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Introduction

Given a homogeneous Riemannian manifold M of nonpositive curvature, it has been a
central problem to find geometric conditions for M to be a Riemannian symmetric space
of noncompact type. Indeed, it was in the 1970’s that the structure of homogeneous
Riemannian manifolds of nonpositive curvature was determined. More precisely, in
1974, Heintze [4] proved that a connected, simply connected homogeneous Riemannian
manifold of nonpositive curvature can be identified with a simply connected solvable
Lie group with a left invariant metric. In consequence, to classify the structure of these
manifolds it suffices to determine the structure of solvable Lie algebras g with inner
product ( , ) of nonpositive curvature.

In this direction, Heintze [4] studied a necessary and sufficient condition for a metric
solvable Lie algebra (g, (, )) to have strictly negative sectional curvature, and obtained
the condition that (g, (, )) be isomorphic to the metric Lie algebra associated with a
Riemannian symmetric space of negative curvature. Subsequently, in 1976, Azencott
and Wilson [1] succeeded in determining the structure of metric solvable Lie algebras
(g,(, )) of nonpositive curvature. Moreover, it is well-known that the Killing form
associated with a Riemannian symmetric space M of noncompact type induces an
Einstein metric of nonpositive curvature on M.

With these foregoing results understood, let (M, g) be a homogeneous Einstein
manifold of nonpositive curvature. By virtue of the result of Heintze mentioned above,
it suffices to investigate the structure of the metric solvable Lie algebra (g,( , )) as-
sociated with M. Also, it should be remarked that, since the metric (, ) is Einstein,
the scalar curvature of (g, (, )) is either strictly negative or zero. In the case when the
scalar curvature of (g, (, )) vanishes, we know that the Ricci curvature also vanishes.
Then it was proved by Heber [3] that this eventually implies (g, (, )) being flat. On the
other hand, if the Ricci curvature of (g, (, )) is strictly negative, then Heber [3] also

proved that g is a non-unimodular Lie algebra, that is, there exists a non-zero vector



H € g such that (H, X) = tr X for all X € g. It is immediate that H is perpendicular
to the derived algebra n = [g, g] of g. Moreover, we obtain the following

Lemma 5.3 (1998, Heber [3]). Let g be a non-unimodular solvable Lie algebra with
an Einstein metric { , ), a the orthogonal complement of the derived algebra n = |g, g|
of g, and H € g a vector defined by (H, X) = trad X for any X € g. Assume that a
is abelian. Then the following holds:

(1) For any A € a, the symmetric part D4 and the skew-symmetric part Sa of the
adjoint representation ad A are derivations of g. Moreover, {D4,Sa | A € a} is
abelian.

(2) Da #0 for any A € a, and the restriction Dgl, of Dy to n is positive definite.

Now, let (M, g) be a Riemannian manifold, and A\*T,M denote the space of skew-
symmetric (2,0)-tensors on the tangent space T,M of M at a point p € M. The
curvature tensor R of M then gives rise to the curvature operator R : /\2 M —
N’ T,M defined by

A

(RIXAY),ZAW) =g(R(Z,W)Y,X), X,Y,Z,W €T,M.

The symmetry properties of R imply that R is self-adjoint with respect to (', ), so that
the eigenvalues of R are all real. We say that M has nonpositive (resp. negative) cur-
vature operator if all eigenvalues of R are nonpositive (resp. negative) everywhere. For
instance, the Einstein metric induced by the Killing form on a Riemannian symmetric
space of noncompact type has nonpositive curvature operator.

In 1998, Wolter [11] conjectured that a simply connected homogeneous Einstein
manifold with nonpositive curvature operator must be a Riemannian symmetric space.
The primary object of this thesis is to study the structure of homogeneous Einstein
manifolds of nonpositive curvature operator.

The nonpositivity of the curvature operator immediately implies that the sectional
curvature is nonpositive everywhere. In 1990, it was proved by D’Atri and Dotti Mi-
atello [2] that a homogeneous manifold has an invariant Riemannian metric of negative
curvature if and only if it admits an invariant Riemannian metric of negative curva-
ture operator. However, in the case of nonpositive sectional curvature, a homogeneous
Riemannian manifold of nonpositive curvature does not always admit an invariant Rie-

mannian metric of nonpositive curvature operator. Concerning this, in 1998, Wolter



[11] obtained a necessary and sufficient condition for a homogeneous Riemannian man-
ifold of nonpositive curvature to have nonpositive curvature operator.

Noticing that there exist many examples of Kahler symmetric spaces with non-
positive curvature operator, we study in this thesis Wolter’s conjecture in the case of

Kahler manifolds, and prove it affirmatively. Namely, we prove

Main Theorem. A homogeneous Kahler Einstein manifold of nonpositive curvature

operator 1s a Riemannian symmelric space.

To be more precise, let (M, J,g) be a homogeneous Kéhler Einstein manifold of
nonpositive curvature. Recall that M is identified with a simply connected solvable
Lie group G with a left invariant almost complex structure J and a left invariant Kahler
metric ( , ), so that it suffices to study the structure of its Lie algebra (g,.J,( , )).
Note that (g, J, (, )) satisfies the following conditions:

(K1) J?=—id,

(K2) (JX,Y)=—(X,JY),

(K3) ([X,Y],J2) +([Y, Z], JX) + ([Z,X], JY) = 0,
(K4) [JX,JY] = J[X,JY] = J[JX,Y]—[X,Y] =0

for any X,Y,Z € g. Also, by a result of Azencott and Wilson [1], we know that the
orthogonal complement a of the derived algebra n = [g, g| of g is abelian.

As remarked above, in the Ricci-flat case, it is obvious that the conjecture is true.
Hence it suffices to prove the conjecture in the case where (g, J, ( , )) is not Ricci flat.

Applying recent results of Heber [3], we first prove

Proposition 6.1. Let g be a solvable Lie algebra with an endomorphism J and an
FEinstein metric ( , ) satisfying Conditions (K1)—(K4). Suppose that (g,{ , )) has

nonpositive sectional curvature and is not Ricci flat. Then the following hold:
(a) There exists an orthogonal basis {Hy}aen of a with respect to ( , ) such that

[H,, JH,| = Ny JH, for some \, > 0,
[Hy, JH,) =0 if a #b.

Moreover, setting H =5 _\ H,, we have (H, X) =trad X for any X € g.

a€A



(b) Define a linear function \,: a — R by \o(Hy) = dapAg for any b € A. Let n2?
and n0 be subspaces of n defined by

n;tb:{XEn DX =

(MNa(A) £ XN(A) X forany A € a} ,

Dy X =

N = N =

ngz{XEn

A(A)X  for any A € a} :
where \p(H) < M\ (H), and set

n, = @ (nf*@n") @nl.
Ab(H)<>\a(H)

Then g is decomposed into a direct sum g = @, R{H,} ®n, ® R{JH,} which
satisfies the following:

(i) JnEb =niP.

Aa(H
(i) [X,Y] = |“I§ |‘2‘)<JX,Y>JHa for X,Y € n,.
(111) [JHb,X] = —)\b(Hb)JX for X € ﬂ;b.
: B o N(Hy)? 22 b
() [V, X] = —JY.X]|VX]P = G VP IXP or X e ngh Y € m,
b

) X=X, I =

(Vi) [V, X] = [JY,JX], [V, X]| = [[Y,JX]| for X €ng,Y €ny.

(vii) Set A, ={a € A | nFc#£{0}}U{c} forc e A, and let a,b € A.. Ifa # b,
then \o(H) # MN(H). Moreover, if A\o(H) > X\o(H), then nZb #£ {0}.

YPIX]?  for X enFeY €nie.

Then, concerning the necessary and sufficient condition for (g,.J,( , )) to be sym-

metric, we obtain the following

Proposition 7.1. Let (g,J,(, )) be as in Proposition 6.1. Then the following condi-
tions are equivalent:

(a) VR=0.

(b) For each ¢ € A, let A. denote the subset {a € A | nF¢ £ {0}} U {c} of A. Then
there exists a subset {ay,...,a,} of A satisfying that Ay, U...UA,, = A and
that Ay, N Ao, = {0} if i # j. Moreover, the following hold:

8



(i) If there exists a; such that nw) = {0}, then n) = {0} for any b€ A,,.

(11) /\b<Hb> _ )\C(HC)
| Hy| | He|

for any b,c € n,,.

Finally, by making full use of these conditions, we obtain the following proposition

which suffices to prove our Main Theorem.

Proposition 8.1 Let (g, J,(, )) be as in Proposition 6.1. If (g,(, )) has nonpositive

curvature operator, then VR = 0.

The present thesis is organized as follows.

In Chapter 1, after giving relevant definitions, we recall the conjecture proposed by
Wolter [11] in Section 1.

Section 2 is devoted to the statement of our Main Theorem.

In Section 3, we review the structure of homogeneous Kéahler manifolds of nonpos-
itive curvature.

Section 4 is devoted to the computation of several curvature functions on metric
solvable Lie algebras.

In Section 5, we review fundamental results obtained by Heber [3].

In Section 6, we prove Proposition 6.1 using the results of Heber in Section 5.

In Section 7, by making use of Proposition 6.1, we obtain a necessary and sufficient
condition for a metric solvable Lie algebra under consideration to be symmetric.

Finally, in Section 8, we prove our main Theorem.

In Chapter 2, we determine the curvature operator of classical type irreducible

symmetric Kédhler manifolds of noncompact type.






Chapter 1

Homogeneous Kahler Einstein
manifolds of nonpositive

curvature operator

In this chapter, we study the structure of homogeneous Kahler Einstein manifolds of

nonpositive curvature operator.

1 Wolter’s Conjecture

Let (M, g) be a Riemannian manifold, and /\2 T, M denote the space of skew-symmetric
(2,0)-tensors on the tangent space T,M of M at a point p € M. For any X,Y € T, M,
we define an element X AY € A’ T,M by

XNANY(ZW) =g9(X,Z)g(Y W) —g(X,W)g(Y,Z), Z,W €T,M,
and an inner product {( , ) on A*T,M by
(XAY,ZAW) =g(X, Z)g(Y, W) —g(X,W)g(Y,Z), X,Y,Z,W €T,M.

The curvature tensor R of M then gives rise to the curvature operator R: /\2 T,.M —

N’ T,M defined by

~

(RIXAY),Z AW = g(R(Z, W)Y, X)

11



for any X,Y, Z, W € T,M. It is easy to see that R is self-adjoint with respect to «,n,
so that the eigenvalues of R are all real. We say that M has nonpositive curvature
operator if all eigenvalues of R are nonpositive everywhere.

Recall that for each 2-plane 7 in T, M, the sectional curvature K (7) for 7 is defined

by
K(1) = (R(X,Y)Y,X) = (R(XAY), X AY)),
where {X,Y} is an orthonormal basis for 7. From this definition it is immediate to

see the following.

Remark 1.1. If the curvature operator R of (M, g) is nonpositive, then (M, g) has

nonpositive sectional curvature everywhere.

However, the converse of Remark 1.1 is not true in general, even in the case of
homogenous manifolds. Indeed, as the following example shows, we have many solv-
able Lie groups with left invariant metric, which have nonpositive sectional curvature

everywhere but do not have nonpositive curvature operator.

Example 1.1 (1991, Wolter [10]). Let n be a two step nilpotent Lie algebra. We
call n a uniform Lie algebra of type (m,n,r) if it has a basis {V4,...,V,, Z1,..., Zn}
satisfying the following conditions, where 1 <i,j,k <nand 1 <[ <, m:

(K1) [Vi,V;] € {0,£2,...,£2Z,,} and [V}, Z)] = [Zy, Z)] = 0.
(K2) If [V, Vj] = £[V;, Vi] # 0, then V; = V.

(K3) For any Z;, the cardinality of {(V;,V}) | [V;,V;] = Zi} is r.
(K4) For any V;, the cardinality of {V; | [V;, V] # 0} is s.

Note that, from Condition (3), the cardinality of {(V;, V) | [Vi,V;] # 0} is 2rm. On
the other hand, Condition (4) implies that the cardinality of {(V;,V}) | [V;, V] # 0} is
sn. So we have s = 2rm/n.

Let n = span{Vi,...,V,,Z1,..., Z,} be a uniform Lie algebra of type (m,n,r)
with an inner product for which V3,...,V,,, Zy,...,Z,, are orthonormal. Let Alt(v)
denote the space of alternating linear transformations on v with respect to ( , ).
Setting v = span{Vi,...,V,} and 3 = span{Zy,...,Z,}, we define a linear operator
j: 3 — Alt(v) by

F(2)V, W) =([V,W], 2),

12



where VW € v and Z € 3. Also, we assume that n = 2r and that j(Z)j(Z;) =
—j(Z1)j(Z) for k # 1. Then we have j(Zy)Vi € {Vi,..., Va} and (j(Zp)Vi, j(Z)Vi) =
Sx1- Moreover, it holds that (j(Z)V, j(Z)V') = |Z]*(V,V’) for any Z € 3 and V, V' € v.

With these understood, let s = R{A} @ n be the direct sum of R{A} and n. We

define on s an inner product (, ) and a Lie bracket [, ] by

(aA+V +ZbVA+V' '+ 7y =ab+ (V,V')+(Z,7"),
1
ad A|, = §id, ad A|; = id,

where id denotes the identity map on s. Then s becomes a solvable Lie algebra with
inner product (, ).

Now, let S be a solvable Lie group with Lie algebra s, and extend the inner product
(, ) on s to a left invariant metric ( , ) on S. Then the Levi-Civita connection
V, the curvature tensor R and the sectional curvature K on S define respectively
the corresponding Levi-Civita connection V, the curvature tensor R and the sectional
curvature K of s.

Given a 2-plane 7 in s spanned by an orthonormal basis {aA+V + Z, V' + 7'}
witha >0, V, V' € v and Z, 7' € 3, it is immediate to see that the sectional curvature
K () for 7 is given by

1

1 SIzrIZE -2z, 2 -
4 4 2

3
K(m) = =5|IV,V] +aZ'P - :

G2V, 3(Z2)WV7).
Note that a function f: [0,v/1—a?] x [0,1] — R defined by f(s,t) = —(1/4) —
(3/4)s%t? + (3/2)st\/1 — a? — s2y/1 — 2 is nonpositive everywhere, that is, f(s,t) < 0.
It follows from this that

1 3 3. .
K(m) <= = 1ZP1Z'F = S6(2)V.0(2)V')
1 3 3. .
<~ J1ZP1Z7 + SV Iz
1 3 3
=~ {1ZPIZ P+ Sz 2V
132/23/ 2 2 12
=~ — J|ZP1Z7 + 512121 = a2 = [ZP/1 -7
<0

13



Hence (s, ( , )) has nonpositive sectional curvature.

On the other hand, it was proved by Heintze [4] that VR = 0 if and only if s satisfies
J(Z1)i(Z)V € span{j(Z1)V,...,j(Z,)V} for all V € v and k # [. This implies that
VR = 0 if and only if s satisfies j(Zx)j(Z)V; € {£i(Z)Vi, ..., £j(Zn)Vi} for all
i=1,...,n and k # [. Then the following was proved by Wolter [10].

Claim 1.1. R <0 if and only if VR = 0.

Proof. The ‘only if’ part is obvious, since it is well-known that a Riemannian symmetric
space of noncompact type has nonpositive curvature operator.

To see the converse, assume that R < 0. If VR # 0, then there exist V; and
k # 1 such that j(Zx)j(Z))Vi & {£j(Z1)Vi, ..., £5(Zn)Vi}. Set V.= V) and V' =
J(Zy)j(Z;)V;. Then V and V' are orthogornal, and j(Z;)V = —j(Z;)V'. Since
((Z)Vis o J(Za)Vi} © Vi Vi) and §(Z0)§(Z)Vi € {Va, ..., Vi }, we have [V, V]
0. Now, let w € A’s be an element defined by w = V AV’ +1/2Z; A Z;,. Then, by
an easy computation, we see that (R(w%w) — 0. Since R < 0, this implies that w
lies in the eigenspace of R with eigenvalue 0, that is, }?(w) = 0. However, we have

(R(w),§(Z)V A §(Zs)V) = 3/4, which contradicts R < 0. O

A Riemannian manifold (M, g) is called an Finstein manifold, or g is said to be an
Finstein metric, if the Ricci tensor Ric of M is proportional to g, that is, Ric = cg for
some constant c.

It should be noted that the metric given in Example 1.1 is an Einstein metric.
On the other hand, it is known that each Riemannian symmetric space of noncompact
type admits an Einstein metric, induced by the Killing form, with nonpositive curvature

operator. These observations motivated T. Wolter to propose the following

Conjecture (1991, Wolter [11]). A (simply connected) homogeneous Finstein man-

ifold with nonpositive curvature operator is a Riemannian symmetric space.

2 Main Theorem

An almost complex structure on a real differentiable manifold M is a tensor field J
which is, at every point p € M, an endomorphism of the tangent space T, M such that
J? = —id, where id denotes the identity transformation of T,M. A manifold with a

fixed almost complex structure is called an almost compler manifold. The Nijenhuis

14



tensor N of an almost complex manifold (M, J) is a tensor field of type (1,2) defined
by
N(X,Y) = [JX,JY] - JJX,Y] — J[X,JY] — [X,Y], (1.1)
where X and Y are vector fields on M.
Let M be an n-dimensional complex manifold and (z',...,2") a complex local
coordinate system in M. We set ¢ = 2 ++/—1yi fori = 1,...,n. A complex structure
J of M is an almost complex structure J on M defined by

! <(aa)> B @) ! ((ai>> o (;)

for each p € M and ¢ = 1,...,n. It is known that an almost complex structure is a

complex structure if and only if N vanishes identically.

A Hermitian metric on an almost complex manifold (M, J) is a Riemannian metric
g invariant by the almost complex structure J, that is, g(JX,JY) = ¢(X,Y) for any
vector fields X,Y on M. An almost complex manifold (resp. a complex manifold)
with a Hermitian metric is called an almost Hermitian manifold (resp. a Hermitian
manifold). The fundamental 2-form ® of an almost Hermitian manifold M = (M, J, g)
is defined by ®(X,Y) = g(X, JY) for any vector fields X, Y of M.

An almost Hermitian manifold M is called a Kahler manifold if the fundamental
2-form ® of M is closed and the Nijenhuis tensor N of M vanishes identically. In this
case, a Hermitian metric g on M is called a Kdhler metric. A Kéahler manifold (M, J, g)
is called homogeneous if the group of holomorphic isometries of M acts transitively on
M.

In this thesis, we study Wolter’s Conjecture in the case of Kéhler manifolds and

prove the following

Main Theorem. A homogeneous Kdahler Einstein manifold with nonpositive curvature

operator is a Riemannian symmetric space.

3 Structure of homogeneous Kahler manifolds with
K <0

Let (M, J, g) be a connected, simply connected homogeneous Kéhler manifold with non-

positive curvature, that is, the sectional curvature K of M is nonpositive everywhere.

15



It is known, by a result of Heintze [4], that in the group of holomorphic isometries of
M there exists a solvable Lie subgroup G which acts simply transitively on M. More

precisely, we have the following

Theorem 3.1. A connected, simply connected homogeneous Kdhler manifold (M, J, g)
with nonpositive curvature is identified with a connected solvable Lie group equipped

with a left invariant complex structure J and a left invariant Kdhler metric ( , ).

Proof. First, by a result of Wolf [9], we know that in the group of holomorphic isome-
tries of M there exists a connected, closed, solvable Lie subgroup G acting transitively
on M. Thus M is represented as M = G/H, where H is the isotropy subgroup at a
given point p € M and hence is a compact subgroup of G.

By the structure theory of solvable Lie groups ([7]), we know that there exist a
closed normal k-solvable subgroup L of G and a compact subgroup K of G such that
G is the semidirect product G = L- K. Note that a k-solvable subgroup L is a solvable
Lie group for which the coset manifold L /T by the compact normal subgroup 7 in L is
simply connected, where T is the unique maximal compact subgroup in the center of
L. On the other hand, K is also a compact subgroup of the group of isometries of M.
By a theorem of Cartan ([6]), K has a fixed point py € M, since M is simply connected
and has nonpositive sectional curvature. This implies that L acts on M transitively,
and hence M is represented as M = L/H' with an isotropy subgroup H’ of L. Since
H' is compact, it is contained in the maximal compact subgroup 7. Hence H' is a
normal subgroup of L. Note that L acts effectively on M, so that H = {e}, where e is
a identity element of L. Hence M = L, and M is identified with a solvable Lie group
L.

Moreover, since L is a subgroup of holomorphic isometries of M, the complex
structure J of M induces a left invariant complex structure J of L. Also, the Kéahler

metric g on M induces a left invariant Kéhler metric ( , ) on L. 0

Our first goal is to determine the structure of a connected, simply connected ho-
mogeneous Kéhler manifold (M, J, g) with nonpositive curvature. By Theorem 3.1, we
see that such M is represented as a simply connected solvable Lie group G with a left
invariant complex structure J and a left invariant Kahler metric (, ). Note that, since
G is simply connected, the structure of G is determined by its Lie algebra g up to

isomorphism. Then we obtain the following

16



Lemma 3.1. Let (G, J,(, )) be a connected, simply connected homogeneous Kdhler
manifold with nonpositive curvature, and g the solvable Lie algebra consisting of left
invariant vector fields on GG. Then the left invariant complex structure J and the left
invariant Kdhler metric ( , ) on G induce, respectively, an endomorphism J and an

inner product ( , ) on g satisfying the following conditions:
(K1) J?=—id,

(K2) (JX,Y)=—(X,JY),

(K3) ([X,Y],J2) + (Y, 2], JX) + ([2, X], JY) = 0,
(K4) [JX,JY]-JX,JY]|-JJX,Y]-[X,Y]=0
forany X,Y, Z € g.

Proof. (K1) is obvious, and (K2) is immediate, since ( , ) is Hermitian. Also, (K4)
follows from the fact that the Nijenhuis tensor N equals 0.

For (K3), it suffices to recall that the fundamental 2-form ®(X,Y) = (X, JY) of G
is closed, so that for any XY, Z € g

0 = 3d®(X,Y, Z)
= XO(Y,2Z) - YO(X,Z)+ ZB(X,Y) — ®([Y, Z], X) + ®([X, Z],Y) — ®([X,Y], Z)
= X(Y,JZ) = Y{(X,JZ) + Z(X,JY) = [V, 2], JX) + (X, Z], JY) — ([X,Y], ] Z)

=—([Y, 2], JX) + {[X, 2], JY) = ([X. Y], ] Z).
U

4 Curvature functions on solvable Lie algebras

Let g be a solvable Lie algebra with inner product { , ) on g. Let G be a Lie group
with Lie algebra g, and extend the inner product (, ) on g to a left invariant metric
(, ) on G. Regarding g as the Lie algebra consisting of left invariant vector fields on
G, the Levi-Civita connection V, the curvature tensor R and the sectional curvature
K of G defines respectively the corresponding Levi-Civita connection V, the curvature

tensor R and the sectional curvature K of g. We first note the following

17



Claim 4.1. For any X,Y € g, the Levi-Ciita connection V is given by
VY = %[X, Y]+ U(X,Y),
U(X,Y) = —5((ad X)'Y + (ad V) X),
where ad denotes the adjoint representation of g and * the transpose with respect to

()

Proof. 1t follows from the definition of the Levi-Civita connection V that

(VY. 2) =5 (X(V, 2) + Y (X, Z) = Z(X.)
(Y, 20, X) (X, 2, Y) + (X, Y], 2))
~SUX[ZY]) + V2. X) + (X.7], 2))
for any X,Y,Z € g, since (X,Y), (Y, Z),(Z,X) are constant functions on G. Hence

we have

1
VxY = U(X.Y) + 5[X.Y].

It should be remarked that U(X,Y) (resp. (1/2)[X,Y]) gives the symmetric (resp. the
skew-symmetric) part of VY. 0

As a consequence of Claim 4.1, we see that the curvature tensor R(X,Y)Z =
Vx,Vy|Z — Vix,y)Z of g is determined by the bracket product of g. Namely, the
following holds.

Claim 4.2. For any X,Y € g, we have

(R(X, Y)Y, X) =[UX,Y)]” = (U(X,X),U(Y,Y)) — 2 [, Y]

- %([X, (X, Y]], Y) — %<[Y, Y, X]], X),

where | - | denotes the norm defined by ( , ).

Proof. Tt follows from Claim 4.1 that for any X, Y € g

(R(X, Y)Y, X) = (VxVyY — Vy VxV — VixyY, X)

_ % (X, [X, Vy Y]) + (Vy Y, [X, X]) + ([X, Vy Y], X))
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_ % (Y, [X, VxY]) + (VxY, [X,Y]) + ([Y, VxY], X))

— 5GP YL Y] 4+ 4V 1, XY 4 (X, Y, Y], X))
= (U(X,X),VyY) +(U(X,Y),VxY) — %<U(X, V), [X,Y])

XY = I VI - (1Y, X1, X),Y) - 51X, YL YL X)

= —(UX,X),UY,Y))+(UX,Y),UX,Y))

= —(UX,X),UY,Y))+|UX,Y)] - zI[X, Y]|?

(06, Y1, Y], X) — 5 {[IY: X1, X)),

1
2
U

Let {ey,...,e,} be an orthonormal basis of g with respect to (, ), and B the Killing
form of g. We now define H € g by

(H,X)=trad X, X €g.

Then we see that H is orthogonal to the derived algebra n = [g, g]. Indeed, for any
X, Y € g, we have

(H,[X,Y]) = trad[X,Y] = trfad X, ad Y] = 0.

Claim 4.3. Let B be the Killing form of (g,(, )). Then the Ricci tensor Ric and the

scalar curvature sc of g can be expressed as follows:

1 1 1
(1) Rie(X, X) = —(ad(H)X, X) - 2 B(X, X) — S trad X oad X" + > (leiej), X)?
ij=1

forall X € g.

n

(2) sc = —(H,H) — %ZB(ei,ei) - iZtr(ad ei)* oade;.

i=1 =1

Proof. (1) Let X € g. It follows from the definition of H € g and Claim 4.1 that

trad Vx X = (H,VxX) = = (H,[X, X]) — (H, (ad X)*X) — (H, (ad X)* X))

N | —
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= —([X,H|,X) =(ad H(X), X).

This together with Claim 4.2 then yields

n

Ric(X, X) = Z(R(ei,X)X, i)

_ Z(w 0 X — (Uler,e2), U(X, X))
3 , 1 1
1 |[eq, X]|” — §<[€z’> [ei, X]], X) — §<[X7 X, 61]]7@‘))
= Z (;l Z (X, [es e]) + (eq, [ X, ;)% + ((ad e;)"es, VX X)
3 . 1 1
—Z<(adX) oad X(e;),e;) — 5([% e, X]], X) — §<[X, X, 6i]]>€i>)
= i 2 (Xolewel))” + % D (XX e es]) + % 2 (X e [X,e)
—trad Vx X — Ztr(adX)* cad X — %Z([ei, les, X]], X) — %B(X, X)

i=1

1 1
— - Z e e4])? — EtradX o(ad X)* — (ad H(X), X) — §B(X, X).

1] 1

(2) Using (1), we see that the scalar curvature sc of g is given by

sc = Z Ric(eg, ex)

1 1
_Z< adHek,ek>—§B(ek,ek)—§tradekoadek + = Z (les, €5], ek>)

Z] 1

:—tradH——ZB €k, €k) ——Ztradekoadek + - Z ei, €], [eis e;])

z] 1
n

1
=—(H,H)— 523(616761@) — ZZtradekoadek*.

k=1 k=1
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5 Results of Heber

This section is devoted to recalling several relevant results proved by Heber [3] which
will be used throughout this thesis.

Let g be a Lie algebra with inner product (), and let £ and p denote the spaces of
skew-symmetric and symmetric derivations of g with respect to @), respectively. Note
that the direct sum € @ p yields a subalgebra of the Lie algebra Der(g) of derivations
of g.

We now define an involutive Lie algebra automorphism 6 of €@ p by (X +Y) =
X —Y for X € tand Y € p, and an inner product ( , ) on ¢@ p by

(A,B) = —trg0(A)o B, A,Bectdp.
Then, for Ay, Ay, A3 € €D p, we have
([A1, Ao], A3) = —trg 0([Ar, Ag]) 0 Az = —trg[0( A1), 0(A2)] 0 A;
= —trg(0(A;) 0 0(Az) — 0(Az) 0 O(A;)) 0 As
— —tr(0(Ax) 0 Ay 0 0(A) —0(A) 0 O(A) 0 Ay (12)
= —trg6(Ag) o [As,0(A;)]
= — (A2, [0(A1), As]),

which shows that if A € €, then ad A is skew-symmetric with respect to ( , ). Similarly,
it also holds that if A € p, then ad A is symmetric with respect to ( , ).

Claim 5.1. €@ p is a reductive subalgebra of Der(g), that is, €@y is decomposed into a
direct sum ¢ p = 3(EDp) D [EDp, €D p] of the center 3(EDp) of B p and a semisimple
ideal [E® p, €D p).

Proof. For any Z € 3(¢®p) and X, Y € £ @ p, it follows from (1.2) that

which implies that 3(¢® p) is orthogonal to [E@® p, @ p]. Conversely, choose an element
Z € t®p which is orthogonal to [E®p, t®p]. For X, Y € €@ p and Z, (1.2) then yields
that

(X, 2],Y) = =(Z,[0(X),Y]) =0,

and hence Z € 3(¢ @ p). In consequence, 3(¢ @ p) is an orthogonal complement of
[tDp,tDp], thatis, tdp=3tDp) D[EDp, tDp|.
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Since 6 is a Lie algebra automorphism of €@ p, €D p, €D p| is invariant by 0. Let B
denote the Killing form of [t @ p, €D p|, and {E)} an orthonormal basis of [€® p, € @ p]
with respect to (, ). For X € [t D p, €D p|, we have

B(O(X),X) =tradg(X)oad X = Z (X, Edl], Ex)

— S (X, B P(X )rEa>:=-—j{j<P(rE¢L[)<FE¢D.

k

Assume that B is degenerate. Then there exists some X, € [£ @ p, € @ p] such that
B(Xo,-) = 0. In particular, we have B(0(Xj), Xo) = 0, which implies that [X,, Ex] =0
for any k. Hence X € 3(¢ @ p), contradicting that X € [¢@® p, ¢ D p|. Therefore, B is
non-degenerate, that is, [ @ p, € @ p] is semisimple. O

Claim 5.2. Let g be a solvable Lie algebra with inner product Q). If there exists X € g
such that ad X € €@y, then (ad X)e, (ad X), € 3(8 @ p), where (ad X ), (resp. (ad X))
denotes the € (resp. p) component of ad X .

Proof. Let h = ad(g) N €@ p, a subspace of € @ p. Since g is solvable, b is a solvable
ideal of €@ p. Moreover, in Claim 5.1 we see that € & p is reductive. Hence 3(€ @ p) is
a radical, and hence h C 3(¢ D p).

Let X € g for which ad X € b, and let (ad X )¢ and (ad X), be as above. Then it is
casy to see that [€,€] C €, [p, €] C p and [p,p] C &. Hence we have [(ad X)e, €] C ¢ and
[(ad X)p, €] C p. It then follows from [ad X, €] = 0 that [(ad X)e, €] = [(ad X),, ¥] = 0.
Similarly, we have [(ad X )¢, p] = [(ad X),,p] = 0. Consequently, (ad X)e, (ad X), €
3(tDp). 0

Let Sym(g) denote the space of symmetric bilinear forms on g, and let GL™(g) be
the group of linear endomorphisms of g with positive determinant. Also, we denote by
P C Sym(g) the open convex cone of inner products on g.

For any @ € P and h € Sym(g), there exists a symmetric endomorphism C' €
End(g) relative to @ such that h = Q(C",-). We now define a curve Q(t) € P by

o 4k
Q)= Q) e P, &€=k
k=0
Then the differential of Q(t) at t = 0 is given by
, d
Q (0)<7 ) = EQ(etc'a ) - Q(Ca ) = h,
t=0

22



which implies that Sym(g) is a subspace of the tangent space TP of P at Q € P. On
the other hand, obviously TP is a subspace of Sym(g). Hence we have ToP = Sym(g).
We now define an inner product gg on ToP = Sym(g) by

= Zh(ei,ej)k(ei, Ej), h, ke TQP,

where {ej,...,e,} is an orthonormal basis of g with respect to (). Note that gg is
well-defined, that is, independent of the choice of an orthonormal basis of g. Setting
g ={90}o, we obtain a Riemannian metric g on P.

Given Q € P and a € GL*(g), we define an action a - Q of GL*(g) on P by

(a-Q)X,Y)=Q(a'X,a”'Y).

Note that this action of GL*(g) is transitive and isometric on P with respect to g.
Moreover, the isotropy subgroup GL*(g)g of GL*(g) at Q coincides with the special
orthogonal group SO(g, Q) of g with respect to @), and hence is compact.

We now fix @ € P, and define an involutive automorphism o: GL*(g) — GL"(g)
by o(g) = (g*)~', where * denotes the transpose with respect to Q. Then the set of
fixed points of o coincides with SO(g, Q). Consequently, (GL"(g), SO(g, Q)) is a Rie-
mannian symmetric pair, and hence (P, g) = (GL"(g)o/SO(g, @), g) is a Riemannian
symmetric space. Note that, for any geodesic Q(t) € P with Q(0) = Q, there exists a
symmetric endomorphism C' of g with respect to () such that Q(t) = 12C.Q e P.

Let Bg denote the Killing form of (g, Q)). We define Hg € g by

Q(Hg, X)=trad X, X eg.
We also define the following functions on P:

Ricg = the Ricci tensor of (g, @),
sc(Q) = the scalar curvature of (g, @),

MQ) = QU Ho),
b(Q) tIQBQ,
n(Q) = 5e(Q) + (@) + 3b(Q).

Recall that the scalar curvature sc(Q) is given by

n

1
sc(Q) = —Q(Hgq, Hq) — §ZBQ €, €;) ZtrQ ade;)" o ade;,
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where {ey,...,e,} is an orthonormal basis of g with respect to @), and * denotes the

transpose with respect to ). Then the function n is given by
(@ =13 trofadey o ad
n =—— ro(ade;)y, o ade;.
4 i=1 ¢ ¢

Claim 5.3. (1) (gradn)q = — Ricg —Q(Dp,,-,-) — (1/2) Bg holds at any point ) €
P, where Dy, denotes the symmetric part of ad Hg with respect to Q.

(2) The function n is concave on P, that is, (n o Q)" < 0 holds along any geodesic
Q(t) in P.

(3) Define a curve Q(t) = et/2. Q in P, where C is a symmetric endomorphism
of g with respect to Q. If (noQ)"(0) =0, then C is a derivation of g.

Proof. (2) Fix @ € P. Let C be a symmetric endomorphism of g with respect to @), and
{e1,...,e,} an orthonormal basis of g with respect to ). Without loss of generality,
we may suppose that each e; is an eigenvector of C', that is, C'e; = p;e; for p; € R.
Now, consider a geodesic Q(t) = e ¥/2¢.QQ € P. Note that {e ¥/21ey, ... e /2Hne, }
yields an orthonormal basis of g with respect to Q(t). Since AQ(t denotes the transpose

of an endomorphism A of g with respect to Q(t), we obtain

noQl) = —+ ZtrQ(t (ad (=12 )) o ©ad (eil%e))

- _411 > Q) ((ad (e71%e;:) ) gy 0 ad (711 %) €= e, 67%/26]‘)
ij=1

= LY Q) ([ e e [ e )
ij=1

- _i e Q (P les 5], P les, ¢5])
i,j:l

_ Z uH—M;)Q tC/Q[ei’ ej],6k>2
Jk 1

_ _%1 Z eft(/tﬁrur#k)Q ([ei’ej],ekf.
ij.k=1
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Hence the second order derivative of n o Q(t) is given by

(no@)"(t) = _}1 D (i 4y — ) e EERTEIQ (e, 5], e4)?,

i.gk=1
which shows that (n o @)”(t) < 0. Hence n is concave on P.

(3) Let g,, denote the eigenspace relative to an eigenvalue p;. It follows from (2)

that
(no@)"(0) =—- Z (i + 115 — 1)°Q ([ess €], ex)* = 0,
i, k=1

If p1; 4 pj — pw # 0, then Q ([es, e5], ex) = 0, that is, [g,,, g,,] is orthogonal to g,,. On
the other hand, if p; + p; — py = 0, then for py, # g, i + pj — pr # 0 holds. Hence we
have [g,,, 8,,] C g, with p; + p; = . Consequently, C' is a derivation of g.

(1) The first order derivative of n o Q(t) at ¢t = 0 is given by

n

1

(gradn, Q(0)g = (10 Q)'(0) = 3 D i+ 15— m)Q ([eires], )
ij.k=1
1 n
=3 Z ,uz elvej )2_1 Z NkQ([eiﬂejLek)Q
zgk 1 ijk*l
=3 Z ,uz 6176] e’uej Z /lz e]aelc )2
zg 1 zyk 1
_ZMZ{ tro( adel oade; — ZQ e;, exl, i) }
]k 1

— ; Q(Ce;,e;) (— Ricg(es, €;) — Q(Dugei, i) — %B(ei, ei))

= <Q/(0),—RiCQ —Q(DHQ',') —%B> .
Q
Hence we have (gradn)p = — Ricg —Q(Dp,,-,-) — (1/2)B. O

Claim 5.4. Let a € GL"(g) be a Lie algebra automorphism of g with positive deter-
minant. Then the function n satisfies n(a - Q) = n(Q) for any Q € P.

Proof. Let {e1,...,e,} be an orthonormal basis of g with respect to @, and note

that {aey,...,ae,} yields an orthonormal basis with respect to a - (). Since a is an
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automorphism of g, n(a - Q) is given by

= —= ZtraQ (ad (ae;)) goad (ae;)

= _Z Z ( ad (ae;)) ooad (ae;) (aej) , (aej))

zgl
n

= 1570 Q) (laes ey s aey)
— __ (a- Q) (a[ei,ej],&[eiaej])

_ _i > Qe el e )

i,j=1
1 \
= 1 ZtrQ (ad ei)Q oade; = n(Q)
i=1

Since @ is arbitrary, we obtain Claim 5.4. 0

Note that each derivation A of g induces a Lie algebra automorphism e*4 of g with
positive determinant. We define a 1-parameter group ¢: R x P — P of transformations
of P by ¢,(Q) = e - Q for any Q € P and t € R. Let {e;,...,e,} be an orthonormal
basis of g with respect to (). For any h € ToP = Sym(g), we then have

_4d _ 4 A _ A
(dope)oh = dsgbt(exp sh) . ds(e exp sh) . e - h.
Since {e'te, ..., e e, } is an orthonormal basis of g with respect to ¢;(Q), we have for

h,k e TQP

((doe)qh, (dor)gk) = (e - h e - k)

n

=3 (B (e eihe) (¢4 k) (e e, eihey)

ij=1
n

= 3 hlenes)k(enes) = (b o

,j=1

This shows that ¢, is an isometry on P for any ¢ € R. Hence the infinitesimal trans-
formation A of ¢ is a Killing vector filed on P.
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Claim 5.5. The Hessian of n in the direction le at QQ € P is given by
Hessn(Ag, Ag)

= =Y Ricq([4, Aples, ;) — trg Dy, o [A, AY] ZB ([4, A¥es, ),

where Dy, denotes the symmetric part of ad Hg with respect to Q.

Proof. We define a function f on P by £(Q) = (Ag, Ag)q. Since ¢,(Q) = Qe e74.)
= Qe e . et .), Ais given by

= w0l@) = S et )| = Q(~(4y + A) ).

t=0 t=0

Fix Q € P, and let {e,, ..., e,} be an orthonormal basis of g with respect to (). Then
f is given by

= QALY + A e) = trg(Ay + A)?
i=1
= 2trg(A2 + AL A).

Given a symmetric endomorphism C' of g with respect to @, we look at a curve Q(t) =
e~t/2CQ) € P to obtain

(gradf, Q'(0))q

d d
:%focg(t) = 2— trgu (A% + A A)

dt

t=0 t=0

d - 2 —tC/2,  —tC/2
= ZEZ;Q@) ((A + ApmAle e e /ei)

t=0

L D (QUE(APT ey, 7 Pe) + Q1) (Ae™PPe;, Aeey))

dt
=1 t=0
n
_ %Z (Q(6156'/214267150/261,7 ei) + Q(etCﬂAe*tC/Zei, etC/erftCﬂei))
=1 t=0
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d
— QE)GI‘Q (etC/2A2e—tC/2 + e—tC/2A*QetCAe—tC/2)

t=0

d . _
— 2% trg (A2 + AQetcAe tc)

t=0

= 2trQ(AgcA — AHAC) = 2trQ (A, A5]C

_QZQ ([A, Ap]Ceye;) _QZQ ([A4, Afle;, e)Q(Ceye))

3,0=1

<Q<[A7 AQ]'? ')7 QI(0>>Q7

which implies that (grad f)o = 2Q([A, A]-, ).
On the other hand, since A is a Killing vector field, we have for X € ToP

<VA"ZLX> A<A > _<A7 VAX>Q
<[ ) ] X>Q + <A> [;LXDQ - <1217 [AvX] + VXA>Q

3 3 1 .
=—(A,VxA)q = —§X(A, A)g

1

= Xf =~ amad £, X)q

_<Q([A> A*Q]v ')7 X>Q7

which implies that (V;4)q = —Q([A, A5+, -). Moreover, it follows from Claim 5.4
that

. d d d
Ag -n= — = —n(e. = — = 0.
Qn= gnot@)| = gn(et-Q) = gn@) =0
Consequently, it follows from Claim 5.3 (1) that
Hessn(Ag, Ag)
= Ag(A-n) — VAQA ‘n
= —(gradn, VAQ;UQ
: 1 .
= — <—R1CQ —Q(DHQ , ) §B Q([AaAQ] >>

_ (_ Ricq(eir ;) — Q(Dngeer ) — 5 Bale ej)) QUA, Agles ;)

ij=1
n

= (— Ricq(es, [A, Aplei) — Q(Dngei, [A, Aplei) — %BQ(ei, [A, Aa]ei))

=1
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— —ZRICQ (ei, [A, Aplei) — trq D, o [A, Ap] — —ZB ([A, Apleis €i),

i=1

which proves Claim 5.5. O

Lemma 5.1. Let g be a solvable Lie algebra with an Einstein metric QQy, and Hy =
Hg, € g a vector defined by Qo(Ho, X) = trg,ad X for any X € g. Then, for any
derivation A, the following inequality holds:

1
trad A(Ho) o A" + 5 Z B(A*Ae;, e;) <0, (1.3)

where {e;} is an orthonormal basis of g with respect to Qy, B denotes the Killing form
of g, and * denotes the transpose with respect to QQo. In particular, the equality holds
if and only if A* is a derivation of g.

Proof. Since (Qy is an Einstein metric, the Ricci tensor Ricg, relative to )y satisfies

Ricg, = AQ for some constant \. Hence we have
ZRICQO (ei, [A, AG,leq) Z)\QO (e, [A, AG lei) = Mrg,[A, A5l =0
i=1

For a derivation A of g, let A denote the infinitesimal transformation of a 1-
parameter group ¢;(Q) = e - Q for t € R and Q € P. Let Sy, denote the skew-
symmetric part of ad Hy with respect to QJp. Since AAy and Af A are symmetric
with respect to Qo, we have trg, Su,AAf, = trg, Su,Ap,A = 0. Hence we obtain

trq, Dn, o [A, Ap,] = trq, ad Hy o [A, A |
= —trg,[A,ad Ho] o A,
= — trQO ad A(Ho) o AZ)O

Since g is solvable, A(g) is a subalgebra of a maximal nilpotent ideal of g. Thus
B(AAp,¢€i,¢:) = 0 holds for all i, and hence we have

ZB ([A, AY, Jei, e;) = ZB Ap, Aes e).

Consequently, it follows from Claim 5.5 that

1 A * 1 *
Hessn(Aq,, Aq,) = trq, ad A(Hyp) o A, + 5 Z B(Ap, Aei, e;).
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Recall that the function n is concave on P by Claim 5.3. Hence we have Hess n(Ag,, Ag,)
< 0, that is,
* 1 *
trg, ad A(Hp) 0 A, + 5 > B(Ap, Aei, ;) < 0.

Now, recalling that le = Q(—(A5 + A)-,+), let C be a symmetric endomorphism
defined by C' = —(Ap, + A) with respect to Qo. Setting Qo(t) = e 12y, we have
Qo(0) = Qo(—(Ap, + A)-,+) = Ag,. If Hessn(Ag,, Ag,) = 0, then (n o Qy)"(0) = 0.
Hence Claim 5.3 (3) shows that C' = —(Ap, + A) is a derivation of g. Since A is a

derivation, Ap, is also a derivation. U]

A solvable Lie algebra g with an inner product @) is called unimodularif trg ad X = 0
for all X € g. Note that Hy = 0 if and only if g is unimodular.

Lemma 5.2. Let g be a solvable Lie algebra with Einstein metric Qo on g. Then the

following are equivalent:

(1) g is unimodular.

(2) (gv QO) is ﬂa’t
(3) (g,Qo) is Ricci flat.

(4) The orthogonal complement a of the derived algebra n = |[g,g| is abelian, and
ad A is skew-symmetric with respect to Qo for any A € a.

Proof. (1) = (3) Since g is solvable, the orthogonal complement a of the derived
algebra [g, g] is not zero. Let A € a, and let {e,...,e,} be an orthonormal basis of g
with respect to Qg such that Dae; = \e; for ¢t = 1,...,n. Applying Claim 4.3 to A,

we have

1 1 1 <
Ricq, (4, A) = =5 Boy(A, A) — S trg,ad Ao ad A" + - > Qolleireg], A

ij=1

1 1
= —§trQ0 ad Aoad A — §trQ0 ad AoadA*

=—trg,ad Ao Dy = — ZQO(adA o Dae;,e;)

=1

= —Z/\ Qo(ad Ae;, e;) = Z/\ Qo(Daei, e;)
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:—zn:Af < 0.
=1

On the other hand, it is proved by Miatello [8] that no unimodular solvable Lie algebra
admits inner product of strictly negative Ricci curvature. Hence, since @)y is Einstein,
we have Ricg, = 0, that is, (g, Qo) is Ricci flat.

(3) = (4) Itisproved by Jensen [5] that for a solvable Lie algebra with inner prod-
uct @, its scalar curvature sc(Q)) satisfies sc(Q) < sc(Q) + Q(Hg, Hg) < 0. Moreover,
if sc(Q) + Q(Hg, Hg) = 0, then g satisfies Condition (4).

Since Qo is a Ricci flat Einstein metric, the scalar curvature of (g, Qo) vanishes,
that is, sc(Qp) = 0. Hence we also have sc(Qo) + Q(Hg,, Hg,) = 0, which implies the
result.

(4) = (1) It follows from (3) that trad A = 0 for A € a. Moreover, it is easy to
see that tradY =0 for Y € n = [g, g]. Hence we have trad X =0 for all X € g.

(4) = (2) It is not hard to see that V4 = ad A for A € a, and Vx = 0 for
X € n. A straightforward computation then yields that R(A, A") = 0,R(A, X) =0
and R(X,X’) =0 for any A, A’ € aand X, X’ € n.

(2) = (3) is trivial. O

Claim 5.6. If g be a non-unimodular solvable Lie algebra with Einstein metric Q,

then the Ricci curvature of (g, Qo) is strictly negative.

Proof. As stated above, it is proved by Jensen [5] that any solvable Lie algebra with
inner product has nonpositive scalar curvature. Since @)y is an Einstein metric, its
scalar curvature sc(Qo) is zero or strictly negative. If sc(Qy) = 0, then (g, Qo) is
Ricci flat, and hence g is unimodular by Lemma 5.2, which is a contradiction. Hence,

sc(Qo) < 0, and the Ricci curvature of (g, (o) is strictly negative. O

Let n = [g, g] be the derived algebra of g, and a be the orthogonal complement of
n with respect to ). For any A € a, we denote by D4 and S, the symmetric and

skew-symmetric parts of ad A with respect to @), respectively.

Lemma 5.3. Let g be a non-unimodular solvable Lie algebra with Einstein metric QQq,
a the orthogonal complement of the derived algebra w = [g,g], and Hy = Hg, € g the
vector defined by Qo(Ho, X) = trad X for any X € g. Assume that a is abelian. Then
the following holds:
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(1) For any A € a, Da and Su are derivations of g. Moreover, {Da,Sa | A € a} is

abelian.
(2) Da #0 for any A € a, and the restriction Dg,|o of Dy, to n is positive definite.
Proof. (1) Let {n®} be the lower central series of n defined by

n(l) =n 2 n(z) — [n’ n(l)] 2 e 2 n(i+1) — [n’ n(l)} 2 e

?

and a; be the orthogonal complement of n®*Y in n® with respect to Qy. Since g is
solvable, n is nilpotent. Hence there exists 7 > 0 such that n(”) # {0} and n"*1) = {0}.
Then g is decomposed into a direct sum g=adn=a®a; B --- P a,. We set ap = q,
and let {e}} be an orthonormal basis of a, with respect to Qq for p =0,1,...,7.

Let A € a, and consider the derivation ad A of g. Recall that Hj is orthogonal to
n, that is, Hy € a. Substituting ad A for A in the left hand side of (1.3), we have

trad(ad A(Hp)) o (ad A)* ZB ((ad A)* ad Ae;,e;)
= = Z Qo ([(ad A)*([A4, ]), [e;,eéﬂ ,eg) =0.
zypq

Hence it follows from Lemma 5.1 that D4 and S, are derivations of g.

Let € (resp. p) denote the space of skew-symmetric (resp. symmetric) derivations
of g with respect to Qo, and 3(¢ @ p) be the center of a Lie algebra ¢ @ p. Then it
follows from Claim 5.2 that D4, S4 € 3(€ @ p), since ad A € € @ p. This implies that
{Da,Sa | A € a} is abelian, thereby proving (1).

(2) Since Dy, is a derivation of g for each A € a, we define a new Lie bracket [, |t
on g by

A, X]T = DX, [X,)Y]"=[X,Y] A€a XY en
Then we have a new solvable Lie algebra g™ = (g,[, ]*). Moreover, it is easy to see
that Qg yields an Einstein metric on g7.

Let ad™ denote the adjoint representation of g, and BT the Killing form of g*.
Let Hy € g* be defined by Qo(Hy ", X) = trad®™ X for any X € g*. Then, for X € g*,

we have

trad+X = ZQ()[X, 62‘]—1—76@‘) = ZQ()([X, 6i]7€i) = tradX,

where {ej,...,e,} is an orthonormal basis of g™ with respect to Q9. Hence we have
Hf = H,.
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Let {e/} be an orthonormal basis of g with respect to Qo given in (1). Then, for
A € aand X € n, we obtain

BT(A+ X, A+ X)
=trad" (A + X)oadt(A+ X)
=tr(ad” Aoad” A+ 2ad” X oad®™ A+ ad* X oad™ X)
= (Qo(DaDaéh, €}) +2Qo([X, Dach] T €) + Qol([X, [X, el] T, ef))

,p

= Z Qo(Daey, Daey) >0,
1,

which shows that B is positive definite.

Choose a unit vector X € n such that ad* Hy(X) = aX. Since (ad* X)*oad’ X is
symmetric with respect to Qg, there exists an orthonormal basis {e;} of g with respect
to Qo, satisfying (ad® X)* o ad™ X(e;) = use;. We first note that p; > 0 for all 4.

Indeed, we have
piQoles, e;) = Qo ((ad+ X) o ad+X(€z’)’ 62‘) = Qo(adJr X(e;), ad™® X(e;)) > 0.

Then, substituting ad™ X for A in (1.3), the left side of (1.3) is given by

trad* (adt X (Hy)) o (adt X Z Bt ((ad* X)* o ad™ Xe;, ¢;)
=—atrad® X o ad+ Z“Z (e;,€;)
:—aZQO(((ad+ Y oad® X)e;, €) Z,uz (e:,€;)

:_05§ i + E /JJz euez
i
Hence we have

_azuzg__Z/M 627 ) _07

which implies that a > 0.
Assume that o = 0. Then from the above inequality we have > u; BT (e;, e;) = 0,
which implies that

trad*(ad™ X (Hp)) o (ad™ X ZB+ ((ad™ X)* o ad® Xe;, ;) = 0.
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Hence, by Lemma 5.1, the symmetric and the skew-symmetric parts of ad® X are
commutative derivations of g. Since n is nilpotent, ad®™ X|,, the restriction of ad™ X
to n, is also nilpotent. Hence ad® X is nilpotent on g, since ad™ X (g) C n. Note that
(ad® X)* is also nilpotent on g. Since (ad™ X)*oad’ X = ad™ X o (ad® X)* holds, the
symmetric and the skew-symmetric parts of adt X are both nilpotent on g. Hence the
symmetric part of ad™ X vanishes, so that ad®t X is a skew-symmetric derivation of g
with respect to Qg. Then the Ricci curvature Ric(X, X)) in the direction X is given by

1
Ric(X, X) = — Qo(ad* (Ho) X, X) — §B+(X X)
1
—§trad+Xo (adt X ZQO e, e;]", X)?

1 1
S §trad+Xoad+X—|—étrad+X0ad+X+ZZQO([eiyej]+aX)2

4.
1
= ZQO([ei,ej]+,X)2 > 0.
i,J
This contradicts Claim 5.6. Therefore, we have a > 0, that is, the restriction Dp,|, of
Dy, to n is positive definite.

Assume that there exists A € a such that Dy = 0, that is, ad” A = 0. The Ricci
curvature Ric(A4, A) in the direction A is then given by

Ric(A, A) = — Qo(ad ™ (Hy) A, A) — %wa A)

1
—§trad+Ao (ad™ A)* ZQO (lei, 5], A)?

1
:—§trad+Aoad+A:O,

which contradicts Claim 5.6. Hence D4 # 0 for any A € a. O

6 Structure of homogeneous Kahler Einstein man-
ifolds with K <0

Let M = (M, J,g) be a connected, simply connected homogeneous Kéhler manifold
with nonpositive sectional curvature K < 0. Recall that M is identified with a simply

connected solvable Lie group G with a left invariant complex structure J and a left
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invariant Kéhler metric ( , ) on G (cf. Theorem 3.1 of §3). By Lemma 3.1, the Lie
algebra g of G admits an endomorphism J and an inner product ( , ) on g satisfying
Conditions (K1)—(K4). Also, the Levi-Civita connection V, the curvature tensor R
and the sectional curvature K of g are defined in the natural way.

Let n = [g, g] be the derived algebra of g, and a the orthogonal complement of n
with respect to ( , ). For any A € a, we denote by D4 and S, the symmetric and the
skew-symmetric parts of ad A: g — n, respectively.

From now on we assume that ( , ) is an Einstein metric. Since the sectional
curvature of (g, ( , )) is nonpositive, the Ricci curvature of (g, (, )) is either strictly
negative or zero. We have already seen in Lemma 5.2 that if (g, ( ,)) is Ricci flat, then
(g,(, )) is flat. Suppose that (g,(, )) is not Ricci flat. In order to describe basic
properties of (g, J,(, )) in the language of Lie algebra, we first prove

Proposition 6.1. Let g be a solvable Lie algebra with an endomorphism J and an
Finstein metric { , ) satisfying Conditions (K1)-(K4). Suppose that (g,{ , )) has

nonpositive sectional curvature and is not Ricci flat. Then the following hold:
(a) There exists an orthogonal basis {Hy}acn of a with respect to ( , ) such that

[H,, JH,| = N\oJH, for some X\, > 0,
[Hy, JH,] =0 ifa#b.

Moreover, setting H =, _\ H,, we have (H, X) =trad X for any X € g.

a€N

(b) Define a linear function \,: a — R by \o(Hy) = dapAg for any b € A. Let n2?
and n be the subspaces of n defined by

n;“’:{XEn DX =

(MNa(A) £ N (A)) X for any A € a} ,

N = N =

ngz{XEn DX =

A(A)X  for any A € a} ,

where \p(H) < M\o(H), and set

Ny = @ (nf*@n’) @nl.
Ap(H)<Aa(H)

Then g is decomposed into a direct sum g = @, R{H,} ®n, ® R{JH,} which
satisfies the following:
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(i) JnFb =n7’.

a

Aa(H,
(i) [X,Y]= |“I§ |;)<JX, YVJH, for X,Y €n,.
(111) [JHb,X] = —)\b<Hb)JX fO?”X € ngb.
. . 2 Ab(Hb)z 2 2 —b
(iv) [V, X] = —J[JY, X], |[V.X]] = s VPIXE for X €nty e,
b
~ N(Hy)?

(v) [V, X] = [JY, JX], |V, X]]* = YIPIX|* for X €nfe,Y €npe.

2| Hy|?

(vi) [V, X]=[JY,JX], |[Y,X][=|[Y,JX]| for X €ng, Y €ny.

(vii) Set A, ={a € A | nFc £ {0}} U{c} forc € A, and let a,b € A.. Ifa #D,
then \o(H) # MN(H). Moreover, if A\o(H) > No(H), then nEb £ {0}.

Proof. (a) Let n = [g, g] be the derived algebra of g, and a the orthogonal complement
of n with respect to (, ). Then it is known by Azencott and Wilson [1] that a is
abelian, since g has nonpositive sectional curvature K < 0.

Since (g, ( , )) is not Ricci flat, g is non-unimodular by Lemma 5.2. Hence there
exists a non-zero vector H € g such that (H, X) = trad X for all X € g. We have
already seen in §4 that H is orthogonal to n, and hence H € a.

Moreover, by Lemma 5.3, {D4,Sa | A € a} is a commuting family of derivations
of g that annihilate a. Also, D4 # 0 for any A € a, and Dy is positive definite on n.

Claim 6.1. (1) SaJ —JSa =0 forany A€ a.
(2) SaJa={0} forany A€ a.
(3) DgJA—DyJB =0 forany A,B € a.
(4) [JA,JB] =0 forany A,B € a.
Proof. (1) It follows from Conditions (K3) and (K4) with X,Y € g and A € a that

0=([JX,JY] - J[JX,Y] - JX,JY] - [X,Y], JA)
= —([JY, A}, J’X) — ([A, JX], J?Y) + ([, A], JX) + ([A, X], JY)
= —(ad AJY, X) + (ad AJX,Y) — (ad AY, JX) + (ad AX, JY)
= (Y, J(ad A)*X) + (ad AJX,Y) — (Y, (ad A)*JX) — (Jad AX,Y)
= 2((SaJ — JSA)X,Y).
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Since X and Y are arbitrary in g, we have S4J — JS4 = 0.

(2) Let A, B € a. Then as stated above, we have SyB = 0. Hence, setting X = B
in (1), we obtain SyJB = JS4B = 0. This proves (2).

(3) Let A, B € a, and X € g. By Condition (K3) together with (2), we have

([A, B], JX) + ([B, X], JA) + ([X, 4], JB)
= ({(Dp + 5Sp)X, JA) = (Da + Sa)X, JB)
= (X, (Dp — Sp)JA) = (X, (Da — 54)JB)
— (X, DypJA— DAJB),

implying that DgJA — D,JB = 0.
(4) For any A, B € a, it follows from Condition (K4) together with (2) and (3) that

— [JA, JB] — J[JA, B] — J[A, JB] — [A, B]

= [JA, JB] + J(DpJA+ SpJA) — J(DAJB + S4JB)
= [JA, JB] + J(DgJA — D4JB)

— [JA, JB.

Let {n”} be the lower central series of n defined by

Note that n is nilpotent, since g is solvable. Hence there exists » > 0 such that
n #£ {0} and n+Y = {0}.

Claim 6.2. Jn(") Cc a

Proof. We first note that a derivation Dy of n leaves n) invariant. Let Ards-eos Ars

be the eigenvalues of Dyl and ngr) be the eigenspace associated with A, ; for each

t=1,...,5. Then g can be decomposed into a direct sum n(") = nﬁ’“) @ -@ng), where

nz(»r) is orthogonal to n for R

For each i, let Z € n ) be an arbitrary vector in n( , and let X € n be any vector
in n. It follows from Condition (K3) together with (1) of Claim 6.1 with X, Z and H

that
0=([X,Z],JH)+ ([Z,H|,JX) + ([H, X], JZ)
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= —(\iZ + SuZ,JX) + ((Dy + Su)X, I 2)
= (MNiJZ+ JSyZ + DyJZ — SyJZ, X)

where id denotes the identity map of g.

As already remarked, Dy is positive definite on n. Hence (A,;id +Dpy)l|, is non-
(r)

arbitrary, we have Jn( C a. O

degenerate. This implies that JZ is orthogonal to n, so that Jn;’ C a. Since ¢ is

Claim 6.3. Ifr =1, then g is decomposed into a direct sum
g=R{H\}® - -aR{H,}dR{JH,} & --- ®R{JH,}

satisfying (a) of Proposition 6.1.

Proof. Claim 6.2 shows that a contains Jn. If there exists some Ay € a which is
perpendicular to Jn, then by (3) of Claim 6.1 we have

Dy,JB=DgJAy=0 forall Be€ Jn,

implying that D4, = 0. This contradicts that D4 is nonvanishing for all A € a. Hence
we have Jn = a.
Since {D4| A € a} is a commutative family of derivations on n, there exist linear

functions Ay, ..., As: a — R satisfying
ﬂZ:{X€ﬂ|DAX:>\Z(A)X for allAEa};é{O}

Then we have a direct sum decomposition n = n; & - - - @ ng of n. Note that for ¢ # j,
n; and n; are perpendicular to each other with respect to (, ). Since {Da|A € a} is
commutative, D4 leaves n; invariant for all A€ aandi=1,...,s.

Setting a; = Jn;, we get a direct sum decomposition a = a; & ... @ a, of a.
Accordingly, we write H = Hy + --- + H,, where H; € a; fori =1,...,s.

We shall show that if ¢ # j, then Dy,a; = 0 for any A; € a,. Let A; € a; and
B, € a;, respectively. By (3) of Claim 6.1 we have

DAZ.JBJ‘ == DBjJAi == 0,
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proving the assertion. In particular, substituting H, for B; in the above equation, we
obtain that Dy, JA; = \i(H;)JA; = 0, and hence X\;(H;) = 0 for i # j. This implies
that

since Dy is positive definite.
Finally, to prove that dimn; = 1 for each i = 1,..., s, let A; be an arbitrary vector
in a;. Applying (3) of Claim 6.1 to A; and H;, we see that

which implies that JA; € R{JH;}. Hence we obtain n, = R{JH;}. O

Claim 6.3 proves Proposition 6.1 in the case where r = 1. Hence, from now on, we
assume that r > 2.

Let a™ denote Jn( | and let a, be the orthogonal complement of a'” in a, so that
a is decomposed into a direct sum a = a™ @ a,. Then H € a can be uniquely written
as H=H" + H,, where H® ¢ a") and H, € a,.

Let n, be the orthogonal complement of n(™ in n, that is, n = n, ® n("). Since D,
is a derivation of n, it leaves n(") invariant for all A € a, and hence also n,. Let A®)
and A, be arbitrary vectors in a and a,, respectively. Since JA, € a, @ n, by the
definition of a, and n,, we get D mJA, € n,. Similarly, we have Dy JA") € n(),
Hence, setting A = A" and B = A, in (3) of Claim 6.1, we obtain

D JA, = Dy, JAW = 0. (1.4)

For any linear function A: a(” — R, we define the subspace (n,)y of n, by

(n)) = {X en,

1
DynX = §A (A1) X for all A™) € a®”) } .

Since {D4| A € a} is abelian, there exists a linear functional A: a — R such that
(n.)x # {0}. Let A\p = 0,Ar1,..., A s be linear functions such that (n,),,, # {0} for
i =0,...,s, and let n.; denote the subspace (n,),,, for each i = 0,1,...,s. Then we

have a direct sum decomposition of n, as

n, = nT,O s> N1 b---D Nys.
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It is clear that n,.g,...,n, s are mutually orthogonal with respect to (, ). We remark
that Dy and Sy leave n,; invariant for ¢ = 0,...,s, since {Dy, Sa| A € a} is abelian.
Moreover, by Equation (1.4) we have Ja, C a, @ n,.

Claim 6.4. (1) Jn,;=mn,; foranyi=1,...,s.
(2) o, Cnpye forany k=0,1,...,s.
(3) Mi(HM)Y >0  foranyi=1,...,s.
(4) meinl cn®™ foranyi=1,...,s.
(5) [Misn ] =4{0}  foranyl<i<j<s.

Proof. (1) For a fixed 1 < i < s, let X € n,; and A" € a™. By making use of
Condition (K4) for A" and JX, and applying (1) of Claim 6.1, we obtain
0=[JAD J2X] - J[JAD JX] - JA®) J>X] — [A") JX]
1
=J <§Am»(A<T>)X + SAWX) — Dy JX — SynJX
1
= §AT,1-(A(T))JX — Dy JX,
which implies that JX € n,;. Hence we have Jn,; C n,;. Since J is non-degenerate,
we obtain Jn,; = n,;.
(2) We first show that [n, o, n,;] is perpendicular to n(. For each k = 0,1,...,s,
let X € n,;. Also, let Y € n,g and A™ € a". Tt follows from Condition (K3) and
(1) of Claim 6.1 with X},Y and A" that

<[Y7 Xk]a JA(T)) = _<[Xk7 A(r)]v JY> - <[A(T)7 Y]a JXk>

1
= <§)\Tk (ANX, + S X, JY> —(SanY, JX})

1

= 5)\T7k(A(’"))(JY, Xi) = ((SamJ — JS4m)Y, Xi)
1

= —5)\,,7,6(14(7"))(1/, JXk).

When k > 1, (1) yields (Y, JX};) = 0, and hence we have ([Y, X;], JAT™) = 0. If k = 0,
then we have \,o(A™) = 0, which implies that ([Y, Xo], JA®™) = 0. As a consequence,
for all k = 0,1,...,s, we obtain ([Y, X,], JA™) = 0. This proves the assertion that
[n,0, 1,4 is perpendicular to n(™.
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To show that [n,. g, n,.x] C 0,4, it suffices to see that
1
Do [V Xi = [Dae) Y, Xl + [V, Daen Xo] = SAn s (AD)Y, Xi,

where X;, € n, 1, Y € n, o and A e g,
(3) Let X; € n,;. By (1), we have

DX, JX] = A\i(AM)[X, JX] for any A™ € a®,

and hence [X, JX] is perpendicular to n,o. It then follows that (|X, JX], JH,) = 0,
that is,

(X, JX], JH) = (X, JX], JH").
By making use of Condition (K3) with X, JX and H, we have

(X,JX],JH) = —([JX, H],JX) — ([H, X], J*X)

1.5
= (DyJX,JX) + (DgX, X) > 0. (19)

Again, by Condition (K3) for X, JX and H, we have
(X, JX], JH"Y = (D JX, JX) + (D X, X) = A\ (HO)X, X). (1.6)

Combining (1.5) and (1.6), we obtain A, ;(H™)(X, X) > 0, that is, \,;(H") > 0.
(5) We first prove that [n,;,n, ;] is perpendicular to n,o for any i, j = 1,...,s. Let
X €n,; and Y € n,;, respectively. Then we have

1
Do [X, Y] =5 (Ai(AD) + A (A)) (X, Y] for all AT € o).

In particular, if A" = H®  then we have A\, ;(H™) + \.;(H"™) > 0 by (3). This
proves that [n,;,n, ;| is perpendicular to n,.

In order to prove that [n,;,n, ;] C n fori,j=1,...,s let X € n.; and Y € n, ,
respectively. For k =1,...,s,let W € n, ;. Applying Condition (K3) to these X, Y, W,
we have

Assume that there exists some W € n,.;, such that ([X,Y], JW) % 0. Then it follows

from the above equation that either of the following holds:

)\r,i + )\r,j == )\r,k )\r,i + )\r,j = )\r,k
or
>\r,j + )\r,k = )\r,i )\r,k: + )\r,i = >\r,j-
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Solving the first equations, we have \,; = 0, which contradicts ¢« = 1,...,s. Similarly,
the second equations imply that A, ; = 0, contradicting j = 1,...,s. Hence [X,Y] is
orthogonal to n,j, for all & = 1,...,s, which implies that [n,;,n, ;] C n for i,j =
1,...,s.

Finally, to prove [n,;,n. ;] = {0} for 1 <i < j <s,let X € n,; and Y € n,,
respectively. Let A" be an arbitrary vector in a™. Using Condition (K3) with these
X,Y and A", and applying (1) and (1) of Claim 6.1, we obtain

(X, Y], JA(T)> = —([, A(T)L JX) — <[A(r)>X]7 JY)

—~

1
Aj(AY + 5 ,Y, JX> — <§/\m-(A(T))X +S,mX, JY>

I
| =
—~ N

Ari(AT) + X (AN (TX,YY = (Sam — JSam) X, Y)

[S=EN \V]

which shows that [n,;,n, ;] is perpendicular to n(. Tt follows from these assertions
that [n,;,n, ;] ={0} for 1 <i<j<s.

(4) In proving (5), we have [n,;,n,;] C n( for any i = 1...s. Moreover, Equation
(1.6) in the proof of (3) yields [n,;, n,;] # {0}. Hence the assertion follows. O

Now, we note that it follows from Claim 6.4 that

n® = [n n]

= [nT,U S LS DD N D n(T)a Nro % n.1 b---D LU D n(T)]

S S

- [nrm nr,k] + Z[nr,ia nr,i]a

k=0 i=1

and

S S

Z[nroa nT,k] g ny, Z[nr,i7 nT,i] g n(T’) .

k=0 i=1

From the lower central series we have n® D n("), so that

S

Z (M5, 1,5] 2 0l

=1

which implies



For each i, let 3, denote the subspace [n,;, n,;| of n(). Note that the restriction
o = Ai(AM)id for any A € al” and i =

1,...,s. Hence we have the decomposition n™ = 3; @ --- @ 3, of n(" into a direct

D 4 ls; of Dy to 3, is given by D 4o

sum. Moreover, it is clear that 3; and 3; are perpendicular to each other with respect
to (, ) for i # j. By the definition of a(, it is automatically decomposed into a
direct sum a = J3 @ ... ® J3,. Hence H™ € a) can be uniquely written as
HT = Hy1+---+H,,, where H,; € J3; foreach 1 =1,...5.

Claim 6.5. )\r,i(Hr,j) = (SZJ/\T’Z(H(T))

Proof. Let X € n'". It follows from Condition (K3) with X,.JX and H,, that

(X, JX],JH, ;) = —([JX, H, ], JX) — ([H,;, X], J*X)
= (DHT,J.JX, JX) + (DHT.J.X, X)
- Ar,i(Hr7j><XaX>'

If ¢ # j, [X, JX] is orthogonal to JH, ;, that is, ([X,JX], JH, ;) = 0, which implies
that A, ;(H, ;) = 0 for i # j. Hence we have Mi(HY = N i(Hpp) + -+ Mi(Hyg) =
)\r,i(Hr,i>‘ O

As a consequence of Claim 6.5 together with (3) of Claim 6.4, we have A, ;(H,.;) > 0.
)\r,i(Hr,i)

Claim 6.6. [X,Y] = (JX,Y) |H, 2

JH,; forany X,Y €n,;.

Proof. In the same way as we proved Claim 6.3, we conclude that dim 3; = 1 for each
i=1,...,s. Hence we have 3, = R{JH,,}.

On the other hand, using Condition (K3) and applying (1) of Claim 6.1 as well as
(1) of Claim 6.4, we have for any X,Y € n,;

X.Y] = (XYL TH, )T,
= !Hi,iP (Y, Hyil, JX) = ([H,3, X1, JY)) JH,
= 17 (D S, Y TX) = (D + S, )X, V) T
= ﬁ (Ari(Hy i)Y, JX) — ((Sw,,J — JSm,.)X.Y)) JH,;
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o /\T,i (H’r,i)

O

As already shown before Claim 6.4, Dy, leaves n,; invariant for any A, € a,
and i = 1,...,s. Since {Dy,| A, € a,} is commutative, there exist linear functions

Miﬂ-, e ,uf{f: a, — R such that
n, = {Xen,;|DyX= tr;(A) X for all A, € a,} # {0}

o). tri
for each p = 1,...,t,,. Hence we have a decomposition n,; = nqlﬂ’i ©---dn; of n,;
1

into a direct sum. Moreover, n, ;, ..., n,; are mutually orthogonal with respect to (,).

Claim 6.7. For any p € {1,...,t.;}, there exists a unique q € {1,...,t,;} satisfying
ﬂf,i + M?,i =0, and Jnf,z‘ = "g,i-

Proof. Let X € n’; and A, € a,. Since JX belongs to n,; (cf. (1) of Claim 6.4), there
exists ¢ € {1,...,%.;} such that (JX,Y) # 0 for some Y € n],. It follows from (4)
of Claim 6.4 that [X,Y] is perpendicular to JA,. Then, applying Condition (K3) to
X,Y and A, and using (1) of Claim 6.1, we have

0= ([X,Y],JA,) + (Y, A, JX) + ([A., X], JY)
= — (i (A)Y + S0, Y, JX) + (1] (A X + 84, X, JY)
= - (/Jf,z'(Ar) + Mg,z‘(Ar)) (JX,Y),

which implies that i ;(A,) 4 p;;(A,) = 0. Since A, is arbitrary, we have ) ; + ! ; = 0,
which also shows that ¢ is uniquely determined.
Now we prove that if p; + pf; = 0, then Jn};, = nl,. To this end, let X €

n;, and Y € ng:i for ¢ # q. Since py,; + ug:i # 0, there exists A, € a, such that

i (Ar) + uﬁ,li(Ar) # 0. By Condition (K3) with these X,Y” and A,, and using (1) of
Claim 6.1 together with (4) of Claim 6.4, we have

0= ([X,Y"], JA)) + (Y, A,], JX) + (|A,, X], JY")
— (W0 (A)Y + 84,V TX) = (12 (A)X + S X, JY)

(ILL];,Z'(AT‘) + ﬂg:i(AT)> (JX,Y7),
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which implies that (JX,Y”’) = 0, and hence Jn?, is perpendicular to ng’/i. It follows

Ty

from the choice of ¢ that Jn; C nl;. Interchanging p and ¢, we also obtain Jn/;, C n7;.

Consequently, Jn?, = n . O
For each ¢ =1,...,s, we extend A, ; to a linear function on a by setting
Ai(A) if Aea,
Ana(d) = § At
0 if A€ a,.

Similarly, we extend g ; to a linear function on a by setting

0 if Aea®,
Mf,i(A) = p .
i (A) if A€ a,

forany p=1,...,t,; and i = 1,...,s. Then the subspace nf,,i can be expressed as
o ={X en|DaX = ((1/2) Ars + py;)(A)X  for all A € a}.

In what follows, we call ((1/2) A.; + pir.;) a root of a in n, and call ny; the root space
associated with a root ((1/2) A; + py;) foreach i = 1,... ;s and p=1,...,¢,;. Note
that it follows from Claims 6.6, 6.1 that [A, JH,;] = \.;(A)JH,,; for A € a.

We next consider a, ®n,.o. Obviously, a, is abelian, and n,.¢ is nilpotent. Also, it is
easy to see that the restriction DHr|nr,o of Dy, to n,q is positive definite and a, ® n,
is invariant by J. Then we can repeat the above argument with a & n replaced by

a, @ n,o. In consequence, we obtain a decomposition
82
1 tr2,i
Oy & g = Oy, @ 1y & D) (R{Hrpi} @ 1l & 002 @ R{THy, i}
i=1

of a, @ n,( into a direct sum.
For each H,,;, there exists a linear function A, ;: a, — R satisfying [A, JH,, ;| =
Arpi(A)JH,,; for any A € a,. Moreover, for each n;

T2,1)

there exists a linear function

th, i+ & — R such that ((1/2) A, + py,,) is a root of a, in n,g. Then n? ; can be

N

expressed as
nfw ={Xeng| DaX=((1/2) A\, + ,uf”)(A)X for all A, € a,}.

Now we extend A,,; to a linear function on a by setting

Moy i(A) = Arpi(A) if A € a,,
" 1o otherwise.
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Similarly, we extend ufw- to a linear function on a by setting

pb (A) if A€ a,
MZ,@(A) = > “) )
0 otherwise

forany p=1,...,t,;, and i =1,...,s. Then the subspace nfw can be expressed as
nfg’i ={X en|DaX =((1/2) A\,; + ufg’i)(A)X for all A € a}.

As a consequence, setting r; = r, we obtain a direct sum decomposition of g as

2 Sa
g=20a, On,od @ @ (R{Hrmi} on. DD nx‘fj D R{JH,W}> :

a=1 i=1

where ny_; is given by
n s={Xen| DaX = ((1/2) Arpi + i, ;)(A)X  forall A€ a}

forany p=1,...,t,;,i=1,...,5 and a = 1,2. Again, we call ((1/2) A, ; +p ;) is a
root of ainnforanyp=1,...,¢.;,i=1,...,sand a =1, 2.
[terating the same argument, we finally obtain the direct sum decomposition of g
as _—_—
g=a, 0PP (R{Hw} enl O O ]R{JHTC“,-}> .
a=1 i=1
Note that for each H,_;, there exists a linear function A, ;: a — R satisfying [A, JH, ;| =

Aroi(A)JH,, ; for any A € a. Moreover, for any ny_,

there exists linear function
py, i+ @ — Rsuch that ((1/2) A, ; +pup ;) is a root of a in n. Also, n_; can be written
as

n s={Xen|DsX = ((1/2) \roi + a7 )(A)X  for all A € a}.

Tt

Obviously, we have Ja,, = a,,. To prove a,,, = {0}, let A € a,, and X € n]_;

for any «,7 and p. Applying Condition (K4) to A and X together with Claim 6.1 and

Claim 6.7, we obtain

0= ([JA, JX] — J[JA, X] — J|A, JX] — [A, X], X)

(—p?, (JAVIX + Sy X = J(i, (JAX + SyaX)
— J(—p_J(A)IX + SaTX) = b (A)X — 54X, X)

= <—2M£a,z‘<JA)JX - 2M£a,i(A)X7 X>
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= —2u,, (AN (X, X),

which implies p;,_;(A) = 0. Since 74,4, p are arbitrary, we have D = 0. This contra-
dicts that D4 # 0 for all A € a, and hence we have a,, = {0}, completing the proof of
(a).

We now prove the first assertion of (b). Let n,,; =n. ;®--- @ nf,;‘”z Recall that
Claim 6.3 asserts that if 7, = 1, then ny; = {0} for any ¢. Moreover, it follows from
Claim 6.4 and Claim 6.6 that if r, = 2, then [JH; ;,ny;] = 0 for any ¢,j. Hence we

may assume 7, > 3, and consider n,_ ;.

Claim 6.8. For r, > 3, there exists some rg < r, and j € {1,...,s3} such that the

restriction Dy

" il of DHTW, does not vanish identically.

Proof. We fix r, > 3 and i € {1,...,5,}. Assume that Dy
and j =1,...s3. We first prove that for any rg <rq and j =1,...,s3

=0 for all rg < 7,

Tg5J |nra,i

[ﬂrﬂ’j,ﬂ,«mi] = {0}, and [JHrg,j;nra,i] = {O} (17)
Indeed, let X € n,_ ;, and Y € n,; for 73 < r,. Since DHTW. is a derivation of n, we
have
1
DHTB i [Y X] 2)\TE7](HTH’])|:Y7 X]’
DHr J[JHTB ]’X] )‘7"573'(HT’,57J)[JHT5 ]7X]

Since A, ;(H,, ;) > 0, these equations show that [V, X] and [JH,, ;, X] are perpendic-
ular to n,_;. On the other hand, it follows from Claim 6.4 that n,_; contains [V, X]
and [JH,, ;, X]. Consequently, we have [Y, X] =0 and [JH,, ;, X] = 0, which implies
that [n,, ;,n,, ] = {0} and [JH,, ;,n,, ;] = {0} for any j =1,...,ss.

We now define subspaces b, and ¢, ; of n respectively by

5B
bo = P B (n,s OR{TH,,;}) . i = bo D1y @ R{JH,, }.

rg<ra j=1
The lower central series of ¢, ;, is then given by

() 5. W15 .0 kD (k)

cra,i = Croi = cra i [Cra 2 cra i = Yrai [Cra 1) cra Z] =

By a direct calculation using (1.7), we have c(g) = [b4, [ba, b4]] € b,. On the other
hand, by the definition of JH,,;, ¢ = R{JH,,;} must hold. Since we assume that

sty rz
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« > 3, the lower central series yields ¢ ) ) c£ )l, which implies that b, D R{JH,_;}.

ThlS contradicts that b, is orthogonal to R{J H, .} Therefore, there exist some r3 <
ro and j such that DHrﬁ,j’nra,i £ 0. O

Note that if Dy, | il # 0 for some 73 < 1, and j € {1,..., s}, then there exists
pe{l,... t. i} such that up ;(H,,;) # 0.

Claim 6.9. If there exists r3(< ro) and j € {1,...,s5} such that p (H,,;) # 0,
then ;. ; is given by py ;= £(1/2)A\., ;.

Proof. Let X € n? ;. Applying Condition (K4) to H,,; and X, and combining Claims
6.1 and 6.7, we have

0=[JH,,;, JX] — JJH,,;,
=[JH,,;,JX] - J[JH,,;, X]
T (il (Hey )IX + S IX) = (1, ()X + S X))

= [JH,, 5, JX] = J[JH,, 5, X] =207 (H,, 5) X

X] - JIH

R

JX] — [H,, ;, X]

T’g]’

(1.8)

We now look at the eigenvalues of Dy, associated with [JH,, ;, JX], J[JH,,;, X]

and X for r, <r, and k=1,...,s,. Then we obtain

T,k

‘ DHr@,j l)HAY k
[JHT'B o JX] )\'rﬁ,j(H'r'g,j) - Mfa,i(HTB7j> _'ufa 'L( )
J[JH,,B g X] _/\rﬂ,j(Hr@,j) - Mfavi(HTﬁ’j) _'uf l( ek k)

X W2 () 2 (Hr )

where (ry, k) # (1, ).
It [JH,,;, JX] and J[JH,, ;, X] belong to the same eigenspace of Dy, ;, then it

Tﬂ]?

follows from (1.9) that A, ;(H,, ;) = 0, which contradicts A, ;(H,, ;) > 0. Hence (1.8)
implies that either of the following holds:

(1.9)

[JH, 5. JX] = 2, (H,, )X,

78,7 T8,]

J[JHTg,jJ X] = _2lu£a,i(Hrﬁ7j)X'

If [JH,, , JX]| = 2u,(H,, ;)X holds, then we see from (1.9) that

1
ty, i(Hpy ) = 5)\m,j(Hrﬂ,j)a iy, (Hp k) =0
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for ry, <r, and (r,, k) # (75, 7). This shows that yi ; = (1/2)A., ;, and hence we have
[JHTﬁ:j7 JX] = )\Tﬁzj (Hrﬁvj)X'
If JIJH,, , X| = —2u,(H,, ;)X holds, then we see from (1.9) that

1

HroiHrg) = =5 A (Hrgg)s Hpgi(Hryp) =0
for v, < ro and (ry, k) # (rg,j). This shows that ;) ; = —(1/2)A,,;, and hence we
have [JH,, j, X| = =\, j(H,;;)X. This completes the proof. O

T3 7j

When p; ; = £(1/2)\,;, of n is denoted by nfmi R Vi

vanishes identically, we denote by n?mi the subspace nfmi of n. Summing up,we prove

P
the subspace n,_;

the first assertion of (b). Combining Claim 6.7 with (1) of Claim 6.4, we complete
proving (i) of (b). Claim 6.6 proves (ii) of (b). (iii) of (b) is verified in the proof of
Claim 6.9.

76,7 n'" = {0} for any o, 8,7, 6 and 4,7, k, .

We are now going to prove that [nra’i UM

Let X € ngz and Y € n;;’:‘;-’l. Since D, is a derivation of n for any A € a, we have

DX, Y] = % (i (A) £ Ay s (A) £ A 1(A) Ay (A)) [X, Y],

On the other hand, from Claim 6.9 we see that no subspace nfa’» is expressed as

n ={X en|DaX =(1/2) Ao+ Myj + Ak + Arst) (A)X forall Aeal.

Hence we obtain [X, Y] = 0, that is, [n, %7 n*"!] = {0} for any a, 3, and 4.

Tast T,k

Similarly, we obtain that

7 5 = {0} for (ra,i) # (rs,1) and (rg, 5) # (ry, k),
727 07 = {0} for  (ra,d) # (r5,0) and (rg, j) # (rs.1),
) om 5 ={0} for (ra,i) # (rs,0),

() 073 = {0}

Claim 6.10. (1) [Y,X] = —J[JY,X] for X en %’ Y en,, ;.

Tay,t

2) [Y,X] =[JY,JX] for X en 7" Y en "

Ta,t ) rg ’j

(3) [V, X] = [JY,JX] for X en® .V €nl

Tast? T8,J "
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Proof. (1) Let X € n % and Y € n,., ;. Applying Condition (K4) to X and Y, we

Tt

have
0=[JY,JX| - JJY, X] - JY,JX]| - [X,Y] =—-JJY, X] - [V, X].

This shows that [Y, X] = —J[JY, X].

(2) It follows from Condition (K4) with X € n;"7" and Y € n"5" that

0=[JY,JX] = JJY,X] - J)Y,JX] - [X,Y] = [JY,JX] — [X,Y],

that is, [Y, X] = [JY, JX].

(3) For any X € n_; and Y € n)_;, Condition (K4) yields

T 7]’

0=[JY,JX] - JIJY,X] - J[Y,JX] - [X,Y].

It is easy to see that [JY, JX],[X,Y] € 0”27 and J[JY, X], J[Y, JX] € n_"%”. Hence

Tt

we have [Y, X| = [JY, JX]. O

From Claim 6.10 we obtain the first identities in (iv), (v) and (vi) of (b).

Claim 6.11. Let X € n;ar@’j and Y € n,., ;. Then we have

52

1M i (H,. 2
1Y, X2 = 220Ul
2 |H1”5,j|

Proof. Let X € n% and Y € ., ;. On account of Claim 6.10, we have

Toyl

Y, JY], X] = [Y, [JY, X]] = [JY, [Y, X]]

(1.10)
=Y, [JY, X]| + [JY, J[JY, X]] = 2[Y, [JY, X]].

This together with (ii) and (iii) of (b) implies that for X, Y

[[Y7X]7 J[K X]] = _HY> X]v [JYvXH = [K [X7 [JY7X]H - [X7 [Yv [JYva

= XY, Y], X))

1)‘Tﬁj(Hrﬁj> 2
=—c—7 5 |[Y[[X, [JH,

1/\T@j(HT@j)2
= B WYX JX
2 |, YI[X, JX]

X]]

ﬁ7j7
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— 1 ATﬁaJ(HTﬁJ)2
2 |Hm,j|2

)\ Oévi(HT(lui)

|Y’|2 T|H '|2 |X|2JHTa,i'

On the other hand, by (ii) of (b), we have

)\Ta ) (Hra ﬂ')

. X, 1Y, X = s

1Y, X]|*THy, i

Combining these two equations, we finally obtain

L A3 (Hry)?

Y. X]|* =
2 |H7”[37]|2

V[P

We have thus completed the proof of (iv) of (b).
Claim 6.12. (1) Let X, X' €n 759 be orthogonal vectors, and let Y € n., ;. Then

To ’L

([Y, X],[Y, X']) vanishes identically.

(2) Let {E,...,E,} be an orthonormal basis of n "7 with respect to (, ), and

Tasl
Y € ni;}k be a non-zero vector in nirv’k. Set e; = (1/][Y, EH)[Y, E;] for each
i=1,...,n. Then {e,...,e,} is an orthonormal basis of nr Z with respect to

()

Proof. (1) Let X, X" en'? 7 be orthogonal vectors, and let Y be a non-zero vector in

n., ;. Then it follows from Claim 6.11 that

1\ i (H,y. 5)?
v, 4+ x = 22mmaWead gy sy
2 |H’r'ﬁ7.]|
1/\Tﬁj(HTﬁj)2
_ = > > Y2 X2 X/2
LY PP+ X

= [V, X]* + [y, X]”.
On the other hand, a direct calculation shows that
[V, X + X' = [V, X][* + 2([Y; X, [V, X)) + [V, X ).

Combining these two identities, we obtain ([Y, X],[Y, X']) = 0. This completes the
proof of (1).
(2) Let {Ey, ..., E,} be an orthonormal basis of n7” with respect to (, ), and let

Y € n:;r;k Claim 6.11 shows that [Y, E;] does not vanish for ¢ = 1,...,n. Moreover,

o1



it follows from (1) that [Y, Ey],...,[Y, E,] are perpendicular to each other with respect

to (, ).
To prove that {[Y, Ei],...,[Y, E,]} is an orthogonal basis of n:f;}’k, assume that

there exists X € ugzk which is perpendicular to [V, E;] for all i = 1,...,n. We
remark here that, by virtue of (i) of (b), {JE,...,JE,} is also an orthonormal basis

of n:z:f’j . Then, using Condition (K3), we have
X Y] =Y (JX, Y], JE)JE; = (Y, E, X) — ([E:, JX],JY)) JE; = 0.
i=1 i=1

Hence Claim 4.2 yields that
3
(R(JX,Y)Y, JX) = [U(JX, Y] = (U(JX, JX), U(Y,Y)) = S [[JX, Y]

- %([JX, [JX. Y]], Y) — %<[Y, Y, J X, JX),
= —(U(JX,JX),U(Y,Y))

_ _mwm JX), H, YUY, Y), H,. )

_ _mw{, Du, JX)(Y, Dy, ,Y)

N _m (A e (Hoy 1)) [TX P (0 (H 1)) Y]
— %}ZZ[’;)?M\QWP > 0,

which contradicts (g, ( , )) having non-positive sectional curvature K < 0. Conse-
quently, we conclude that {[Y, E4],...,[Y, E,]} is an orthogonal basis of n::zk In the

same argument, we can also prove that for Y € n;;f’j Y, Eq],....[Y, E,]} is an or-
thogonal basis of n;:}’k. This completes the proof of (2). O

To verify the second identities in (v) of (b), let X € n:zzk and Y € nr_;;k Suppose

that ro, > rg. Let {Ey,..., E,} be an orthonormal basis of n;;f’j with respect to (, ).
By virtue of Claim 6.12, setting e; = (1/|[Y, £i]|)[Y, Ei] for i =1, ..., n, an orthonormal

basis {e1,...,e,} of nr_:;-’k. Then, by making use of Condition (K3), we have
n 2 n
X, Y]? =D (X.Y],JE)E;| =) (X,Y],JE;)’
i=1 =1
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= (Y. B JX) — (B, X].JY))?

=XMWEM%ﬂW

=1

_Z 2|Hr |Y’ <617JX>

_ )\Toc,i(HTayi>

S ¢2|YMXV.

This completes the proof of (v) of (b).
To prove the second identity in (vi) of (b), let Y € nY .. We now consider the

7‘5 ]
+73,J
0 5 n'" of the derivation ad Y to n°

restriction ad Y’ﬂ?a,j tn, o e

Claim 6.13. (1) Im <adY|ng j) —n, 700,

(2) nl . is decomposed into a direct sum n® . = Ker (ad Yo j) ) [JY n_m’j].

r(}( 7Z TUC 71 ’ T.a ).]

(3) Ker (adY|n9 j) and [JY n. 5]] are invariant by J.

) Ta,]

Proof. (1) Let Z € n "7 Note that Claim 6.11 implies [JY, JZ] # 0. We then define

Ta st

a non-zero vector X € n? , by

2|H7"ﬁj|2
Argg(Hyy )Y 2

Using Equation (1.10) in the proof of Claim 6.11, (ii) and (iii) of (b), we have

X = [JY, JZ).

ad Y (X) = 2y Y, [JY, JZ]]
Mg (Hrg ) 2[Y 12777
H,,.?
S LT

Ny (Hy AV
|HT5]|2 )‘Tﬁj(HT’ﬁj)

= Y|*\JH,, ;, JZ

Sy PP (P s T2

1

N\, (H, )2 = 2.
)\Tg,j(HTg,j) 8] 8>J
This implies that ad Y[, , is surjective, that is, Im(ad Yo j) = n::;‘;’j.
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2) We first prove that Ker (adY|,0 ) is perpendicular to |JY,n_ "“ Il Let X €
( ",

) VM ra,g

Ker (ad Y|n2 j) and let W € n_ "7, Applying Condition (K3) to JX, JY and W, and

Tas]

then using the first identity in (vi) of (b), we have

0 =(J2X,[JY,W]) + (J?Y,[W, JX]) + (JW,[JX, JY])
== <X7 [JY', W]> + <JW7 [Xv Y])
=— (X, [JY,W]).

Since X and W are arbitrary, the assertion follows.
We now remark that by (1) of Claim 6.12 together with Claim 6.11, the sub-

space [J Y,n "7 ] has the same dimension as that of n_'?”. This combined with (1)

7 o, Toasl

and (i) of (b) implies that the dimension of [J Y,n "5 } is equal to the dimension of

) Pt

Im (adY’no )

TasJ

Since adY|,,0 is a linear operator, we have

Tasd

L0
dimn, W

— dim Ker (adY|n2 j> = dimIm <adY'|ﬂ7(2 j) = dim |:JY n—T'ij:| ]

. ey —T3,] .
Hence we obtain a decomposition n® . = Ker (ad Y0 ) = [JY, nm‘;]} of n? . into a
s TasJ ’ @

direct sum.
(3) Let X € Ker <ad Yo j), and let {Fi,..., E,} be an orthonormal basis of

n "%’ with respect to (, ). Applying Claim 4.2 to X and Y and using Condition (K3),

Tt

we obtain

<R(X7Y>Y7X> = |U(X7Y>|2 - <U<X7X)7U<Y7 Y)> - % HXv Y]|2
— S DG YILY) = (Y, Y XL X),
= [UXY)F =D _(UX,Y), By)?
=3 X B

i=1

- Z i(uy, (B, JX]) + (JE;, [JX, Y]))?

= [[JX, Y]]~
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Since the sectional curvature K is nonpositive, we have [JX,Y] = 0, that is, JX €
Ker (ad Yo j). This yields that J Ker (ad Yo j) = Ker <ad Yo j). By virtue of

(2), it is now immediate to see that [JY n, %7

0 } is invariant by J. 0

Let X € n) i~ Then Claim 6.13 shows that X can be uniquely written as X =
X1 + Xo, where X; € Ker (ad Y|n0 ) and X5 € [JY, 0 7"?]]

Let {E,..., E,} be an orthonormal basis of n,_ fj with respect to (, ). Note that

by (1) of Claim 6.12, [JY, F4],...,[JY, E,] are perpendicular to each other. Setting
= (1/|[JY, E|]|)[JY, E;] for i = 1,...,n, we obtain an orthonormal basis {ei,...,e,}
of the subspace [J Y, n;;?’j } with respect to (, ). Then, it follows from Condition (K3)

together with the first identities of (vi), (v) and (vi) of (b) that
XY = |[X0 + X, YIP = |[X, Y]

=D X YL JE) = 3 (=Y, B, TX) = (B, Xal, V)

=YV EL JXo)? = (Y, B, Xa)?

i=1 i=1

= LI B X

1)\1" r
/8.] 5] |Y| Z 6’“)(2

S 2 |H, P2
1/\7‘M(HTM) 2 2
= s Y[ Xe]"

On the other hand, we now consider JX = JX; + JX,. We remark here that by
(3) of Claim 6.13, JX; € Ker (ad Yo j) and JX, € [JY, n. ?J]. Then, substituting

JX for X in the above equation, we obtain

LAy (Hry )°
2 |Hy,l?

1 >‘Tﬁ j<HT,3 J)

[JXY]]* =
2 |Hyl?

VT X]* = V7?1 X

Combining these two identities, we have |[X,Y]|? = |[JX,Y]|?>. This completes the
proof of (vi) of (b).

Claim 6.14. If nir‘” # {0}, then nﬂf” = {0} fori#k.
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Tl

follows from Claim 4.2 with X and Y that

Proof. Let X € n %7 If there exists a non-zero vector Y € n;;i’j for © # k, then it

(RX,Y)Y, X) = [UX,Y)] = (U(X, X),U(Y,Y)) — 2 [, Y]
1 1

— (XX YILY) — S (Y [ XD, X)
= ), B (g U5 X), Ho YUY, B
_ _mw%x, Y)? - mwﬂw,j?@ XD, ,,Y.Y)
2 2
_ _%m Yy 4 %w X)(Y.Y)
_ %m,m(x Y) >0,

which contradicts that (g, (, )) has nonpositive sectional curvature K < 0. Hence we
have n "} = {0}. O
Claim 6.14 proves (vii) of (b). This completes the proof of Proposition 6.1.

Let (g,J,(, )) be a solvable Lie algebra under the assumption of Proposition 6.1.
We prepare a few Remarks for the properties of (g, J, (, )).

Remark 6.1. The Levi-Civita connection V and the curvature tensor R of g have the

following properties:
(1) VxJY = JVxY foral X,Y € g.
(2) R(X,Y)JZ=JR(X,Y)Z and R(JX,JY)=R(X,Y) foral X,Y,Z € g.
Proof. (1) Using Condition (K1)—(K4), we have
2(VxJY, Z) =([X,JY],Z) — (JY,[X, Z]) — (X, [JY, Z])
=([JY,JZ],JX) —([JZ,X],Y)+ (JX,[Z,Y]) + (JZ,[Y, X])
+(X,[Y,JZ]) + (JX,]Y, Z]) — (JX,[JY, JZ])
- _<[JZ7X]7Y> + <JZv [Y7X]> + <X7 [}/7 JZ]>

= —2(VxY,JZ)
= 2(JVY, Z)
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for any X,Y, Z € g, thereby, proving (1).
(2) It follows from (1) that R(X,Y)JZ = JR(X,Y)Z for any X,Y,Z € g. Hence
the symmetry property of R yields

(R(JX,JY)Z,W) = (R(Z,W)JX,JY) = (R(Z,W)X,Y) = (R(X,Y)Z,W)
for X,Y,Z,W € g, which implies that R(JX, JY) = R(X,Y). O

Let {(E£*), ..., (E"),} denote an orthonormal basis of n with respect to ( , ),
respectively. Also, let {(E?)y,...,(E?),} denote an orthonormal basis of nd with re-

spect to (, ).
Remark 6.2. Assume that A\,(H) > A\(H). The Levi-Civita connection V is given

by the following formulas:
(1) VaB=0 for A, Be€a.
(2) VaX=54X forAc€aand X €n.

(3) VxA=—-DsX forAcaand X €n.

1
(4) VxY =VyX = 5[JX, JY] for X e ntl Y €,
1
(5) VxY = -VyX = 5[X, Y] for X €n;bY €n,.
1
(6) VxY = VyX = —§J[X, JY] for X € nfd Y € nfd.

1 1
(7) VxY = 5[X,Y] = ZJIX,JY]  for X €nl.Y €nf.

1
(8) Vom, X = =5Aa(Ho)JX  for X € n,.
1
(9) VJHbX = —5)\(,(Hb)JX for X € njb.
Ao (H, Mo (H,
(10) Vv = 200 ey M) s o Xy e,

2|H,| 2| Hy|?
(11) If \y(H) > Ag(H), then we have

2
a

1
VY =VyX =2 S (XY (BN (B,  for X enftY enid

p=1
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1 m
(12) VxV = VyX = -2 D (XY (EDN(EY), for X €nf Y €nl.

p=1
Ao (H,y)

1 Y =
( 3) Vx Q‘Ha‘Q

(X,Y)H, + (JX,Y)JH,) for X,Y €n’.

14) If a # ¢,d and b # ¢, d, then VxY =0 for X € nf® and Y € nFe.
( a C

Proof. We first remark that for any A € a and X,Y € n,

(U(X,Y),A) = —% (Y, [X, A]) + (X, ]Y, A]))
((Y,ad A(X)) + (ad A*(X),Y)) (1.11)

NO| —

—~

D,X,Y).
To prove (1), (2) and (3), let A € a and X € n. It is easy to see that (adY)*A = 0 for
any Y € g. It then follows from Claim 4.1 that

VB = %[A, B+ U(A, B) = —% ((ad A)* B + (ad B)*A) = 0,

1 1 1
VaX = Sad AX = 2 ((ad A)°X + (ad X)'A) = 5 (ad A — (ad A)") X = 54X,
VA = %[X, Al - % ((ad X)* A + (ad A) X) = _% (ad A+ (ad A)) X = —D X

This completes the proof of (1), (2) and (3).
(4) Tt follows from Condition (K3) with X € nf® Y € n, and Z € g that

1 1

(VxY,2) = 5 (X, Y], 2) = (V. [X, Z]) = (X, [Y, Z])) = -5 (X, [Y, Z])
1

o |

((JY,[Z,JX]) +(JZ,[JX,Y])

)
(JZ,J[JX,JY))

N~ DN~

(Z,[JX,JY]),

which implies that VxY = (1/2)[J X, JY].

(5) For any X € n;% and Y € ny, it is easy to see that U(X,Y) = 0, and hence we
obtain VxY = (1/2)[X,Y].

(6) and (7) are proved in a way similar to that for (4).

o8



(8) Let X € nf’. Then it follows from Remark 6.1 together with (3) that

1
VinX = [JHy X+ VxJH, = JVxH, = =5 Mo(Ho)JX.

In a similar manner, we can also prove (9).
(10) For any X,Y € nf® and W € n, we have

1
It then follows from (1.11) that U(X,Y) € R{H,} & R{H,}. Hence we have

ViV = %[X, Y]+ U(X,Y)
T 1
HaP? e

~ P X V), + s (D XYy

_ Aa(Ha) Ao(Hp)

2|H,? 2| Hy|?

<U(X7 Y)vHa>Ha <U(X7 Y)va>Hb

(X, Y)H, +

(X,Y)H,.

The proof of (11) and (12) are done by straightforward computations using Claim
4.1.
(13) For X, Y € nY and W € n, we have

(UXY), W) = = (Y, [X W) + (¥, [X, W) = .

Moreover, using (1.11), it is easy to see that U(X,Y) € R{H,}. Hence we have

1
VxY = S[X,Y]+ U(X,Y)

Ao (H,y) 1

= X Y)JH, + —(U(X,Y),H,)H,
2|Ha|2 <‘] ) >J a+ |Ha|2 <U( 9 )7 a) a
)\a( a) )‘G(Ha>

= XY)JH, + —*(X,Y)YH,,.
Q‘Ha‘2 <J bl >J a+ ‘Ha|2 < ) > a

(14) can be seen by easy computations. O

Remark 6.3. If S, is a deriwvation of g for A € a, then the following hold:

(1) SaVyY = VSA)(Y + VxS4Y,
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(2) R(A,X)Y = -Vp,xY
forany X,Y € g.

Proof. (1) Let A € a and X,Y,Z € g. Since S, is a skew-symmetric derivation, it
follows from Claim 4.1 with X,Y, Z and A that

(SAVXY,Z) = —(VxY,S5,47)

= S({IX,Y],52) + (¥, [X, 8aZ)) + (X, [V, 842])

= SUSAIX, Y], 2) + (Y, 841X, 7] ~ [54X, 7]
FXSAIY, 7] - (847, 7))

= S(SaX. Y], 2) + (X, SaY], Z) — (SaY, [X, Z]) — {Y,[S4X, 2]
— (94X, [Y, Z]) — (X, [S4Y, Z]))

= (Vs,xY. Z) +(VxSaY,Z)

which implies that SaVxY = Vg, xY + VxS4Y.

(2) Let A € a and X,Y € g. By making use of Remark 6.2 and (1), the curvature
tensor R(A, X)Y is given by

R(A, X)Y = V,VxY — VxV,.Y — VY
= SuVxY — VxS4Y — Vp,xs5,xY

=V, xY +VxSaY = VxS4Y —Vp,xY — Vg, xY
= _VDAXY

Remark 6.4. If n}® = {0}, then the following holds:

No(Hp)? _ Na(Ha)?
20H, > ~ [Ha*

Proof. Let X be a non-zero vector in n}®. Then, using Remarks 6.1 and 6.2, we have

(R(JX, X)X, JX)
- <VJXVXX - VXVJXX - V[nyx]X, JX>
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A (H ) 2 Ab(Hb) 2
<VJX( ’H| X| Ha+ 2|H|2 |X| Hb
Aa(

2 |
Ay (Hp) Aa(Ha)
(2|H|2|X| JH, + 2|H|2|X| JH) T | X[’V g, X, JX
H,
=< | 2JX + ad )|X|JX

4|H |2 4| Hy|?
Aa(H,)? No(Hy)? Aa(Ha)?
X|*JX X|*JX — X|*JX, JX
AR R T
Na(Ha)? o, Mo(Hy)? g
=——|X —| X"
A RY 22 | X]
The nonpositivity of the sectional curvature K then implies that

Mo(Hp)? _ Na(Ha)?
2[Hy> ~ [Ha*

Remark 6.5. (1) Let X, X’ € n;® and Y, Y’ € ny. Then we have

(V. XL [, X]) = 8 XYY,

<MXHKXD=§ﬁ$WWKX%

(VXL X + (1 XL X) = 20, 0

(2) Let X, X' € nZ®and Y, Y’ € nf for \y(H) < A\o(H). Then we have

(V. X1, X]) = S8 XYY,

(V. X1 Y. X) = VRO, X0,

(X)L 1) + (X1 X) = A v vy,

(3) Let X, X’ € nl and Y, Y’ € n) for \y(H) < A,(H). Then we have

(v, X1, [V, X)) + ([, X'], [Y'X])
— (Y, JX],[Y', JX"]) = ([Y, JX'], [Y', JX]) = 0.
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Proof. (1) Let X, X’ € n;® and Y, Y’ € n,. Applying (iv) of (b) in Proposition 6.1 to
X and Y + Y’ we have

2 Mo(Hy)
2| Hp?

Y +Y", X]| Y +Y')P|IX]7.

Here we remark that each side of this equation may be written as follows:

LHS = [V, X]|* +2([v, X], [Y", X]) + |[Y", X]|*
)\b(Hb)2 )\b(Hb>2

= YPX]?2+ 2V, X].[Y' X X2lY')%.
2|Hb|2| 1“1 X+ 2([Y, X, [Y7, ]>+2|Hb|2| °[Y”|
Ab(Hb)Q 2 / 112 2
RHS = 2222 (1Y |2 + 2(Y.Y Y'|1?) | X
2 H, 2 (WP +2(Y,Y") + [Y']?) [X]7,
Hence we have
o (H3)?
2(Y, XL [Y X)) = .Y X (112
b

which proves the first identity in (1).
Similarly, from (iv) of (b) in Proposition 6.1, we obtain

Y, X, [V, X']) = %

(X, XDV,
which is the second identity in (1).

We now prove the third identity in (1). Substituting X + X’ for X in (1.12), we
have

[V, X + X'|, [V, X + X']) = /\l|nl(qi[|b2)2

(YY) X + X'
The left hand side of this equation is given by

2([Y, X + X'|,[Y', X + X'
= 2([Y, X, [Y", X]) + 2([Y, X], [Y', X))
+2([Y, X [Y7, XT) + 2([Y, XL [Y!, X)),

On the other hand, the right hand side is equal to

o (Hp)?
‘|’<H—b|b2)<y, Yy |X + X'
o (Hp)?
= 2 Y (X 20X, X) £ [XP)
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= 2([y, X],[Y", X]) + 2Ab(H”2)2 Y, Y'WX, X'y + 2y, X"], Y, X]).

Hence we obtain

/\b(Hb)2
| Hy|?

([, XT, [V, X7]) + (Y, X', [Y', X]) = (Y, Y')H(X, X'),

which completes the proof of (1).

(2) This is proved in a similar manner to (1).

(3) Let X, X’ € n? and Y, Y’ € n). Applying (vi) of (b) in Proposition 6.1 to X
and Y + Y, we have

Y+ Y XIE = [IY + Y7, IX]P.
Again, by (vi) of (b) in Proposition 6.1, we also see that

LHS = |[Y, X]|* + 2([Y, X], [Y', X]) + [[Y", X]]?
= |[Y, JX]]? +2([Y, X], [Y', X]) + |[[Y", JX]|?,
RHS = [[Y, JX] >+ 2([Y, JX], [Y', JX]) + |[Y', JX] .

Hence we obtain
(v, X], [, X]) = ([Y, JX], [Y', JX]). (1.13)
Substituting X + X’ for X in (1.13), we have
IV, X+ X', [Y X+ X)) =([\, JX + JX'|,[Y', JX + JX']).
Again, by (1.13), we see that the left hand side of this equation is given by

IV, X + X', [Y, X + X']

)
= (v, X1, V", X]) + ([, XT, [Y", X))
+<[YX] Y, XD+ (Y, X ] ', X7)
= (Y, JX], [V, JX])+([ Y, X Y, X7)
+ ([, X, Y7 XT) + (Y, JXT, Y, T X)),

On the other hand, the right hand side is given by
(Y, JX + JX'],[Y', JX + JX'])
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= <[K JX]? [Ylv JX]) + <[Y> JX]? [Y/’ JX/])
+ <[Y, JX/], [Y’, JX]> + <[Y, JX/], [Y’, JX/D

Hence we have
([, XT, [YV5 X + (Y, XL Y7, XT) = (Y, JX] Y7, JXT]) + (Y, J X [V, JXT).
This completes the proof of Claim 6.5.

Remark 6.6. Assume that A\,(H) > \(H) for a,b € A.. Then the following conditions
hold:

(1) dimnke > dimnFe.

(2) dimn’ = dimnZe.

(3) dimn*® > dimnie.
(4) dimn? > dimn}.

Proof. (1) Let {E1,. .., E;} be an orthonormal basis of n;® with respect to (, ), and let
Y be a non-zero vector in n, . By (iv) of (b) of Proposition 6.1, we have [Y, E;] # 0 for
each i = 1,...,n. Moreover, it follows from (1) of Remark 6.5 that [V, Ey],...,[Y, E]
are perpendicular to each other. Hence dimn*® > dim n?fc.

(2) is proved by (2) of Claim 6.12. (3) follows from (1) and (2). The proof of (4) is
similar to that of (1). O

7 Necessary and sufficient condition

Let (M, J, g) be a connected, simply connected homogneouns Einstein Ké&hler manifold
with non-positive curvature. In this section, we shall give the necessary and sufficient
condition for M to be a Riemannian symmetric space.

Recall that by Theorem 3.1, (M, J, g) is identified with a simply connected solvable
Lie group G with left invariant almost complex structure J and a left invariant Kahler
Einstein metric ( , ). Also, since G is simply connected, G is determined by its Lie
algebra g up to isomorphism.

Now, let g be a Lie algebra of G. Then the left invariant almost complex structure

J on G induces an endomorphism on g, denoted also by J, and the left invariant Kéhler
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Einstein metric ( , ) on G induces a inner product on g, denoted also by ( , ). From
Lemma 3.1 we see that (g, J, (, )) satisfies Condition (K1)-(K4). As remarked at the
beginning of §4, the Levi-Civita connection V, the curvature tensor R and the sectional
curvature K of g is defined by the Levi-Civita connection V, the curvature tensor R
and the sectional curvature K of G, respectively.

Since ( , ) is a Einstein with nonpositive curvature, the Ricci curvature Ric of
(g,(, )) is either strictly negative or zero. If Ric vanishes, then (g,( , )) is flat (cf.
Lemma 5.2) and we have done. Therefore, it suffices to investigate the case where Ric
is strictly negative.

From now on we assume that (g, (, )) is not Ricci flat. Let n = [g, g] be the derived
algebra of g, and a the orthogonal complement of n with respect to ( , ). For any
A € alet Dy (resp. Sa) denote the symmetric (resp. skew-symmetric) part of ad A
for A € a.

Applying Proposition 6.1 to (g, J,(, )), there exists an orthogonal basis {H,}aea
of a with respect to ( , ) such that

(H,, JH,| = A\sJH, for some \, > 0,
[Hy, JH,) = 0 if @ # b.

We define a linear function \,: a — R by A\, (H}) = .\, for any b € A. Also, let n?
and n? be subspaces of n defined by

n;“’:{XEn DX =

(MNa(A) £ XN(A)) X for any A € a} ,

DX =

N = DN =

ngz{XEn

A(A)X  for any A € a} ,

where \y(Hyp) < Ao(H,). Setting

n, = (nf*@n.’) @n,
Mo (Hp)<Aa(Ha)

we have a direct sum decomposition g = @, R{H,} & n, ®R{JH,} of g.

Proposition 7.1. Let (g,J,(, )) be a solvable Lie algebra which has as a direct sum
decomposition g = P, R{H.} ® n, ® R{JH,} as in Proposition 6.1. Then the

following conditions are equivalent:
(a) VR=0.
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(b) For each ¢ € A, let A. denote a subset {a € A | n¢ #£ {0}} U {c} of A. Then
there exists a subset {ai,...,an,} of A satisfying that Ay, U...UA,, = A and
that Ay, N Ag, = {0} if i # j. Moreover, the following hold:

(i) If there exists a; such that nw) = {0}, then n) = {0} for any b € A,
(11) )‘b(Hb> _ )‘C<H>
| Hy| | He|

for any b,c € n,,.

Proof. Let n = [g, g] be the derived algebra of g, and a the orthogonal complement of
n with respect to (, ). It is known by Azencott and Wilson [1] that a is abelian, since
g has nonpositive sectional curvature K < 0. By Lemma 5.3, {D4,S4 | A € a} is a
commuting family of derivations of g which vanishes on a, where D4 and S4 denote
the symmetric and skew-symmetric parts of ad A for A € a. Also, by Lemma 5.3, D4
is a nonzero operator for any A € a, and Dy is positive definite on n.

We first prove (a) = (b).
Claim 7.1. Ifb and c are elements in A such thatb & A. and c & Ay, then A.NA, = {0}.

Proof. Assume that A, N A. # {0}. For any a € Ay, N A, let X € n}’ and Y € n}e.
Since b ¢ A. and ¢ € Ay, it is easy to see that VxY = 0 by Claim 4.1. Then, using
Remarks 6.2 and 6.3, (VxR)(H,,Y,Y) is given by
(vXR)(Hb7 Y; Y)
=VX(R(H,,Y)Y)— R(VxH,, Y)Y — R(H,,VxY)Y — R(H,,Y)VxY
1 1

= éAb(Hb)R(X, Y)Y = éAb(Hb)VXVyY

Aa(Ha)

= S (H)Vx < viEd, + 2y )

2|H,? 2|H.[?
1 A (H ) 112
= ——N(H, Y|“X.
This contradicts VR = 0, and hence we conclude A, N A, = {0}. O

Claim 7.1 implies that there exists a subset {aq,...,a,} of A such that A,, U---U
Ao, = Aand Ay, N A, = {0} for i # j. Weset Ay, = {a; = i1,...,im,} for each
i = 1,...,m. Without loss of generality, we may suppose \;,(H) < --- < \;, (H).
Then g can be written as

m m;

g= @@ (R{Hi. } ®&n;, ®R{JH,,})

i=1 a=1
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where n;_ is given by
a—1

+1 —1
ni, =€ (n 7 @n ) @nl,

p=1
Claim 7.2. If n;, = {0}, then n) = {0} forallao=1,...,m;.
Proof. Assume that n;, = {0} and there exists a € {1,...,m;} such that n? # {0}.

Let X € n/™ and Y € n? . It follows from the assumption n;, = {0} that VxY = 0.
Then, by making use of Remark 6.2, we see that (VxR)(X,Y,Y) is given by

(VXR> (X7 Y7 Y)
= Vx(R(X,Y)Y) = R(VxX,Y)Y — R(X,VxY)Y — R(X,Y)VxY

Nio (Hiy) | <10 Niy (Hiy) 1o
= VyvY - R| ——|X|"H; ! S\ X|°H;,,Y | Y
VaVaVy (2|Hia|2 X+ S, T
)\ai<Hai) 2 )\Z (Hl )2 2
= — 7 Y H’L - = X V Y
VXVX( o, 2 e ) g XYY
N, (Hi )2 s Nio (H )2 1o
= el ) g g Nel i) gy
2(H, |2 VIVxX+ 2[H;, |? XYy
Nio (Hi)? o2 [N (Hi,) Ai, (Hi,) Ai, (H;,)
_ _LelTia) 2y ((Lalie) o 2alTn) gy AieUia) g
o, N ol e Sy e e
C(H:- V2N (H:
:_/\7«1( ‘7»042> 11(‘ZE)|X‘2|Y|2Hi1.
2|H;, > 2|H; |
This contradicts VR = 0. Hence, n) = {0}. O

Claim 7.2 proves (i) of (b). Next we prove
Claim 7.3. If n? #£ {0}, then

No(Ha) _ No(Hy)
| H| | H,y|

Proof. Assume nX’ = {0}, and let X € n;°. It follows from Remark 6.2 together with
Remark 6.1 that for X and H,, we have

(VyxR)(Hy, X, X)
=Vx(R(Hp, X)X) — R(VyxHy, X)X — R(Hy, V;x X)X — R(Hy, X\)V;x X

1 1
=5 M(H)Vix VX + 2 M(H) R(IX, X)X
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Aa(Ha)
2|Hal?

A
| X|*JH, — oy >yX| JHb) X — —)\b(Hb)VXVJXX

R(H“‘ A

No(Hy)?
2| Hy[?

=\ (Hy) (VixVxX —VxV,xX) — éAb(Hb)V[JX,X]X — | X|?V yu, X

Aa(Ha) | <12 No(Hp) | 10

— X|*H,
Q\H\| A 2!H|2| 4y
A

o(Ha) Ao(Hp)
- (S 2|

/\b(Hb)
2|H, 2
Ay (Hyp)
2| Hy|?

=Ao(Hp)V x <

| X|*JH, + | X| JHb>

A
+ Ap(Hy) o(H )|X\ Vo X —

2|H,?

=\ (H,) ( A2|(5|2 IX|PJX +

_)\b(Hb)( A2|(5|2 IX[2IX + ;“(q |2)|X| JX)
Aa(H,)? )\b<Hb)
4|H,[?

A[Hy|?
1 [ N(H)?  No(Hy)?
)\b(Hb> ( |H ’2 — |Hb|2 ’X|2JX

Since VR = 0, this implies that

| X|*V ym, X

|X|2JX)

— \o(Hy) IX[PTX + = | X 2T X

No(Ha) _ No(Hy)
| H| | Hy|

This completes the proof that (a) implies (b).

We now prove the converse (b) = (a). Assume that (b) holds, and let {ay, ..., an}
be a subset of A satisfying that A, U...UA,, = A and that A,, N A,, = {0} if i # j.
By rearranging the indices, we may assume that n; # {0} for 1 <k <n and n) = {0}

am

for n <1 <m, where 1 <n <m. For k € {1,...,n}, we define a subspace g of g by

o =R{H,} oR{JH,} & P R{H.}@n, ®R{JH,}),

5% #aGAak

where n,, is given by

Ny = n"dn ).
@ (IB aﬁ)

Ag(H)<Aa(H)
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Moreover, for I € {n+1,...,m}, we define a subspace g; of g by

9 = @ (R{H,} ®n, @ R{JH,}),

V€A

where n, is given by

ne @D Fen) e
Xs(H) <Ay (H)
Then g is decomposed into a direct sum g; & - - - B g,,. Obviously, we have [g;, g;/] = {0}
forl1 <i<i <m.
We first investigate the case where n, # {0} for 1 <k <n. Fixk € {1,...,n}. For
the sake of convenience, we set A, = {1(= ax),...,my}. Without loss of generality,
we may assume that A\;(H) < --- < A\, (H). Moreover, unless otherwise stated, Greek

indices a, 3, ... run from 1 to my.

Claim 7.4. (1) dimnZ’ =dimn3!  forany [ <a.
(2) dimn® =dimn; for any «.

Proof. Since ( , ) is Einstein, we have

1

T Ric(H,, Hy) =

\H B Ric(H,,, Hm,)-
mg

By making use of Remarks 6.2 and 6.3, the Ricci curvature in the directions H, and

H,,, are given respectively by

1 m
Ric(H,, H,) = —Z—l)\a(Ha)Q <dimna +4+ > 2dimn;a> ,
B=a+1

1
Ric(Hp,,, Him,) = —=

4)\mk (H,,,)? (dimn,,, +4).

Hence we have

_Aa(Ho)? S Amy (Hm,,)?
A (dlmna +4 —i—ﬁ;lelmn = _4TH—mk’2 (dimmn,,, +4).

This combined with (ii) of (b) implies that

my
dimn, + Y 2dimn}* = dimn,,,
B=a+1
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and hence

0 =dimn,,, — (dimna + Z 2 dim nga>

B=a+1

mg—1 a—1 mg
=2 dimn}’ + dimn), — (2 > dimnf? 4 dimn), +2 ) dim @“)

p=1 5=1 y=at1
a—1 mg

=2 Z (dim n:;f — dim ngﬁ) + dim n?nk —dimn? +2 Z (dim nt7 — dim n;ra) .
B=1 y=a+1

Recall that it is proved in Remark 6.6 that for 0 < a <~y < my

. + . Jr
dim nmf —dimn}? >0,
0 0
dimn,, —dimn, >0,

. +ry o . +a
dim n,’ dim n ¢ > 0.
Hence we have

mn? — dimnt? —

dimn;” — dimn” = 0,
0 L0

dimn,, —dimn, =0,

. _l’_—y _ . J’_a —
dimn;7 — dimnJ 0.

Since, by (2) of Remark 6.6, we have dimn}f! = dimn}? for 3 < my, we obtain
dimnf! = dimnf” for 8 < . This proves (1).

We remark here that n? = n;. Since « is arbitrary, we obtain
. 0 _ o . 0 o .
dimn,, =---=dimn; = dimn;,

which proves (2). This completes the proof of Claim 7.4.

We define a lexicographic order on a set L = {(a, 5) | mp > a > > 0} by

a>d.

(,B) > (o, ) = { If « =¢/, then 5> 3.

By virtue of Claim 7.4, we set

Sk = dimniﬁ fora > 3 >0,

tr = dimn?  for a > 0.
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Let {(E£P)y, ..., (ELP), } denote an orthonormal basis of n# with respect to (, ) for
a > (3> 0, respectively. Also, let {(E2)y,...,(E2), } denote an orthonormal basis of
n? with respect to { , ) for a > 0.

Claim 7.5. (1) Let (o, ), (7,0) € Ly, and suppose (o, ) > (v,0). Let X € ntP
and Y € nit‘; @nf. Then, for any Z € g, we have

R(X,Y)Z = —Vg v Z.

2) Let a > (3>~ >0. Then, forXYEn*BandZEn 7. we have
( g

R(X,Y)Z = _i > (2 IYLIED) JX]) = (2, X (B, JYD) (B

p=1

(3) Leta >~ > (3 >0. Then, for X,Y € nt?P andZEn*ﬁ, we have

R(X,Y)Z = —%Z ({2, YL U(ES),, IXT) = (2, TX] [(E57),, TY)) (E57),.

p=1

o 7

(4) Let a > 3>~ >0. Then, for X,Y € 0l and Z € n}7, we have

1 &

R(X.Y)Z =~ > V2 (B NIX, J(ES),)
+ = Z )Y, J(ES7),).

5) Let a> 3> 0. Then, for X,Y,Z € vt we have
(5) ; Y,

a

_Aa(Ha)?

X, Y)Z =
R( ? ) 2|H |2

(Y, 2)X — (X, 2)Y).

(6) Let >~ > 3 >0. Then, for X,Y € niP and Z € n}7, we have

o 7

R(X,Y)Z = —EZ<Z> [V, (BZ) DX, (ES2)p] = (21X, (B77),D1Y, (B,

p=1

(7) Lety>a>3>0. Then, for X,Y € nif and Z € n+f3, we have

R(X,Y)Z = %[J[Z, JY], X] — i[J[Z, JX,Y].
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8) Lety>a>3>0. Then, for X,Y € nt? and Z € n*?®, we have
a ¢!

R(X,Y)Z = i[x, Y, JZ]] - %[Y, X, 7).

(9) Let a >~ >0. Then, for XY €n? cdeEng, we have

R(X,Y)Z = %Z (X, 2, [V (D)) = (Y, Z1, [T X (E2),]) (Ee)p-

p=1

(10) Let a« >~ > 0. Then, for X, Y € n® and Z € n}", we have

o 7

R(X,Y)Z = —i > (2, Y (EDDIX, (D] — (2, [X, (E)),DIY. (E9),])

p=1
Aa(Hy)?

MTIZAE

(JX,Y)JZ.

(11) Let a > 0. Then, for X,Y,Z € n°, we have

(%4

Aa(Ha)?

X,Y)Z =
R( Y ) 4|Ha’2

(=Y, Z2)X — (JY, Z2)JX

X, 2)Y + (JX, Z)JY + 2(JX,Y)JIZ).
(12) Let v > a > 0. Then, for X, Y €n® and Z € nr®, we have

Aa(H,)?
4| H,[?

 a(H)
4[H,[*

(JX,Y)JZ.

R(X,Y)Z = %[[X, JZ],JY] (X,Y)Z +

(13) Lety > a > 0. Then, for X,Y € n), and Z € n), we have

R(X,Y)Z = %([J[Y, Z),JX] - [X,J]Z,JY]] - [J[X, 2], JY] + [V, J[Z, JX]]).

Proof. (1) Suppose that & > f > ~v > § > 0. We first prove the case where X €
n}7,Y eng” and Z € n}’. Let {(Ef%)1, ..., (Ef),,} be an orthonormal basis of nj”f
with respect to (, ). By virtue of Remark 6.5, [JX, J(EX){],...,[JX, J(Ef°),,] are
mutually perpendicular in n_”. This combined with Claim 7.4 implies that, setting

JX, J(Ej‘s )p)s

e

B 1
v X TE,
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we obtain an orthonormal basis {ej,...,es } of n 7.
It follows from Remarks 6.2 and 6.5 together with Condition (K3) that

R(X,Y)Z =VxVyZ — VyVxZ - Vixy|Z

vy (—% Sz, <E¢5>p1><E¢6>p> ~ S WIX. Y], 7

= Z Y (EF)DJX, J(EF),] — % [J[X,Y],JZ]
= lpf; (JY, [(EX)p, JZD[IX, J(ET),] — ;[J[X,Y],JZ]

--3 Z Af’iw X (B, 12), TXDIIX, T(E),)

1 & _2|HpP
== § Y. JX]([JX, J(E, . Z)\JX. J(ET?
)\ﬁ H'B ‘ )(’2 J ’ J ]7 H‘] ) J( 0% )p]v >[‘] ) J( 0% )p]

S WIX.Y).72]
_ ISR AHPIUX T, )P e Zhe, L
=Til T @y VX dle mg iy 2

=03 e 12,01, X]lyey — 5 X, Y], 72
}1 J[X, Y], 7]
— Ve Z

It remains to show that R(X,Y)Z = —Vy,yZ in the other cases of (1). However,
since the proof is quite similar, we omit the detail.

The proof of (2) (resp. (3), (4), (5), (6), (7) and (8)) is done by a straightforward
calculation, using Remark 6.2 together with (iv), (v) and (vi) of (b) in Proposition 6.1.
Hence we omit the detail of the caluculation.

(9) For « > v > 0, let X,Y € n) and Z € nJ. Let {(E))1,...,(E)); } be an

orthonormal basis of ng. By making use of Remarks 6.2 and 6.5, we have

R(X,Y)Z =VxVyZ — VyVxZ — VixyZ

73



_Vy (%[Y, 7] - %J[Z, JY]) _ vy (%[x, 7] - %J[Z, JX])

- A"’}(Ij;‘) (JX,Y)VuZ
-5 ﬁ}@/v 201X (ED DBy + 7 §;<X, 12, Y] (B (B,
+g gqx, 20,15, (B (B — ¢ Z<Y 712, 7], (B)),]) (BS),
=- igw, 20,1, (EQW)) (), - § ng, YL By, JXI)(ED),
+g g% 20,1, (ED D)y + 7 ng, IX), () TYD(ED),

IS (X 2LV B — (Y- 21X (D) (B,

(10) For o > > 0, let X, Y € n and Z € n}?. Let {(E9)1,...,(E))y } be an

orthonormal basis of n, and {(E_;7)1,...,(E;")s} an orthonormal basis of n7. It

follows from Remark 6.5 that [(E9)1, (E;7)y], - - ., [(EY)e., (E;")4] are mutually orthog-

(67

onal for each ¢ = 1,...,sg. Combining this with Claim 7.4, and setting

1 0 -y _
(eq)p = H(Eg)pa (Ecﬁ)q” [(Eq,)pv (E, )q] forp=1,... 1,

we obtain an orthonormal basis {(e,)1, ..., (e4), } of nl.

Then, by making use of Remarks 6.2 and 6.5, we have
R(X,Y)Z =VxVyZ —VyNxZ =V xy|Z

=Vx (-% Z(Z’ Y, (Eg)pD(Eg)p)

p=1

v, (—% SN2, <E2>p]><E2>p)

p=1
A(H)
|[Hal?

(JX, V)WV im,Z

=- %;w, Y, (E9),)) (%[X, (ED)] — %J X, J <E3>p]>
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- i (2, 1V, (EDLIX, ()] + 3 D42 X (B, DY (B
F 1SS0 Y (B DIX, B, (B (B2,
LK I ),

AalH,)?
2

=—= Z ((Z, [V (B DX, (B, — (Z,[X, (B9),DIY, (E9),)])

(JX,Y)JZ

+ 7 ZZ ((E2) s (B2l X)ED),

S S X DY (L () (B,
/\a<Ha)2
A

(JX,Y)JZ

75



}l Z Z JED. T2, (),
X (Y. (eq)r)((e)ps X)ET),g
+3 Z_ Z JED),. T2, (e,),)
X (X, (eq)r){(eq)ps JY)EL)q
+ A;’f’fux Y)JZ
=7 Z ((Z, 1Y, (ED,DIX, (E9),] = (2. [X, (B, DI, (£9),))
+7 Z 2By, 72 (B, (BN IV, (e eah X) (B,
v Z D)y T2 I (B DX, (ea)e) (e T (B
+ A;g'z (JX,Y)JZ

x (&), T 2], [(E)r, (EQ)ql)
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Ao (Ha)?

P X7

_ iz VD)X, (E9)y) = (Z, [X, (ED,DIY, (ES),))
}1 ‘H( |)<JY X)JZ + Azl(;’g (JX,Y)JIZ

_ iz DD X, (E9)p) = (Z, [X, (ED,DIY, (E9),))
1 Xa(Ha)
T XYz

The verification of (11), (12) and (13) is quite similar to that of (10). This completes
the proof of Claim 7.5.

Claim 7.6. Let A € a. Then we have
ViR =0.
Proof. Let A € a, and let XY, Z € g. It follows from Remark 6.3 that

SA(R(X,Y)Z) =54(VxVyZ —VyVxZ - Vixy)Z)
=V, xVyvZ +VxVs,vZ +VxVySsZ
—Vs,wVxZ —=VyVg,xZ —VyVxSaZ
— Visuxv1Z — Vix,suv)Z — Vixy)SaZ
—R(S4X,Y)Z + R(X,5,Y)Z + R(X,Y)SAZ,

which implies that

(VAR)(X,Y,Z) = VA(R(X,Y)Z) — R(V4X,Y)Z — R(X,V4Y)Z — R(X,Y)VAZ
= SA(R(X,Y)Z) — R(S4X,Y)Z — R(X,SAY)Z — R(X,Y)SsZ
= SA(R(X,Y)Z) — S4(R(X,Y)Z)
= 0.

Since X,Y and Z are arbitrary, we have (V4R) = 0. d
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Claim 7.7. Let X € n#. Then we have
VxR =0.

Proof. Assume that a > > ~v >0 > 0. Let A,B € aand W € g. To prove this

Claim, we need to check the following cases:

(1) (VxR)(A,B,W)=0
(2) (VxR)(A,Z, W) =0
(3) (VxR)(A, Z,W) =0
(4) (VxR)(A, Z,W) =0
(5) (VxR)(A, Z,W) =0
(6) (VxR)(A,Z,W)=0
(7) (VxR)(A, Z,W) =0
(8) (VxR)(A, Z,W) =0
9) (VxR)(A, Z,W) =0

(10) (VxR)(A, Z,W) =0

(11) (VxR)(A, Z, W) =0

(12) (VxR)(A, Z,W) =0

(13) (VxR)(A, Z,W) =0

(14) (VxR)(A, Z, W) =0

(15) (VxR)(A, Z,W) =0

(16) (VxR)(A, Z,W) =0

(17) (VxR)(A, Z,W) =0

(18) (VxR)(A, Z, W) =0

for any X € g.

for X e nf’ and Z € n’.
for X e nf’ and Z € nl.
for X € n}? and Z € n3".
for X € n}? and Z € n.
for X € n}7 and Z € n3’.
for X € n} and Z € n3”.
for X € n}’ and Z € nj”.
for X € nf” and Z € nj.
for X € nf? and Z € nd.
for X € nt? and Z € nFh.
for X € nf7 and Z € nZP,
for X € nff and Z € nl.
for X € n;” and Z € nZ’.
for X € n}” and Z € nd".
for X € nf’ and Z € n¥7.

for X e n}” and Z € nZ”.

for X e nf® and Z € nZ”.
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(19) (VxR)(A,Z, W) =0

(20) (VxR)(A, JHy, W) =
=0
(21) (VxR)(A, JH,, W)

(22) (VxR)(A,JH, W) =0

(23) (VxR)(Y,Z, W) =0
(24) (VxR)(Y,Z,W) =0
(25) (VxR)(Y,Z,W) =0
(26) (VxR)(Y,Z, W) =0
27) (VxR)(Y,Z, W) =0
(28) (VxR)(Y,Z,W) =0
(29) (VxR)(Y,Z,W) =0
(30) (VxR)(Y,Z,W) =0
(31) (VxR)(Y,Z,W) =0
(32) (VxR)(Y,Z,W) =0
(33) (VxR)(Y,Z,W) =0
(34) (VxR)(Y,Z,W) =0
(35) (VxR)(Y,Z,W) =0
(36) (VxR)(Y,Z,W) =0
(37) (VxR)(Y,Z,W) =0
(38) (VxR)(Y,Z,W) =0
(39) (VxR)(Y,Z,W) =0

(40) (VxR)(Y,Z,W) =0

for X € n}” and Z € n).

for X € n}P.

for X € nff.

for X € n}? and € # a, 5.
for X enf’Y en}”, Z e nf’.
for X enl? Y en}”, Z ¢ n36
for X enf? Y en}’ Ze ni.
for X Enjy‘ﬁ,YEng”,ZEni .
for X en}? Y en}”, Z e nj”.
for X en}? Y en}”, Z e nf,.
for X e nf’ Y en, Z e nl.
for X 6n§5,Y€ng,Z€ng.5
for X en}",Y en}’ Z ni.
for X en}",Y en;”, Z € n®’.
for X enf? Y e n;”, Z € ni
for X enf’ Y en’ Ze n,i.
for X eny,YengV,ZEni .
for X en}",Y eny”, Z e ny”.
for X enf? Y € n;”, Z € n%;s
for X enl’ Y en) Ze ni.
for X enf’,Y en}?, Z e ny’.

0
9,7 €nl.
n Y
for X € n}7,Y € ny,
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(41) (VxR)(Y,Z, W) =0
(42) (VxR)(Y,Z,W) =0
(43) (VxR)(Y,Z,W) =0
(44) (VxR)(Y,Z, W) =0
(45) (VxR)(Y,Z, W) =0
(46) (VxR)(Y,Z, W) =0
(47) (VxR)(Y, Z,W) =0
(48) (VxR)(Y,Z, W) =0
(49) (VxR)(Y,Z, W) =0
(50) (VxR)(Y,Z,W) =0
(51) (VxR)(Y,Z,W) =0
(52) (VxR)(Y,Z,W) =0
(53) (VxR)(Y,Z,W) =0
(54) (VxR)(Y,Z,W) =0
(55) (VxR)(Y,Z, W) =0
(56) (VxR)(Y,Z,W) =0
(57) (VxR)(Y,Z,W) =0
(58) (VxR)(Y,Z,W) =0
(59) (VxR)(Y,Z,W) =0
(60) (VxR)(Y,Z,W)=0
(61) (VxR)(Y,Z,W) =0

(62) (VxR)(Y,Z, W) =0

+5
for X e nif Y enl?, Z € n¥.

0
for X enf’ Y en}?, Z enl.

5 +5
for X enfPY enl’ Z e nZ°.

+5
for X e nf’ Y enl?, Z e n’.

+v
for X e nf’Y eni?, Z e ny”.

s +y
for X e nt? Y enl’, Z e ny”.

0
for X e nf’Y en}?,Z € nj.

5 +5
for X e ni?, Y € nf’, Z € nj".

5 +y
for X e nf7Y enf’, Z e ny”.

+6
for X en}P Y enf?, Z e nko.

+
for X ent? Y enl?, Z e nd.

0
for X entP Y ent?, Z enl.

+y
for X e nf’ Y enff Z e ™.

0
for X enf’ Y enlf, Z enl.

e
for X e nf?,Y end?, Z € ny’.
+y
for X e nf? Y enff Z e nj.

+
for X e nfPY entf Z € nEh.

0
for X entP Y entf Z enl.

+5
for X e nf?Y en}? Z e n’.

0
for X e /" Y en}?, Z e nl.

+6
for X enf® Y enff Z e n’.

+9
for X ent’ Y entf Zen
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(63) (VxR)(Y,Z,W) =0
(64) (VxR)(Y,Z,W) =0
(65) (VxR)(Y,Z,W) =0
(66) (VxR)(Y,Z,W) =0
(67) (VxR)(Y,Z,W) =0
(68) (VxR)(Y,Z,W)=0
(69) (VxR)(Y,Z,W) =0
(70) (VxR)(Y,Z, W) =0
(71) (VxR)(Y,Z, W) =0
(72) (VxR)(Y,Z,W) =0
(73) (VxR)(Y,Z,W) =0
(74) (VxR)(Y,Z,W) =0
(75) (VxR)(Y,Z, W) =0
(76) (VxR)(Y,Z, W) =0
(77) (VxR)(Y, Z,W) =0
(78) (VxR)(Y,Z, W) =0
(79) (VxR)(Y,Z, W) =0
(80) (VxR)(Y,Z,W) =0
(81) (VxR)(Y,Z,W) =0
(82) (VxR)(Y,Z,W) =0
(83) (VxR)(Y,Z,W) =0

(84) (VxR)(Y,Z, W) =0

for X €n}?,Y ent? Z e ny’.
for X €nt’ Y enf? Z enj”.
for X e nf?Y en}f Z enj.
for X e nf’Y enf?, Z € nj’.
for X € n}’Y enf?, Z eny”.
for X e nfV Y entf Z e nko.
for X enf Y entf Z end.
for X enf® Y enll Z eni.
for X e n? Y entP Z € nZh.
for X ent’ Y entf Z enl.
for X e nf’Y end, Z enl.
for X € n}?, Y €nd, Z eny’.
for X e nifY en), Z e,
for X enf? Y en Ze ngv.
for X e n7,Y € nd, Z € nj.
for X en}P Y end Zenl.
for X eny”Y enl® Z € n¥’.
for X enf? Y enl® Z e nj’.
for X ¢ nE”,Y enl’, Z en’.
for X € nE”,Y enl?, Z €.
for X e nf’, Y enf’, Z € nf’.

+v +v £6
for X eng", Y eny?, Z €ny’.
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(85) (VxR)(Y,Z,W) =0
(86) (VxR)(Y,Z,W) =0
(87) (VxR)(Y,Z,W) =0
(88) (VxR)(Y,Z,W) =0
(89) (VxR)(Y,Z, W) =0
(90) (VxR)(Y,Z,W) =0
(91) (VxR)(Y,Z,W) =0
(92) (VxR)(Y,Z,W) =0
(93) (VxR)(Y,Z,W) =0
(94) (VxR)(Y,Z,W) =0
(95) (VxR)(Y,Z,W) =0
(96) (VxR)(Y,Z, W) =0
(97) (VxR)(Y,Z,W) =0
(98) (VxR)(Y,Z,W) =0
(99) (VxR)(Y,Z, W) =0

(100) (VxR)(Y,Z,W) =0

(101) (VxR)(Y,Z,W) =0

(102) (VxR)(Y,Z,W) =0

(103) (VxR)(Y,Z,W) =0

(104) (VxR)(Y,Z,W) =0

(105) (VxR)(Y,Z, W) =0

(106) (VxR)(Y,Z, W) =0

for X en)” Y enl" Ze n?”.
for X en}’ Y enl’ Z ¢ n?;”.
for X € nf’ Y enf’ Z € nl).

for X enf’ Y enl’ Ze n?‘;.
for X en®® Y enl’ Z ¢ n?.
for X eny”Y enl?, Z e nZ’.
for X eny”,Y enl?, Z e n2?.
for X en}” Y enl”, Z end.

for X € nE‘S,Y enl”, Z en¥.
for X € n}“;,Y entr, 7 e n?;”.
for X e nf’, Y enf?, Z € nf’,
for X en” Y enl’ Z e n¥.
for X € nEV,Y entf Z enl.

for X € n}“;,Y ent? Z en.
for X € nE”,Y enth 7 e n?‘s.
for X en”Y enl’ Z e n?.
for X enf’Y enff Z eny’
for X e ny” Y enl? Z enf,.

for X ent® Y enl, Z ¢ nga.
for X ent® Y enl" Z ¢ n?”.
for X e nj”, Y enl’ Z e n¥.

for X e ny”, Y enl? Z e n}v.
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(107) (VxR)(Y,Z,W)=0 for X en}’Y enl? Z end.
(108) (VxR)(Y,Z,W)=0 for X en}”Y enl? Z e n’.
(109) (VxR)(Y,Z,W)=0 for X en}”,Y enl? Z enl.

(110) (VxR)(Y,Z,W)=0 for X enf’Y enl? Z enj’.
(111) (VxR)(Y,Z,W) =0 for X enl® Y enlf Z e n2’.
(112) (VxR)(Y,Z,W) =0 for X enl® Y enll Z e nZ".

Let a, 8 € A,, such that o > > 0. Also, let (v,9), (¢,¢) € L and suppose (vy,0) >
(¢,0)

(113) If a # 7, 8,¢,¢ and B # 7,8, ¢,¢, then (VxR)(Y, Z, W) =0 for any X € nfPY €
nf’ and Z € nFe.

(114) If v # a, B,¢,Cand 6 # «, B, ¢,¢, then (VxR)(Y, Z, W) =0 forany X e nfAY €
n!? and Z € nFc.

(115) If € # a,0,7,0 and f # «,(3,7,6, then (VxR)(Y,Z,W) = 0 for any X €
nt’ Y e nf’ and Z € n¥c.

Now, we are going to investigate each case as follows.
(1) It follows from Bianchi’s second identity combined with Claim 7.6 that

(VxR)(A, B,W) = —(V4R)(B,X,W) — (VzR)(X, A, W) =0

for any X, W € g.
(2) Let X € nf and Z € n¥’. Then it is easy to see that VxZ = 0 and [X, Z] = 0.
This together with Remarks 6.2, 6.3 and Claim 7.5 implies that

(VxR)(A, Z, W)
— Vi (R(A, Z)W) — R(Vx A, Z)W — R(A,Vx Z)W — R(A, Z)V xW

1 1 1
— _§A$5(A)VXVZW + 5Agﬁ(A)R(X, Z)W + §A$5(A)VZVXW

= JW(A)R(X, )W + %)\;5 (AR(X, 2)W

2 Y
1 1
- (- ) oW
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=0.

We now note that in the cases of (3), (6), (8), (9), (14), (16), (18) and (19), we also
have VxZ = 0 and [X, Z] = 0. Hence in these cases the proof goes in a quite similar
fashion to that of (2).

(4) Let X € nt? and Z € n3”. It follows from Remark 6.3 and Claim 7.5 with
[X, Z] = 0 that

(VXR)(Av Z7 W)
= V(R(A, Z)W) — R(VxA, Z)W — R(A,VxZ)W — R(A, Z)V xW
1

= A ATV + %W(A)R(X, 2)W - %R(A, X, JZ)W

SNV,
- _%A;;Y(A)R(X, Z)W + %Ajﬁ(A)R(X, Z)W + i/\?(A)V[JXJZ]W
— %)\f(A)R(X, Z2)W + ;LA?(A)V[JX,JZ]W
= ATV W + AT (AT W
= 0.

Regarding the cases of (5), (10), (12) and (13), we still have [X, Z] = 0, so that the
proof of these cases goes similarly to that of (4). Hence we omit the proof.

(7) Let X € n}7. We first deal with the case where Z € n}”. Since we have
[X, Z] = 0, the proof of this case is similar to that of (4).

Next, let Z € ngv. It follows from Remarks 6.2 and 6.3 together with Claim 7.5
that

(VxR)(A, Z, W)
— Vi (R(A, 2)W) — R(Vx A, Z)W — R(A,Vx Z)W — R(A, Z)VxW

1 1 1

=~ A (VX VW + AR Z)W — SR(A X, Z)W

1

2
1 1 1

= — A (DR ZW = 20 (A)Vx W + AT RIX, Z2)W

+ A (A)V VW

1
+ ZA;ﬁv[X,Z]W
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1
= 5 (o = Ag + 20) (AR(X, 2)W + 7 ()\ — g+ 20) (A)V g W

1
= — 5()\& —)\g+2/\7) (A)vazw-f— (/\ —/\5—1-2)\ )(A)vazw
=0.
The proof of (15) and (17) are similar to (7), since VxZ # 0 and [X,Z + JZ] # 0
in these cases. Hence we omit the proof.

(11) Let X € ntP. We first prove the case where Z € nt?. It follows from Remarks
6.2 and 6.3 that

(VxR)(A, Z, W)
— Vo (R(A, Z)W) = R(Vx A, Z)W — R(A, Vx Z)W — R(A, Z)V x W

1 1
EA;B (A)VxV W + 5A;ﬁR(X, YW

Aa(Ha) Ay (Hp) Lo
R(A CAR Lo To) XYV H, + T (XY)Hg | W+ SAP (V2 VX W

1 1
=— 5)\;‘/6 (AR(X, Z2)W + 5Aj;ﬁR(X, Z)W
= 0.

Next, we prove the case where Z € n_”. It follows from Remarks 6.2 and 6.3
together with Claim 7.5 that

(VXR)(A7 Z7 W)
= Vx(R(A, 2)W) — R(VxA, Z)W — R(A,VxZ)W — R(A, Z)VxW
1 1
=— §A;ﬁ (A)Vx VW + 5A;ﬁR(X Z\W

B Aa(Ho) As(Hp)
R (A ST Y et S X, Y>JHﬁ) W

1
+ 2Aaﬁ(A)vZVXW
1 1 1
=— 5)\; (AR(X, Z)W — 5)\;5 (A)Vix,zW + §A;BR(X, Z2)W
Ao (Hy)

MEAE

Ag(H
DAY Y)W+ F AT ) V3,0

Ao (H,)
2|Hal?

== A(A) Vv zW — (A = Ag)(4)
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Aa(Ho \s(H

2“5{ |2) A A {TX Y)Y g W+ QTLJJAQ(A)(JX, Y)Vn, W
A\o(H, No(H

WO (z‘fq DX 2V + 2 rx. Z>VJHﬂw>

2|Hpl?
Ao(Ho) A (Hp)
2|H,|?

+

+ As(A) (JX, Z)V g W+ S50 (ANT X, Y)Y g, W

2|Hpl?
= 0.

(20) Tt follows from Remarks 6.2 and 6.3 with X € nf? that

(VxR)(A, JHz, W)
= Vx(R(A, JH)W) — R(VxA, JH)W
— R(A,VxJH:)W — R(A, JH)VxW

1
= — (A Vx VW + EAj/’ (A)R(X, JHz)W
1
+ §Aﬁ(Hﬁ)R(A, JX)W + Ng(A)V 11, Vx W

1 1

=~ Mg(A)R(X, JH)W + 5Aj;ﬁ(A)R(X, JH)W — ZAﬁ(Hg)A;ﬁ(A)vJXW

1 1
= A AV R(Hg, TX)W = 2 Aa(Ha)A, P (A)V g x W
1 1
= Z)‘;/B(A))‘B(HB)VJXW - Z)‘ﬁ(Hﬁ))‘;B(A)VJXW

= 0.

The proof of (21) and (22) can be done in a quite similar manner to that of (20).

To prove (23) and (24), let X € nff and Y € ngv. If Z € n,, then it is easy to see
that VxZ = 0 and [X,VyZ] = 0. Then, making use of Remark 6.2 combined with

Claim 7.5, we have

(VxR)(Y, Z, W)
= Vx(R(Y,Z)W) — R(VxY,Z)W — R(Y,VxZ)W — R(Y, Z)VxW
= —VyVe, W — %R([JX, JY],Z)W + Vy, ;VXW
— _%VXV[JY’JZ]W — %R([JX, JY], Z)W + %V[JY,JZ}VXW
— —%R(X, [JY, JZ)W — %R(J[JX, JY], JZ)W
= %VVX[JY,JZ]W + %VVJ[JX,JY]JZW
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1 1
- ZV[JX,J[JY,JZHW + ZV[JQ[JX,JY],JQZ}W

1 1

= Vixy,zgW + 1

1 Viux,v,zW

1 1
= —ZV[JX,[JY,ZHW + ZV[JX’[JY’Z”W
= 0.

We now note that in the cases of (24), (25), (29), (35), (37), (41), (42), (43),
(48), (62), (64), (65), (67), (73), (77), (90), (92), (105), (107) and (109), we also have
VxZ =0 and [X,VyZ] = 0. Hence the proof of these cases goes similarly to that of
(23).

(26) Let X € nf? and Y € n;”. It follows from Remark 6.2 with Z € n? that
(X, VyZ] =0and VxVyZ =0.

In the case where Z € n!?. it follows from Claim 7.5 together with these formulas
that

(VXR) (Y> Z> W)
=V (R(Y,Z)W) = R(VxY,Z)W — R(Y,VxZ)W — R(Y, Z)VxW

1 1
= —VxVy,2W = SR(JX, JY], )W — SR(Y. [JX, JZ)W + Vv, zVxW

= —R(X,VyZ)W — %R([JX, JY], Z)W — %R(Y, [(JX, JZ)W

1 1
= Vvy,v,zW — iR(J[JX, JY|, JZ)W + §R(J[JX, JZ), JY )W
1 1
= EvvJ[JX,JY]JZW - §VVJ[JX,JZ]JYW

=0.

The proof for the case of Z € ng‘s is quite similar to that for Z € n?;‘s. Hence we omit
the detail.

In the cases of (28), (32), (33), (34), (50), (52), (68), (70), (72), (81), (82), (83),
(85), (88), (99), (101), (102) and (104), we also have [X,VyZ] =0 and VxVyZ = 0,
so that the proof is quite similar to that of (26).

(27) Let X enff and Y € n;“’. In the case where Z € n;”, by a direct calculation
using Remark 6.2 and Claim 7.5, we see that (VxR)(Y,Z, W) =0 for W € n, except
the case where W belongs to n;” or n}7. To prove the case where W € n;”, let
{(E; )1, ..., (E,7)s. } be an orthonormal basis of n” with respect to (, ). It follows

e
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from Remarks 6.2 and 6.5 together with Claim 7.5 that

(VxR)(Y,Z,W)
= Vx(R(Y,Z)W) — R(VxY,Z)W — R(Y,VxZ)W — R(Y, Z)VxW

= Vy ( gf;@ (Z, W)Y — (Y, W>Z)>

- —R([JX, IY], Z)W — %R(Y, X, JZ)W — %R(Y, 2)IX, JW]

Aa(H )?

- i (2, W)JX, JY] — (Y. W)X, I Z])
+ —R([JX, Y], JZ)W — %R([JX, 20, JY)W — %JR(Y, 2)JX, W]
Aa(H )?

4yH - ((ZMIX, Y] = (W)X, 1Z])

1
- §VV[JX’y]JZW + §VV[JX,Z]JYW

- éJ[J[[JX W], JZ],Y]+ éJ[J[[JX W1, JY], Z]

Aa(Ha)?
4|H 2

(Z, W [JX,JY] = (Y, W)[JX, JZ])

1
v[[JX,Y],JZ}VV + 1

(JII[JX, JZ), W], Y] + J[J[JX,[W,]Z],Y))

Viix,z1,viW

| =00 =i =

(JII[JX, JY], W], Z] + J[J[IX,[W, JY]], Z))

> +
Q
— OO
m
vw

—((Z W JIX, Y] = (Y, W)J[JX, Z])

[ LUX, Y], JZ), JW] 4 LI, 2], 7Y, W)

JUIJX,JZ], W], Y] + Aggjf (JW, JZ)J[JX,Y]

| = OOI»—*OOH—‘_

JIIJX, JY],W],Z] — Aggﬁ'f (JW, JY)J[JX, Z]

>/ +

Q

— 0O

H,)?
H|2

(Z,WYJI[JX,Y] — (Y, W)J[JX, Z))

JIIX, Y], JZ], TW](E )p) (B )p

|
0|
M“’
H
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4= Z JX, Z), JY], JW], (E;) ) (EL),

+ = Z [TX, 2], JWL Y (EL7)p) (B
- _Z [JX, Y], JW], JZ], (Ey")p) (EL™)p
- Aé*'(g@ (Z,W)J[JX,Y] = (Y,W)J[JX, Z])
+ = Z ([TW, (B TX, Y], TZ)(EL),
__Z (W, J(E,)p], [[TX, 2], TY H(EL)p
—gz (Y, J(ES)) [[TX, Z], JW(EL )y

+3 <[JZ7 J(E;V)p], HJX7 Y], ‘]WD(E;AY)P

__ () (Z.W)I[IX,Y] - (Y. W)J[IX, Z])

[Hal?
Aa(Ha)? — ~
- S ;uW, JZYJ(E ), [TXYINEL),
e DLW IV W) [ 2 ()
- Aglg{’f (Z,W)J[IX, Y] = (Y, W)J[JX, Z])
Ao (Hq)? Aa(Ha)?
TN (W, 2)J[JX,Y] - S (W,Y)J[JX, Z]

= 0.

Next, to prove the case where W € n?, let {(E; ")y, .., (E37)s.} be an orthonor-
mal basis of n?. By making use of Remarks 6.2 and 6.5 together with Claim 7.5, we
have

(VxR)(Y, Z,W)
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= Vx(R(Y,Z)W) = R(VxY, Z)W = R(Y,VxZ)W — R(Y, Z)VxW

1

Vs (imw, 12),Y] - LWy Z])

- %R([JX, JY], Z)W — %R(Y, [JX, JZ])W

—R(Y,Z) (—% Z(X, W, (Eﬁ_v)pD(EbTv)p)
:——Z JIW, JZ) Y], (E5 7)) (B )y
4z Z JW, JY), Z], (Eﬁ_w)pD(Eﬁ_v)p

- —R(J[JX JY],JZ)W + 1R(J[JX, JZ), JY YW

_Z Z D)JR(Y, Z)J(EZY),
:——Z JW, JZ),(E5"),), YT+ [JIW, JZ][Y, (Eg )l (Eg7 )y
+ = Z JIW,JY ), (E5M),), Z) + [JIW, JY ), [Z, (E5 "), (ES )y

1
+ §VVJ[JX,JY]JZW - §VVJ[JX,JZ]JYw

2 LB (2B Y = 0 0(E;7)2)

4| Hg?
:__z TV IZ), (B3, Y. TXD(ES ),
- Z/\THZII% BV X P W IZ)E),
i z TOV.IY), (B3, 12, TXI) (B,
+3 Z)\THZIﬁ (B P IV (),
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1 1
+ ZV[J[JX,JY 1,77W — —V[J 7x,72,7)W

_ Aﬁ(Hﬁ)ZQ{ (W, JZ))JY + % (Hﬁ)2<X, (W, JY])JZ

4‘H5‘2 A[Hg|>
—_ - Z Y IX)), AW, T Z))(E), + Ag&ﬁf (X, W, JZ))JY
+ = Z (2, JX)), W, IYINE;™), — Ag‘gﬁf (X, [W,JY))JZ
——Z JIX, Y], JZ], (W, (Eg7)pl) (Es7)p
+ < Z JIX, I 2], JY ] W, (B 7)) (B )y
_ Ajgﬁg (X, W, JZ))JY + Aj‘gﬁf (X, W, JY))JZ

-1 S YL I

—-z (X, 2). (B3, W, Y D(ES ),

_ As(Hp)? As(Hp)?
Sy (JW,[JZ,JX))JY + =2 S (JW,[JY, JX|)JZ

 As(Hg)? _ As(Hp)?
- P ([JX,Y],W)JZ A ([JX, 2, W)JY
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Ag(Hp)?
8|Hp|?

As(Hp)?
8|Hp|?

(W,[JX, Z])JY — (W, [JX, Y]\ Z

= 0.

In the case where Z € ngw, a direct calculation using Claim 7.5 and Remark 6.2
shows that (VxR)(Y,Z,W) =0 for any W € g. This completes the proof of (27).

By a similar argument, we can also prove the cases of (36), (51), (91) and (108).

(30) Let X € nt” and Y, Z € nj. By a direct calculation making use of Remark
6.2 and Claim 7.5, we have (VxR)(Y,Z,W) =0 for W € g, except the case where W
belongs either to nj, or n}? or nd.

Now, to prove the case where W € nj, let {(EJ)1,...,(EQ)s} be an orthonormal
basis of n2. Tt follows from Remarks 6.2 and 6.5 together with Claim 7.5 that

(vXR> (Y’ Z’ W)
— Vx(R(Y, Z)W) — R(VxY, Z)W — R(Y,VxZ)W — R(Y, Z)VxW
As(Hg)®

= U, Vx (—(Z, W)Y —(JZ,W)JY

Y, WYZ 4 (Y, WYIZ + 20JY, Z)JW)
- %R([JX, Y], Z)W — %R(Y, X, JZ)W — %R(Y, 2)JIX, JW]

As(Hp)® As(Hj)?
=— ZWHlJX,JY JZWHJIX.Y
8| Hpl? (2, MHlJX, ]+ 8| H|? (JZ,W)[JX,Y]
As(Hp)® As(H)?
Y WHJX, JZ| — JY. WNJIX. 7
e Y, W)[JX, JZ] 8!Hﬁl2< W)JX, Z]
)‘ﬁ(Hﬁ)2 1 1
— 4|Hﬁ’2 <JY7 Z> [JX7 W] + EVV[JX,JY]ZW - §VV[JX,JZ]YW

— %([J[Z, [(JX, JW]],JY] =Y, J][JX, JW], JZ]]
- Y, [JX, JW),JZ]|+ | Z, J[[JX, JW], JY]])

_ Aé’gﬂ’f (2, W)JX, JY] + Ag‘g’ﬁf (JZ,W)[JX,Y]
B B
As(Hg)? _ Xg(Hp)?
_ As(Hp)?
Y AW

1 1
+ ZV[[JX,JY],Z}—J[[JX,JY],JZ}W - Zlv[[JX,JZ],Y]—J[[JX,JZ],JY]W
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- %([J[Z, [JX, JW]], JY] = [V, J[JX, W], JZ]]

— Y, [JX, JW]], JZ] + [Z, J][JX, JW], JY]])

Aa(Hp)” As(Hpg)?
8|Hg? (Z,WHJIX, JY] + 8| Hy 2 (JZ,W)[JX,Y]

As(Hg)? _ Ag(Hp)?
T NLE Y, W[JX, JZ] S|, (JY,W)[JX, Z]

_ As(Hp)?
i Y AX ]

+ %[J[[JX, JY), Z), JW] — é[J[[JX, JY], JZ], W]

- %[J[[JX, JZ), Y], JW] + é[J[[JX, JZ], JY], W]

— %([J[Z, [(JX, JW]],JY] =Y, J][JX, JW], JZ]]

— [JY, [JX, JW]],JZ]) + [Z, J[[JX, JW], JY]])
As(Hp)?
8| Hpgl?

As(Hp)?
8|Hp|?

(Z,W)[JX,JY] + (JZ,W[JX,Y]

)\5([‘[5) . )‘ﬁ(Hﬁ)2
TS R I S g YW

_ As(Hp)?
4|Hﬁ’2 (JY, Z) [T X, W]

4z Z< 17X, JY), Z], JW], (E2),) (E°),
1 Z( [JX,JY],JZ], W), (E2),) (EY),
_ 2 Z( 17X, JZ],Y], JW], (E2),) (E2),

+2 Z< [TX,JZ), JY], W], (EY),) (EY),

— Z[J1[Z, JX), JW] + J[JX,[Z, JW]], JY]

>—‘OOI>—*

+ oY, J([IX, JZ), JW] + J[IX, [JW, ] Z]]]

— Co

+ < [JIY, JX], JIW ]+ J[JX, Y, JW]], JZ]

0]
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1

= S[Z JIX TY],IW] + JUIX, [JW, TY]]

As(Hpg)?
8| Hp|?

8| Hp|”

(2, WX, JY] + 22 (Hs)” (JZ,W)[JX,Y]

MU vy gz - 29 Gy x,

8| Hpl?

8| Hp|?

_ 2a(Hp)* (JY, Z)[JX, W]

4|Hpgl?

. 2 (/W I(E,

+ Z(WJEO

7[[JX7 JY], Z]> (Eg)p

([JX,JY], JZ]) (EQ),

4 - Z (W, J(EQ),), [[TX, I Z),Y]) (E2),

p 1

__Z<WJEO
__Z 2, JX],

_ _Z JX,JZ), JW], Y], (E2),)(EY), +

+Z Y, JX],

+< Z [TX,TY], TW), 2], (EQ)p) (E2)p -

([JX,JZ],JY]) (EQ),

W1, JY], (Eq)p) (Eq)p + AolHal

«

[0}

W1, J 2], (Eq),) (Eq)

a/p

As (Hﬂ) (JY, Z)[JX, W]

4|Hp|?

-2 > (LW (B2,

X, TY), Z)) (Eo)y

F (W IED,), [, 1Y), J2)) (ED),

p=1
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As(Hp)?
A w2y, x)

- AB<H/3)Q<Y, WHJX, JZ]

8| Hp|?

As(Hp)?
ST (W, JY)[Z, JX]



W1 =D (IW I (B (X, 2], Y]) (E9),

p 1

_ —Z< W, J(EC),), ([T X, JZ), JY]) (E2),
o quy, J(ED),) X, JZ], W) E),

+1 qu, J(EQ, (71X, T 2), TWI)(ES),
_ _i JZ, J(EN),), [[JX, JY], W) (ED),

p=1

_ _Z (2, J(EL),], [T X, JY], JW|)(EL),

B /\ﬂ(Hﬁ)
4|Hﬂ’2 (JY, Z)JX, W]

Z (W, J(ED),). [[JX, JY], JZ]) (EY),
_ iz W, J(E2),), [lVX, 1), JY]) (E9),

S Aﬁ(gﬁgzuy Z)[JX, W]+ Z( (W, J(EQ),], [JX, [JY, JZ]]) (Eq)y
B

173

_ _ /\ﬂ(Hﬂ)Q _ )‘B(Hﬂ) 0 0
== P (JY, Z)[JX, W] UHE (JY,Z) Y (W, J(ED),), X) (ES),

p=1

_ Da(Hp)? As(Hp)? S 0\ \ (B0
==, (JY, Z)[JX, W] + AL (JY,Z>Z<[JX,W],(Ea)p> (E2),

= 0.

On the other hand, if W € n}?, then Remark 6.2 and Claim 7.5 together with
Remark 6.5 implies that

(VxR)(Y,Z,W)
= Vx(R(Y, Z)W) = R(VxY, Z)W — R(Y,Vx Z)W — R(Y, Z)V xW
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As(Hp)?
4|Hpg|?

As(Hp)?
Y, Z)W + 22 A, (JY, Z)JW)

1
=Vy <§[[Y, JW1, JZ] —
- %R([JX JY], Z)W — %R(Y, [JX, JZ])W

Z
— R(Y,2) (; |§{H|2> (X,W)H, + ;T;{ZTQ)

(X))

WEA
= AL
O (Hy)? Ao(H.) M ()
e (2|H B K WHat 5ar e (X W>Hﬁ)
As(Hg)?
4|Hg|?

1 1
+ ZV[[JX,JY},Z]fJ[[JX,JY],JZ]W - Zv[[JX,JZ],Y]fJ[[JX,JZ},JY]W

(XY WL IZDH, + S (X . W), T Z)

(JY. Z) (;éf'g (X, WY JH, + Zéjﬂﬂg (X, W>JH5)

+

+ 2UH8) ey (R(Z,H)Y + R(H, Y)2)
2|Hg|?

_ Aa(Ha)
- AH?

(X, (v, W, T 2) Ho + 2258) 1y w2y
4|Hg|?

As(Hpg)? Aa(Hy) As(Hp)
ARl (2|H BN TRE Hﬁ)

Ag(Hg)? Aa(Hy) As(Hp)
Y, Z) (X, H H
T AW G e g T

n ;T;[HP) ([JX,JY], Z]),W)H, + ;7<TZ|B2)<H‘]X’ JY], Z],W)Hp
+ ETI([[HP) ([JX,JY],JZ],W)JH, — ;‘f(TZ‘i)([[JX, JY], JZ],W)JHpg
;T;{HP)([[JX JZ),Y],W)H, — ?BTEJZTQ)Q[JX JZ],Y],W)Hg
- X, 2L VLW H, + N IX, 920, 9L W) IHy
R
= |1(L[H ’2) (Y, W), [JZ, X)) Hy + ZT%Q)QJY JW),[JZ, JX])Hy
S A0 (S S )
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As(Hp)? Aa(Ha) As(Hp)
- 4f|Hﬂ|2 Y, Z) (X W) <2|H 2 HHo QTH,BTQ JHB)
2 ‘EIH |2) (JZ, JW],[JX, JY]) Ha — g(Th;@)WZ’ JW],[JX, JY)) Hy
+ ETI({HP) (VX [JY, JZ],W)JHo — ;T;fﬁ[@ ([IX, Y, JZ]), W) TH;
+ ?%II(LIHP)WY JWI,[JX, JZ])H, + ;ﬁ;ﬁ ([JY, JW],[JX, JZ]) Hp
As(Hp)?
- (X WY, 2]
Aa(Ha)
= S (Y- IWLLIZ, X + (2, 7W), 7Y, IX])H,
n ;ngf?) ([JY, JW, 112, JX]) + ([T 2, JW],[JY, JX]))Hp
S e (G )
T CR C e T )
_ ?%TI(JHTQ) AT}JZ?Q (JY, Z)(X, WY JH, + )E\%T;I]ZIBJ AT;{]Z@)Q (JY, Z)(X, W)JHj
_ Af’(H]iﬁ‘; Ar}gjg) (X, W)(JY, Z)JH;
_ ASTJ(LIIjTQ) A‘ﬁg@) (JY, JZ)(JW, JX)H,
;ﬂ’*g;@ ATIEZ@)Z (JY, JZ)(JW, X)) Hy
B Ag(Hg)Q Ao (Hy) )‘ﬁ<Hﬁ)
i A0 (G e s G )

= 0.

Finally, we remark that the proof for the case of W € n? goes in a similar fashion
to that of W € n3, so that we omit the detail. This completes the proof of (30).

In the same way as we proved (30), we can verify the case of (78).

(31) Let X e nf” and YV € nﬁ It follows from Remark 6.2 that VxY = 0. We
first look at the case where Z € nﬁ;‘s. By making use of Remark 6.2 and Claim 7.5, for
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any W € g we have

(VxR)(Y, Z,W)
= Vx(R(Y, Z)W) — R(VxY, Z)W — R(Y,VxZ)W — R(Y, Z)VxW

1
= —VXVVyzw — ER(Y, [JX, JZ])W + VVYZVXW

1 1 1
= §VXVJ[Y7JZ]W + §R(J[JX, JZ), JY )W — évJ[y,Jz]VXW

1 1 1
= §R(X, J[Y, JZ])W + §V[X’J[Y7JZ”W - §VVJ[

1 1 1
= —=VviyazgW + §V[X,J[Y,JZHW — =Vux,121,7v)W

W

JX,JZ

2 4
1 1 1

= _ZV[X,J[Y,JZHW + EV[X,J[Y,JZ]]W - ZV[[JX,JZ},Y]W
1 1

= _ZV[JX,[Y,JZHW - ZV[JX,[JZY]]W

= 0.
Next, we prove the case where Z € n;‘s. It follows from Remark 6.2 and Claim 7.5
that
(VxR)(Y,Z, W)
= Vx(R(Y, Z)W) - R(VxY, Z)W — R(Y,VxZ)W — R(Y, Z)VxW
1
= —VxVy, zIW — §R(Y’ JX, JZ])W + Vv, zVxW
1 1 1
= —ivxv[yjz]W + §R([JX, JZ, Y)W + QV[Y,Z]VXW
1 1

1 1
= §VVX[sz]W - §VV[JX,JZ]YW

1 1
= —ZVJ[X,J[Y,ZHW + ZVJHJX’JZWY]W

1

1
= ZVJ[JX,[JY,JZ]]W + ZVJ[JX,[JZ,JY]]W

=0,

which completes the proof of (31).
(38), (39), (40), (79), (80), (93), (94), (95), (97), (98), (110), (111) and (112) are
proved in a similar way to the proof of (31). Hence we omit the detail.
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(44) Let X € n}? and Y € nf?. If Z € n3°, then we have VyZ = 0, and hence
R(Y,Z)=0. Let {(E;")1,...,(E;")s,} be an orthonormal basis of n;”.

First, we study the case where Z € n;‘s. Let {(E;%)1,...,(E;°)s,} be an orthonor-
mal basis of n_/ % Then, using Remark 6.2 and Claim 7.5, we obtain

(VxR)(Y, Z,W)
= Vx(R(Y, Z)W) — R(VxY, Z)W — R(Y,VxZ)W — R(Y, Z)VxW

= %ZW Y, (E5") ) RU(ES)p, Z)W — %R(Y, X, JZ)W

1 & _ _ 1
= 5D (X B LD RUES )y JZIW = SR, JLIX, Z)W
p=1
1< . 1
=3 (XY (B DV, 2W 5 VoraxzgW
p=1 o
1 Sk Sk B - B
= = > (XY (BTN IET ) (2, (B )NV sy W
p=1 ¢g=1
1 & 5
=3 2 X ZL (B Y ), W
p=1
1 &
=1 2 A IV Z (BT DY yye), W
q=1
1 & -
- Z <Y7 [‘]Xv [Z7 (E'y 6)p]]>vJ(E_6)pW
p=1
1 & 5
1 <J2Y7 [1Z, (E; )al; JXDVJ(E;‘;),JW

Similarly, the case of Z € n_/ % is proved.

In the cases of (46), (47), (49), (59), (60), (61), (66), (74), (76), (84), (86), (87),
(89), (96) and (96), we have VyZ = 0. Hence the proof for these cases goes similarly
to that of (44).

(45) Let X € n?? and Y € n}?. First, to prove the case where Z € ngy, let
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{(E5 )1, -+, (E57)s.} be an orthonormal basis of n;”". By making use of Remark 6.2

and Claim 7.5, we have

(VxR)(Y,Z,W)
= Vx(R(Y,Z)W) — R(VxY,Z)W — R(Y,VxZ)W — R(Y, Z)VxW

= = VoW 5 S XY, (B D RE; ), 2)W

p=1

1
— SR, [JX, JZ)W 4V, zVxW

1 1 & _ _

= 5VaViyazgW — 5 D (XY (B R(Z, (EZ),)W
p=1
1 1
- §R(Y> [(JX, JZ)W — EVJ[Y,JZ]VXW

1 1 1 _,

= §R(X’ JY, JZ])W + iv[xﬁj[yﬂ]z”W + 3 Z<X, Y, (Eg )p]>VvZ(Eﬂ)pW
p=1

1
+ —Vvy[JX iz2W

Ao (Ha)
2|H 2

3 Z ><JZ (E )p>v’\ﬁ(Hﬁ>JH 429Uy 5 ’YW

2[Hg 2 2| Hyy 2

= - —VVXJ[YJZ W+

(JX,J[Y, JZ)N yu. W

<JY [JX JZDVAG(H@)JHQ Ay (Hy) |44

|Hal? [H~ |2 JHy

»bl»—t

Aa(H,
sty W al >(JX JY, JZ)N yuy W

1
=——(X,||Y,JZ
4< 7[ ) ]>v>\a(Ha) 12 JHg 2|H |2

[Hal?

—|— E Y JZ V)‘B(HB)JH +XV(H“’)JH.Y

|Hg2 [H 2

JHao+

W

_<‘]X [JZ Y]>v)\a(Ha)JHa+>\'y(H'y) 14

4 ENE iz T Hy

= 0.

One can prove the case of Z € nﬁ in a quite similar way to that of the case Z € nﬁ )
Hence we omit the proof.
Also, the proof of (63), (75) and (106) can be done in a similar way to that for (45).
(57) Let X,Y € nlf. If Z € n}f by Bianchi’s second identity, we have

o )

(VxR)(Y,Z,W) = 0 for W € n, except the case where W € n}?. Hence it follows
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from Remark 6.2 and Claim 7.5 that

(VxR)(Y,Z,W)
= Vx(R(Y, Z2)W) — R(VxY,Z)W — R(Y,VxZ)W — R(Y, Z)VxW

Vs ( Aﬂg['z (2, W)Y =, W)Z))

R (A (Ha) vy pr, o 20U o Y)Hg,Z) W

2|Ho |? 2| Hl?
~R (Y %;{H'J (X,Z)H, + ;ng]lﬁ?) (X, Z>Hg> W
—(VyVz = VsVy = Vivz) <%<X, W)H, + ;TI(LIZ |2) (X, W)Hg)
g 2 (G X i)
_ %Ha‘fa/, ) (ET;IHTZ) (X, Z)H, + ;Iéfz ’2) (X, Z)Hg)
Azl(glg (X, V)V, + A4|(§;§ (X, Y)YV,
_ AZ\(;\Q (X, Z)Vy W — Ajlgﬁg (X, Z)Vy W
Azl(é{lg (X, W)VyZ — A4|(£|2 (X, W)V Y
+ Aj&ﬁg (X, W)VyZ — Ajgﬁg (X, W)V ,Y
b (S )
- Azaw(gwg ( St )
;2 2|H |2 ( )iz.w)H, + ;‘igfg z, W)Hf,>
i (o)

= 0.

On the other hand, in the case where Z € n_?, it is immediate by a straightforward
computation that (VxR)(Y,Z, W) =0 for W € n.
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The proof of the case of (53), (54), (55), (56), (58) and (100) goes in a similar
fashion to that of (57), so that we omit the detail.
The proof of Claim 7.7 in now complete. 0

By a similar argument, we can also prove the following, for which we omit the proof.
Claim 7.8. VxR =0 for X € n".
Claim 7.9. VxR =0 for X € n?.
Claim 7.10. VxR =0 for A € a.

Claim 7.7 through Claim 7.10 imply that VR = 0. This completes the proof of
Proposition 7.1 in the case where n,, # {0} for 1 <k < n.

In the same way as we have proved just for the case where n,, # {0} for 1 <k <mn,
we can also prove VR = 0 for the case where n,, = {0} for n <1 <m.

This completes the proof of Proposition 7.1.

8 Proof of Theorem

Let M = (M, J, g) be a simply connected homogeneous Kéhler Einstein manifold with
nonpositive curvature operator R < 0. Recall that, as mentioned in Remark 1.1, M
has nonpositive sectional curvature. By Theorem 3.1, M is identified with a simply
connected solvable Lie group G with a left invariant complex structure J and a left
invariant Kéhler Einstein metric ( , ) on G. Moreover, the Lie algebra g of G admits
an endomorphism J and an inner product ( , ) on g satisfying Conditions (K1)—(K4)
in Section 2. The Levi-Civita connection V, the curvature tensor R and the sectional
curvature K of g is defined by the Levi-Civita connection V, the curvature tensor R
and the sectional curvature K of G, respectively.

Recall that if Ricci tensor Ric vanishes, then (g, (, )) is flat. Hence it suffices to
see the case where (g, (, )) is not Ricci flat, that is, (g, J, (, )) satisfies the assumption
of Proposition 6.1.

Proposition 8.1. Let (g,J,{ , )) be as in Proposition 6.1. Assume that (g,{ , )) has

nonpositive curvature operator. Then, VR = 0.

Proof. Let n = [g,g] be the derived algebra of g, and a the orthogonal complement
of n with respect to ( , ). Recall that by a result of Azencott and Wilson [1], the
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nonpositivity of sectional curvature implies that a is abelian. Let D4 and S denote
the symmetric and skew-symmetric parts of ad A for A € a. Moreover, recall that
{Da,S4| A € a}is a commuting family of derivations of g, and that D, is a nonzero

operator vanishing on a for any A € a.
It is proved in Proposition 6.1 that there exists an orthogonal basis { H,}sen of a

with respect to ( , ) such that

(H,, JH,]| = A\sJH, for some \, > 0,
[Hy, JH,| =0 if a # b.

Moreover, setting H = ), H,, we have (H, X) = trad X for any X € g.
Define a linear function A, : a — R by A\ (H},) = A\, for any b € A. Let n® and
n? be subspaces of n defined by

nit = {X en | DsX == (\(A) £ N(A) X forany A € a} :

{Xen

where A\y(H) < A\,(H), and set

= & o) on)
Ao (H)<Xa (H)

N = DN =

ng DsX = X (A)X forany A € a} :

Then g is decomposed into a direct sum g = @, R{H,} ®n, e R{JH,}.
We now remark the following identities.
Claim 8.1. (1) (R(A,JH,)JH,, A) = =\ (A)?|H,|> for A € a.

(2) (R(A, X)X, A) = —i (Aa(A) £ 0(A)? X2 for A€ a and X € nt?.

Aa(H,)? No(Hp)?
(3) (R(JX, X)X, JX) = — “(q |2) | X%+ 2”|(Hb|)2 IX[* for any X € n}?.
a b
Ao(H,)?
(4) (R(JX, X)X, JX) = — ’;{ ’2) 1X|* for any X € nl.

1
(5) Ric(H,, H,) = _ZA“(H“)Q (dim n, +4+ Z 2dimn$“> .
deA,

103



Proof. Since S4 is a derivation of g for A € a, we can apply Claim 6.3, to get
R(A,X)Y = —Vp,xY. Then we obtain the following.
(1) For any A € a, we have

<R(A> JHa)JHaa A> = _)‘a(A) <VJHGJHa7 A>
= N(A)(JH,, Vg, A)
= _)‘a(A)2|Ha|2-

(2) Similarly, for any X € nf®, we have
1
(R(A, X)X, A) = = 5 (Aa(A) + X(A))(Vx X, 4)

:%(AG(A) + Ap(A))(X, Vx A)

_ ;1(/\&(14) + M (A)? X2

(3) Let X € n}®. Tt follows from Remark 6.2 that

R(JX, X)X = V;xVxX = VxV;xX — Vjx X

>\G<H) )\b(Hb) 2
= H, + X|*H,
VJX (2|Ha|2 ‘ | 2’H |2| ’ b

Na(H,) Ao(Hs)
—VX< NP | X[2JH, + N X2 JHb)

A
J2alfle) pg %

| Ha|?
No(H,)? )\b(Hb)2 9
— X|IFJX X|FJX
g XX T X
Ao (H, )2 9 )\b(Hb) A (H)
— 4|H\2‘ “JX + 4\Hb!2| \JX— AL ]X| JX
No(H,)? o (Hp)? 9
— X|FJX X|*JX.
i XPIX G X T
Hence we have
)\a(Ha)2 4 Ao (Hp)? 4
X. X)X, JX) = — X — | X%,

(4) Let X € n. By using Remark 6.2, we have
R(JX, X)X =V,;xVxX — VxV,x X — Vixx X
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Mo (H, Aa(Haq
=Vix ( )|X|2Ha) + Vx <¥|X|2JHQ)

2|H, |? 2[H, 2
+ )]C}Sjj;) ’X|2vJHaX
T Ai&;]f | X[*JX — AZ,%? IX]2TX — Aglgif X[2IX
) ATﬁz]jfz)z X[PIX,
so that
(R(JX, X)X, JX) = _AT%% .

(5) For a,b € A, let t(a,b) = dimn}®, and s(a) = dimn®. Let {(E)1,...,(E2)sa} be
an orthonormal basis of n, and let {(E¥")q,..., (EZ")y4p} be an orthonormal basis

of n¥? with respect to ( , ), respectively. Applying (1) and (2), we have

Ric(H,, H,)
= Z R (Ha Ho) Hy, Ha) + > Z Hy, (B )p) (B €)p, Ha)
beA b,ceA p=1
t(b,c) s(b)
+ Y D (R Vo) By Vs Ha) + D Y (R(Ha, (E),) (), Ha)
b,ceA p=1 beA p=1
+Z‘ bP R(H,,JH,)JH,, H,)
beA
t(b,a) 1
yy (——A VIES), l2) 2.2 (—Zxa<Ha>2|<E:“>p|2>
a€h. p=1 beA, p=1
t(a,c) t(b,a) 1
F 3 (S PEE ) - Y (<l )
acA. p=1 beA, p=1
s(a) 1
= H 2 EO 2 - H 2H 2
3 (= PCHPAEDL ) = Al P
1 .1 . 1 .
= _ZA“U{“)Q Z dimn}* — Z)\CL(HQ)2 Z dimn; 4)\a(Ha)2 Z dimn
a€A. beA, a€A
1 a
— ZAa(Ha)2 > dimnf® — — X, (H,)? dimn) — X\, (H,)?
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:_—)\ Zdlmna A Zlemn (H)

a€A, bEAq
This completes the proof of Claim 8.1.

As defined in Proposition 6.1, for each ¢ € A, let A, denote a subset {a € A | nf¢ #
{0}} U{c} of A. Then the following holds.

Claim 8.2. Let b and ¢ be elements in A such that b & A. and ¢ € Ny. Then we have
A.N A, ={0}.

Proof. Let b and ¢ be elements in A such that b ¢ A. and ¢ ¢ A,. Assume that
Ay A # {0}, and let a € Ay N A..

Let X € nf’. For any d € A,, let Y € n;* By (iv) of Proposition 6.1, we have
[X,Y] # 0. It follows from [X,Y] € n}® that d € A,. Since d € A, is arbitrary, A,
contains A,. Applying Remark 6.6 then yields

dimn, + ) 2dimnj® — <dim m+ Y 2dim njb>

deA, dEAb

= > 2dimn}®+dimnd + Y 2dimn "

Ae<Aa d€Aq
— ) 2dimn;® — dimn) — ) " 2dimn’
Ae<Ap deAy
= g 2(dimn}® — dimn;" E 2dimn}° + 2dimn}
)\e <>\b )\e )\b

+ Z 2(dimn® — dimn}®) + dimn? — dim ny
Aa)
> 0,

where we set A\, = \,(H,,) for any p. This implies that

dimn, + Y 2dimnj® > dimn, + »_ 2dimn}". (1.14)
deA, deNy

Since (, ) is assumed Einstein, we have

1

A Ric(H,, H,) =

1
|Hb’2 RlC(Hb, Hb)
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Hence it follows from Claim 8.1 that

)\a(Ha)Q . . +a )\b(Hb)Z . . +b
_ A (dlmna+4+d€ZA2d1mnd = — VAL dlmnb+4+d€ZA2d1mnd .
a b

This combined with (1.14) implies that

No(Ha)?  No(Hp)?
| Hal? [Hel?

Since n}* # {0}, we can apply Remark 6.4 to get

TN Aa(Ha)® _ No(Hy)®
2 |[Hy[* — [Hal? [Hpl*

By the same argument as above, we also have

DM a(HoP_ AlH)?
2 [P S TP TR

It follows from these inequalities that

D) Aa(Ha? _ N(HD? DN M(HoP_ Nl(Hy)
2 [Hy[> = [Hof? | He|? 2 [He[* = [Hqf? [Hyl*

(1.15)

Now, let X € nf® and Y € n}°. Note that it follows from Claim 4.1 that Vy X =
Vv X = 0. Then we define a quadratic function f: R — R by

~

fl@)=(ReXANIJX+YANJY), 2 X NJX +Y AJY)).
By Remark 6.2 and Claim 8.1, f is represented as

@)= 22 (RIXAJTX), X AJX) + (R(Y AJY),Y AJY) +22(R(X AJX),Y AJY)
P (R(X, JX)JX, JX) + (R(Y,JY)JY,Y) 4+ 22(R(Y, JY)JX, X)

Ao (H,) No(Hy) /\a(Ha)2 )\C(HC)2
2 - X4 X4 o Y4 Y4
””( e N e ) T T Y Y

+ 2:E<VyVJyJX —ViVyJX — V[Y7JY]JX7 X>
2 2 2 2
_ —$2 (AG(HG«) . Ab(Hb) ) |X‘4 N <)‘G(Ha) )‘C<HC> ) |Y‘4

|Ha|2 2|Hb’2 |Ha’2 2|HC|2
)‘a(Ha) 2

— 2r————=Y|*(V JX, X
z |E[a|2 | |< JH, ) >
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_ < |( ) Ab(Hb)Q) X[ - <>\a(H3) B AC(HC)Z) vt

Ha| 2|Hb|2 |Ha’2 2|HC|2
Aa(Ha)? 10112

Y|l X2
P Y PIX

We note that the discriminant D of f is given by

_)‘(H) 4 )‘a(Ha)Q )‘b(Hb)2 4 Aa(Hg) AC(H) 4
D= YT = <|Ha|2 ame ) X\ TGEe 2 ) Y

Aa(Ho)t Na(Ha)
X4y |4 —4
""{|H|4 7,
+2)‘ (H) ()‘b(Hb)2 + )‘C(HC)2) _ Ab(Hb)Q )‘C(HC)Z}
|Hal? | Hy|? |H.|? |Hy|? |H[?

H,)* H,)? Hy)? H.)? Hy)? \(H,)?
ey et ) (WA Y W LR
e e [

It is easy to see from (1.15) that D > 0. This implies that there exist different solutions
n < ny of f. Then, f(x) > 0 holds for n; < x < 1y, contradicting the nonpositivity of
R. Hence Ay N A, = {0}. O

Claim 8.2 implies that there exists a subset {ay,...,a;} of A such that A,, U---U
Mg, = Aand Ay, N A, = {0} for i # j. Weset Ay, = {a; = i1,...,im,} for each
i = 1,...,m. Without loss of generality, we may suppose \;,(H) < --- < \;, (H).
Then g can be written as

m  m;

0= DD R{H.} oni, GR{JH,}),

where n;_ is given by
a—1

n,, = @ (n:’jﬁ ) n;i‘}) ) n?a.
A=1
Claim 8.3. Ifn;, = {0}, thenn) ={0} foralla=1,...,m

Proof. Suppose that n;, = {0}. It follows from Remark 6.6 that dimn) = 0 implies
that dimn = 0. Hence it suffices to show that n) = {0}.
Assume that n) £ {0}. Then, by Remark 6.6, we have

m;—1 m;
dimn;, —2 E dimn; " =2 E dim n““ +dimny —2 E dimn;™"
a=2 a=1
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=92 (dun n“" dim n*”) + dimny

which implies that

dimmn,, >2) dimn/". (1.16)
a=2
Since ( , ) is assumed Einstein, we have

5 Ric(H;,, , H;

Zm Y Zml) = |H |2

‘H RiC(Hi17Hi1)-

Zmz

Hence it follows from Claim 8.1 that

N (H,, )2 ()
_ tmg \T Tt 4 S O VN 4 9 +i1 _
A, o @ ) == (4 Za A

This combined with (1.16) then implies that

Aimi (Hlml )2 >\i1 (Hi1)2
|Hi,, |? |Hiy >

Let X €n! andY €n? . Then it follows from Claim 4.2 that VxY = 0.

i

(1.17)

Now, we set

1 1
w = T A THi + g Hiy N THi, = 2X NIX+Y ALY,

Then, Remark 6.2 and Claim 8.1, we obtain

(R(w),w) =

|Hi,,,

| | << (Hu A ‘]H’Ll) Hil A JHZ1>>
1 o
=+ ﬁ«R(HZmz VAN JHimi)7 Himi VAN JHZm, >>

| Tm;

+4(R(XANJX), X ANJX) + (R(Y ANJY),Y AJY))

2 A
e p VR A TH). Hy ATH,,)
1 tm;

4 ~
| |2(<R(HZ-1 NJH ), X NJX)) +
4

|H;,, [?

(R(H,, NJH;, ), X AJIX)
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2

+ P (R(H;, NJH;, ), Y NJY) — 4(R(X A JX),Y AJY)
1 1
— —— (R(H,,, JH;)JH;,, H,, R(H; ,JH; )JH; H;
|Hi1|4< ( 1 ) > ‘HZmZ|4< ( m; ) m; >

+4(R(X, JX)JX, X) + (R(Y, JY)JY,Y)

+—— (R(H; ,JH; )JH;  H;
|Hilr2\Himi|2< Higr T Hin,) )
4 2
4
- m<R(X JX)JH,,  H;, >
2’L
|H |2<R(Y JY)JH;,  H;, ) — 4R(Y,JY)JX, X)
_ a(Ha)? P Aimi(HZml) H Pt (_Aimi(Himi)Q N /\il(H,;l)z)
| H;, |* |Hi,,, " |H;,, |2 2|H;, |2
N (Hip )2 N (H; Aiv, (i)
- SR i ’2)<VJH TXX) + A (Vm,, TXX)
Nip, (Hi,, )
_QW(VJHZ.WJY,Y>
AVyViyJX =V VyJX — Viy iy X, X)
i, (H; ) )\im.(Him.)2 )\il(Hil)Q )\im.<Him.)2
B S il 2 9 tmi T tm;
i, o [F T Hy P [H P
)\ Tm; ( Zm )2 )\Zm(HZm )
P +4 ” 2 Von,, JX,X)
>\ ( ) 2 A'L.m-(jqzm) 2 )\Zm(Hlm)2
_ i i H i i
_ BAil(Hil)Q B 3/\imi (Himi)Q
| H;, |2 \Hi,, [*

The nonpositivity of R then implies that (R(w),w)) < 0, that is,

Ni, (Hi,,)?
|H;,,, |*

Aiy (Hi)?
B

H;, [* < ’

|Hi,,,

This contradicts (1.17), and hence n) = {0}. This completes the proof of Claim 8.3.
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(Him )2 < < )\'LI(H )2

Claim 8.4. —_---_
IHZWI2 NEAEE

for any i.

Proof. First we consider the case where n;, # {0}. Suppose «, 5 € {1,...,m;} satisfy
Aio (H) > Aiy(H). Tt then follows from Remark 6.6 that

m; my
. . 1 . . +1
dimn; +2 dimn" — dimn;, — 2 dimn; "
a Ty B Ty

y=a+l Y=0+1
a—1
= QZ:dlanr "+ dimny +2 Z dim nf
y=1 y=a+t1
B-1 ' m; ‘
—2) dimn/” —dimn{ -2 > dimn;"”
=1 y=p+1
=23 (dimn" — dimn") + dimn, — dimn),
y=1
a—1
+2 Z (dim n;; — dimn;” ﬁ)
y=B+1
> 0,
which implies that
dimn;, +2 Y dimn/’ > dimn;, +2 Y dimn;"”. (1.18)
y=a+1 y=B+1

Since (, ) is Einstein, we have

1
Ty Ric(Hyy, Hyy).

|| |Hi | v

Hence, by making use of Claim 8.1, we obtain

H. 2
_ i (Hi)” <d1mnla+4—|—2 Z dlmn“"‘)

Al H;, |2
y=a-+1

5 Ric(H,,, H;,) =

i (H,; )? ;
—M (dlmnlﬁ+4+2 Z dlan”B).

4H,|?
y=p+1
This together with (1.18) then yields
Ao (Hi, ) < )‘iﬁ(Hiﬁ)Q

|Hi, |2 = |Hil?
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Consequently, recall that A\, (H) < -+ < \;

im,;

(H), we have

)\imi (Himi)2 < < )\7,1(1"-[,1)2

H, P T T HL P
The proof for the case where n;, = {0} can be done in a similar way to that of the
case where n;, # {0}. O
Ao (Hi, ) _ )‘iﬁ(Hia)2

Claim 8.5.

fora, B e A,,.

(Hi, 2 [Hy

Proof. First, we consider the case where n;, = 0 and dim njﬂf? = 1. Then Remark 6.6

shows that dim n+‘_3 = dim n+“ =1 for any 3. Moreover, it follows from Remark 6.6

that
1= dlmn K > dlmnﬂ’6

g

> 0,

which implies that dim nialﬂ = 1 for any «, (3. Hence the Ricci curvatures in the

directions H;, and H;, are given respectively by

1 - ,
Ric(H;,, H;, ) = —ZAZ-Q(HZ-&)Q (dimnia +4+2 > dimnﬁa>

y=a+1

a—1 m;
1 2 . +1 - . +ia
= _ZA“(H%‘) <2 E dimn; " +4+2 E dimn;” )

v=1 y=a+1

= _iAia(Hia)Q(Q(a—l)—i—ll—l—?( —a))

1
— —L—L/\ia(Hia)Q (2m; + 2),

1

'Lﬂ?
Since (, ) is Einstein, we have

i, (H; )2
— el (949
4|11[ioé|2 ( it )

/\zﬁ(Hw)2

which implies that
)\ia(Hia)2 _ AiB(HiB)Z
| H;.,[? |Hipl*
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Next, we consider the case that n;, = {0} and dimn;, > 2. Note that there exist
non-zero vectors X € n;:j? and Y € n;f satisfying (JX,Y) = 0. Then it is easy to see
that [X,Y] =0 and Vy X = 0. This implies that

(R(Y, X)X,Y) = (VyVxX — VxVy X — Vixy X, Y)

Tm Zm) )\ZI(H )
:< <2|%f |5 X P i, + S KT )Y>

i (Hi, i, (Hi )2

= . i XY + X2YY

< 4|Hzm|2" i, >
A (H, )2 N (H, )?

= - XY [+ S XY
i IXEIYE + 2 Xy

Then the nonpositivity of R implies that
i, (Hyy )? - Aiv, (Hi,, )?

H, [~ [H,,, [P
This together with Claim 8.4 then yields
Nipn, (Hi,,,)? i (Hyy)?
H, BT H P

Finally, we consider the case that n;, # {0}. Let {(E?)1,...,(E} )} be an or-
thonormal basis of n) . Let X en) andY € n;:'?, and let Z € n;;,. We now define a
quadratic function f: R — R by

fx) = (R@X ANY + Hy ANZ),aX NY + Hy N Z)).
Then, using Claim 4.2 and Remark 6.2, we see that f is represented as

@)= 2 (RIXAY), X AYY)+22(R(X AY), Hi N Z) + (R(H;, N Z), H;, A\ Z)

2 (R(Y, X)X, Y) 4+ 22(R(Z, H,,)Y, X) + (R(Z, H;)H,,, Z)

1

2 (I0CenE - w0, 0w ) - e

1 1
- X YILY) - XL X))
+22(R(H,,, Z)X,Y) + (R(H,,, Z)Z, H,)

119 1

— X:(U(X, Y), (E2),)? - ﬁ(U(X,X)yHim(U(Y, Y)»HimJ)

p=1
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1
5)\i1(Hz’1)(VZZ, H;,)

1< i, (H; .)2
_ 2 - 0 2 _ mg m; 2 2

1 1
— 365)\1'1(}[11)(5/, Z, X]) — Z)\il(Hil)2|Z’2-

The discriminant D of f is then given by

- x_)\il (Hn)(vZX? Y> -

D= 1/\1‘1(Hz‘1)2<ya 1Z, X])?
1 or o i, (i, )? 2\ 1 2| 7|2
14 (szla/, X (B = g XPIY ) 7 (Ha 1]
ti )\imv H; 9
= L) (<Y, 12, X0+ 121 SO, X, (B2, — ﬁm vPIZ] )

We now set X = [JY, JZ]. Note that X does not vanish by (iv) of Proposition 6.1.
Setting e, = 1/|[J(E?),, JY]| [J(EY),, JY], it follows from (iv) of Proposition 6.1 that
e1,..., e, are perpendicular to each other in n . Hence the subspace [n? , JY] of n?
is spanned by {ey, ..., e} Z Z

It follows from Condition (K3) together with Claim 6.12 that

1

—MIUY 2Py |Z|2)

H,, ?
= Ly (im 12,52), 0V + | 2P iij T2 [J(E),. IV )Y
Aimi(HimZ')Q)‘ (Hi, ) 2
e Y 12V \Z|)
_1 } 1N, (Hy, )
= Pt (R T 21 (Y. 7, Y)Y
+|Z)? Z| ) IYNHTY, T Z), ep)?
_Aimi(Himi)Z)\ (Hi,)* 2
e SV PIZPYE |Z|)
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1 1N, (H; H;
= it (P 2y 22 vz

N (o )% Moy (i )?
_Dim, Wi, YPIZEY P |Z|2)
e

= Air (Hiy ) |Z| |Y|4 <>‘ |(Hl1)2 )‘i1<Hi1)2 )‘imi(Himi)Q)

AH, 2 2 Al 2|H,,,, |2

i, (Hy, ) W (i (H)? N, (Hiy, )
= Zal Dy (S -
AHLP TP A,

mi|

The nonpositivity of R then implies that f(z) < 0 for all # € R. Hence the discriminant

D of f is nonpositive, that is,

>\i1 (Hil)Z < Aimi (Himi)Z
2|H;, [~ 2|H,, 2
This combined with Claim 8.4 then shows that

/\il(Hil)z _ )‘imi(Hl’mi)Q
21H, > 2|H,, |?

This completes the proof of Claim 8.5.

Summing up the above argument, we obtain Proposition 8.1.

Proposition 8.1 shows that a connected, simply connected homogeneous Kéahler
Einstein manifold M of nonpositive curvature operator is a Riemannian symmetric
space if it is not Ricci flat. On the other hand, if M is Ricci flat, then it is flat, and
hence is also a Riemannian symmetric space. In consequence, we obtain our Main

Theorem.
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Chapter 2
Examples

It is well-known that all irreducible symmetric Kéhler manifolds of non-compact type
have nonpositive sectional curvature. In this chapter, we study the curvature operator

of the following classical type irreducible symmetric Kahler manifolds of noncompact

type.

1 Type I,

Let M be an open subset Dfnm = {C € M(m,n;C) ’]n — ¢ > 0} of C"™, where I,
is the n x n identity matrix, ‘¢ is the transpose of ¢ € M and ¢ denotes the complex
conjugate of ( € M.

Let ¢ = (zip) € M with 2, = zyp +vV—1yip, i = 1,...,mand p = 1,...,n be
the canonical complex coordinate system of M. Let ® be a real-valued function in a
coordinate neighborhood U at the origin 0 of M defined by

®(¢) = logdet (I, —'CC) ™"
1
= E |zip| + 5 E ZipZiqZiq%ip + (higher order terms)

for any ( € U.
Unless otherwise stated, Greek indices a, 3, ... denote all subscripts appearing as
pairs {11,12, ..., mn}, while Latin capitals A, B, ... denote {11,12,...,mn, 11,...,mn}.

We set
Z. 0 1(8 \/_—18)’

T 0z 2\0m, Oy
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;0 1(a+\/__18>_

©T 97, 2 \0m, 9y
The Kahler metric g of M is given, at the origin 0, by
0?P

Jos = ﬁzoﬁzﬂ (0 ’
0?P
gaﬁ - azaagﬂ (0) (_ gBO&) )
L
Jap = 07,025

where gap = g(Za, Zp)(0). Note that we have
9ipja = Yiqip = 5ij5PQ7 Yo = Yag = 0.

Let R be the curvature tensor of the Kéahler manifold (M, g), and define Ragcp =
9(R(Z¢c,Zp)Zp, Z4)(0). Then we obtain
- oo
pjakrls azipaijqazkrﬁzls ¢=0

- 5ij5k15p55qr + 5il(5jk5pq57“8'

R

By the symmetry properties of R, it is easy to see that Rapcp = Recpap = —Rpacp
and Ragcp = REECD =0.
Then it is immediate to see that the curvature operator R of (M, g) is given by

R(Ziy N Zsg) = =053 > Zip N Zg — 60q Y Zin N Z,
k=1

r=1

~ A

R(Za A Zg) = R(Za A Z5) = 0,

We divide our investigation into the following four cases: (1)m=n=1;(2) m =n = 2;
(3) m=mn>3; (4) m #n.
(1) In this case, R has two eigenvalues 0 and —2, whose eigenvectors are the fol-

lowing:

0 3 Z11 A ZH, Zﬁ A Zﬁ,
—2 3 le N Zﬁ

118



(2) In this case, R has three eigenvalues 0, —2 and —4, whose eigenvectors are given
as follows:

0; ZuNZig— Zio N\ Zyg— Loy N\ sy + Zas N\ Zsg,
Z1 N gy — Zio N\ Ly, Ziog N\ Zigg — Ziog N Z13,
I N Zig— Loy N\ Lz,  Zra N Zqg — Zaa N Zsq,
Ziu N\ Zsgy,  Zhio N Zsy,  Zoy N\ Zig,  Zas N 7,
ZoNZg, ZaNZgz forany a,f,

—2 y ZH A Zﬁ — ZQQ A Z@, Zlg N Zﬁ — Zgl A Zﬁ,
Zn A Zﬁ —+ Zlg A Zﬁ, Zgl N Zﬁ + 222 A Zﬁ,
ZH A Zﬁ + Zgl A Zﬁ, Zlg N Zﬁ + ZQQ N Zﬁ,

—4, le/\Zﬁ—FZlQ/\Zﬁ—FZzl/\Zﬁ"—ZQQ/\Zﬁ.

(3) In this case, R has three eigenvalues 0, —m and —2m, whose eigenvectors are
given respectively by

05  ZipNZg— Zim N Zigg — Zp N Zing — L N\ Zmme for i, p # m,
Zip N Zig = Zmp N Zmg for kK #m and p # g,
Zip N Lz = Zim N Zg7y for 7 #m  and  j # 1,
Zip\NZzy for 1#j and p#q,
Za/\Zg,Za/\Zg for any «,f,

m m—1m—1
“m ZZiTAZ”—ﬁ(ZZZ,WAZMJFZWAZW”) for i #m,

r=1 k=1 r=1
m 1 m m
> Zip N Zpy — — (ZZZ,W/\Z,WJr me/\zmm> for p+#m,
k=1 k=1 r=1
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—2m ; zm: Zip N\ Zg;.

i,p=1

(4) In this case, R has four eigenvalues 0, —m, —n and —(m+n), whose eigenvectors
are given respectively by

05  ZipNZg— Zin N Zig — Zinp N Zinp + Zign N Zim for 1#m and p#n,
Ziw N L5z — Zin N Zzy for i # 7 and 1 #n,
Zip N Zig = Zimp N Zmg - for kK #m and p # g,
ZipNZz; for 1#j and p#q,
ZaNZg, Zg N Zz for any «,f,

3
NE

(ka VAN ZE - Z}m VAN ZE) for P 7A n

k=1

NE

Zp N Zgg for p#q,

M

1

M:

(Zir N Zzz — Zppy N\ Zir) - for i #m,

r=1
Y ZuNZy for i+,
r=1

—(m+n) ; ZZip/\ZE.
%,p

2 Type ll,

Let M be an open set D} = {¢ € M(n;C)|'¢ = —(, I, —'(¢ > 0} of C""~V/2 where
I, is the n x n identity matrix, *C is the transpose of ( € M and ( denotes the complex
conjugate of ( € M. Note that M is a subset of war

Denote by C = (Zij) € M with Zij = Tij -+ \/—1 Yij, Z,j = 1, e, n. Since C is a
skew-symmetric matrix for all ¢ € M, we have z;; = —z;; and hence the components
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z;; for ¢ < j is the canonical complex coordinate system of M. Let ® be a real-valued

function in a coordinate neighborhood U at the origin 0 of M defined by

O(() = %logdet (In — tf()_l

1
= Z |Zij|2 + 1 Z ZikziZizjk + (higher order terms)

1<J

for any ( € U.
Now, Greek indices «, (3, . .. denote all subscripts appearing as pairs {12, ..., 1n, 23,
..., (n—1)n}, while Latin capitals A, B, ... denote {12,...,(n—1)n,12,...,(n — 1)n},

and we set

g 1[0 o)
Zaza—za—é(axa‘i‘ —].a—ya>.

Then the complexification of the tangent space Ty M at the origin 0 of M is represented

as
T§M:SpanC{Zij,Zg| 1<i<j<n}.

The Kahler metric g of M is given, at the origin 0, by

0*®

Jod = 8zaazﬁ (0 ’
0*®

9ap = 024073 (0) (: gﬁa) J
0*®

gaB - azaazﬂ (0)7

where gap = g(Za, Zp)(0). Thus we have
9w = 9mi; = OO, Gijk = 9w = 0.
Let R be the curvature tensor of the Kahler manifold (M, g), and define Rapcp =
9(R(Zc,Zp)Zp, Z4)(0). Then we obtain

e

R
82ij8§k182pq8§m ¢=0

ij klpqTs =
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57”l 5ks 5rk5ls 5sl 5kr + 5sk5lr

Py pq pg- 17

where (52-’}1 = 02/ 02ij = 0,051 — 0udji. By the symmetry properties of R, we also have
Rapep = Repap = —Rpacp and Ragep = Ragep = 0.
Then it is immediate to see that the curvature operator R of (M, g) is given by

R(Zig NZgg) = > (=008 + 07500 + 05008 — 038617) Zvy A Ziag,

pg-vy pg-y
p7q7T7S

R(Zoy N Zs) = R(Zs N Z3) = 0.

We divide our investigation into the following two cases: (1) n =2; (2) n > 3.
(1) In this case, R has two eigenvalues 0 and —2, whose eigenvectors are the fol-

lowing:

0 ) Zlg VAN Zu, Zﬁ A Zﬁ,
—2 3 Zlg N Zﬁ

(2) In this case, R has three eigenvalues 0, —(n—2) and —2(n—1), whose eigenvectors

are given respectively by

05  ZijNZg—Zin N Zg;
— Zjn N Zj = Zn-2)(n-1) N Li=pym=1y
+ Zn-2)n /\Z(n 0 + Zin-1)n /\Z(n O for 1<i<j<n-—2,
Ziin-1) N Zimy — Zin-1n N Zi—iyn
— Zin N\ Zigy = Zin-2)(n-1) N 25 =55(01)
+ Zn—1yn N Zm+ Zn—2yn N Zm for 1<i<n-3,
Zij NZg— Zin N Zz; for 1<i<j<k<n-—1,
ZijAZﬁ+ZinAZR for 1<i<j<k<n-1,
ZikAZﬁ—ZinAZﬁ for 1<i<ji<k<n-—1,
Zik/\Zﬁ—an/\ZTn for 1<i1<jij<k<n-—1,
ij/\er—i-Z;m/\Zm for 1<i1<)i<k<n-—1,
ZiwNZg— Zin N Z7; for 1<i<j<k<n-—1,
Zij \ Ly + Zjn—1y N Loy, for 1 <i<j<n-—2,
ZijAZﬁ—Zi(n_l)AZm for 1<i<yj<n—2,

(n—1)n
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j(n—1

Zjn/\Zﬁ_Z(n—l)n/\Zm for 1<i<j<n—2,

Zitn—1) N\ Zzg — Ln—2)(n—1) \ Z(n—2)n for 1<i<n-—23,
Zm/\Zm—Z(n,g)n/\Zm for 1<i1<n-—3,
Zij N Zz; for i # k1 and j#Kk,I,

ZoNZg, ZgNZz forany a,f,

i—1
2 .
_(n—2); _n—QTEZQZM/\ZM—i_ E Zm'/\Zg—i- E Zi,«/\Zﬁ for 2 <i<n,

r<i <r

i—1 j—1 n
ZZri/\er— Z iy N\ Zz + Z Zi N Zz for 1<i<j<n,
r=1

r=i+1 r=j+1

i—1 7j—1 n
N ZiiNZg— Y ZijNZg+ Y ZpANZy for 1<i<j<n,
r=1

r=i+1 r=j+1

—Q(Tl - 1) ; Z Zij A ZE

3 Typelll,

Let M be an open subset DX = {¢ € M(n;C)|* = ¢, I, — (¢ > 0} of C*"*+V/2,
where I, is the n x n identity matrix, ‘¢ is the transpose of ¢ € M and ¢ denotes the
complex conjugate of ( € M.

Denote by ¢ = (2;;) € M with z;; = x; + /=1y, i,j = 1,...,n. Since  is a
symmetric matrix for all ¢ € M, we have z;; = zj;, so that the components z;; for ¢ < j
is the canonical complex coordinate system of M. Let ® be a real-valued function in
a coordinate neighborhood U at the origin 0 of M defined by

1 21
o(() = 5 log det (In - t(()
IR 2 1 - = .
=5 Z |2i5]° + 1 Z ZinziZizjk + (higher order terms)
ij=1

for any ( € U.
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In this case, Greek indices a, 3, . .. denote all subscripts appearing as pairs {11, 12,
.,nn}, while Latin capitals A, B, ... denote {11,12,...,mn,11,...,An}, and we set

0 1
Zo= g (axa Vo @)
0 1
Jo=— = +v/=1—
0z, (8:5& )

Then the complexfication of the tangent space ToM at the origin 0 of M is represented

as
T(CM—span(c{ i ﬁ|1§j§j§n}.

The Kahler metric g of M is given, at the origin 0, by

o 0?P
Jijkl = azijazkl )
0?P
gz]k:l azijazkl( ) ( gmzj)’
%P

gzgk’l 85”351@1( )7

where gap = g(Za, Zg)(0). Then we have
gijngmlj ekl fOI' Z%j?k#h

1
itk — Y5 kk — §5ik7

where e = 0051 + 0104
Let R be the curvature tensor of the Kéhler manifold (M, g), and define Rapcp =

9(R(Zc,Zp)Zp, Z4)(0). Then we obtain
0'®

— ©
ij kl pqTs — —
JrPa 02;;0Z1102pq0% 5 =0
so that
Riiﬂppﬁ - 5Tp57”i5pk5ki7
Rijmppﬁ == 6Tp(55p6 + 5“’61“1)613’
_ kr kr

Rij’ﬁpqﬁ = €ij €pg>
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Ry tepprs = OnOpkerd + Ojndprels,
Riimpprs = em ekl7

Riiﬁpq 75 ezezq + e;flef]g,

Rijﬁpqm _ 61;(71‘ ks + ek’sekr

Rz’jﬂpqrs _ ekrels + ekselr + elr eks + elsqeic]r7

where ¢ < j, k <[, p < g and r < s. By the symmetry properties of R, it is easy to
see that RABCD = RCDAB = _RBACD and RaﬁCD = REBCD = 0.
It then is immediate to see that the curvature operator R of (M, g) is given by

R(Zi N Zig) = — 4 Z OrpOrilrpOinZor N Zog — > (Oikis€ls + Sitbinei) Zng A Zag,

p,q,7,8

R(Zy A Z) = —2 Z X ert Zow N Zog — 2> (Oikpke?d + Oju0pkelt) Zos A Zi

1] P9
DP9 p,T,8

— Z kr ks +eksekr> s /\Zﬁv

pg g
p,q,7,s

R(Zi N Zgp) = =2 (6prbinels + Ogr0ir€l) Zov N Zg — 2 €Vt Zng N i
p,q,r p,rys
= Y (et + i) Zos N Zpg,
p,q,7,S

R(Zi; N Zg) = — 4 Z OrpOrpelT + 0rpOrpels) Zoy N Zgp

Z] pq 1] ~pPq

_ 22 rk T‘l + e'r'lerk) er A ZW

DT
_ Di Dj
2 E ep ekl ep ekl) Zrs N\ Zp
p,r,s
kr ls ks lr Ir ks ls _kr
— g e qCi; T €pgi —|—eqew—|—epqeij)Zm/\ZW.
D78

Consequently, the curvature operator R has three eigenvalues 0, —(n+2) and —2(n+

1), whose eigenvectors are given respectively by
0; Zij/\ZE—ZinAZm—ZjnAZﬁ+QZnnAZm for 1§1<]§TL—1,
ZijAZjI_ZinAZR for 1§@<]§k§n—1,
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—(n+2);

—2(n+1);

sz/\Zgg;—-ZZn A 2%ﬁ' for 1<i1<j3<n-—1,

Zik N2z, — Zin N Zzy for 1<i<j<k<n-1,
Zig N2 — Zin N Zz; for 1 <i<j<k<mn,
Zik N Zgg — Zin N\ Ziy for 1<i<j<k<n-—1,
ZZn/\ZEE——ZZHI/\Zﬁg for 1<i<j<n—1,
ZiwNZg— Zin N Z7; for 1<i<j<k<n-—1,
Zii N\ Zgg, for i #F,

Zij N Zi; for i< j and 14,7 #Kk,

Zii N Zz; for k<l and 1#k,l,

Zij N Zy for i<y, k<l and i#kl, j#Ekl
ZoaNZg, ZsNZg forany a,p,

n i—1
1 1
Zii \ L=+ — E Liw N 7 + — g Lyi \ Lz

" ! 4 r=i+1 Z i 4 r=1 Z

n—1
1
_ZnnAZm—Z;ZrnAZm for 1<i<n-—1,

—_

k—1
1
Zvi N Zgg+ Zis N Zg + > Ziu N Zg+ Za N Zig

1 r=i+1

71—

N | —

T

1 n
+5 > ZyNZy for 1<i<k<n,
r=k+1
-1 i—1
1
Zpk/\Zﬁ‘f'Zkk/\ZE‘f'g Z ka/\Zﬁ—f—Zki/\Zﬁ
1 p=k+1

o

1
2

3
Il

1 n
t5 D ZwhZy for 1<i<k<n,

p=i+1

QiZTT/\ZN+ZZTS/\Zm.

r=1 r<s
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4 Type IV,

Let M be an open subset DIV = {¢ € M(n,1);C) | 1+[*¢¢|>—2t¢¢ > 0,%C¢ < 1} of C,
where C is the transpose of ( € M, and ¢ denotes the complex conjugate of ¢ € M.

Let ¢ = (z1,...,2,) with z; = 2; + /=1y;, i = 1,...,n be the canonical complex
coordinate system of M. Let ® be a real-valued function in a coordinate neighborhood
U at the origin 0 of M defined by

B(¢) = logdet (1 —27¢C + [¢[*) "

= 22 |za]? + Z Za)?(25)? + 2 Z |za|?|25|* + (higher order terms)

for any ¢ € U.
Now, Greek indices «,3,... run from 1 to n, while Latin capitals A, B,... run
through 1,...,n,1,...,7, and we set

0 1
el (axa Vo @)
0 1
g_o— _— /-1
0z, (&m )

The Kahler metric g of M is given, at the origin 0, by

_ po
Jas = 8Za825
9P
a8 = 92,07, (), (= 90)
9*d
gEB - azaazﬁ (0)7

where gap = g(Za, Zg)(0). Then we have

905(0) = 95,(0) = 00as.
Let R be the curvature tensor of the Kahler manifold (M, g), and define Rapcp =
9(R(Z¢,Zp)Zp, Z4)(0). Then we have

0'®
Raﬁvg(o) - azaagﬁaz’yaz(s (g) 0

= 400,055 + 40,5605 + 400504,
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and it is easy to see thatRapcp = Repap = —Rpacp and Regep = PFBOD =0.

«,

Then it is immediate to see that the curvature operator R of (M, g) is given by

R(Zo NZg) ==Y Zy N Zs,
y=1

R(Zou N Z5) = Zg N Zg — Zo N\ Z5, for a# B.

Then R has three eigenvalues 0, —2 and —n, whose eigenvectors are given respectively
by

0;, ZoNZg—Z,NZyz, for 1<a<n-—1,
ZaNZg+Zs N Zg for a0,

=25 ZaNZg—ZsgNZs, for a#p,

-n ; iZa/\Za.
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