coordinates of second kind (see Section 2.1), there exist θ ∈ [0, 1] and gc ∈ UN such

that
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¡
∂N + (I − LN)

¢
Φ∗u(t, x) = N

∂u

∂t
(t,Φ(x)) +

N2

2

∂2u

∂t2
(t+ θN,Φ(x))

+
X
c∈Cx,N

p(c)
n
− ∂u0

∂x
(k)
i

(t, e)P
(k)
i (Φ(x)−1Φ(t(c)))

−1
2

∂2u0

∂x
(k1)
i1

∂x
(k2)
i2

(t, e)P
(k1)
i1
(Φ(x)−1Φ(t(c)))P (k2)i2

(Φ(x)−1Φ(t(c)))

−
J−1X
j=3

1

j!

∂ju0

∂x
(k1)
i1

∂x
(k2)
i2
· · · ∂x(kj)ij

(t, e)P
(k1)
i1
(Φ(x)−1Φ(t(c)))

×P (k2)i2
(Φ(x)−1Φ(t(c))) · · ·P (kj)ij

(Φ(x)−1Φ(t(c)))

− 1
J !

∂Ju0

∂x
(k1)
i1

∂x
(k2)
i2
· · · ∂x(kJ )iJ

(t, gc)P
(k1)
i1
(Φ(x)−1Φ(t(c)))

×P (k2)i2
(Φ(x)−1Φ(t(c))) · · ·P (kJ )iJ

(Φ(x)−1Φ(t(c)))
o
.

We observe now that

∂u0

∂x
(k)
i

(t, e) = X
(k)
i u(t,Φ(x)),

∂2u0

∂x
(k1)
i1

∂x
(k2)
i2

(t, e) = X
(k1)
i1
X
(k2)
i2
u(t,Φ(x)), (i1, k1) ≥ (i2, k2).

Hence we have¡
∂N + (I − LN)

¢
Φ∗u(t, x) = N

∂u

∂t
(t,Φ(x)) +

N 2

2

∂2u

∂t2
(t+ θN,Φ(x))

−
X
(i,k)

X
(k)
i u(t,Φ(x))

X
c∈Cx,N

p(c)P
(k)
i (Φ(x)−1Φ(t(c)))

−1
2

³ X
(i1,k1)≥(i2,k2)

X
(k1)
i1
X
(k2)
i2

+
X

(i2,k2)>(i1,k1)

X
(k2)
i2
X
(k1)
i1

´
u(t,Φ(x))

×
X
c∈Cx,N

p(c)P
(k1)
i1
(Φ(x)−1Φ(t(c)))P (k2)i2

(Φ(x)−1Φ(t(c)))

−
J−1X
j=3

1

j!

∂ju0

∂x
(k1)
i1

∂x
(k2)
i2
· · · ∂x(kj)ij

(t, e)
X
c∈Cx,N

p(c)P
(k1)
i1
(Φ(x)−1Φ(t(c)))

×P (k2)i2
(Φ(x)−1Φ(t(c))) · · ·P (kj)ij

(Φ(x)−1Φ(t(c)))

− 1
J !

X
c∈Cx,N

p(c)
∂Ju0

∂x
(k1)
i1

∂x
(k2)
i2
· · · ∂x(kJ )iJ

(t, gc)P
(k1)
i1
(Φ(x)−1Φ(t(c)))

×P (k2)i2
(Φ(x)−1Φ(t(c))) · · ·P (kJ )iJ

(Φ(x)−1Φ(t(c))).
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From the harmonicity of Φ,X
c∈Cx,N

p(c)P
(1)
i (Φ(x)−1Φ(t(c))) = 0.

By using the ergodicity (see Lemma 2.5, [16] and [19]) and the harmonicity of Φ, there

exists C > 0 independent of N such that¯̄̄
X
(2)
i u(t,Φ(x))

N−1X
k=0

X
c∈Cx,k

p(c)
X
e∈Et(c)

p(e) exp−1Φ(o(e))−1Φ(t(e))
¯̄
X
(2)
i

¯̄̄
(3.3)

≤ CX2u(t,Φ(x)),

and ¯̄̄
− 1
2

X
i1,i2≤d1

X
(1)
i1
X
(1)
i2
u(t,Φ(x))

N−1X
k=0

X
c∈Cx,k

p(c)(3.4)

×
X
e∈Et(c)

p(e) exp−1Φ(o(e))−1Φ(t(e))
¯̄
X
(1)
i1

exp−1Φ(o(e))−1Φ(t(e))
¯̄
X
(1)
i2

−NΩf(Φ(x))
¯̄̄
≤ CX2u(t,Φ(x)).

By the harmonicity of Φ and the definition of P
(k)
i (see also [16]), we haveX

c∈Cx,N
p(c)P

(k1)
i1
(Φ(x)−1Φ(t(c))) · · ·P (kj)ij

(Φ(x)−1Φ(t(c))) ≤ CN |K|−1,

where |K| = k1 + k2 + · · ·+ kj. Since gc ∈ UN , there exists a constant C 0J > 0 such that¯̄̄̄
¯ ∂Ju0

∂x
(k1)
i1

∂x
(k2)
i2
· · · ∂x(kJ )iJ

(t, gc)

¯̄̄̄
¯ ≤ C 0J

JrX
k≥k1+k2+···+kJ

Nk−k1−k2−···−kJXku(t,Φ(x)gc).

Hence the lemma follows.

Remark 2. If both of (1.5) and (1.6) are satisfied, then (3.3) and (3.4) are zero, so that

X2u(t,Φ(x)) is vanished in (3.2).

For the proof of Theorem 3, we introduce some notations. We define

St(x, y) =
|GΓ/Γ|
m(X0)

ht(Φ(x),Φ(y)) (x, y ∈ V ),

S 0t(x, y) =
1

m(X0)

Z
D
ht(Φ(x)η,Φ(y))dη (x, y ∈ V ),
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where D is a fundamental domain in GΓ for the action of Γ. We shall denote

k · S(x, y) =
X
z∈V

k(x, z)S(z, y)m(z).

Let us also denote, for T ≥ 0,

δ(n) = sup
x,y∈V

|kn(x, y)− Sn(x, y)| ,

δT (n) = sup
x,y∈V

|(kn − Sn) · S 0T (x, y)| .

By using Gaussian bounds for kn, ∇kn (Theorem 4) and ht ([35]), we have

Lemma 3.2 (cf. [1, Lemma 11] and [31, Lemma 1]). We assume that X is a non-

bipartite graph. Then there exist constants α,β ≥ 0 independent of n and T such that

δ(n) ≤ αδT (n) + β
√
Tn−

D+1
2 .

Proof. Let us assume that

δ(n) = − min
x,y∈V

(kn − Sn)(x, y).

The case δ(n) = maxx,y∈V (kn − Sn)(x, y) is treated in the same way. Then there exist
x0, y0 ∈ V such that (kn − Sn)(x0, y0) = −δ(n). Hence we have

−δT (n) ≤
X
z∈V
(kn − Sn)(x0, z) · S 0T (z, y0)m(z)

=(kn − Sn)(x0, y0)
X

d(y0,z)≤c
√
t

S 0T (z, y
0)m(z)

+
X

d(y0,z)≤c
√
t

{(kn − Sn)(x0, z)− (kn − Sn)(x0, y0)} · S 0T (z, y0)m(z)

+
X

d(y0,z)>c
√
t

(kn − Sn)(x0, z) · S 0T (z, y0)m(z)

≤− δ(n)
X

d(y0,z)≤c
√
t

S 0T (z, y
0)m(z)

+ c
√
tk∇y(kn − Sn)(x0, ·)k∞

X
d(y0,z)≤c

√
t

S 0T (z, y
0)m(z)

+ k(kn − Sn)(x0, ·)k∞
X

d(y0,z)>c
√
t

S 0T (z, y
0)m(z).
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Since
P

z∈V S
0
T (z, y

0)m(z) = 1 and by Theorem 4 (1.7), if

λ =
X

d(y0,z)≤c
√
t

S 0T (z, y
0)m(z),

then

−δT (n) ≤ −δ(n)λ+ c
√
tλn−

D+1
2 + δ(n)(1− λ).

By choosing c large enough so that λ > 1/2, we get

δ(n) ≤ 1

2λ− 1δT (n) +
cλ

2λ− 1
√
Tn−

D+1
2 ,

which proves the lemma.

As an analogue of [1, Proposition 12], we have

Lemma 3.3. We assume that X is a non-bipartite graph. Let q > 0 and J ≥ 4. If there
exists a constant A > 0 such that

(3.5) δ(i) ≤ Ai−D+q2

for all i = 1, 2, . . . , n−1, then there exists a constant C > 0 independent of q, A such that

δ(n) ≤C
³
n−

D+1
2 +N−1n−

D
2 +

J−1X
j=3

N j−2n−
D+j−2

2 +
JrX
k=J

Nk−1n−
D+k−2

2

+

J−1X
j=3

N j−1n−
D+j
2 +

JrX
k=J

Nkn−
D+k
2 + T

1
2n−

D+1
2

+ An−
D+q
2

h
N−1 log(n+ T ) +

J−1X
j=3

N j−2T−
j−2
2 +

JrX
k=J

Nk−1T−
k−2
2 exp

³N2

c0T

´
+

J−1X
j=3

N j−1T−
j
2 +

JrX
k=J

NkT−
k
2 exp

³N2

c0T

´i´
for sufficiently smaller N ∈ N than n and for all T ∈ N.

Proof. By the previous lemma, we study δT (n). We first prove that

(3.6) kSn+T − Sn · S0Tk∞ ≤ Cn−
D+1
2 .
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Let F be a fundamental domain in X for the action of Γ such that Φ(F ) ⊂ D. Since Φ
is Γ-equivariant, we get

Sn+T (x, y)− Sn · S 0T (x, y)

=
|GΓ/Γ|
m(X0)

X
γ∈Γ,z0∈F

h 1

m(X0)

Z
D

³
hn(Φ(x), γΦ(z0)η)hT (γΦ(z0)η,Φ(y))

− hn(Φ(x), γΦ(z0))hT (γΦ(z0)η,Φ(y))
´
dη
i
m(z0)

≤ |GΓ/Γ|
m(X0)2

X
γ∈Γ,z0∈F

h
sup
η∈D

|hn(Φ(x), γΦ(z0)η)− hn(Φ(x), γΦ(z0))|

×
Z
D
hT (γΦ(z0)η,Φ(y))dη

i
m(z0)

≤Cn−D+1
2 .

Hence it is enough to estimate kSn+T − kn · S 0k∞. Let I ∈ N be a quotient of n by N .
Then we have

Sn+T (x, y)− kn · S 0T (x, y)

=
X

0≤i≤I−2

n
kiN · Sn−iN+T − k(i+1)N · Sn−(i+1)N+T

o
(x, y)

+ k(I−1)N · Sn−(I−1)N+T (x, y)− kn · S 0T (x, y)

=
X

0≤i≤ I−2
2

kiN ·
³
Sn−iN+T − kN · Sn−(i+1)N+T

´
(x, y)

+
X

I−2
2
<i≤I−2

³
kiN − SiN

´
·
³
Sn−iN+T − kN · Sn−(i+1)N+T

´
(x, y)

+
X

I−2
2
<i≤I−2

SiN ·
³
Sn−iN+T − kN · Sn−(i+1)N+T

´
(x, y)

+
³
k(I−1)N − S(I−1)N

´
·
³
Sn−(I−1)N+T − kn−(I−1)N · S 0T

´
(x, y)

+ S(I−1)N ·
³
Sn−(I−1)N+T − kn−(I−1)N · S0T

´
(x, y)

=E1 + E2 + E3 + E4 + E5.

Using Hölder’s inequality,

E1 ≤
X

0≤i≤ I−2
2

kkiN(x, ·)kL1 ·
°°°³Sn−iN+T − kN · Sn−(i+1)N+T´(·, y)°°°

∞
.
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By making use of (3.1) and (3.2), we have

E1 ≤
X

0≤i≤ I−2
2

C
n
N2(n− (i+ 1)N + T )−D+4

2 + (n− (i+ 1)N + T )−D+22

+

J−1X
j=3

N j−1(n− (i+ 1)N + T )−D+j2 +

JrX
k=J

Nk(n− (i+ 1)N + T )−D+k
2

o
.

Since IN/2 < n/2, we get

E1 ≤ C 0
³
Nn−

D+2
2 +N−1n−

D
2 +

J−1X
j=3

N j−2n−
D+j−2

2 +

JrX
k=J

Nk−1n−
D+k−2

2

´
.

To estimate E2, using Hölder’s inequality and (3.5),

E2 ≤
X

I−2
2
<i≤I−2

k(kiN − SiN)(x, ·)k∞k(Sn−iN+T − kN · SN−(i+1)N+T )(·, y)kL1

≤
X

I−2
2
<i≤I−2

A(iN)−
D+q
2 k{∂N + (I − LN )}Sn−(i+1)N+T (·, y)kL1 .

By using (3.1) and (3.2), we have

k{∂N + (I − LN )}Sn−(i+1)N+T (·, y)kL1

≤C 0
³
sup
θ∈[0,1]

N2

¯̄̄̄
∂2

∂t2
hn−(i+1)N+T+θN (Φ(z),Φ(y))

¯̄̄̄

+X2hn−(i+1)N+T (Φ(z),Φ(y)) +
J−1X
j=3

N j−1Xjhn−(i+1)N+T (Φ(z),Φ(y))

+ sup
g∈UN

JrX
k=J

NkXkhn−(i+1)N+T (Φ(z)g,Φ(y))
´
m(z)

≤C 0
X
z∈V

h
N2(n− (i+ 1)N + T )−D+42 exp

³
− d(Φ(z),Φ(y))2

c0(n− (i+ 1)N + T )
´

+ (n− (i+ 1)N + T )−D+2
2 exp

³
− d(Φ(z),Φ(y))2

c0(n− (i+ 1)N + T )
´

+

J−1X
j=3

N j−1(n− (i+ 1)N + T )−D+j2 exp
³
− d(Φ(z),Φ(y))2

c0(n− (i+ 1)N + T )
´

+ sup
g∈UN

JrX
k=J

Nk(n− (i+ 1)N + T )−D+k2 exp
³
− d(Φ(z)g,Φ(y))2

c0(n− (i+ 1)N + T )
´i
m(z).
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Since the order of polynomial growth of X is D, there exists a constant C > 0 independent

of n, i, N , T and Φ(y) such that

(n− (i+ 1)N + T )−D
2

X
z∈V

exp
³
− dcc(Φ(z),Φ(y))

2

c0(n− (i+ 1)N + T )
´
≤ C,

sup
g∈UN

(n− (i+ 1)N + T )−D
2

X
z∈V

exp
³
− dcc(Φ(z)g,Φ(y))

2

c0(n− (i+ 1)N + T )
´
≤ C exp

³N 2

c0T

´
.

These imply that

k{∂N + (I − LN )}Sn−(i+1)N+T (·, y)kL1

≤C 0
³
N2(n− (i+ 1)N + T )− 42 + (n− (i+ 1)N + T )− 2

2

+

J−1X
j=3

N j−1(n− (i+ 1)N + T )− j
2 +

JrX
k=J

Nk(n− (i+ 1)N + T )− k
2 exp

³N2

c0T

´´
.

Hence we conclude

E2 ≤C 0A(n− 2N)−
D+q
2

Z I−1

I
2
−1

n
N2(n− (x+ 1)N + T )−2

+ (n− (x+ 1)N + T )−1 +
J−1X
j=3

N j−1(n− (x+ 1)N + T )−j/2

+

JrX
k=J

Nk(n− (x+ 1)N + T )−k2 exp
³N2

c0T

´o
dx

≤C 0A(n− 2N)−D+q
2

³
NT−1 +N−1 log(n+ T )

+

J−1X
j=3

N j−2T−
j−2
2 +

JrX
k=J

Nk−1T−
k−2
2 exp

³N2

c0T

´´
.

E4 is estimated by

E4 ≤ k(k(I−1)N − S(I−1)N )(x, ·)k∞k(Sn−(I−1)N+T − kn−(I−1)N · S 0T )(·, y)kL1

≤ A((I − 1)N)−D+q2 k(Sn−(I−1)N+T − kn−(I−1)N · S0T )(·, y)kL1 .
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By the Gaussian estimates for ht [35, Theorem IV. 4.2], we have

k(Sn−(I−1)N+T − kn−(I−1)N · S 0T )(·, y)kL1

=
X
x∈V

1

m(X0)

Z
D

³
hn−(I−1)N+T (Φ(x),Φ(y))− hn−(I−1)N+T (Φ(x)η,Φ(y))

+ {∂n−(I−1)N + (I − Ln−(I−1)N)}hT (Φ(·)η,Φ(y))|x
´
dη

≤C 0 sup
η∈D0
g∈UN

X
γ∈Γ,x0∈F

h
(n− (I − 1)N + T )−D+12 exp

³
− dcc(γΦ(x0)η,Φ(y))

2

c0(n− (I − 1)N + T )
´

+ (n− (I − 1)N)2T−D+4
2 exp

³
− dcc(γΦ(x0)η,Φ(y))

2

c0T

´
+ T−

D+2
2 exp

³
− dcc(γΦ(x0)η,Φ(y))

2

c0T

´
+

J−1X
j=3

(n− (I − 1)N)j−1T−D+j
2 exp

³
− dcc(γΦ(x0)η,Φ(y))

2

c0T

´
+

JrX
k=J

(n− (I − 1)N)kT−D+k
2 exp

³
− dcc(γΦ(x0)gη,Φ(y))

2

c0T

´i
≤C 0

³
T−

1
2 +N2T−2 + T−1 +

J−1X
j=3

N j−1T−
j
2 +

JrX
k=J

NkT−
k
2 exp

³N2

c0T

´´
,

where D0 is a compact subset in GΓ.
Next, we study E3 + E5. Let [a] be the greatest integer not greater than a. Then we

have

E3 + E5 =(S[ I
2
]N · Sn−[ I

2
]N+T − S(I−1)N · kn−(I−1)N · S 0T )(x, y)

+
X

I−2
2
<i≤I−2

(S(i+1)N − SiN · kN) · Sn−(i+1)N+T (x, y)

=E 03 + E
0
5.
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By using Hölder’s inequality,

E 05 ≤
X

I−2
2
<i≤I−2

k(S(i+1)N − SiN · kN)(x, ·)k∞kSn−(i+1)N+T (·, y)kL1

≤C 0
X

I−2
2
<i≤I−2

³
N2(iN)−

D+4
2 + (iN)−

D+2
2 +

J−1X
j=3

N j−1(iN)−
D+j
2 +

JrX
k=J

Nk(iN)−
D+k
2

´

≤C 0n
³
N(n− 2N)−D+42 +N−1(n− 2N)−D+22 +

J−1X
j=3

N j−2(n− 2N)−D+j
2

+

JrX
k=J

Nk−1(n− 2N)−D+k2
´
.

E 03 is estimated by

E 03 ≤kS[ I
2
]N · Sn−[ I

2
]N+T − Sn+Tk∞ + kSn+T − Sn · S 0Tk∞

+ k(Sn − S(I−1)N · kn−(I−1)N) · S 0Tk∞.

Then we have

(S[ I
2
]N · Sn−[ I

2
]N+T − Sn+T )(x, y)

=
|GΓ/Γ|
m(X0)2

X
γ∈Γ,z0∈F

Z
D

h
h[ I

2
]N(Φ(x), γΦ(z0))hn−[ I

2
]N+T (γΦ(z0),Φ(y))

− h[ I
2
]N(Φ(x), γη)hn−[ I

2
]N+T (γη,Φ(y))

i
dηm(z0)

≤ |GΓ/Γ|
m(X0)2

X
γ∈Γ,z0∈F

h
sup
η∈D

|hn−[ I
2
]N+T (γΦ(z0),Φ(y))− hn−[ I

2
]N+T (γη,Φ(y))|

×
Z
D
h[ I

2
]N (Φ(x), γΦ(z0))dη + sup

η∈D
|h[ I

2
]N(Φ(x), γΦ(z0))− h[ I

2
]N (Φ(x), γη)|

×
Z
D
hn−[ I

2
]N+T (γη,Φ(y))dη

i
m(z0)

≤C 0
³³n
2

´−D+1
2
+
³n
2
− 3
2
N
´−D+1

2
´
.

By (3.6),

kSn+T − Sn · S0Tk∞ ≤ Cn−
D+1
2 .
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Hence, k(Sn − S(I−1)N · kn−(I−1)N) · S0Tk∞ is estimated by¡
Sn − S(I−1)N · kn−(I−1)N

¢
· S0T (x, y)

≤k
¡
Sn − S(I−1)N · kn−(I−1)N

¢
(x, ·)k∞kS 0T (·, y)kL1

≤C 0
h
N2(n− 2N)−D+4

2 + (n− 2N)−D+2
2 +

J−1X
j=3

N j−1(n− 2N)−D+j
2

+

JrX
k=J

Nk(n− 2N)−D+k
2

i
.

By the hypothesis on N , the lemma follows.

3.1 Proof of the Berry-Esseen type theorem

First, we investigate the case when X is a non-bipartite graph. We note that if both of

(1.5) and (1.6) hold, then the terms with N−1n−
D
2 and N−1 log(n+ T ) in Lemma 3.3 are

vanished. Hence we can use the same arguments as in Alexopoulos [1] by putting N = 1

and q = 1. However, if both of (1.5) and (1.6) do not hold, then we put N = [n(J−2)/(4J−6)],

T = T0 · [n(J−1)/(2J−3)] for T0 ∈ N and q = (J − 2)/(2J − 3). In this case, by Lemma 3.3,
if δ(i) ≤ Ai−D+(J−2)/(2J−3)

2 for i = 1, 2, . . . n− 1, then there exists a constant αJ > 1 and a
sequence {βT0(n)}n∈N which converges to zero as n ↑ ∞ such that

δ(n) ≤ αJ

³
1 + T

1/2
0 + A

³
βT0(n) + T

−(J−2)/2
0 exp(1/c0T0)

´´
n−

D+(J−2)/(2J−3)
2 .

Hence we make use of the induction in n to prove Theorem 3. Fix sJ ∈ R such that

1− 1/αJ < sJ < 1. Let KJ and TJ be positive integers such that³
βTJ (n) + T

−(J−2)/2
J exp(1/c0TJ)

´
< 1− sJ

for all n ≥ KJ . Since δ(n) is uniformly bounded, there exists a constant AJ > 0 such that

δ(n) ≤ AJn−
D+(J−2)/(2J−3)

2

for all n < KJ . By Lemma 3.3 and the assumption of KJ , we have

δ(KJ) ≤ αJ

³
1 + T

1/2
J + AJ(1− sJ)

´
K
−D+(J−2)/(2J−3)

2
J .
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Put CJ = max{AJ , (1 + T 1/2J )(1/αJ + sJ − 1)−1}. Then clearly we have

δ(n) ≤ CJn−
D+(J−2)/(2J−3)

2

for all n ≤ KJ .

When n > Ks, we assume that

δ(i) ≤ CJ i−
D+(J−2)/(2J−3)

2

for i = 1, 2, . . . n− 1. By Lemma 3.3 and the assumption of CJ , we conclude

δ(n) ≤αJ(1 + T 1/2J + CJ(1− sJ))n−
D+(J−2)/(2J−3)

2

≤CJn−
D+(J−2)/(2J−3)

2 .

3.2 Bipartite case

Next, we investigate the case when X is a bipartite graph. Suppose that m and p are

a weight and a transition probability on X which gives a symmetric random walk. The

bipartition of V is denoted by V = A
`
B. Let XA = (A,EA) be an oriented graph,

where EA = {(e1, e2) ∈ Cx,2 |x ∈ A}. For e = (e1, e2) ∈ EA, let o(e) = o(e1), t(e) = t(e2)
and e = (e2, e1). Then a weight mA and a transition probability p

A on XA is denoted by

mA(x) =m(x) x ∈ A,

pA(e) =p(e1)p(e2) e = (e1, e2) ∈ EA,

respectively. It is easy to show that mA and p
A give a symmetric random walk on XA.

The transition probability starting at x reaches y at time n on XA is denoted by p
A
n (x, y).

Then the kernel function kAn of the transition operator on XA is written by k
A
n (x, y) =

pAn (x, y)mA(y)
−1. By using the argument of [20], XA is also a nilpotent covering graph

of a finite graph XA1 whose covering transformation group Γ1 is Γ or a subgroup of Γ of

index two. We note that XA have a loop for each vertex. Hence we conclude

sup
x,y∈A

¯̄̄̄
pAn (x, y)m(y)

−1 − |GΓ/Γ1|
m(XA1)

hAn (Φ(x),Φ(y))

¯̄̄̄
≤ C²n−

D+1/2−²
2 ,
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where hAn is the heat kernel with respect to mA and p
A. Since pAn = p2n, h

A
n = h2n, and

|GΓ/Γ1|/m(XA1) = 2|GΓ/Γ|/m(X0), the theorem is proved when x, y ∈ A for even n. If
x ∈ A, y ∈ B or x ∈ B, y ∈ A, then we have

p2n+1(x, y)m(y)
−1 − 2 |GΓ/Γ|

m(X0)
h2n+1(Φ(x),Φ(y))

=
X
z∈A

k2n(x, z)k(z, y)m(z)− 2
|GΓ/Γ|
m(X0)

h2n+1(Φ(x),Φ(y))

=
X
z∈A

µ
k2n(x, z)− 2

|GΓ/Γ|
m(X0)

h2n(Φ(x),Φ(z))

¶
k(z, y)m(z)

+
X
z∈A

2
|GΓ/Γ|
m(X0)

h2n(Φ(x),Φ(y))k(z, y)m(z)− 2
|GΓ/Γ|
m(X0)

h2n+1(Φ(x),Φ(y))

≤C²n−
D+1/2−²

2 + | (∂1 + (I − Ly))S2n(x, y)|

≤C²n−
D+1/2−²

2 + Cn−
D+2
2 ≤ C²n−

D+1/2−²
2 .

Hence we complete the proof of Theorem 3.
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Chapter 4

Gaussian estimates

Recall that kn is the kernel of transition operator L
n on a nilpotent covering graph X. In

this chapter, we prove Gaussian estimates for kn.

4.1 Gaussian upper estimate for kn

First, we consider a Gaussian upper estimate for kn. Since kn is symmetric, we can use

the following result:

Theorem (Hebisch, Saloff-Coste [15, Theorem 2.1]). Let X be a measurable space

endowed with a positive σ-finite measure with a measurable distance. Denote by B(x, r),

x ∈ X, r > 0, the ball of center x and radius r. Let k(x, y), (x, y) ∈ X ×X, be a bounded
symmetric Markov kernel such that

{y ∈ X | k(x, y) 6= 0} ⊂ B(x, r0), x ∈ X

for some fixed r0 > 0 and assume that

(4.1) sup
x,y
{kn(x, y)} ≤ C0n−D/2, n = 1, 2, . . . .

Then there exist constants C,C 0 > 0 such that

kn(x, y) ≤ CC0n−D/2 exp(−dX(x, y)2/C 0n)

for all x, y ∈ X, and n = 1, 2, . . ..
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Hence it is enough to show (4.1) in our case.

The next simple lemma plays an important role for our proof of Gaussian upper

estimates for kn and ∇kn.

Lemma 4.1 (cf. [15, Lemma 3.2]). Let `, n ∈ N and f ∈ L2(X). There exists a
constant C` > 0 such that

k(I − L2`)1/2Lnfk2 ≤ C`n−1/2kfk2.

The following result is also crucial for our proof of (4.1).

Lemma 4.2 (cf. [15, Theorem 4.2]). Assume that X is a non-bipartite graph. Let F

be a fundamental domain in X. Then there exists a constant C0 > 0 such that

|k2n+m(x, y)− k2n+m(x, x)| ≤ C0dX(x, y)m−1/2 sup
z∈F

kn(z, z).

Proof. We define

∇y2kn(x, y) =
³ X
dX(y,z)≤2

|kn(x, y)− kn(x, z)|2m(z)
´1/2

.

By the same argument as in [15], it is easy to show that

(4.2) ∇ykn(x, y) ≤ C sup
dX(y,z)≤1

∇y2kn(x, z).

There exist y0 = y, y1, . . . , y` = x ∈ V such that dX(yi, yi+1) = 1 for 0 ≤ i ≤ ` − 1 and
` = dX(x, y). Hence we have

|k2n+m(x, y)− k2n+m(x, x)| ≤|k2n+m(x, y)− k2n+m(x, y1)|

+ |k2n+m(x, y1)− k2n+m(x, y2)|

· · ·+ |k2n+m(x, y`−1)− k2n+m(x, x)|

≤dX(x, y) sup
z∈V
∇zk2n+m(x, z).

From (4.2), it is enough to show that

sup
y∈V
∇y2k2n+m(x, y) ≤ Cm−1/2 sup

x∈F
k2n(x, x).
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By using the Cauchy-Schwarz inequality,

∇y2k2n+m(x, y) ≤kkn(x, ·)k2k∇y2kn+m(·, y)k2
=k2n(x, x)

1/2k∇y2kn+m(·, y)k2.

Since X is a non-bipartite graph, there exists n0 ∈ N such that

inf{k2n0(z0, z3) | dX(z0, z3) ≤ 2, z3 ∈ Fy} > 0,

where Fy = γ(y)F for γ(y) ∈ Γ so that y ∈ γ(y)F . Then we have

k∇y2kn+m(·, y)k2 ≤ C
³ X
z3∈Fy

X
z∈V

¯̄
∇y2kn+m(z, z3)

¯̄2
m(z)m(z3)

´1/2
≤C

³ X
z3∈Fy,z∈X,
dX(z3,z

0)≤2

¯̄
kn+m(z, z3)− kn+m(z, z0)

¯̄2
k2n0(z

0, z3)m(z
0)m(z)m(z3)

´1/2

≤C
³ X
z1,z2,z3∈Fy,
γ1,γ2∈Γ

kn+m(γ1z1, z3)
¡
kn+m(γ1z1, z3)− kn+m(γ1z1, γ2z2)

¢
× k2n0(γ2z2, z3)m(z2)m(z1)m(z3)

+
X

z1,z2,z3∈Fy,
γ1,γ2∈Γ

kn+m(γ1z1, z2)
¡
kn+m(γ1z1, z2)− kn+m(γ2γ1z1, z3)

¢
× k2n0(γ2z2, z3)m(z2)m(z1)m(z3)

´1/2
.

The definition of L and the symmetry of kn imply that

k∇y2kn+m(·, y)k2 ≤C
³ X
z3∈Fy

X
z∈V

kn+m(z, z3)
¡
I − L2n0

¢
kn+m(z, z3)m(z3)

+
X

z1,z2,z3∈Fy,
γ1,γ2∈Γ

kn+m(γ1z1, z2)
¡
kn+m(γ1z1, z2)− kn+m(γ1z1, γ2z3)

¢
× k2n0(γ2z3, z2)m(z3)m(z1)m(z2)

´1/2
=
√
2C
³ X
z3∈Fy

k
¡
I − L2n0

¢
kn+m(·, z3)k22m(z3)

´1/2
.
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By Lemma 4.1, we conclude

k∇y2kn+m(·, y)k2 ≤C
³ X
z3∈Fy

m−1k2n(z3, z3)m(z3)
´1/2

≤Cm−1/2 sup
z3∈Fy

k2n(z3, z3)
1/2.

Since kn(γx, γx) = kn(x, x) for all γ ∈ Γ, the lemma follows.
To prove Theorem 4, we note

sup
x,y∈V

k2n(x, y) = sup
x∈F

k2n(x, x),(4.3)

sup
x,y∈V

k2n+1(x, y) ≤ sup
x,y∈F

k2n(x, x)
1/2k2n+2(y, y)

1/2,

sup
x∈F

k2n+1(x, x) ≤ sup
x∈F

k2n(x, x),

sup
x∈F

k2n+2(x, x) ≤ sup
x∈F

k2n(x, x).

Hence it is enough to show A(n) := supx∈F kn(x, x) ≤ Cn−D/2. Let n,m ∈ N and

r(n,m) :=
m1/2A(2n+m)

2C0A(2n)
,

where C0 is a constant defined by Lemma 4.2. For y ∈ X satisfying

sup
x∈F

dX(x, y) ≤ r(n,m),

we have

sup
x∈F

|k2n+m(x, y)− k2n+m(x, x)| ≤C0r(n,m)m−1/2A(2n)

≤1
2
A(2n+m).

This implies
1

2
A(2n+m) ≤ inf

x∈F
k2n+m(x, y).

By integrating in {y ∈ X | dX(x, y) ≤ r(n,m)}, we have

1 ≥
X

dX(x,y)≤r(n,m)
k2n+m(x, y)m(y) ≥

1

2
A(2n+m)Vx(r(n,m)),
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where Vx(r) =
P

dX(x,y)≤rm(y). Since Vx(n) ∼ nD,

A(2n+m) ≤ Cr(n,m)−D ≤ C
µ
m1/2A(2n+m)

A(2n)

¶−D
.

Put m = 2n and θ = D/(D + 1). Then we have

A(4n) ≤
¡
Cn−1/2A(2n)

¢θ
.

For n ≥ 3, define σ(n) to be the smallest integer such that 2−σ(n)−1n ≤ 1. Since n > 2σ(n),
we conclude

A(n) ≤A(2σ(n)) ≤ Πσ(n)−1
i=1 {Cθi2θ

i(i−σ(n))/2}A(2θσ(n)−1)

≤C2−Dσ(n)/2 ≤ C(n/2)−D/2.

By using a theorem of Hebisch and Saloff-Coste [15, Theorem 2.1], we complete the proof

of Theorem 4 (1.7).

In the case when X is a bipartite graph, by making use of the argument in Section

3.2, we have

kAn (x, y) ≤ Cn−
D
2 exp(−dXA(x, y)2/C 0n)

for x, y ∈ A. Since kAn (x, y) = k2n(x, y) and dXA(x, y) = dX(x, y)/2, we obtain a Gaussian
upper estimate for kn if x, y ∈ A or x, y ∈ B. If x ∈ A, y ∈ B or x ∈ B, y ∈ A, we
conclude

k2n+1(x, y) =
X
z∈V

k(x, z)k2n(z, y)m(z)

≤ sup
dX(x,z)≤1

Cn−
D
2 exp(−dX(z, y)2/C 0n)

≤Cn−D2 exp(−dX(x, y)2/C 0n).

4.2 Gaussian upper estimate for ∇kn
Next, we prove a Gaussian estimate for ∇kn. First, we assume that X is a non-bipartite

graph. We employ the same argument as in [15, Theorem 5.1]. As an easy consequence

of (1.7), we have
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Lemma 4.3 (cf. [15, Lemma 5.2]). Set ωs(x, y) = exp(sdX(x, y)) (x, y ∈ V ). Then we
have

(4.4) kkn(x, ·)ωs(x, ·)kq ≤ Cn−
D
2
(1−1/q) exp(C 0s2n).

From (4.2), we consider ∇y2kn(x, y). Fix s > 0, ν = n +m, and note that ωs(x, y) ≤
ωs(x, z)ωs(z, y). This implies that

ωs(x, y)∇y2kν(x, y) ≤ kkm(x, ·)ωs(x, ·)k2k∇y2kn(·, y)ωs(·, y)k2.

Lemma 4.3 yields a good bound for kkm(x, ·)ωs(x, ·)k2. The second factor can be estimated
by

kωs(·, y)∇y2kn(·, y)k22 ≤ C
X
z3∈Fy

kωs(·, z3)∇z32 kn(·, z3)k22m(z3)

= C
X
z3∈Fy

X
z∈V

ω2s(z, z3)
X

d(z3,z0)≤2
|kn(z, z3)− kn(z, z0)|2m(z0)m(z)m(z3).

Since X is a non-bipartite graph, there exists n0 ∈ N such that

inf{k2n0(z0, z3) | dX(z3, z0) ≤ 2, z3 ∈ F} > 0.

Hence we have

kωs(·, y)∇y2kn(·, y)k22
≤ C 0

X
z3∈Fy

X
z∈V

ω2s(z, z3)
X

d(z3,z0)≤2
|kn(z, z3)− kn(z, z0)|2

×k2n0(z0, z3)m(z0)m(z)m(z3)

≤ C 0
X
z3∈Fy

X
z,z0∈V

ω2s(z, z3)
¡
kn(z, z3)

2 − 2kn(z, z3)kn(z, z0) + kn(z, z0)2
¢

×k2n0(z0, z3)m(z0)m(z)m(z3)

= 2C 0
X
z3∈Fy

X
z,z0∈V

ω2s(z, z3)kn(z, z3) (kn(z, z3)− kn(z, z0))

×k2n0(z0, z3)m(z0)m(z)m(z3)

+C 0
³ X
z3∈Fy

X
z,z0∈V

ω2s(z, z3)kn(z, z
0)2k2n0(z

0, z3)m(z
0)m(z)m(z3)

−
X
z3∈Fy

X
z,z0∈V

ω2s(z, z3)kn(z, z3)
2k2n0(z

0, z3)m(z
0)m(z)m(z3)

´
= B1 + B2.
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By using Lemmas 4.1 and 4.3, B1 is estimated by

B1 =2C
0
X
z3∈Fy

ω2s(z, z3)kn(z, z3)
¡
I − L2n0

¢
kn(z, z3)m(z)m(z3)

≤2C 0kω2s(·, z3)kn(·, z3)k2 · k
¡
I − L2n0

¢
kn(·, z3)k2m(z3)

≤Cn−D
4 exp(C 0s2n) · n−1 · n−D

4 = Cn−1−
D
2 exp(C 0s2n).

Since every z ∈ V can be written as z = γz0 (γ ∈ Γ, z0 ∈ Fy), and the weight m is

Γ-invariant, we have

B2 =C
0
³ X
z3∈Fy

X
z1,z2∈Fy,
γ1,γ2∈Γ

ω2s(γ1z1, z3)kn(γ1z1, γ2z2)
2k2n0(γ2z2, z3)m(z2)m(z1)m(z3)

−
X
z3∈Fy

X
z1,z2∈Fy,
γ1,γ2∈Γ

ω2s(γ1z1, z2)kn(γ1z1, z2)
2k2n0(z2, γ

−1
2 z3)m(z3)m(z1)m(z2)

´
.

By replacing γ1 with γ
−1
2 γ1 in the second term,

B2 =C
0
³ X
z1,z2,z3∈Fy,
γ1,γ2∈Γ

ω2s(γ1z1, z3)kn(γ1z1, γ2z2)
2k2n0(γ2z2, z3)m(z3)m(z2)m(z1)

−
X

z1,z2,z3∈Fy,
γ1,γ2∈Γ

ω2s(γ
−1
2 γ1z1, z2)kn(γ

−1
2 γ1z1, z2)

2k2n0(γ2z2, z3)m(z3)m(z2)m(z1)
´

=C 0
X

z1,z2,z3∈Fy,
γ1,γ2∈Γ

¡
ω2s(γ1z1, z3)− ω2s(γ1z1, γ2z2)

¢
kn(γ1z1, γ2z2)

2

× k2n0(γ2z2, z3)m(z3)m(z2)m(z1).

By inverting z2 and z3, replacing γ
−1
2 γ1 with γ1 and γ2 with γ

−1
2 , B2 is written as

B2 =C
0

X
z1,z2,z3∈Fy,
γ1,γ2∈Γ

¡
ω2s(γ1z1, γ2z2)− ω2s(γ1z1, z3)

¢
kn(γ1z1, z3)

2

× k2n0(γ2z2, z3)m(z3)m(z2)m(z1).

Since |ωs(x, y) − ωs(x, z)| ≤ r0|s|(ωs(x, y) + ω(x, z)) for dX(y, z) ≤ r0 (see [15, Lemma
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2.3]), we have

B2 =
C 0

2

X
z1,z2,z3∈Fy,
γ1,γ2∈Γ

(ω2s(γ1z1, z3)− ω2s(γ1z1, γ2z2))

×
¡
kn(γ1z1, γ2z2)

2 − kn(γ1z1, z3)2
¢
k2n0(γ2z2, z3)m(z3)m(z2)m(z1)

≤C|s|
X

z1,z2,z3∈Fy,
γ1,γ2∈Γ

(ω2s(γ1z1, z3) + ω2s(γ1z1, γ2z2))

×
¯̄
kn(γ1z1, γ2z2)

2 − kn(γ1z1, z3)2
¯̄
k2n0(γ2z2, z3)m(z3)m(z2)m(z1).

By using the Cauchy-Schwarz inequality and Lemma 4.3,

B2 ≤C|s|
³ X
z1,z2,z3∈Fy,
γ1,γ2∈Γ

©
kn(γ1z1, z2)

¡
kn(γ1z1, z2)− kn(γ2γ1z1, z3)

¢
k2n0(γ2z2, z3)

+ kn(γ1z1, z3)
¡
kn(γ1z1, z3)− kn(γ1z1, γ2z2)

¢
k2n0(γ2z2, z3)

ª
×m(z3)m(z2)m(z1)

´1/2
×
h³ X

z2∈Fyz0∈V
kω2s(·, z2)kn(·, z2)k22ω4s(z2, z0)k2n0(z2, z0)m(z0)m(z2)

´1/2
+ n−

D
4 exp(C 0s2n) + n−

D
4 exp(C 0s2n)

+
³ X
z3∈Fyz0∈V

kω2s(·, z3)kn(·, z3)k22ω4s(z3, z0)k2n0(z3, z0)m(z0)m(z3)
´1/2i

.

Then it follows from Lemma 4.1 that

B2 ≤C|s|
¡ X
z3∈Fy

k
¡
I − L2n0

¢1/2
kn(·, z3)k22m(z3)

¢1/2 × n−D
4 exp(C 0s2n)

≤C|s|n− 1
2
−D

2 exp(C 0s2n).

By choosing n = m or n = m+ 1 depending on whether ν is even or odd, we obtain

ωs(x, y)∇y2kν(x, y) ≤ C(1 + s
√
ν)1/2ν−D/2−1/2 exp(C 0s2ν).

Choosing s = dX(x, y)/2C
0ν in this last inequality yields the estimate

∇y2kν(x, y) ≤ Cν−1/2−D/2 exp(−dX(x, y)2/C 0ν).
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Hence we conclude Theorem 4 (1.8).

Next, we study a Gaussian bound for ∇kn in the case when X is a bipartite graph.

By the same argument as in the last of Section 2, we have

∇yk2n(x, y) = sup
dX(y,z)=2

|k2n(x, y)− k2n(x, z)|

= sup
dXA(y,z)=1

|kAn (x, y)− kAn (x, z)|

≤Cn−D+1
2 exp(−dX(x, y)2/C 0n)

for x, y ∈ A. If x ∈ A, y ∈ B or x ∈ B, y ∈ A, we conclude

∇yk2n+1(x, y) = sup
dX(y,z)=2

|
X
ω∈V

k(x,ω)(k2n(ω, y)− k2n(ω, z))m(z)|

≤ sup
dX(x,ω)≤1

Cn−
D+1
2 exp(−dX(ω, y)2/C 0n)

≤Cn−D+1
2 exp(−dX(x, y)2/C 0n).

Hence we complete the proof of Theorem 4.

Finally, we consider Corollary, which gives a Gaussian lower bound for kn for the sake

of completeness. We assume that X is a non-bipartite graph. We can treat the bipartite

case in the same way (see Section 3.2).

First, we prove that there exists a constant C > 0 such that for any n ≥ n0 and x ∈ V ,
we have

(4.5) kn(x, x) ≥ Cn−
D
2 .

By Theorem 4 (1.7), for fixed x ∈ V , we have

X
dX(x,y)2≥An

k2n(x, y)m(y) =
∞X
i=0

X
A2in≤dX(x,y)2<A2i+1n

k2n(x, y)m(y)

≤CAD
2

∞X
i=0

2(i+1)
D
2 e−

2iA
c

≤1/2
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for large A > 0. Then by (4.3),

1/2 ≤
X

dX(x,y)2<An

k2n(x, y)m(y) ≤ C(An)
D
2 sup
x∈F

k2n(x, x).

Hence we obtain

sup
x∈F

k2n(x, x) ≥ (Cn)−
D
2 , n ∈ N.

For any x ∈ V and a large n, let x0 be the vertex in Fx which satisfies supx∈F k2n(x, x) =
k2n(x0, x0) and dX(x, x0) = a ≤ diamF . Then there exists C > 0 such that

k2n(x, x) =
X
y∈V

k2n−2a(x, y)k2a(y, x)m(y)

≥k2n−2a(x, x0)k2a(x0, x)m(x0)

≥(Cn)−D
2 .

For odd n > n0, we have

kn(x, x) =
X
y∈V

kn−n0(x, y)kn0(y, x)m(y)

≥kn−n0(x, x)kn0(x, x)m(x)

≥Cn−D
2 .

Hence (4.5) is proved.

Since X is non-bipartite, by Theorem 4 (1.8), we have

kn(x, x)− Cn−
D+1
2 dX(x, y) ≤ kn(x, y).

By (4.5), there exist positive constants C0, C1 such that

(4.6) kn(x, y) ≥ (C0n)−
D
2

for n ≥ n0 and dX(x, y) ≤
√
n/C1 + 1. Then we prove the Gaussian lower bound by the

chain argument (see Hebisch and Saloff-Coste [15]). Fix n ≥ n0. Since it is trivial when
dX(x, y) ≤

√
n/C1 + 1 by (4.6), we assume that

√
n/C1 + 1 < dX(x, y) ≤ n/10C1. Let

j ≤ n be the smallest integer such that √j ≥ 10C1dX(x, y)/
√
n. Then we fix integers
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ni ∈ [n/j − 1, n/j + 1] for 1 ≤ i ≤ j such that n = n1 + · · · + nj and y0, . . . , yj ∈ V such
that y0 = x, yj = y and dX(yi, yi+1) ≤ dX(x, y)/j + 1. Let Bi = BV (yi,

√
ni/10C1). Since

dX(zi, zi+1) ≤dX(zi, yi) + dX(yi, yi+1) + dX(yi+1, zi+1)

≤
√
ni

10C1
+
dX(x, y)

j
+ 1 +

√
ni+1

10C1

≤
√
ni
C1

+ 1

for zi ∈ Bi, zi+1 ∈ Bi+1 and (4.6), we have

inf{kni(zi, zi+1) | zi ∈ Bi, zi+1 ∈ Bi+1} ≥ (C0ni)−
D
2 .

Hence there exist constants C2 > 1 and C3 > 0 such that

kn(x, y) =
X

z1...zj−1

kn1(x, z1) · · · knj−1(zj−1, y)m(z1) · · ·m(zj−1)

≥
X

zi∈Bi,1≤i≤j−1
kn1(x, z1) · · · knj−1(zj−1, y)m(z1) · · ·m(zj−1)

≥ inf{kn1(x, z1) | z1 ∈ B1}(1/C2)j−1

≥C3(n/j)−
D
2 (1/C2)

j−1.

Since j − 1 ≤ C4dX(x, y)2/n, we conclude

kn(x, y) ≥ C3n−
D
2

µ
dX(x, y)

2

n

¶D
2

exp ((j − 1) log 1/C2) ≥ Cn−
D
2 exp

µ
−dX(x, y)

2

C 0n

¶
for n ≥ n0 and dX(x, y) ≤ n/10C1.
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Chapter 5

Riesz transform

For a nilpotent covering graph X = (V,E) and 1 ≤ p <∞, let

Lp(V ) := {f : V → R | kfkp <∞},

and Lp(E) the space of Lp 1-forms on E defined by

Lp(E) = {ω : E → R | ω(e) = −ω(e), kωkp <∞},

where

kfkp =
ÃX
x∈V

|f(x)|pm(x)
!1/p

,

kωkp =
Ã
1

2

X
e∈E

|ω(e)|pm(e)
!1/p

.

In particular, inner products on L2(V ) and L2(E) are defined by

hf, gi =
X
x∈V

f(x)g(x)m(x), f, g ∈ L2(V ),

hhω, ηii =1
2

X
e∈E

ω(e)η(e)m(e), ω, η ∈ L2(E),

respectively. Let d be the coboundary operator from functions on V to 1-forms on

E defined by df(e) = f(t(e)) − f(o(e)). Since k∇fkp ∼ kdfkp, 1 < p < ∞ and

|∇f(x)| ≤ supe∈Ex |df(e)| for all finitely supported functions f on V , we study the Lp
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boundedness of R = d∆−1/2. By the spectral theory, the kernel of R is written as

r(e, x) =
P

n≥0 andkn(e, x) in L
2, where an is given by

(1− x)−1/2 =
∞X
n=0

anx
n.

Let R∗ : L2(E) → L2(V ) be the adjoint operator of R and r∗(x, e) its kernel. We note

that r∗(x, e) = r(e, x). According to the Calderon-Zygmund theory (cf. [13]), the Lp

boundedness of R follows from an estimate of r.

5.1 Berry-Esseen type estimate for dkn

First, we prove an estimate for the derivative of the kernel kn(x, y) of transition operator

Ln by making use of Theorems 3, 4 and Lemma 3.2.

Recall that hn is the heat kernel of the sub-Laplacian Ω on GΓ for the Albanese metric

on g(1) (see Section 1.1) and

Sn(x, y) =
|GΓ/Γ|
m(X0)

hn(Φ(x),Φ(y))

for x, y ∈ V , where Φ : X → GΓ is a harmonic realization of X. By the same argument

as in Alexopoulos [1, Theorem 13], we have

Lemma 5.1. For any 0 < ² < 1/2, there exists a constant C > 0 such that

sup
x∈V,e∈E

|dkn(x, e)− dSn(x, e)| ≤ Cn−
D+3/2−²

2 .

Proof. Let Vn(x, y) = kn(x, y)− Sn(x, y) and denote

Vn · kT (x, y) =
X
z∈V

Vn(x, z)kT (z, y)m(z).

For N < n, let I be the quotient of n by N . Then we have

Vn(x, y) =
X

0≤i<[ I
2
]

³
Vn−iN · kiN(x, y)− Vn−(i+1)N · k(i+1)N (x, y)

´
+Vn−[ I

2
]N · k[ I

2
]N (x, y)

=
X

0≤i<[ I
2
]

³
Vn−iN − Vn−(i+1)N · kN

´
· kiN(x, y)

+Vn−[ I
2
]N · k[ I

2
](x, y),
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where [I/2] is the greatest integer not greater than I/2. Since

dVn(x, e) =Vn(x, t(e))− Vn(x, o(e))

=
X

0≤i<[ I
2
]

³
Vn−iN − Vn−(i+1)N · kN

´
· dkiN (x, e) +Vn−[ I

2
]N · dk[ I

2
]N(x, e),

we have

|dVn(x, e)| ≤
X

0≤i<[ I
2
]

°°°³Vn−iN − Vn−(i+1)N · kN´(x, ·)°°°
∞
kdkiN(·, e)k1

+ kVn−[ I
2
]N (x, ·)k∞kdk[ I

2
]N (·, e)k1

=C
°°°n∂N + (I − LN )oSn−N(x, ·)°°°

∞

+
X

0<i<[ I
2
]

°°°n∂N + (I − LN )oSn−(i+1)N(x, ·)°°°
∞
kdkiN(·, e)k1

+ kVn−[ I
2
]N (x, ·)k∞kdk[ I

2
]N (·, e)k1.

By Lemma 3.2,

|dVn(x, e)| ≤C
³
N2(n−N)−D+32 +

4rX
j=4

N j(n−N)−D+j
2 exp

³ N2

c(n−N)
´´

+ C
X

0<i<[ I
2
]

³
N2(n− (i+ 1)N)−D+4

2 + (n− (i+ 1)N)−D+2
2

+N2(n− (i+ 1)N)−D+3
2

+

4rX
j=4

N j(n− (i+ 1)N)−D+j
2 exp

³ N2

c(n− (i+ 1)N)
´´
(iN)−

1
2

+ C (n− [I/2]N)−
D+1/2−²

2 ([I/2]N)−
1
2 .

By choosing N ∼ n1/4, we conclude

|dVn(x, e)| ≤Cn−
D+3/2−²

2 + C
X

1≤i≤[ I
2
]

³
n−

D+2
2 +

4rX
j=4

n−
D+j/2

2

´
N−1/2i−1/2

≤Cn−D+3/2−²
2 + Cn−

D+2
2 N−1/2

¡
n/N

¢1/2 ≤ C 0n−D+3/2−²
2 .
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By using this lemma, we show that the kernel r∗(x, e) is a standard kernel (see [13]).

Lemma 5.2. Let us assume that dX(x1, x2) ≤ dX(x1, o(e))/2 and dX(x1, o(e)) > 2. For
any 0 < ² < 1/2 and 0 < δ < 1, there exists C > 0 such that

|r∗(x1, e)− r∗(x2, e)| ≤ C
µ

1

dX(x1, o(e))D+δ(1/2−²)
+

rX
l=1

dX(x1, x2)
lδ

dX(x1, o(e))D+lδ

¶
.

Proof. First, we prove that

|dkn(x1, e)− dkn(x2, e)|(5.1)

≤C
µ
n
1/2+²
2 +

rX
l=1

dX(x1, x2)
ln−

l−1
2

¶δ

n−
D+1+δ

2 exp

µ
−dX(x1, o(e))

2

cn

¶
.

By using the Gaussian estimate of the gradient of kn (Theorem 4) and by the assumptions

on x1, x2 and e, it is easy to show that

(5.2) |dkn(x1, e)− dkn(x2, e)| ≤ Cn−
D+1
2 exp

µ
−dX(x1, o(e))

2

cn

¶
.

On the other hand, by the previous lemma, we have

|dkn(x1, e)− dkn(x2, e)| ≤|dkn(x1, e)− dSn(x1, e)|+ |dSn(x1, e)− dSn(x2, e)|

+ |dSn(x2, e)− dkn(x2, e)|

≤Cn−D+3/2−²
2 + |dSn(x1, e)− dSn(x2, e)|.

By Taylor’s formula, there exist g1, g2, g3 ∈ GΓ such that

dSn(x1, e)− dSn(x2, e) =
|GΓ/Γ|
m(X0)

³X
k,l
i,j

X
(l)
j X

(k)
i hn(Φ(x1)g3,Φ(o(e)))

×P (l)j (Φ(x1)−1Φ(x2))P (k)i (Φ(o(e))−1Φ(t(e)))

+
1

2

X
k1,k2
i1,i2

X
(k1)
i1
X
(k2)
i2
hn(Φ(x1),Φ(o(e))g1)

×P (k1)i1
(Φ(o(e))−1Φ(t(e)))P (k2)i2

(Φ(o(e))−1Φ(t(e)))

−1
2

X
k1,k2
i1,i2

X
(k1)
i1
X
(k2)
i2
hn(Φ(x2),Φ(o(e))g2)

×P (k1)i1
(Φ(o(e))−1Φ(t(e)))P (k2)i2

(Φ(o(e))−1Φ(t(e)))
´
.
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The Gaussian estimates for hn by Varopoulos [35] imply that

(5.3) |dkn(x1, e)− dkn(x2, e)| ≤ C
µ
n
1/2+²
2 +

rX
l=1

dX(x1, x2)
ln−

l−1
2

¶
n−

D+2
2 .

By interpolating (5.2) and (5.3), we obtain (5.1). Finally, we have

|r∗(x1, e)− r∗(x2, e)| ≤ C
Ã

1

dX(x1, o(e))D+δ(1/2−²)

×
∞X
n=1

ann
−1/2

µ
dX(x1, o(e))

2

n

¶D+δ(1/2−²)
2

exp

µ
−dX(x1, o(e))

2

cn

¶
+

rX
l=1

dX(x1, x2)
lδ

dX(x1, o(e))D+lδ

×
∞X
n=1

ann
−1/2

µ
dX(x1, o(e))

2

n

¶D+lδ
2

exp
¡
− dX(x1, o(e))

2

cn

¢!

≤C
Ã

1

dX(x1, o(e))D+δ(1/2−²)
+

rX
l=1

dX(x1, x2)
lδ

dX(x1, o(e))D+lδ

!
.

5.2 Proof of the Lp boundedness of the Riesz trans-

form

We show the Lp boundedness of the adjoint operator R∗ for 1 < p ≤ 2. We can treat the
Lp boundedness of R for 1 < p ≤ 2 in the same way. It is easy to see that R∗ is bounded
on L2 and Lp ⊂ L2 for 1 ≤ p ≤ 2. By Marcinkiewicz interpolation theorem (cf. [13]), it

suffices to show that the adjoint operator R∗ is weak-(1, 1):

m
¡
{x ∈ V : |R∗ω(x)| > λ}

¢
≤ C

λ
kωk1.

Let E = E1
`
E2 be a decomposition such that E1 = E2. Then the fundamental

domain F ⊂ E for the action of Γ is decomposed to F = F1
`
F2. Then, each ω in L

1(E)

can be written as ω =
P

e1∈F1 ω
e1, where

ωe1(e) =

⎧⎨⎩ ω(e) if e ∈ Γe1 ∩ Γe1,
0 otherwise.
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We remark that ωe1 can be identified with an element in L1(Γ) by ωe1(γ) = ωe1(γe1). Let

S = {s1, . . . , sn} be a symmetric finite generator of Γ. A distance dΓ on Γ is defined by

dΓ(γ1, γ2) := min{k ∈ N : γ1 = si1si2 · · · sikγ2, sij ∈ S, 1 ≤ ij ≤ n}.

We denote

BΓ(γ, d) := {η ∈ Γ : dΓ(γ, η) ≤ d}.

Here we apply the following theorem to ωe1 ∈ L1(Γ):

Theorem (Coifman and Weiss [6]). There exists a constant C > 0 such that, for any

ωe1 ∈ L1(Γ) and λ > 0, ωe1 is decomposed by ge1 + be1 with be1 =Pi∈I b
e1
i so that

(a) |ge1(γ)| ≤ Cλ, γ ∈ Γ.

(b) For any i ∈ I, there exists BΓ(γi, di) so that the support of bi is contained in BΓ(γi, di),P
γ∈Γ |be1i (γ)| ≤ Cλ|BΓ(γi, di)| and

P
γ∈Γ b

e1
i (γ) = 0.

(c)
P

i∈I |BΓ(γi, di)| ≤ Ckωe1k1/λ.

We denote

M = sup
x∈V,γ∈Γ

dX(x, γx)

dΓ(id, γ)
,

and Ae1 = ∪i∈IBV (γio(e1), 2Mdi) = ∪i∈IBi. Hence we have

m({x ∈ V : |R∗ω(x)| > λ}) ≤
X
e1∈F1

m

µ½
x ∈ V : |R∗ωe1(x)| > λ

#F1

¾¶

≤
X
e1∈F1

"
m

µ½
x ∈ V : |R∗ge1(x)| > λ

2#F1

¾¶

+m

µ½
x ∈ V : |R∗be1(x)| > λ

2#F1

¾¶#
.

Then we have

m

µ½
x ∈ V : |R∗ge1(x)| > λ

2#F1

¾¶
≤
µ
2#F1
λ

¶2X
x∈V

|R∗ge1(x)|2m(x).
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Since R∗ is bounded on L2, we obtain

m

µ½
x ∈ V : |R∗ge1(x)| > λ

2#F1

¾¶
≤ C

λ
kωe1k1.

Next, we consider m ({x ∈ V : |R∗be1(x)| > λ/(2#F1)}). By the assumption of be1, we
have

m

µ½
x ∈ V : |R∗be1(x)| > λ

2#F1

¾¶
≤|Ae1 |+m

µ½
x ∈ V \Ae1 : |R∗be1(x)| > λ

2#F1

¾¶
≤|Ae1 |+ 2#F1

λ

X
x∈V \Ae1

|R∗be1(x)|m(x)

≤C
λ
kωe1k1 +

2#F1
λ

X
i∈I

X
x∈V \Bi

¯̄̄ X
e∈E1

r∗(x, e)be1i (e)m(e)
¯̄̄
m(x)

=
C

λ
kωe1k1 +

2#F1
λ

X
i∈I

X
x∈V \Bi

¯̄̄X
γ∈Γ

r∗(x, γe1)b
e1
i (γe1)m(e1)

¯̄̄
m(x).

Since be1i has a zero integral, we have

m

µ½
x ∈ V : |R∗be1(x)| > λ

2#F1

¾¶
≤C
λ
kωe1k1 +

2#F1
λ

X
i∈I

X
γ∈BΓ(γi,di)

|be1i (γe1)|m(e1)
X

x∈V \Bi

|r∗(x, γe1)− r∗(x, γie1)|m(x).

By Lemma 5.2,

|r∗(x, γe1)− r∗(x, γie1)| ≤ C
Ã

1

dX(x, γio(e1))D+δ(1/2−²)
+

rX
l=1

M lδdlδi
dX(x, γio(e1))D+lδ

!
.

Consequently, we have

2#F1
λ

X
i∈I

X
γ∈BΓ(γi,di)

|be1i (γe1)|m(e1)
X

x∈V \Bi

|r∗(x, γe1)− r∗(x, γie1)|m(x)

≤C
0

λ

X
i∈I

X
γ∈BΓ(γi,di)

|be1i (γe1)|m(e1)

×
X

x∈V \Bi

Ã
1

dX(x, γio(e1))D+δ(1/2−²)
+

rX
l=1

M lδdlδi
dX(x, γio(e1))D+lδ

!

≤C
λ
kωe1k1.

Hence the proof of Theorem 5 is completed.
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