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1 Introduction

A Riemannian manifold (M, g) is called a Cl-manifold if all geodesics are closed and have

the same length l. We call g a Cl-metric. The standard sphere (Sn, g0) is clearly an example

of Cl-manifolds. Other examples are the standard projective spaces (P n(K), g0) (here K

stands for either the field R of real numbers, or the field C of complex numbers, or the

non-commutative field H of quaternions), and the Cayley projective plane (P 2(Ca), g0).

Here Ca denotes the Cayley algebra. They are often called CROSSes (i.e., compact rank

one symmetric space). It has been an open problem in differential geometry to find all

Cl-metrics and classify them.

For the standard sphere (S2, g0), every geodesic issuing from any point p in S2 passes the

antipodal point p′, and the length from p to p′ along each geodesic is always π. Let g be

a Riemannian metric on S2. Suppose every geodesic in g from any point p passes a point

p′ different from p, and the length from p to p′ along each geodesic is always π. Is then

(S2, g) necessarily isometric to (S2, g0)? This problem was proposed by W. Blaschke in

the first edition (1921) of [Bl]. He called these (S2, g) Wiedersehensflächen. The Blaschke

conjecture is that every Wiedersehensfläche is isometric to (S2, g0).

A Blaschke manifold, which is defined below, is an extension of the notion of the Wieder-

sehensflächen. Let (M, g) be a compact, connected Riemannian manifold and let p, q be

points in M . Set

Seg(p, q) = {minimizing geodesics from p to q (parametrized by arc length)},
Λ(p, q) = {γ̇(q) ∈ UqM | γ ∈ Seg(p, q)},

where UqM is the unit tangent space at q ∈ M . Λ(p, q) is called the link from p to q.

Let d(p, q) be the distance from p to q, and let γ(t) be a geodesic in (M, g) issuing from

p = γ(0) which is parametrized by arc length. q ∈ M is called a cut point of p along γ if

there exists a positive real number t1 such that γ(t1) = q satisfying d(p, γ(t)) = t for any t

in [0, t1] and d(p, γ(t)) < t for any t > t1. The cut locus of p, denoted by Cut(p), is the set

of all cut points of p along geodesics issuing from p.

Definition A compact Riemannian manifold (M, g) is called a Blaschke manifold at a

point m in M if the link Λ(m, c) is a great sphere of UcM for every c in Cut(m).

Definition A compact Riemannian manifold (M, g) is called a Blaschke manifold if it is

a Blaschke manifold at every point in M .

The geometrical property of geodesics of a Blaschke manifold is similar to that of a

CROSS. For example, if (M, g) is a Blaschke manifold, then it is a Cl-manifold (Proposition
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2.1). The Blaschke conjecture, which is an extension of the conjecture by Blaschke for

Wiedersehensflächen, claims that a Blaschke manifold is one of the CROSSes. The Blaschke

conjecture has not completely been solved yet, but for a Blaschke manifold whose cut locus

of any point is only one point, it was affirmatively solved by M. Berger (Theorem 2.1).

Are there examples of Cl-manifolds other than CROSSes? This question was affirmatively

solved by the solution of the existence problem of infinitesimal C2π-deformations of the

standard sphere. In 1976, V. Guillemin obtained the following result.

Theorem 2.4 ([G]) For every odd function ρ̇ on S2, there exists a smooth one-parameter

family of C∞-functions ρt such that ρ0 = 0, ρ̇ =
dρt

dt

∣∣∣∣
t=0

, and exp(ρt)g0 is a C2π-metric for

small t.

In 1903, O. Zoll constructed C2π-metrics of revolution on a sphere which are not isometric

to the standard one. (A surface of revolution means a surface whose metric has an S1-

action of isometries.) Let M be a manifold which is diffeomorphic to S2. Then Zoll metrics

are described as follows:

Theorem 3.6 ([Be]) A Riemannian manifold (M, g) is a Zoll surface if and only if g is a

metric of revolution which can be described in a parametrization (U, (r, θ)) as

g = {1 + h(cos r)}2dr2 + sin2 r dθ2,

where h : [−1, 1] → [−1, 1] is an odd function centered at zero which satisfies h(1) = h(−1) = 0,

and 1 + h > 0.

Note that if we take h ≡ 0, the corresponding Zoll metric is the standard one.

Although Zoll only mentioned a metric on a two-dimensional sphere S2, it can be ex-

tended to a metric on an n-dimensional sphere Sn (see section 3.5). Therefore, the Cl-

metrics of revolution on a sphere are completely classified. We do not have any examples of

C2π-manifolds other than CROSSes, infinitesimal C2π-deformations of the standard sphere,

and the Zoll surfaces.

According to Theorems 2.4 and 3.6, we know that Zoll surfaces and C2π-deformations

of the standard sphere are characterized by odd functions on a sphere. Hence we wish to

characterize general C2π-metrics on a sphere by giving conditions on a hemisphere.

First, we make some observations on a Zoll surface, since it is a fundamental model of

a C2π-surface. A Zoll surface can be uniquely divided into the Northen and the Southern

Hemispheres, since it has a unique parallel which is called the equator (Lemma 3.4). Since

a Zoll metric is characterized by an odd function centered at the equator, it holds that if

the metric on the Northern Hemisphere of a Zoll surface is given, then the metric on the

Southern Hemisphere is automatically determined. In particular, the following holds.
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Theorem 5.1 Let (M, g) be a Zoll surface whose Northern Hemisphere is the standard

hemisphere. Then, (M, g) is the standard sphere.

Motivated by this theorem, we would like to consider the following problem.

Problem 1 Let (M, g) be a C2π-surface. Let D be a closed domain in M such that its

boundary ∂D is a geodesic in (M, g). Suppose (D, g) is the standard hemisphere. Then, is

(M, g) the standard sphere?

We first approach this problem from the viewpoint of billiard theory.

A billiard is the motion of a point mass (or the light ray) inside a compact convex closed

domain D with smooth boundary in a Riemannian manifold. The orbits of such motion

consist of geodesic segments inside D joined at boundary points according to the rule that

the angle of incidence equals the angle of reflection. Let ζ be a billiard in D issuing from

a point x in D with an initial angle θ. We say that ζ is periodic if it returns to x in finite

time with the same angle θ. A positive integer p is called the rotation number of ζ if ζ

rounds along ∂D p times while it returns to the initial point. For a positive integer q, a

periodic billiard ζ is called a q-link periodic billiard if it contains q points of ∂D. The pair

of positive integers (q, p) is called a period of the periodic billiard.

The properties of billiards on the Northern Hemisphere of the standard sphere are as

follows:

1) all segments of the billiards have the same length π,

2) each billiard is (2, 1)-periodic.

Billiards on a Zoll surface do not always satisfy either of the two properties 1) and 2)

above (section 5.1). If billiards on the Northern Hemisphere of a Zoll surface satisfy at

least one of those two properties, the metric should be the standard one, as is stated in the

following two theorems.

Theorem 5.2 Let (M, g) be a Zoll surface such that all segments of the billiards on the

Northern Hemisphere have the same length π. Then, (M, g) is the standard sphere.

Theorem 5.3 Let (M, g) be a Zoll surface such that all billiards on the Northern Hemi-

sphere are periodic. Then its period should be (2, 1), and (M, g) is the standard sphere.

The following definition is useful for describing properties of the billiards on the standard

hemisphere. Let (D, g) be a compact convex Riemannian manifold with smooth boundary.
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Definition We say the billiards on (D, g) have the spherical property if they satisfy:

1) all segments of the billiards have the same length π,

2) each billiard is (2, 1)-periodic.

From a viewpoint of billiards, a rigidity problem for C2π-surfaces can be stated as follows.

Problem 2 Let (M, g) be a C2π-surface. Let D be a closed domain in M such that its

boundary ∂D is a geodesic in (M, g). Suppose the billiards on (D, g) have the spherical

property. Then, is (M, g) the standard sphere?

We solve this problem under a certain conformality condition. Let (M, g0) be the two-

dimensional standard sphere, and f be a smooth positive function on M .

Theorem 6.1 Let (M, g) be a C2π-surface with metric g = f 2g0. Let D be a closed domain

in M such that its boundary ∂D is a geodesic in (M, g). Suppose (D, g) satisfies the

following:

i) the billiards on (D, g) have the spherical property,

ii) ∂D is a unit speed geodesic in g, and also in g0.

Then, (M, g) is the standard sphere.

We now sketch the proof of Theorem 6.1. Billiard condition on a hemisphere makes it

possible to use the method of boundary rigidity problems for Riemannian manifolds ([C]).

If the billiards on (D, g) have the spherical property, its volume vol(D, g) is described by the

geometry of the boundary of D. Hence, the assumption ii) gives us vol(D, g) = vol(D, g0).

On the other hand, according to the Cauchy-Schwarz inequality, we have vol(D, g) ≥
vol(D, g0), where the equality holds if and only if g = g0. Hence we conclude that g = g0

on D. Since (M, g) is a C2π-surface, if the billiards on (D, g) have the spherical property,

then the billiards on the complement of the interior of D in M , denoted by D′, also have the

spherical property. Then the same argument applies to D′, and we obtain the conclusion.

If a hemisphere of a C2π-surface, that is, a closed domain enclosed by a geodesic, is the

standard hemisphere, the billiards on the remaining half have the spherical property. If

we fully use the condition that a half of a C2π-surface is the standard hemisphere, we can

prove that the remaining half is also the standard hemisphere. Hence our Problem 1 is

completely solved, and we get the following result. Here M denotes a manifold which is

diffeomorphic to S2.
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Theorem 7.1 Let (M, g) be a C2π-surface. Let D be a closed domain in M such that its

boundary ∂D is a geodesic in (M, g). Suppose (D, g) is the standard hemisphere. Then,

(M, g) is the standard sphere.

The sketch of the proof is as follows. By assumption, M = (M, g) is divided into two

manifolds with boundary, that is, M = U ∪D, where D is the standard hemisphere and U

is the complement of the interior of D in M .

Let M ′ = U ′ ∪ D′ be a copy of M . Since D and D′ are the standard hemispheres, we

can smoothly attach U to U ′ by identifying a point in ∂U with its antipodal point in ∂U ′.
We denote M̃ = U ∪ U ′.

Let τ̃ be a diffeomorphism from U to U ′ such that τ̃ maps a point p in U to the same

point p′ in U ′. Let φ be a natural diffeomorphism from M to M ′, and we identify M with

M ′ by this φ. Then τ̃ is defined as τ̃(p) = φ(p), for any p ∈ U .

Let g̃ be the metric on M̃ defined by

g̃ =





g on U

g′ on U ′,

where the metric g′ is a metric on U ′ which satisfies τ̃ ∗g′ = g.

Let γ be a geodesic in M , and γU be the restriction of γ to U . Then the union of γU and

τ̃(γU) is a geodesic in (M̃, g̃). Hence (M̃, g̃) is a C2π-surface.

Then we can show that for any point p in (M̃, g̃), there exists a point p′ in (M̃, g̃) such

that every geodesic issuing from p passes p′, and the length from p to p′ along each geodesic

is always π. Then (M̃, g̃) is a Blaschke manifold whose cut locus of any point is only one

point. Hence, by the solution of the Blaschke conjecture for spheres (Theorem 2.1), (M̃, g̃)

is the standard sphere. Therefore, (U, g) is the standard hemisphere, showing that (M, g)

is the standard sphere.

The thesis is organized as follows: In section 2, some important properties of C2π-

manifolds are collected. First, we define the Blaschke manifolds, and state the Blaschke

conjecture, and give the sketch of the proof by Green of the solution of the Blaschke con-

jecture for two-dimensional spheres. Green’s result plays an important role in the proof of

Theorem 7.1. Second, we show that every infinitesimal C2π-deformation of the standard

sphere is characterized by an odd function. Third, if gt denotes a family of C2π-metrics

on spheres, then geodesic flows on the cotangent bundle of (Sn, gt) is symplectically iso-

morphic to one another. In section 3, we investigate Zoll surfaces and their geodesics, and

show the existence of the unique parallel which is called the equator. Then the Northern

and the Southern Hemispheres are defined, which will be viewed later as manifolds with
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boundary. In section 4, notation is given from billiard theory, which will be necessary

in later sections. In section 5, billiards on the Northern (or the Southern) Hemisphere

of a Zoll surface are investigated. We regard geodesic segments on the Northern (or the

Southern) Hemisphere as segments of billiards. Then we obtain some results on rigidity

problems for Zoll surfaces. Then we will show how to extend our results for Zoll surfaces

to general C2π-surfaces. Section 6 is devoted to the proof of Theorem 6.1. In section 7, we

prove Theorem 7.1, which is the extension of Theorem 5.1 to general C2π-surfaces. Section

8 is an appendix which contains an elementary lemma necessary to prove Lemmas 2.3, 3.6,

and 5.1.

2 C2π-manifolds

2.1 Blaschke manifolds and the Blaschke conjecture

A Riemannian manifold (M, g) is a Cl-manifold if all geodesics are closed and have the

same length l. We call that g is a Cl-metric. CROSSes are examples of Cl-manifolds as we

mentioned above.

In order to study Cl-manifolds, it is very important to know what characterizes CROSSes.

For the standard sphere (S2, g0), every geodesic issuing from any point p in S2 passes the

antipodal point p′, and the length from p to p′ along each geodesic is always π. Let g be

a Riemannian metric on S2. Suppose every geodesic in g from any point p passes a point

p′ different from p, and the length from p to p′ along each geodesic is always π. Is then

(S2, g) necessarily isometric to (S2, g0)? This problem was proposed by W. Blaschke in

the first edition (1921) of [Bl]. He called these (S2, g) Wiedersehensflächen. The Blaschke

conjecture is that every Wiedersehensfläche is isometric to (S2, g0). The conjecture was

affirmatively solved by L. Green in 1961 ([Gr]). The sketch of his proof is given later.

Blaschke manifold is an extension of the notion of the Wiedersehensflächen. Let (M, g)

be a compact, connected Riemannian manifold and let p, q be points in M . Set

Seg(p, q) = {minimizing geodesics from p to q (parametrized by arc length)},
Λ(p, q) = {γ̇(q) ∈ UqM | γ ∈ Seg(p, q)},

where UqM is the unit tangent space at q ∈ M . Λ(p, q) is called the link from p to q.

Let d(p, q) be the distance from p to q, and let γ(t) be a geodesic in (M, g) issuing from

p = γ(0) which is parametrized by arc length. q ∈ M is called a cut point of p along γ if

there exists a positive real number t1 such that γ(t1) = q satisfying d(p, γ(t)) = t for any t

in [0, t1] and d(p, γ(t)) < t for any t > t1. The cut locus of p, denoted by Cut(p), is the set

of all cut points of p along geodesics issuing from p.
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Definition A compact Riemannian manifold (M, g) is called a Blaschke manifold at a

point m in M if the link Λ(m, c) is a great sphere of UcM for every c in Cut(m).

Definition A compact Riemannian manifold (M, g) is called a Blaschke manifold if it is

a Blaschke manifold at every point in M .

The geometrical property of geodesics of a Blaschke manifold is similar to that of a

CROSS. In particular, the following property is important.

Proposition 2.1 If (M, g) is a Blaschke manifold, then (M, g) is a Cl-manifold.

Proof. Let m be any point in M . Take any point c in Cut(m). Let γ(t) be a minimizing

geodesic from m to c parametrized by arc length whose length is l/2. Since the link from m

to c is a great sphere, both γ̇(l/2) and −γ̇(l/2) belong to Λ(m, c). Then a geodesic issuing

from c with velocity γ̇(l/2) is a minimizing geodesic from c to m, and its length is also l/2.

Hence γ is smooth on the interval (0, l), and satisfies γ(0) = γ(l) = m. Namely, geodesics

always come back to the initial point.

First, we have to show that γ is at least C1-differentiable at m. Assume that γ̇(l) 6= γ̇(0).

For ε > 0 small, let mε be a point in γ defined by mε = γ(ε). Let cε be a cut point of

mε along γ. As we mentioned above, γ issues mε and comes back to mε again. Hence

mε = γ(tε) holds for some tε > ε. Since we assume that γ is not C1-differentiable at

m = γ(l), there exists a constant δ0 > 0 such that tε > l + δ0. However, since mε → m

and cε → c as ε → 0, we have tε → l as ε → 0. This is a contradiction. Then γ is at least

C1-differentiable at m = γ(l), and hence γ is a closed geodesic.

Next, we show that all geodesics have the same length. Let m be a point in M . Let c

and c′, c 6= c′, be cut points of m. By continuity of cut locus, there exists a smooth family

of geodesics from a geodesic passing through m and c to a geodesic passing through m and

c′. Since geodesics in the Blaschke manifolds are all closed, the lengths of geodesics issuing

from m are the same, say l, by the first variation formula. Take m′ in M , m′ 6= m. By the

same argument, geodesics issuing from m′ are all closed and have the same length, say l′.
Since M is compact, there exists a geodesic from m to m′. This geodesic is closed again,

hence l = l′. Therefore, we can conclude that a Blaschke manifold is a Cl-manifold.

Q.E.D.

Let (M, g) be a Blaschke manifold at m ∈ M with real dimension d ≥ 2. Then the

dimension of Λ(m, c) is a constant (say k − 1) when c runs through Cut(m) ([Be]). This

cut locus Cut(m) is a (d − k)-dimensional submanifold of M . Since all geodesics issuing

from m come back to m at the same length, k can take the values 1, 2, 4, 8, d, and we have

only the following possibilities ([Bo]):
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· if k = 1 and any d, M is diffeomorphic to P d(R),

· if k = 2 and d = 2n, M has the homotopy type of P n(C),

· if k = 4 and d = 4n, M has the integral cohomology ring of P n(H),

· if k = 8 and d = 16, M has the integral cohomology ring of P 2(Ca),

· if k = d and any d, M has the homotopy type of Sd.

Namely, a Blaschke manifold necessarily has the same topology as one of the CROSSes,

and the topology is determined by its dimension of the link, or dimension of the cut locus.

The notations below are useful.

Definition (M, g) is called a Blaschke manifold modeled on Sn (resp. P n(K), where

K = R,C,H,Ca) if it satisfies:

(i) (M, g) is a Blaschke manifold with the same dimension as the model space,

(ii) the cut locus of any point is one point (resp. the cut locus of any point is a smooth

submanifold of M with the same dimension as that of the cut locus of the model

P n(K)).

For a Blaschke manifold with the same diameter as the model space, the following is called

the generalized Blaschke conjecture.

The Blaschke conjecture

Every Blaschke manifold is isometric to one of the CROSSes.

The Blaschke conjecture is not completely solved yet, but Berger obtained the following

results.

Theorem 2.1 ([Be] p.236) Let (M, g) be a Blaschke manifold with diameter π which is

modeled on Sn. Then, (M, g) is isometric to the standard sphere (Sn, g0).

Corollary 2.1 ([Be] p.236) Let (M, g) be a Blaschke manifold with diameter π/2 which

is modeled on P n(R). Then, (M, g) is isometric to the standard real projective space

(P n(R), g0).

Theorem 2.1 was first proved by L. Green in the case where n = 2. This result plays an

important role in the proof of Theorem 7.1. We will sketch his proof.
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Lemma 2.1 ([W2]) Let (M, g) be a n-dimensional Cl-manifold, and (Sn, g0) be the n-

dimensional standard sphere. Then the ratio

vol(M, g)

vol(Sn, g0)

2π

l
= i(M, g)

is an integer.

The integer i(M, g) is called Weinstein’s integer. Weinstein’s integers for CROSSes are:

i(Sn, g0) = 1, i(P n(R), g0) = 2n−1, i(P 2(Ca), g0) = 39,

i(P n(C), g0) =
(

2n− 1
n− 1

)
, i(P n(H), g0) =

1

2n + 1

(
4n− 1
2n− 1

)
.

In addition, Weinstein [W2] and C.T. Yang [Y] showed that for any Cl-metric gl on Sn,

i(Sn, gl) = 1.

Let (M, g) be a Blaschke manifold modeled on S2 with diameter π. By Lemma 2.1 and

i(Sn, gl) = 1, we have

vol(M, g) = 4π, (2.1)

since Blaschke manifold with diameter π is a C2π-manifold. For any point p in M , let p′

be a conjugate point of p along any geodesic γ. Since the distance from p to p′ is less than

π, the index form

I(X,X) =
∫ π

0
{g(∇X(t),∇X(t))− g(R(γ̇(t), X(t))γ̇(t), X(t))} dt

is positive or zero for any vector field X along γ with X(0) = 0 and X(π) = 0. Then we

have

vol(M, g) ≥ 1

2

∫

M
Scal dµg,

where Scal is the scalar curvature of M , and dµg is the volume form. The equality holds if

and only if (M, g) is the standard sphere. By the Gauss-Bonnet formula, we have

χ(S2) =
1

4π

∫

M
Scal dµg,

where χ(S2) is the Euler number of a two-sphere S2. Then we obtain

vol(M, g) ≥ 4π, (2.2)

and the equality holds if and only if (M, g) is the standard sphere. Then our conclusion

follows from (2.1) and (2.2).
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2.2 Infinitesimal C2π-deformations on spheres

From now on to the last, M denotes a manifold which is diffeomorphic to S2. Let g0 be the

standard metric on M , and M0 = (M, g0) denotes the standard sphere of dimension two.

The Blaschke conjecture claims that Blaschke manifold is one of the CROSSes. Are there

examples of Cl-manifolds except for CROSSes? This question was affirmatively solved by

the solution of the existence problem of infinitesimal C2π-deformations of the standard

sphere.

A Riemannian metric g on M induces a bundle isomorphism ]g from the cotangent bundle

TM∗ to the tangent bundle TM such that

g(]g(λ), v) = λ(v) (2.3)

for any λ ∈ TpM
∗, v ∈ TpM , p ∈ M . For each symmetric two-form h, let h]g be the

function on TM∗ defined by

h]g(λ) = h(]g(λ), ]g(λ))

for any λ ∈ TM∗. Then the energy function on TM∗ is defined by

E =
1

2
g]g ,

and XE denotes the geodesic vector field on TM∗ associated with g. For the sake of

simplicity, we shall write ]t instead of ]gt . Put

Et =
1

2
g]t

t .

The following theorem is a particular case of A. Weinstein’s result.

Theorem 2.2 ([W1], [Be] or [K]) Let gt = exp(ρt)g0 be a smooth family of C2π-metrics on

M (i.e. if ζs
t denotes the geodesic flow for the metric gt, then ζ2π

t equals to identity map)

such that ρ0 = 0. We set ρ̇ =
dρt

dt

∣∣∣∣
t=0

. Then the following holds:

i) for any closed geodesic γ0 in M0 parametrized by arc length,
∫ 2π

0
ρ̇(γ0(s))ds = 0,

ii) there exists a smooth family of homogeneous symplectic diffeomorphisms

φt :
◦
T M∗ → ◦

T M∗ such that φ∗t Et = E0, where
◦
T M∗ = TM∗\{0}.

12



Proof of i). We set ht = (d/dt)gt. Let γt(s) be a geodesic in (M, gt) parametrized by arc

length. Since gt is a C2π-metric, we have

∫ 2π

0
gt(γ̇t(s), γ̇t(s)) ds = 2π, (2.4)

where γ̇t(s) means (d/ds)γt(s). By the first variation formula, we have

∫ 2π

0
gt

(dγ̇t(s)

dt
, γ̇t(s)

)
ds = 0. (2.5)

By (2.4), we have

0 =
d

dt

{∫ 2π

0
gt(γ̇t(s), γ̇t(s)) ds

}

=
∫ 2π

0

{
dgt

dt
(γ̇t(s), γ̇t(s)) + 2gt

(dγ̇t(s)

dt
, γ̇t(s)

)}
ds

(2.5)
=

∫ 2π

0
ht(γ̇t(s), γ̇t(s)). (2.6)

Since ht = (d/dt)gt = ρ̇t exp(ρt)g0, if we substitute t = 0 in (2.6), we have

0 =
∫ 2π

0
ρ̇0(γ0(s)) exp(ρ0(γ0(s)))g0(γ̇0(s), γ̇0(s)) ds =

∫ 2π

0
ρ̇0(γ0(s)) ds.

Hence i) is proved.

In order to prove ii), we need the following lemma.

Lemma 2.2 ([K]) There is a one-parameter family of homogeneous symplectic vector fields

{Yt} on TM∗ such that

YtEt = Ėt,

where dot denotes the derivative in the parameter t.

Proof. First, differentiate both sides of (2.3), that is, defining equation of the bundle

isomorphism ]. Then we have

ht(]t(λ), v) + gt

(
d]t(λ)

dt
, v

)
= 0,

for any v ∈ TpM , p ∈ M . In particular, if we take v = ]t(λ), we have

gt

(
d]t(λ)

dt
, ]t(λ)

)
= −ht(]t(λ), ]t(λ))

= −h]t
t (λ). (2.7)
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Then we obtain

Ėt(λ) =
1

2

d

dt
{gt(]t(λ), ]t(λ))}

=
1

2
ht(]t(λ), ]t(λ)) + gt

(
d]t(λ)

dt
, ]t(λ)

)
(2.7)
= −1

2
h]t

t (λ). (2.8)

Let γt be a geodesic in (M, gt) parametrized by arc length, and let {ξt
s}s∈R be the geodesic

flow on TM∗ associated with the metric gt which satisfies ]t(ξ
t
s(λ)) = γ̇t(s) for ξt

0(λ) = λ ∈
UM∗. Then {ξt

s}s∈R induces a free S1-action of period 2π on the unit cotangent bundle

UM∗ = E−1
t (1/2).

For any λ ∈ UM∗, we have
∫ 2π

0
Ėt(ξ

t
s(λ)) ds

(2.8)
= −1

2

∫ 2π

0
h]t

t (ξt
s(λ)) ds

= −1

2

∫ 2π

0
ht(]t(ξ

t
s(λ)), ]t(ξ

t
s(λ))) ds

= −1

2

∫ 2π

0
ht(γ̇t(s), γ̇t(s))

(2.6)
= 0.

Namely, we obtain
∫ 2π

0
Ėt(ξ

t
s(λ)) ds = 0. (2.9)

Define the function Ht on
◦
T M∗ by the following two conditions

(1) Ht(λ) =
−1

2π

∫ 2π

0

∫ s

0
Ėt(ξ

t
r(λ)) dr ds, λ ∈ UM∗,

(2) Ht is positively homogeneous of degree one (i.e. Ht(aλ) = aHt(λ), a ∈ R>0,

λ ∈ ◦
T M∗).

Recall that XEt denotes the geodesic vector field, that is, the symplectic vector field asso-

ciated with the Hamiltonian Et. Then we have

XEtHt(λ) =
dξt

u

du

∣∣∣∣
u=0

Ht(λ) =
dHt(ξ

t
u(λ))

du

∣∣∣∣
u=0

=
d

du

∣∣∣∣
u=0

{−1

2π

∫ 2π

0

∫ s

0
Ėt(ξ

t
r(ξ

t
uλ)) dr ds

}

=
−1

2π

∫ 2π

0

{
d

du

∣∣∣∣
u=0

∫ s

0
Ėt(ξ

t
r+u(λ)) dr

}
ds, (2.10)

14



for λ ∈ UM∗. Set

F (s) =
d

du

∣∣∣∣
u=0

∫ s

0
Ėt(ξ

t
r+u(λ)) dr.

Then we have

F (s)
(2.8)
=

d

du

∣∣∣∣
u=0

∫ s

0
−1

2
h]t

t (ξt
r+u(λ)) dr = −1

2

d

du

∣∣∣∣
u=0

∫ u+s

u
h]t

t (ξt
w(λ)) dw,

where w = r + u. Take a real number a ∈ (u, u + s) and decompose the interval (u, u + s)

into (u, a ] and [ a, u + s). Then we have

F (s) = −1

2

d

du

∣∣∣∣
u=0

{∫ a

u
h]t

t (ξt
w(λ)) dw +

∫ u+s

a
h]t

t (ξt
w(λ)) dw

}

= −1

2

{
−h]t

t (ξt
0(λ)) + h]t

t (ξt
s(λ))

}

(2.8)
= −Ėt(λ) + Ėt(ξ

t
s(λ)). (2.11)

Substituting (2.11) in (2.10), we obtain

XEtHt(λ) =
−1

2π

∫ 2π

0
F (s) ds =

−1

2π

∫ 2π

0

{
−Ėt(λ) + Ėt(ξ

t
s(λ))

}
ds

(2.9)
=

1

2π

∫ 2π

0
Ėt(λ) ds = Ėt(λ),

for any λ ∈ UM∗. Since Ėt = (−1/2) h]t
t is positively homogeneous of degree two,

XEtHt(λ) = Ėt(λ) (2.12)

holds for any λ ∈ TM∗, not only for λ ∈ UM∗. By the anti-commutativity of Poisson

bracket, we have XEtHt = −XHtEt. Set XHt = Yt. According to (2.12), we can conclude

that

YtEt(λ) = −Ėt(λ)

for any λ ∈ TM∗.

Q.E.D.
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Proof of ii) in Theorem 2.2. We define a smooth family of homogeneous symplectic dif-

feomorphisms φt :
◦
T M∗ → ◦

T M∗ as a one-parameter transformation of Yt, which is con-

structed in Lemma 2.2. Namely,

d

dt
φt(ω) = (Yt)φt(ω), φ0 = id,

for any ω ∈ ◦
T M∗. Then we have

d

dt
(φ∗t Et)(ω) =

d{Et(φt(ω))}
dt

= Ėt(φt(ω)) + (Yt)φt(ω)Et

= −(YtEt)(φt(ω)) + (Yt)φt(ω)Et

= −(YtEt)(φt(ω)) + (YtEt)(φt(ω)) = 0,

for any ω ∈ ◦
T M∗. Therefore, we can conclude that

φ∗t Et = φ∗0E0 = E0.

Q.E.D.

By ii) of Theorem 2.2, we can say that geodesic flows on the cotangent bundle of (M, gt)

are symplectically isomorphic to those on the cotangent bundle of M0.

Proposition 2.2 ([Be]) Let f be a continuous function on M0. Then, the following prop-

erties are equivalent.

i) the function f is odd, that is, f(τm) = −f(m) for every m in M0, where τ denotes

the antipodal map of M0.

ii) for any closed geodesic γ in M0,
∫

γ
f = 0.

Proof. Any function f on M0 is described as the sum of an odd function and an even

function. Set f = f o + f e, where f o is an odd part of f , and f e is an even part of f .

i) ⇒ ii)

Since τ(γ) = γ, we have
∫

γ
f o(γ(s))ds =

∫

τ(γ)
f o(τ(γ(s)))ds =

∫

γ
−f o(γ(s))ds.
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Hence
∫

γ
f o(γ(s))ds = 0 (2.13)

holds for any γ.

ii) ⇒ i)

By (2.13), we have

0 =
∫

γ
f ds =

∫

γ
(f o + f e) ds

(2.13)
=

∫

γ
f e ds. (2.14)

To prove f e ≡ 0, we need the following lemma.

Lemma 2.3 For an even function h on M0 invariant under some subgroup Γ of SO(3)

isomorphic to S1,
∫

γ
h ds = 0 implies h = 0.

Suppose Lemma 2.3 is proved. Fix any point p in M0. Let op be an axis which contains

p and the origin. kp,t ∈ Γ ⊂ SO(3) denotes a rotation around the op axis. A composite

function f e ◦ kp,t is an even function on M0. Then the function Fp : M0 → R defined by

Fp(q) =
∫

S1
(f e ◦ kp,t(q)) dt, q ∈ M is also an even function on M0 which is invariant under

S1-action kp,t. Then we have

∫

γ
Fpds =

∫

γ

{∫

S1
(f e ◦ kp,t) dt

}
ds =

∫

S1

{∫

γ
(f e ◦ kp,t) ds

}
dt

=
∫

S1

{∫

kp,t(γ)
f e ds

}
dt

(2.14)
= 0.

Namely, we have
∫

γ
Fpds = 0. Then we have

Fp = 0, (2.15)

by Lemma 2.3. Since the North Pole p is a fixed point of kp,t, we have

Fp(p) =
∫

S1
(f e ◦ kp,t(p)) dt =

∫

S1
f e(p) dt = 2πf e(p).

Then we have f e(p) = 0 by (2.15). Since p is any point in M0, we obtain f e ≡ 0 on M0.

Hence f is an odd function.

Q.E.D.
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The proof of Lemma 2.3 remains.

Proof of Lemma 2.3 Let (x, y, z) be Euclidian coordinates in R3. Without loss of generality,

we may assume h is invariant under rotation around z-axis. Then h depends only on z,

and written as h(z). For each fixed θ ∈ (0, π ], let γθ be a geodesic in M0 which is described

as follows.

γθ = (x(s), y(s), z(s))

= (sin s, sin θ cos s, cos θ cos s), s ∈ (0, 2π ].

Then we have

0 =
∫

γθ

h(z(s)) ds =
∫ 2π

0
h(cos θ cos s) ds = 4

∫ π
2

0
h(cos θ cos s) ds, (2.16)

for any θ ∈ (0, π/2]. Set cos r = cos θ cos s. Since

dr

ds
=

cos θ sin s

sin r
=

√
cos2 θ − cos2 r

sin r
,

(2.16) is written as

∫ π
2

θ

h(cos r) sin r√
cos2 θ − cos2 r

dr = 0, (2.17)

for any θ ∈ (0, π/2].

Set t = cos r, and x = cos θ. Then we have

0 =
∫ 0

x

h(t) sin r√
x2 − t2

· dt

− sin r
=

∫ x

0

h(t)√
x2 − t2

dt,

for any x ∈ (0, 1]. Then we have h(t) = 0 for any t ∈ (0, 1] by Lemma 8.1 in the Appendix.

Since h is an even function centered at zero, we conclude that h = 0 for any t ∈ [−1, 1].

Q.E.D.

As a corollary of Theorem 2.2 and Proposition 2.2, we get the following result.

Theorem 2.3 (Funk) If gt = exp(ρt)g0 is a smooth family of C2π-metrics on M , with

ρ0 = 0 and ρ̇ =
dρt

dt

∣∣∣∣
t=0

, then ρ̇ is an odd function on M0.
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The converse of Theorem 2.3 is true. Namely, for any odd function on M0, one can construct

C2π-deformations of g0.

Theorem 2.4 ([G]) For every odd function ρ̇ on M0, there exists a smooth one-parameter

family of C∞-functions ρt such that ρ0 = 0, ρ̇ =
dρt

dt

∣∣∣∣
t=0

, and exp(ρt)g0 is a C2π-metric for

small t.

Theorems 2.3 and 2.4 show that every infinitesimal C2π-deformation of the standard sphere

is characterized by an odd function on M0.

3 Zoll surfaces

3.1 Metrics on spheres of revolution

Before introducing Zoll surfaces, we will investigate spheres of revolution because a Zoll

surface is a sphere of revolution with some conditions.

Let (M, g) be a sphere of revolution. Namely, (M, g) has the S1-action as an isometry

group. The Euler number χ(M) is the sum of the indices at the zeroes of any vector field

with isolated singularities. Each of the zeroes of an infinitesimal isometry on S2 is isolated,

and has the index equal to one. Then (M, g) has exactly two fixed points. We call them

the North Pole and the South Pole, and denote by N and S. We assume the distance from

N to S is L ∈ R>0. Here R>0 denotes the set of positive real numbers.

Let θ be the S1-action, and u be the distance from the North Pole. Set U = M\{N,S}.
We also need two other charts UN and US. They are geodesic balls centered at N or S

with radius L. Namely,

UN = {N} ∪ {(u, θ) ∈ U |u < L},
US = {S} ∪ {(u, θ) ∈ U |u > L}.

Now {U,UN , US} together with associated coordinate functions (u, θ) is a parametrization

of M . Then the metric g may be written on U as

g = du2 + a(u)2dθ2 (3.1)

for some smooth function a : (0, L) → R>0, a(0) = a(L) = 0.
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3.2 Geodesics on spheres of revolution

In order to investigate geodesics on a sphere of revolution, we compute the Christoffel

coefficients. They are

Γu
θθ = −a′(u)a(u), Γθ

uθ =
a′(u)

a(u)
. (3.2)

The other Christoffel coefficients are zero. Then a geodesic γ(t) = (u(t), θ(t)) in U satisfies

the following differential equations.





d2u

dt2
− a′(u)a(u)

(
dθ

dt

)2

= 0, u ∈ (0, L), t ∈ R,

d2θ

dt2
+ 2

a′(u)

a(u)

(
du

dt

)(
dθ

dt

)
= 0, θ ∈ [ 0, 2π), t ∈ R.

(3.3)

The second equation of (3.3) gives Clairout’s first integral

a(u)2dθ

dt
= c, (3.4)

where c is a constant. Let γ be a geodesic parametrized by arc length. Then

1 = g(γ̇, γ̇) =
(

du

dt

)2

+ a(u)2
(

dθ

dt

)2

.

Hence

1−
(

du

dt

)2

= a(u)2
(

dθ

dt

)2

≥ 0.

Thus we obtain

a(u)
∣∣∣∣
dθ

dt

∣∣∣∣ ≤ 1.

Multiplying both sides of the inequality by a(u) > 0, we have

a(u)2

∣∣∣∣
dθ

dt

∣∣∣∣ ≤ a(u).

According to (3.4), we have

|c| ≤ a(u). (3.5)

Each geodesic corresponds to the value of |c|. If |c| = 0, then dθ/dt = 0. It implies that γ

is a meridian curve θ ≡ θ0 (const.). The parallel curve u ≡ u0 (const.) is a geodesic if and

only if it satisfies a′(u0) = 0.
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If γ is not a meridian nor the equator, there exists a maximal interval [u1, u2] ⊂ (0, π)

such that a(u1) = a(u2) = |c| and |c| ≤ a(u) for any u ∈ [u1, u2]. Then along the geodesic

γ, we have

u1 ≤ u ≤ u2.

Hence γ is entirely contained between the parallels u = u1 and u = u2. We can see that γ

is tangent to the parallels u = u1 and u = u2. Indeed, let γ(0) be the intersection point

with the parallel u = u1. Then (3.4) and the first equation of (3.3) gives (du/dt)|t=0 = 0.

This means that γ is tangent to the parallel u = u1. We can prove γ is also tangent to the

parallel u = u2 in a similar way.

3.3 Zoll metrics

Now, let us define Zoll surfaces which are known for non-trivial examples of C2π-manifolds.

Definition A Riemannian manifold (M, g) is called a Zoll surface if g is a C2π-metric of

revolution on a sphere.

It is known that all geodesics are simple in Zoll surfaces. We can verify this fact later.

Throughout this paper, assume our Zoll metric is smooth on M (see section 3.4).

Let (M, g) be a Zoll surface. Since (M, g) is a surface of revolution, the metric g is

written as in (3.1). The parallel u = u0 is a geodesic if and only if it satisfies a′(u0) = 0, as

we mentioned above. We should notice that such u0 is unique in the case of a Zoll surface.

We show the fact below.

Lemma 3.4 Let (M, g) be a Zoll surface. There exists a unique u (say u0) with a′(u0) = 0.

Proof. We prove the uniqueness of u = u0 such that a′(u0) = 0. Let R be a curvature tensor,

and ∇ be a covariant derivative of (M, g). The orthonormal basis of the tangent space at

(u, θ) is
{ ∂

∂u
,

1

a(u)

∂

∂θ

}
= {X,Y }. Since we already know the Christoffel coefficients (3.2),

we have

R(X,Y )X = ∇Y∇XX −∇X∇Y X +∇[X,Y ]X

= ∇Y

(
Γu

uu

∂

∂u
+ Γθ

uu

∂

∂θ

)
−∇X

{1

a

(
Γu

θu

∂

∂u
+ Γθ

θu

∂

∂θ

)}
+∇− a′

a2
∂
∂θ

∂

∂u

= −∇X

( a′

a2

∂

∂θ

)
− a′

a2

{
Γu

θu

∂

∂u
+ Γθ

θu

∂

∂θ

}
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= −a
′′
a− 2(a′)2

a3

∂

∂θ
− (a′)2

a3

∂

∂θ
− (a′)2

a3

∂

∂θ

= −a
′′

a2

∂

∂θ
.

Since (M, g) is a surface of revolution, the sectional curvature σ(u, θ) at any point (u, θ) ∈ U

depends only on u. Thus we can write σ(u, θ) = σ(u). Then we have

σ(u) = g(R(X,Y )X,Y )

= g
(
−a

′′

a2

∂

∂θ
,

1

a

∂

∂θ

)
= −a

′′

a2
· 1

a
· a2

= −a
′′

a
.

Since all geodesics have the length 2π, we have a(u0) = 1. Then the sectional curvature at

u = u0 is

σ(u0) = −a
′′
(u0)

a(u0)
= −a

′′
(u0). (3.6)

Let γ(t) be the geodesic u = u0, and let J(t) be a non-zero normal Jacobi field along γ(t)

which satisfies J(0) = 0. Since (M, g) has the constant sectional curvature in the direction

of θ, J(t) is written as J
′′

+ σ(u0)J = 0. By (3.6), we have

J
′′ − a

′′
(u0)J = 0. (3.7)

Let w(t) be the parallel vector field along γ which satisfies g(w(t), γ̇(t)) = 0 and g(w(t), w(t)) = 1.

The solutions of (3.7) with initial conditions J(0) = 0 and J ′(0) = w(0) are:

J(t) =





sin t
√

σ(u0)√
σ(u0)

w(t) if σ(u0) > 0,

tw(t) if σ(u0) = 0,

sinh t
√
−σ(u0)√

−σ(u0)
w(t) if σ(u0) < 0.
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Notice that if J(0) = 0, then J(2π) = 0, since all geodesics are closed and have the

same length 2π. However, J(t) = {sinh t
√
−σ(u0)

√
−σ(u0)}w(t) or J(t) = tw(t) never

satisfies J(0) = J(2π) = 0. Then we can conclude that J(t) = {sin t
√

σ(u0)/
√

σ(u0)}w(t)

and σ(u0) > 0. then we obtain a′′(u0) < 0 from (3.6). This implies that any point u which

satisfies a′(u) = 0 is a local maximum of the function a, hence such u is unique.

Q.E.D.

This unique parallel is called the equator of a Zoll surface (M, g). Then we can define the

Northern Hemisphere and the Southern Hemisphere of M . Fix the direction of the equator.

Then the closed domain on the left side of the equator is called the Northern Hemisphere

of M . The opposite is called the Southern Hemisphere. The equator is supposed to belong

to both hemispheres.

We would like to have a representation of Zoll metrics. Let (M, g) be a Zoll surface

equipped with a parametrization (U,UN , US) and the coordinate functions (u, θ) on U , so

that g may be written on U as (3.1). By Lemma 3.4, there exists a unique u, say u0, with

a′(u0) = 0. Define a new system of coordinates (r, θ) on U by setting a(u) = sin r. u = u0

corresponds to r = π/2.

We define piecewise differentiable curves b : [0, π] → [0, π] and c : [−1, 1] → [0, π] by

b(u) = r and c(cos r) = a−1(sin r) = u. Namely,

b(u) =





arcsin a(u) u ∈ [0, u0],

π − arcsin a(u), u ∈ [u0, π],
(3.8)

c(v) =





a−1|[0,u0](
√

1− v2), v ∈ [0, 1],

a−1|[u0,π](
√

1− v2), v ∈ [−1, 0],

(3.9)

where a−1|[0,u0] and a−1|[u0,π] are the restriction on [0, u0] and [u0, π] of the inverse function

of a. Clearly, b(u) and c(v) have the same order of differentiability as a. We define the

smooth function f from (−1, 1) to R>0 as

f(v) =





v

a′(c(v))
, v 6= 0,

1√
−a′′(u0)

, v = 0.
(3.10)
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Lemma 3.5 f(v) is continuous at v = 0.

Proof. Set v = cos r. First we compute the right-side limit of f as v tends to zero. Suppose

v is in [0, 1]. By differentiating a(u) = sin r in u, we have

a′(u) =
dr

du
cos r = b′(u) cos b(u), (3.11)

since b(u) = r. Then we have

v

a′(u)

(3.11)
=

v

b′(u) cos b(u)
=

cos r

b′(u) cos b(u)
=

cos b(u)

b′(u) cos b(u)

=
1

b′(u)
. (3.12)

Since

c(cos r) = a−1(sin r) = u, (3.13)

we obtain

v

a′(c(v))
=

v

a′(u)

(3.12)
=

1

b′(u)
. (3.14)

On the other hand, by differentiating (3.11) in u, we have

a
′′
(u) = b

′′
(u) cos b(u)− (b′(u))2 sin b(u). (3.15)

Substituting u = u0 in (3.15), we have

−a
′′
(u0) = (b′(u0))

2,

since b(u0) = arcsin a(u0) = π/2. We know a
′′
(u0) < 0 by the proof of Lemma 3.4. Then

we obtain
√
−a′′(u0) = b′(u0). (3.16)

Recall that if v ∈ [0, 1] approaches zero from one, then r ∈ [0, π/2] approaches π/2 from

zero, and u ∈ [0, u0] approaches u0 from zero. Then we have

lim
v→+0

f(v) = lim
v→+0

v

a′(c(v))

(3.14)
=

1

b′(u0)

(3.16)
=

1√
−a′′(u0)

.

24



We can compute the left-side limit of f as v tends to zero in the same way, and obtain

lim
v→−0

f(v) =
1√

−a′′(u0)
.

Therefore, f(v) is continuous at v = 0.

Q.E.D.

Rewrite the metric g written as in (3.1) with this f(v). By (3.13), we have

a(c(cos r)) = a(u) = sin r. (3.17)

By differentiating (3.17) in u, we have

a′(c(cos r))) =
dr

du
cos r.

Then we obtain

du

dr
=

cos r

a′(c(cos r))
= f(cos r).

Hence g may be written on U as

g = du2 + a2(u) dθ2 =
(du

dr

)2
dr2 + sin2 r dθ2

= {f(cos r)}2dr2 + sin2 r dθ2. (3.18)

We will give a necessary and sufficient condition in order that all geodesics in (M, g) are

closed, where g is written on U as in (3.18). We suppose the length of the equator is 2π.

Theorem 3.5 ([D]) Let (M, g) be a Riemannian manifold which is diffeomorphic to S2

and g is a metric of revolution which can be described in a parametrization (U,UN , US)

and coordinate functions (r, θ) on U as in (3.18). We assume the distance from N to S is

L ∈ R>0.

Then, all geodesics in g are closed if and only if

∫ π−i

i

sin i · f(cos r)

sin r
√

sin2 r − sin2 i
dr =

m

n
π,

for every i in (0, π/2). Here m and n are coprime positive integers.

Every geodesic in U , except for the equator, consists of 2n geodesic segments between two

consecutive points of contact with the parallels r = i and r = π − i. Its length is 2nL, and

it turns m times.
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Proof. First, we must give some observations about geodesics in Zoll surfaces in order to

prove the theorem. The meridians are geodesics through the North Pole N and the South

Pole S. Other geodesics are entirely contained in U = M\{N,S}. We can compute the

equations of geodesics in U , and obtain Clairaut’s first integral

sin2 r
dθ

dt
= c, (3.19)

for some constant c. We may set c = ε1 sin i, where the sign ε1 determines the orientation

of the geodesic, and i is in (0, π/2). Then the geodesic, denoted by γi, is contained between

two parallels r = i and r = π− i. Minimum or maximum value of r(t) is r = i or r = π− i,

respectively.

By (3.19), we have

dθ

dt
= ε1

sin i

sin2 r
. (3.20)

Recall that γi is parametrized by arc length. Then, since the metric g is written as in

(3.18), we have

{f(cos r)}2
(

dr

dt

)2

+ sin2 r
(

dθ

dt

)2

= 1. (3.21)

Substituting (3.20) in (3.21), we have

(
dr

dt

)2

=
sin2 r − sin2 i

sin2 r{f(cos r)}2
.

Hence, γ̇i = (dr/dt, dθ/dt) is described as follows:





dr

dt
= ε

√
sin2 r − sin2 i

sin r · f(cos r)
,

dθ

dt
= ε1

sin i

sin2 r
.

(3.22)

Here the sign ε = ±1 does not change on a segment of a geodesic going from r = i to

r = π − i, and it changes whenever r equals to i or π − i.

The angle θ(i, π− i) between two consecutive points of contact with the extreme parallel

is

θ(i, π − i) =
∫ π−i

i

dθ

dr
dr =

∫ π−i

i

dθ

dt

dt

dr
dr = ε1ε

∫ π−i

i

sin i · f(cos r)

sin r
√

sin2 r − sin2 i
dr.
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A geodesic γi is closed if and only if

ε1εθ(i, π − i) =
m(i)

n(i)
π, (3.23)

for some coprime positive integers n(i) and m(i). If all geodesics are closed, then ε1εθ(i, π−i)

is a continuous function from R/2πZ to R for any i in (0, π/2) though the range of θ(i, π−i)

is contained in Qπ. Here Q denotes the set of all rational numbers. Then θ(i, π − i) has

to be constant, say m(i)/n(i) = m/n ∈ Q. We suppose ε1ε = 1 for the sake of simplicity.

Then, γi is closed if and only if

∫ π−i

i

sin i · f(cos r)

sin r
√

sin2 r − sin2 i
dr =

m

n
π, (3.24)

for every i in (0, π/2), and for some positive integers m and n. (3.24) means that γi consists

of 2n geodesic segments between two parallels r = i and r = π − i, and is closed when it

turns m times. Then the length of γi is

2n
∫ π−i

i

dt

dr
dr = ε 2n

∫ π−i

i

sin rf(cos r)√
sin2 r − sin2 i

dr

= 2nLg(i, π − i), (3.25)

where Lg(i, π − i) is the length of γi from r = i to r = π − i.

Since the length from N to S is L, we have

lim
i→0

Lg(i, π − i) = L.

In fact, Lg(i, π − i) is independent on i, since θ(i, π − i) = m/n is a constant. Hence, the

length of γi is 2nL.

Q.E.D.

Remark

If g is smooth, we have m = n = 1. Indeed, suppose g is smooth. If i tends to zero, γi

tends to n-meridians. Then, if n ≥ 2, it yields a contradiction to the differentiability of g

at N and S. Hence n = 1. Then γi has length 2π for any i by Theorem 3.5. If i tends to

π/2, then γi tends to the equator, which is a simply closed geodesic with length 2π. Then
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we conclude that γi turns M just one time, that is, m = 1.

Let h(cos r) be a smooth function from [−1, 1] to R which satisfies f(cos r) = 1+h(cos r).

Using this function h, a metric of revolution (3.18) is written as

g = {1 + h(cos r)}2dr2 + sin2 r dθ2. (3.26)

We show a necessary and sufficient condition in order that the metric written as in (3.26)

is a Zoll metric.

Theorem 3.6 ([Be]) A Riemannian manifold (M, g) is a Zoll surface if and only if g is

a metric of revolution which can be written in a parametrization (U, (r, θ)) as in (3.26),

where h : [−1, 1] → [−1, 1] is an odd function in cos r centered at zero which satisfies

h(1) = h(−1) = 0, and 1 + h > 0.

Proof. Recall that f is a positive function by definition. Then we have 1 + h(cos r) >

0. This, together with the fact that h is an odd function, implies that the range of h

is contained in the interval [−1, 1]. The condition h(1) = h(−1) = 0 guarantees the

smoothness of the metric at the North Pole and the South Pole, as one can see in section

3.4. Then we just have to show the metric written as in (3.26) is a Zoll metric if and only

if h is an odd function. By Theorem 3.5, g is a Zoll metric if and only if

∫ π−i

i

sin i{1 + h(cos r)}
sin r

√
sin2 r − sin2 i

dr = π (3.27)

holds for any i in (0, π/2). Take the odd function h ≡ 0 in (3.26). Then g is the standard

metric on a two-sphere (see Example 3.1 below). Then (3.27) implies

∫ π−i

i

sin i

sin r
√

sin2 r − sin2 i
dr = π, (3.28)

for any i in (0, π/2). Together with (3.27) and (3.28), we have

∫ π−i

i

sin i · h(cos r)

sin r
√

sin2 r − sin2 i
dr = 0, (3.29)

for any i in (0, π/2).

Then, the following lemma is equivalent to the theorem.

Lemma 3.6 h(cos r) is an odd function centered at zero, if and only if (3.29) holds for

any i in (0, π/2).
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Proof. If h(cos r) is an odd function centered at zero, clearly (3.29) holds for any i in

(0, π/2). We will show the converse. Suppose (3.29) holds for any i in (0, π/2). Since any

function is described as the sum of an even function and an odd function, h(cos r) is written

as h(cos r) = he(cos r) + ho(cos r), where he(cos r) is an even part of h, and ho(cos r) is an

odd part of h. Indeed, we may set

he(cos r) =
h(cos r) + h(− cos r)

2
,

ho(cos r) =
h(cos r)− h(− cos r)

2
.

h(cos r) is an odd function if and only if he(cos r) = 0 for any r ∈ (0, π). Hence we have to

show that (3.29) implies that he(cos r) = 0.

0
(3.29)
=

∫ π−i

i

sin i · h(cos r)

sin r
√

sin2 r − sin2 i
dr

= sin i
{∫ π

2

i

h(cos r)

sin r
√

sin2 r − sin2 i
dr +

∫ π−i

π
2

h(cos r)

sin r
√

sin2 r − sin2 i
dr

}

= sin i
{∫ π

2

i

h(cos r)

sin r
√

sin2 r − sin2 i
dr +

∫ i

π
2

h(− cos r)

sin r
√

sin2 r − sin2 i
(−dr)

}

= sin i
∫ π

2

i

h(cos r) + h(− cos r)

sin r
√

sin2 r − sin2 i
dr

= sin i
∫ π

2

i

2he(cos r)

sin r
√

sin2 r − sin2 i
dr.

Namely, we have
∫ π

2

i

he(cos r)

sin r
√

sin2 r − sin2 i
dr = 0

for any i ∈ (0, π/2). Set t = cos r, x = cos i. Then

∫ x

0

he(t)

(1− t2)
√

x2 − t2
dt = 0

holds for any x ∈ (0, 1). Then we obtain he(t) = 0 for any t ∈ (0, 1) by Lemma 8.1 in the

Appendix. Since he is an even function on (−1, 1) centered at t = 0, we have he(t) = 0 for

any t ∈ (−1, 1). Hence we conclude that h is an odd function.

Q.E.D.
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3.4 Differentiability of Zoll metrics

A Zoll metric (3.26) is a metric defined on U = M\{N,S}. However, if the odd function

h : [−1, 1] → [−1, 1] is smooth, then the Zoll metric g is smooth at the North or the South

Pole. Namely, g can be extended from a smooth metric on U to a smooth metric on M .

In order to prove this fact, we need the following two lemmas.

Lemma 3.7 Let k(r) be an even function which is smooth on R. Then, there exists a

function k̃ with k̃(r2) = k(r) which is smooth on R≥0.

Proof. Fix any natural number n. Expanding k in a Taylor series in r around r = 0, we

have

k(r) =
2n−1∑

i=0

1

i!
rik(i)(0) + R2n(r), (3.30)

where R2n(r) is a remainder term. We set k2n−1(r) =
∑2n−1

i=0 (1/i!)rik(i)(0).

case 1)

If k is a polynomial, that is, R2n(r) = 0 for any r in R, k(r) is equal to k2n−1(r). Since

k is an even function, k(i)(0) = 0 holds for any odd number i < 2n. Then k2n−1(r) is a

polynomial in r2, say k̃1(r
2) = k2n−1(r). By smoothness of a polynomial, this k̃1 is smooth.

case 2)

Assume k(i)(0) = 0 holds for any i < 2n, that is, k(r) is equal to R2n(r). Define the

function k̃2 as k̃2(r) = k(
√

r) for r ≥ 0. We discuss the differentiability of k̃2 at r = 0. Set

k̃2(t) = k(
√

t) for any t > 0. For any i ≤ n, the i-th derived function of k̃2 is

k̃
(i)
2 (t) =

2i−1∑

l=i

ci,l
k(2i−l)(

√
t)

(
√

t)l
.

Here ci,l is some positive integer. Then we have

lim
t→0

k̃
(i)
2 (t) = lim

r→0

2i−1∑

l=i

ci,l
k(2i−l)(r)

rl
= c k(2i)(0),

where c is some positive integer. The last equality follows from L’Hospital’s theorem. The

assumption k(m)(0) = 0 for any m < l < 2i ≤ 2n makes it possible to use it.

Hence, if k is 2n-times differentiable, then k̃2 is n-times differentiable.
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general case)

By (3.30), k(r) is written as

k(r) = k2n−1(r) + R2n(r)

= k̃1(r
2) + k̃2(r

2).

k̃1 is smooth by the case 1), and k̃2 is n-times differentiable by the case 2). Then k̃1(r
2) +

k̃2(r
2) is n-times differentiable, and hence, it is smooth on R≥0, since n is any natural

number.

Q.E.D.

Lemma 3.8 Let k(r) be an even function with k(0) = 0 which is smooth on R. Then the

metric which is described in a parametrization (U, (r, θ)) as

g = {1 + k(r)}2dr2 + r2dθ2

can be smoothly extended to r = 0. Hence, g is a smooth metric on M .

Proof. Define two metrics g1, g2 as g1 = dr2 + r2dθ2 and g2 = {2k(r) + k2(r)}dr2. Then g

is written as g = g1 + g2. Let (x, y) = (r cos θ, r sin θ) be Euclidian coordinates. Then g1 is

smooth at (x, y) = (0, 0), since

g1 = dr2 + r2dθ2 = dx2 + dy2

is exactly the Euclidian metric.

Since k(r) is even, 2k(r) + k2(r) is also an even function. Then, according to Lemma

3.7, there exists a smooth function k̃ such that k̃(r2) = 2k(r)+k2(r). Set j(r2) = k̃(r2)/r2.

Then we have

g2 = k̃(r2)dr2 = r2j(r2)dr2

= j(r2){rdr}2

= j(x2 + y2){xdx + ydy}2.

Hence g2 is smooth at (x, y) = (0, 0). Therefore, g can be smoothly extended to r = 0.

Q.E.D.

31



Let g = {1 + h(cos r)}2dr2 + sin2 r dθ2 be a Zoll metric showed in Theorem 3.6. h is a

smooth odd function in cos r and satisfies h(1) = h(−1) = 0, and 1 + h > 0. Set sin r = t.

Let h̃(t) be the function defined by

h̃(t) =
1− cos r + h(cos r)

cos r
.

Then h̃(t) is an even function since cos r is even in t, and satisfies h̃(0) = 0. Then we have

g = {1 + h(cos r)}2 dt2

cos2 r
+ t2dθ2

=
{

1 + h(cos r)

cos r

}2

dt2 + t2dθ2

= {1 + h̃(t)}2dt2 + t2dθ2.

By Lemma 3.8, we can conclude that g is a smooth metric on the whole M .

3.5 Examples of Zoll surfaces

There is a wide choice of functions h. In particular, notice that there is no condition on

the derivatives of h, that is, on the sectional curvature constructed from h. The sectional

curvature at r is written as

σ(r) =
1

{1 + h(cos r)}3
{1 + h(cos r)− cos r · h′(cos r)}. (3.31)

Here we give some examples of Zoll surfaces.

Example 3.1

Take the constant function h ≡ 0. Then the Zoll metric is g = dr2 + sin2 rdθ2, and we

can verify that σ(r) = 1 for any r ∈ [0, π] from (3.31). This is the standard metric on a

two-sphere.
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Example 3.2

Take the function h(cos r) = cos r sin(2k + 1)r, for k ∈ Z. Then the associated sectional

curvature σk(r) is

σk(r) =
1

{1 + cos r sin(2k + 1)r}3

{
1 +

(2k + 1) cos2 r cos(2k + 1)r

sin r

}
.

If k = 0, the associated Zoll surface has non-negative sectional curvature for any r ∈ [0, π].

On the other hand, by a suitable choice of k ∈ Z and r ∈ [0, π], the sectional curvature at

r can be made less than any negative number.

Remark

Zoll metric (3.26) can be extended to a metric on a n-dimensional sphere Sn. Its represen-

tation is similar to that of the standard metric on Sn. Spherical coordinates in (n + 1)-

dimensional Euclidian space are given below:





x1 = cos θ1

x2 = sin θ1 cos θ2

...

xi =
( i−1∏

j=1

sin θj
)
cos θi

...

xn+1 =
n∏

i=1

sin θi,

for θi ∈ [0, π], (i = 1, 2, . . . , n − 1) and θn ∈ [−π, π]. Then the standard metric on Sn,

(n > 2), has the following inductive expression:

gn
0 = (dθ1)2 + sin2 θ1 gn−1

0 .

Here gn−1
0 is the standard metric on Sn−1, whose coordinates are (θ2, θ3, . . . , θn).

One can check n-dimensional Zoll metric is written as

g = {1 + h(cos θ1)}2(dθ1)2 + sin2 θ1 gn−1
0 .
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4 Billiards on Riemannian manifolds

4.1 Notation about billiards on Riemannian manifolds

Billiards on Riemannian manifolds are the extension of those on the Euclidian plane. Let

(D, g) be a compact convex Riemannian manifold with smooth boundary ∂D. Here convex

means for any two points p, q in D, there exists a geodesic from p to q which is entirely

contained in D. We assume any geodesic issuing from a point in the interior of D intersects

∂D, and it has two endpoints.

Let TM be a tangent bundle over M , and let UM be a unit tangent bundle over M . For

a boundary point of D, the set of unit tangent vector toward D is defined by

U+(∂D) = {v ∈ UpD | p ∈ ∂D , g(v, Np) > 0},

where Np is the inward normal to ∂D.

By taking p0 ∈ ∂D and v0 ∈ U+
p0

(∂D), we obtain a geodesic

ζ1
0 (t) = expp0

(tv0)

for t ∈ [t0, t1], where t0 = 0, and t1 denotes the first value of t > 0 such that ζ1
0 (t) hits ∂D.

Then a unit vector v1 ∈ U+
ζ1
0 (t1)

(∂D) is determined according to the rule that the angle of

incidence equals the angle of reflection. Namely, the angle between Tζ1
0 (t1)(∂D) and v1 is

equal to the angle between Tζ1
0 (t1)(∂D) and

d

dt
ζ1
0 (t) |t=t1 . Hence we obtain a geodesic

ζ2
1 (t) = expζ1

0 (t1) (t− t1)v1

for t ∈ [t1, t2], where t2 denotes the first value of t > 0 such that ζ2
1 (t) hits ∂D. Note that

ζ1
0 (t1) = ζ2

1 (t1). Analogously, geodesic segments are defined by

ζ i+1
i (t) = expζi

i−1(ti)
(t− ti)vi

for t ∈ [ti, ti+1] and some non-negative integer i ∈ Z≥0. Broken geodesic segments

ζ(t) =
⋃

i=0

ζ i+1
i ([ti, ti+1])

are called a billiard in D.

Remark

∂D is not a billiard, even if it is a geodesic. It can only be considered as a limit of billiards.
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4.2 Periodic billiards

Now, we will introduce a periodic billiard and its period. The period of a periodic billiard

is constructed of two positive integers, called the link number and the rotation number.

Definition A billiard ζ(t) is periodic if there exists a positive integer q ∈ Z>0 such that

ζ i+1
i (t− ti) = ζ i+q+1

i+q (t− ti+q),

for any i ∈ Z≥0, and any t ≥ 0. It is often called a q-link periodic billiard.

A rotation number of a periodic billiard is defined as follows. Let ζ(t) be a q-link

periodic billiard in D, and fix the direction of ∂D. Let c : R −→ D be a representation

of ∂D parametrized by arc length, where R is the set of all real numbers. We choose the

direction of c in the same direction as ∂D. (ζ i+1
i (ti))i∈Z≥0

is a sequence of points in ∂D,

and is represented by a monotone increasing sequence of real numbers s = (si)i∈Z≥0, which

is defined by the minimum of those which satisfies ζ i+1
i (ti) = c(si), s0 = 0. Let L be the

length of ∂D. Since ζ(t) is a q-link periodic billiard, there exists a positive integer r such

that

sq = rL. (4.1)

Take the opposite orientation of ∂D. Let c−1 : R −→ D be its representation of ∂D.

(ζ i+1
i (ti))i∈Z≥0

is represented by a monotone increasing sequence of real numbers x =

(xi)i∈Z≥0, which is defined by the minimum of those which satisfies ζ i+1
i (ti) = c−1(xi),

x0 = 0. Since the direction of c and c−1 is opposite and c(si) = c−1(xi) for any i ≥ 0, we

have the following equations.

s1 + x1 = L,

s2 − s1 + x2 − x1 = L,

...

sq − sq−1 + xq − xq−1 = L.

Adding both sides of these equations, we have

q−1∑

i=0

(si+1 − si) +
q−1∑

i=0

(xi+1 − xi) = qL.

Since sq = sq − s0 =
∑q−1

i=0 (si+1 − si) and xq = xq − x0 =
∑q−1

i=0 (xi+1 − xi), we obtain

sq + xq = qL.
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By (4.1), this implies

xq = (q − r)L.

We can verify r < q, since si+1 − si < L holds for any i, then we have rL = sq = sq − s0 =∑q−1
i=0 (si+1 − si) < qL.

A positive integer p defined by p = min{r , q − r} is called the rotation number of a

q-link periodic billiard ζ(t). Clearly, the rotation number is independent of the choice of

the direction of ∂D.

The pair of such positive integers (q, p) is called a period of the periodic billiard. A peri-

odic billiard which has a period (q, p) is often called a (q, p)-periodic billiard.

5 Rigidity problems for Zoll surfaces

5.1 Billiards on Zoll surfaces

Let (M, g) be a Zoll surface. If we give the Northern Hemisphere of a Zoll surface, its

Southern Hemisphere is automatically determined since a Zoll metric is characterized by

an odd function h(cos r) centered at r = π/2. In particular, the following holds.

Theorem 5.1 Let (M, g) be a Zoll surface whose Northern Hemisphere is the standard

sphere. Then, (M, g) is the standard sphere.

Note: A non-trivial Zoll surface (i.e. a Zoll surface which is not the standard sphere) is

always not symmetrical with respect to the equator r = π/2. We can verify this fact, for ex-

ample, by computing the meridian curve of a non-trivial Zoll surface which is isometrically

embedded in the Euclidian space.

In order to weaken the assumption of Theorem 5.1, we regard geodesic segments on the

Northern Hemisphere of a Zoll surface as billiards.

First, we will begin with a simple observation of the billiards on the Northern Hemisphere

of the standard sphere. All geodesics starting from a given point p on the equator arrive

at the same point p′, namely the antipodal point of p. The angle between the equator

and the geodesic starting from the equator equals to the angle between the equator and

the geodesic arriving at the equator. Since the angle of incidence of a segment of billiards

equals the angle of reflection, the billiard starting from p always comes back to p via p′.
Thus all billiards are (2, 1)-periodic. In particular, each billiard segment has the same

length π, which is independent of a choice of an initial point or angle. We can indicate the

properties of billiards on the Northern Hemisphere of the standard sphere as follows:

1) all segments of the billiards have the same length π,
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2) each billiard is (2, 1)-periodic.

Let us now attempt to extend the observation into the billiards on the Northern Hemi-

sphere of a Zoll surface. Zoll metric is written as in (3.26). The equator of a Zoll surface is

r = π/2. Then two parallels r = i and r = π− i face each other across the equator r = π/2

for any i ∈ (0, π/2). Since every geodesic in U = M\{N,S} is contained between r = i

and r = π − i (see section 3.3), all geodesics intersect the equator.

Geodesics starting from a given point p in the equator are not arriving at the same

point in the equator in general. However, similar to the case of the standard sphere, the

angle between the equator and the geodesic starting from the equator equals to the angle

between the equator and the geodesic arriving at the equator. Then applying the first

variation formula, all segments of the billiards starting from the equator at the angle φ

have the same length L(φ). Namely, the length of a geodesic segment on the Northern

Hemisphere depends only on its angle with the equator. In addition, billiards are not

periodic in general.

Billiards on the Northern Hemisphere yield billiards on the Southern Hemisphere, since

all geodesics of the Zoll surfaces are closed, and intersect the equator. If the length of a

segment of the Northern Hemisphere is l, then the length of the corresponding segment of

the Southern Hemisphere is 2π − l.

According to our observation, we can see that billiards on a Zoll surface do not always

satisfy either of the two properties 1) and 2) which are mentioned above. However, if

billiards on the Northern Hemisphere of a Zoll surface satisfy at least 1) or 2) above, the

metric should be the standard one. These facts are given bellow as Theorems 5.2 and 5.3.

5.2 Some results for Zoll surfaces

Let γ(t) = (r(t), θ(t)) be a geodesic in (M, g) contained between two parallels r = i and

r = π− i for i ∈ (0, π/2) whose minimum or maximum value of r(t) is r = i and r = π− i,

respectively. Let us consider the length of γ(t) from r = i to r = j, denoted by Lg(i, j), for

a positive real number j such that 0 < i < j ≤ π/2. Let (M, g0) be the standard sphere.

Lg0(i, j) means the length from r = i to r = j of a geodesic in (M, g0) contained between

parallels r = i and r = π − i.

Now, fix any j ∈ (0, π/2].

Lemma 5.1 Lg(i, j) = Lg0(i, j) holds for any i ∈ (0, j) if and only if
∫ y

cos j
h(t)dt = 0

holds for any y > cos j.
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Proof. Lg(i, j) is written as

Lg(i, j) =
∫ j

i

dt

dr
dr = ε

∫ j

i

sin r{1 + h(cos r)}√
sin2 r − sin2 i

dr.

We suppose ε = 1 for the sake of simplicity. Since g0 is a Zoll metric with h(cos r) ≡ 0,

Lg0(i, j) is written as

Lg0(i, j) =
∫ j

i

sin r√
sin2 r − sin2 i

dr. (5.1)

Then, the assumption Lg(i, j) = Lg0(i, j) equals to

∫ j

i

(sin r)h(cos r)√
sin2 r − sin2 i

dr = 0, (5.2)

for any i ∈ (0, π/2). Set t = cos r and x = cos i. Then we have

∫ x

cos j

h(t)√
x2 − t2

dt = 0. (5.3)

Then for any y > cos j,
π

2

∫ y

cos j
h(t)dt = 0 (5.4)

holds by the proof of Lemma 8.1 in the Appendix.

If we follow the proof inversely, (5.4) implies that Lg(i, j) = Lg0(i, j) for any i ∈ (0, j).

Q.E.D.

Theorem 5.2 Let (M, g) be a Zoll surface such that all segments of the billiards on the

Northern Hemisphere have the same length π. Then, (M, g) is the standard sphere.

Proof. By assumption, Lg(i, π/2) = Lg0(i, π/2) = π/2 for all i in (0, π/2). Then Lemma

5.1 gives us
π

2

∫ y

0
h(t)dt = 0

for all y > 0. Since h(t) is an odd function centered at zero, we have h(t) ≡ 0. Then we

have the conclusion.

Q.E.D.

We considered a geodesic contained between two parallels r = i and r = π − i, and

compare the length from r = i to the equator r = π/2 in the metric g with that in g0. This

r = π/2 is the best condition. Namely, if the length from r = i to the parallel above (or

below) the equator in the metric g equals that in g0, (M, g) is not necessary the standard

sphere. In fact, we have counter-examples.
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Example 5.1

Take an odd function h1(t) which is equal to zero on the interval [ cos(π/2 − ε) , 1 ] for

some 0 < ε < π/2, but not identically zero on [−1, 1]. Then, for all i in (0, π/2) and

i < j < π/2− ε, (M, g) satisfies Lg(i, j) = Lg0(i, j).

Example 5.2

h1(t) in Example 5.1 satisfies (5.4) not only for j ∈ (0, π/2) but also for j ∈ (π/2, π), since

∫ cos j

cos(π−j)
h1(t)dt = 0

always holds for j ∈ (π/2, π). Then, according to Lemma 5.1, the Zoll surface (M, g) with

respect to this h1(t) satisfies Lg(i, j) = Lg0(i, j) for all i in (0, π/2) and j ∈ (π/2, π − i).

Theorem 5.3 Let (M, g) be a Zoll surface such that all billiards on the Northern Hemi-

sphere are periodic. Then its period should be (2, 1), and (M, g) is the standard sphere.

Proof. Let γ(t) = (r(t), θ(t)) be a geodesic contained between parallels r = i and r = π− i

for all i ∈ (0, π/2) whose minimum or maximum value of r(t) is r = i or r = π − i,

respectively. We take the initial point γ(0) = (i, 0) in the parallel r = i. Let θ(i, π/2) be

the value of θ which γ(t) starting from γ(0) hits the equator for the first time. The hit

point is (π/2, θ(i, π/2)).

According to the formula (3.22), θ(i, π/2) is written as

θ(i,
π

2
) =

∫ π
2

i

dθ

dr
dr =

∫ π
2

i

dθ

dt

dt

dr
dr = ε1ε

∫ π
2

i

sin i{1 + h(cos r)}
sin r

√
sin2 r − sin2 i

dr.

We suppose ε1ε = 1 for the sake of simplicity. If all billiards are periodic, then

2θ(i, π/2)q(i) = 2πp(i) for some coprime positive integers q(i) and p(i) such that p(i) < q(i).

By the continuity of θ(i, π/2), p(i) and q(i) must be constant, say p and q. Namely,

θ(i,
π

2
) =

p

q
π

holds for any i in (0, π/2), and then, all billiards are (q, p)-periodic. If i tends to zero, γ

tends to a meridian curve. Hence we have

lim
i→0

θ(i,
π

2
) =

π

2
.
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Therefore, θ(i, π/2) = π/2 holds for any i ∈ (0, π/2), and all billiards are (2, 1)-periodic.

Then we have

θ(i,
π

2
) =

∫ π
2

i

sin i{1 + h(cos r)}
sin r

√
sin2 r − sin2 i

dr =
π

2
, (5.5)

for any i ∈ (0, π/2). Since (5.5) always holds for h(cos r) = 0, we have

∫ π
2

i

sin i

sin r
√

sin2 r − sin2 i
dr =

π

2
, (5.6)

for any i ∈ (0, π/2). By (5.5) together with (5.6), we have

∫ π
2

i

(sin i)h(cos r)

sin r
√

sin2 r − sin2 i
dr = 0, (5.7)

for any i ∈ (0, π/2). Consider the function H(cos r) = h(cos r)/ sin2 r. Since H(cos r) is

an odd function centered at zero, (5.7) is the particular case of (5.2). Hence the proof of

Theorem 5.3 can be reduced to the proof of Theorem 5.2.

Q.E.D.

5.3 How to extend to C2π-manifolds

We would like to extend our results for Zoll surfaces to general C2π-surfaces. Let (M, g)

be a C2π-surface. Let D be a closed domain in M such that its boundary ∂D is a geodesic

in (M, g). Suppose the billiards on (D, g) have similar properties to those on the standard

hemisphere. Then, is (M, g) the standard sphere?

Let us give a notation which is useful to describe properties of the billiards on the

standard hemisphere. The equator is regarded as the boundary of a billiard table. Let

(D, g) be a compact convex Riemannian manifold with smooth boundary.

Definition We say the billiards on (D, g) have the spherical property if they satisfy:

1) all segments of the billiards have the same length π,

2) each billiard is (2, 1)-periodic.

The condition 2) implies that ∂D is a geodesic, since it is the limit of the segments of

billiards. Then ∂D is closed, and has length 2π.

Let γθ(t) be a geodesic issuing from p0 ∈ ∂D with the initial angle θ ∈ (0, π), and

denote γθ(0) = p0. Define the map s : (0, π) → ∂D by s(θ) = γθ(π). If ds/dθ 6= 0, γ̇θ(π)

is orthogonal to ∂D by Gauss’ lemma. Since the billiards on (D, g) have the spherical
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property, geodesics always have the same angle at ∂D. Hence θ = π/2. If θ 6= π/2, we

have ds/dθ = 0. Therefore, ds/dθ is identically zero, and s is a constant map. Namely, all

geodesics issuing from p0 ∈ ∂D arrive at only one point.

Let q0 be a point in ∂D such that the length from p0 to q0 along ∂D is π. Since all

segments of the billiards have the same length π, we have

lim
θ→0

s(θ) = q0.

Let
◦
D be the interior of D. There exists a minimizing geodesic from p0 to q0, since D is

convex. If it is contained in ∂D, its length is π by the definition of q0. If it is contained

in
◦
D, its length is also π, since it is a billiard segment. Hence γθ is a minimizing geodesic

from p0 to q0 for each θ ∈ (0, π). By the first variation formula, a billiard issuing from

a point in ∂D with an angle φ arrives at ∂D with the same angle φ. Since the angle of

incidence equals the angle of reflection, the billiard always has the same angle φ at ∂D.

Fix any point p ∈ ◦
D, and p0 ∈ ∂D. There exists a unique and minimizing geodesic from

p0 to p. Indeed, suppose there are two minimizing geodesics from p0 to p. By extending

these geodesics to ∂D, we can show a contradiction to the fact that all billiard segments

issuing from p0 is minimizing. Let ξp0 be the geodesic parametrized by arc length, and

ξp0(0) = p0, ξp0(t) = p. Define the map φp by

φp : S1 ∼= ∂D 3 p0 7→ ξ̇p0(t) ∈ UpD ∼= S1.

Since ξp0 is a unique geodesic from p0 to p, φp is continuous and injective. Then it is

surjective. Hence all geodesics in
◦
D are part of billiard segments, and they are minimizing.

In particular, there are no closed geodesics in
◦
D.

Let (M, g) be a C2π-surface, and γ be a geodesic in M . Since γ is closed, and particularly

simple ([G·G]), γ divides M into two domains. Fix the direction of γ. The closed domain

on the left side of γ is called the Northern Hemisphere of M . The opposite is called the

Southern Hemisphere. γ is supposed to belong to both hemispheres.

Now we assume that the billiards on the Northern Hemisphere of M have the spherical

property. Then the billiards on the Southern Hemisphere also have the spherical property

since (M, g) is a C2π-surface. Then a rigidity problem for C2π-surfaces can be loosely said

as follows. If the half of a C2π-surface is the standard sphere in the sense of billiards, is it

the standard sphere? The problem is precisely stated below.

Problem 2 Let (M, g) be a C2π-surface. Let D be a closed domain in M such that its

boundary ∂D is a geodesic in (M, g). Suppose the billiards on (D, g) have the spherical

property. Then, is (M, g) the standard sphere?
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We could solve this problem under stronger condition. It is stated and proved in the

following section.

6 Rigidity problems for C2π-manifolds from a view-

point of billiard problems

In this section, we solve Problem 2 under a certain conformality condition. We use the

method of boundary rigidity problems for Riemannian manifolds by C. Croke ([C]). Croke’s

method essentially needs the uniqueness of the geodesics between boundary points. How-

ever, our billiard condition makes it possible to obtain the conclusion without the unique-

ness of the geodesics.

Let (M, g0) be the two-dimensional standard sphere, and f be a smooth positive function

on M .

Theorem 6.1 Let (M, g) be a C2π-surface with metric g = f 2g0. Let D be a closed domain

in M such that its boundary ∂D is a geodesic in (M, g). Suppose (D, g) satisfies the

following:

i) the billiards on (D, g) have the spherical property,

ii) ∂D is a unit speed geodesic in g, and also in g0.

Then, (M, g) is the standard sphere.

In order to prove the theorem above, we should give some notation and show two lemmas.

Let γ be a geodesic in (M, g) such that γ = ∂D.
◦
D denotes the interior of D. The restriction

of g to D is denoted g again.

Let UD = (UD, G) be a unit tangent bundle over D with metric G, where G is a Sasaki

metric with respect to g. Let UD0 = (UD, G0) be a unit tangent bundle over D with

metric G0, where G0 is a Sasaki metric with respect to the standard metric g0.

Let U+γ = (U+γ, G|U+γ) be a subbundle of UD whose total space is defined as

U+γ = {v ∈ Uγ(s)D | g(v, Nγ(s)) ≥ 0},

where Nγ(s) is the inward normal at γ(s). Analogously, we can define (U+γ)0 as a subbundle

of UD0. du and dv denote the standard measures of UD and U+γ with respect to g,

respectively. ‖ · ‖ denotes a norm with respect to g. In the same way, du0, dv0 and ‖ · ‖0

denote the standard measures of UD0, (U+γ)0 and a norm with respect to g0, respectively.
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Let q : UM → M be a projection on UM . For each v ∈ UM , there exists a unique

geodesic ξv : R → M which satisfies ξv(0) = q(v) and ξ̇v(0) = v. Denote vt = ξ̇v(t), where

v0 = v. Then q(vt) = ξv(t) holds for any t ∈ R. We define the map ϕ : UM ×R → UM

by ϕ(v, t) = vt. Then (UM, ϕ) is a C∞ flow called the geodesic flow on UM . Let Zg(t)

be a vector field on UM whose associated one-parameter family is ϕ. Zg(t) is called the

geodesic vector field on UM . Since M is a C2π-surface, the geodesic flow ϕ on the unit

tangent bundle UM is periodic. Then Zg generates a free action of S1. The quotient

space UM/S1 is a two-dimensional manifold (the manifold of oriented geodesics) which we

denote by CM . The projection π : UM → CM is a S1-principal bundle. Let TM∗ be a

cotangent bundle over M . Let α be the differential one-form on TM which is a pull-back of

the canonical one-form on TM∗. We consider the restriction of α to UM , and still denote

by α. Since α(Zg) = 1, the one-form α satisfies the definition of a connection form for the

S1-principal bundle π : UM → CM . The distribution Q : UM → TUM defined by

Qu = {X ∈ TuUM | α(X) = 0 , u ∈ UM}
is a connection whose associated connection form is α. Then the direct sum decomposition

of TuUM is

TuUM = R · Zg(u)⊕Qu.

Moreover, according to the structural equation, dα is the curvature form of this connection

form α.

The following lemma is the special case of Santaló ’s formula([M]).

Lemma 6.1 Suppose the assumption is all the same as Theorem 6.1 above. The restriction

of α and dα to UD or U+γ are still denoted by α and dα. Then the following holds:
∫

UD
η(u) α ∧ (dα) =

∫

U+γ

{∫ π

0
η(ξ̇(t))dt

}
dα,

where η(u) is an integrable function on UM , u = ξ̇(t) ∈ UM , ξ(t) is a geodesic in (M, g).

Proof. Let ω be the closed two-form on CM defined by π∗ω = dα. Since ω is non-

degenerate, it can be a symplectic form on CM . By Fubini’s theorem, we have
∫

UM
η(u) α ∧ (dα) =

∫

ξ∈CM

{∫

ξ
η(ξ̇(t))dt

}
ω.

Since the billiards on D have the spherical property, all geodesics passing through a point in
◦
D have two intersection points with ∂D. Then we can consider the map φ : U

◦
D −→ U+γ
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defined by φ((ξ(t), ξ̇(t))) = (ξ(0), ξ̇(0)), where ξ(t) is a geodesic whose initial condition is

(ξ(0), ξ̇(0)). Since dα|
U
◦
D

= φ∗(dα|U+γ), (U+γ, dα|U+γ) is symplectically diffeomorphic to

(CM, ω). Recall that all billiard segments have length π on D. Then we have

∫

UD
η(u) α ∧ (dα) =

∫

(ξ(0),ξ̇(0))∈U+γ

{ ∫ π

0
η(ξ̇(t))dt

}
dα.

Q.E.D.

Lemma 6.2 Suppose the assumption is all the same as Theorem 6.1 above.

Let ξ0(t) be a geodesic in (D, g0). Then the following holds.

∫ π

0
‖ ξ̇0(t) ‖dt ≥ π.

Proof. (D, g0) is a closed subdomain of the standard sphere (M, g0). Recall that γ = ∂D is

a geodesic in g also in g0, then we know that (D, g0) is precisely a hemisphere of (M, g0).

Since ξ0(t) is a geodesic in g0, the distance from ξ0(0) to ξ0(π) in g0 is π. On the other

hand, the distance from ξ0(0) to ξ0(π) along γ in g is also π. Then ξ0(0) and ξ0(π) are

connected by minimizing geodesics in (
◦
D, g), and their length are also π. Hence the length

of ξ0(t) in g is not less than π.

Q.E.D.

Now, we are ready to prove Theorem 6.1.

Proof of Theorem 6.1 For x in
◦
D, let u be a tangent vector at x such that ‖ u ‖0= 1.

Then, since g = f 2g0, we have ‖ u ‖= f(x) . Integrating this over UD0 and applying

Fubini’s theorem, we have
∫

UD0

‖ u ‖ du0 = 2π
∫

D
f(x)dx0, (6.1)

where dx0 is the standard measure of the standard hemisphere (D, g0).

Let ξ0(t) be a geodesic in g0, and u = ξ̇0(t). Set UM0 = (UM, G0), and CM0 = UM0/S
1.

Let α0 be a connection form for S1-principal bundle

π0 : UM0 → CM0

which is analogously defined as a connection form α. dα0 is the curvature form of α0.
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Since α0 ∧ dα0 is a volume form of UD0, we have

2π
∫

D
f(x)dx0

(6.1)
=

∫

UD0

‖ u ‖ du0

=
∫

UD0

‖ u ‖ α0 ∧ (dα0)

Lemma6.1
=

∫

(U+γ)0

{∫ π

0
‖ ξ̇0(t) ‖dt

}
dα0

Lemma6.2≥
∫

(U+γ)0

π dα0

=
∫

(U+γ)0

{∫ π

0
dt

}
dα0

=
∫

UD0

α0 ∧ (dα0)

=
∫

UD0

du0

= 2π vol(D, g0).

Namely, we have ∫

D
f(x)dx0 ≥ vol(D, g0). (6.2)

On the other hand, since ∂D is a geodesic in g0,

vol(D, g) = vol(D, f 2g0) =
∫

D
f 2(x)dx0.

According to the Cauchy-Schwarz inequality,

vol(D, g)1/2vol(D, g0)
1/2 =

{∫

D
f 2(x)dx0

}1/2{∫

D
dx0

}1/2

≥
∫

D
f(x)dx0

(6.2)

≥ vol(D, g0).

Hence we have

vol(D, g) ≥ vol(D, g0), (6.3)
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where the equality holds if and only if f(x) = 1 for any x ∈ D.

Since γ is a unit speed geodesic in g also in g0, g equals to g0 on γ. Namely,

g(γ̇(t), γ̇(t)) = g0(γ̇(t), γ̇(t)),

for any t ∈ R/2πZ. Then we obtain
∫

UD
du =

∫

UD
α ∧ (dα) =

∫

U+γ

{∫ π

0
dt

}
dα

=
∫

(U+γ)0

{∫ π

0
dt

}
dα0 =

∫

UD0

α0 ∧ (dα0)

=
∫

UD0

du0.

Applying Fubini’s theorem, we have

vol(D, g) = vol(D, g0). (6.4)

Then the equality holds in (6.3). Hence we have a conclusion that f(x) = 1 for any x ∈ D.

Let D′ ⊂ M be the complement of
◦
D, that is, another closed domain enclosed by γ. Since

the billiards on D have the spherical property, the billiards on D′ also have the spherical

property. Hence the same argument applies to D′. Finally we have f(x) = 1 for any

x ∈ M .

Q.E.D.

Remark

Theorem 6.1 can be extended to the result for n-dimensional C2π-manifolds. In this case,

the boundary of D is not a geodesic γ, but a totally geodesic hypersurface of M . Then we

apply the Hölder inequality instead of the Cauchy-Schwarz inequality.

7 Rigidity problems for C2π-manifolds

Theorem 6.1 is the rigidity problem for C2π-surfaces under some billiard conditions on

a hemisphere. One can easily see that if a hemisphere of a C2π-surface is the standard

hemisphere, the billiards on the remaining half have the spherical property. If we fully use

the condition that a half of a C2π-surface is the standard hemisphere, we can prove that the

remaining half will also be the standard hemisphere. This result, the following Theorem

7.1, is the solution of Problem 1 which appeared in section 1. It is the extension of Theorem

5.1 to the general C2π-surfaces. Here M denotes a manifold which is diffeomorphic to S2.
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Theorem 7.1 Let (M, g) be a C2π-surface. Let D be a closed domain in M such that its

boundary ∂D is a geodesic in (M, g). Suppose (D, g) is the standard hemisphere. Then,

(M, g) is the standard sphere.

Proof. By assumption, M = (M, g) is divided into two manifolds with boundary, written as

M = U ∪D, where D is the standard hemisphere and U is the complement of the interior

of D in M . Let γ0 be ∂D = ∂U .

Let M ′ = U ′ ∪D′ be a copy of M . Since D and D′ are the standard hemispheres, they

are smoothly attached by identifying a point in D with its antipodal point in D′. Then the

union D ∪D′ is the standard sphere. Recall that U and D are smoothly attached, and U ′

and D′ are also smoothly attached. Then we can smoothly attach U to U ′ by identifying a

point in ∂U with its antipodal point in ∂U ′ (see Figure 1 below). We denote M̃ = U ∪U ′.

¶

µ

³

´

¾

½

¶

µ

³

´

¾

½

¶

µ

³

´

»

¼

¶

µ

³

´

»

¼

U

U ′

D

D′

smoothly attached←→

smoothly attached←→

smoothlylattached

Figure 1: Hemispheres are smoothly attached to each other

Let τ̃ be a diffeomorphism from U to U ′ such that τ̃ maps a point p in U to the same

point p′ in U ′. Namely, let φ be a natural diffeomorphism from M to M ′, and we identify

M with M ′ by this φ. Then τ̃ is defined as τ̃(p) = φ(p), for any p ∈ U .

Let g̃ be the metric on M̃ defined by

g̃ =





g on U

g′ on U ′,

where the metric g′ is a metric on U ′ which satisfies τ̃ ∗g′ = g. Note that g̃ is smooth around

the equator.
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Let γ(t) be a geodesic in (M, g) parametrized by arc length. Since M is a C2π-surface

whose hemisphere is the standard one, γ is a closed geodesic which is divided by γ0 into

two geodesic segments with length π. Namely, γ is represented as

γ(t) =





γU(t) t ∈ [0, π]

γD(t) t ∈ [π, 2π].

Here γU(t) is a geodesic in (U, g) issuing from γU(0) ∈ γ0, and γD(t) is a geodesic in (D, g)

issuing from γD(π) ∈ γ0, the antipodal point of p0.

claim

γU(t) is smoothly attached to τ̃(γU(t)) in M̃ , and hence γU(t) ∪ τ̃(γU(t)) is a geodesic in

(M̃, g̃).

Indeed, since D is the standard hemisphere, if γD starts γ0 at some angle, say α, then it

arrives γ0 at the same angle α. Then, γU starts γ0 at the angle α, and it arrives γ0 at the

same angle α again. By the definition of g′, (U ′, g′) is isometric to (U, g). Then τ̃(γU) also

crosses τ̃(γ0) at the angle α.

Therefore, τ̃(γU) and γU face each other at the same angle α to the equator, then they

are smoothly attached to each other. Since g̃ is smooth around γ0, γU ∪ τ̃(γU) is a geodesic

in (M̃, g̃).

Then for any point p in M̃ , the lengths of geodesics from p to τ̃(p) are always π. Indeed,

let γ̃(t) be a geodesic in M̃ parametrized by arc length issuing from γ̃(0) ∈ γ0, which

satisfies γ̃(t1) = p and γ̃(t2) = τ̃(p) for some 0 < t1 < π < t2 < 2π. Since U and U ′ are

isometric, the lengths of geodesics from γ̃(0) to γ̃(t1) = p are the same as the lengths of

geodesics from γ̃(π) to γ̃(t2) = τ̃(p). Hence t2 = π + t1.

Recall that D is the standard hemisphere. Then the billiards on U have the spherical

property since M = U ∪D is a C2π-surface. Then for any p ∈ ◦
U and q ∈ U , there exists

a unique and minimizing geodesic from p to q (see section 5.3). Hence, every geodesic

issuing from p has a first intersection point at τ̃(p). Since geodesics are all closed, and the

lengths of geodesics from p to τ̃(p) are always the same, the cut locus of p is only one point.

Hence (M̃, g̃) is a Blaschke manifold modeled on a sphere, since p is any point in M̃ . By

the solution of the Blaschke conjecture for spheres (Theorem 2.1), (M̃, g̃) is the standard

sphere. Therefore, (U, g) is the standard hemisphere, showing that (M, g) is the standard

sphere.

Q.E.D.
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Remark

Theorem 7.1 can be extended to the result for n-dimensional C2π-manifolds. In this case,

we take a totally geodesic hypersurface of M instead of a closed geodesic γ0.

8 Appendix

Lemma 8.1 Let f be a continuous function defined on the interval [a, b], 0 ≤ a < b < ∞.

If

∫ x

a

f(t)√
x2 − t2

dt = 0 (8.1)

holds for any x ∈ [a, b], then f ≡ 0 on [a, b].

Proof. By assumption,

∫ y

a

x√
y2 − x2

{∫ x

a

f(t)√
x2 − t2

dt
}

dx = 0

holds for any y ∈ [a, b]. Interchanging the orders of integration, we have

∫ y

a
f(t)

{∫ y

t

x√
y2 − x2

√
x2 − t2

dx
}

dt = 0. (8.2)

Set

F (y, t) =
∫ y

t

x√
y2 − x2

√
x2 − t2

dx.

Setting x2 = (y2 − t2)u + t2, we have

F (y, t) =
1

2

∫ 1

0

du√
u(1− u)

=
1

2

∫ π
2

0

2 sin v cos v

sin v cos v
dv =

π

2
.

Then we obtain

π

2

∫ y

a
f(t) dt = 0 (8.3)

for any y ∈ [a, b] by (8.2). Hence f(t) = 0 for any t ∈ [a, b].

Q.E.D.
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[Z] O. Zoll, Über Flächen mit Scharen geschlosener geodätischer Linien, Math. Ann. 57,

1903, 108–133.

52



TOHOKU MATHEMATICAL PUBLICATIONS

No.1 Hitoshi Furuhata: Isometric pluriharmonic immersions of Kähler manifolds

into semi-Euclidean spaces, 1995.

No.2 Tomokuni Takahashi: Certain algebraic surfaces of general type with irreg-

ularity one and their canonical mappings, 1996.

No.3 Takeshi Ikeda: Coset constructions of conformal blocks, 1996.

No.4 Masami Fujimori: Integral and rational points on algebraic curves of certain

types and their Jacobian varieties over number fields, 1997.

No.5 Hisatoshi Ikai: Some prehomogeneous representations defined by cubic forms,

1997.
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