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Introduction

Given a homogeneous Riemannian manifold M of nonpositive curvature, it has been a

central problem to find geometric conditions for M to be a Riemannian symmetric space

of noncompact type. Indeed, it was in the 1970’s that the structure of homogeneous

Riemannian manifolds of nonpositive curvature was determined. More precisely, in

1974, Heintze [4] proved that a connected, simply connected homogeneous Riemannian

manifold of nonpositive curvature can be identified with a simply connected solvable

Lie group with a left invariant metric. In consequence, to classify the structure of these

manifolds it suffices to determine the structure of solvable Lie algebras g with inner

product 〈 , 〉 of nonpositive curvature.

In this direction, Heintze [4] studied a necessary and sufficient condition for a metric

solvable Lie algebra (g, 〈 , 〉) to have strictly negative sectional curvature, and obtained

the condition that (g, 〈 , 〉) be isomorphic to the metric Lie algebra associated with a

Riemannian symmetric space of negative curvature. Subsequently, in 1976, Azencott

and Wilson [1] succeeded in determining the structure of metric solvable Lie algebras

(g, 〈 , 〉) of nonpositive curvature. Moreover, it is well-known that the Killing form

associated with a Riemannian symmetric space M of noncompact type induces an

Einstein metric of nonpositive curvature on M .

With these foregoing results understood, let (M, g) be a homogeneous Einstein

manifold of nonpositive curvature. By virtue of the result of Heintze mentioned above,

it suffices to investigate the structure of the metric solvable Lie algebra (g, 〈 , 〉) as-

sociated with M . Also, it should be remarked that, since the metric 〈 , 〉 is Einstein,

the scalar curvature of (g, 〈 , 〉) is either strictly negative or zero. In the case when the

scalar curvature of (g, 〈 , 〉) vanishes, we know that the Ricci curvature also vanishes.

Then it was proved by Heber [3] that this eventually implies (g, 〈 , 〉) being flat. On the

other hand, if the Ricci curvature of (g, 〈 , 〉) is strictly negative, then Heber [3] also

proved that g is a non-unimodular Lie algebra, that is, there exists a non-zero vector
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H ∈ g such that 〈H, X〉 = tr X for all X ∈ g. It is immediate that H is perpendicular

to the derived algebra n = [g, g] of g. Moreover, we obtain the following

Lemma 5.3 (1998, Heber [3]). Let g be a non-unimodular solvable Lie algebra with

an Einstein metric 〈 , 〉, a the orthogonal complement of the derived algebra n = [g, g]

of g, and H ∈ g a vector defined by 〈H, X〉 = tr ad X for any X ∈ g. Assume that a

is abelian. Then the following holds:

(1) For any A ∈ a, the symmetric part DA and the skew-symmetric part SA of the

adjoint representation ad A are derivations of g. Moreover, {DA, SA | A ∈ a} is

abelian.

(2) DA 6= 0 for any A ∈ a, and the restriction DH |n of DH to n is positive definite.

Now, let (M, g) be a Riemannian manifold, and
∧2 TpM denote the space of skew-

symmetric (2, 0)-tensors on the tangent space TpM of M at a point p ∈ M . The

curvature tensor R of M then gives rise to the curvature operator R̂ :
∧2 TpM →∧2 TpM defined by

〈〈R̂(X ∧ Y ), Z ∧W 〉〉 = g(R(Z, W )Y, X), X, Y, Z,W ∈ TpM.

The symmetry properties of R imply that R̂ is self-adjoint with respect to 〈〈 , 〉〉, so that

the eigenvalues of R̂ are all real. We say that M has nonpositive (resp. negative) cur-

vature operator if all eigenvalues of R̂ are nonpositive (resp. negative) everywhere. For

instance, the Einstein metric induced by the Killing form on a Riemannian symmetric

space of noncompact type has nonpositive curvature operator.

In 1998, Wolter [11] conjectured that a simply connected homogeneous Einstein

manifold with nonpositive curvature operator must be a Riemannian symmetric space.

The primary object of this thesis is to study the structure of homogeneous Einstein

manifolds of nonpositive curvature operator.

The nonpositivity of the curvature operator immediately implies that the sectional

curvature is nonpositive everywhere. In 1990, it was proved by D’Atri and Dotti Mi-

atello [2] that a homogeneous manifold has an invariant Riemannian metric of negative

curvature if and only if it admits an invariant Riemannian metric of negative curva-

ture operator. However, in the case of nonpositive sectional curvature, a homogeneous

Riemannian manifold of nonpositive curvature does not always admit an invariant Rie-

mannian metric of nonpositive curvature operator. Concerning this, in 1998, Wolter
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[11] obtained a necessary and sufficient condition for a homogeneous Riemannian man-

ifold of nonpositive curvature to have nonpositive curvature operator.

Noticing that there exist many examples of Kähler symmetric spaces with non-

positive curvature operator, we study in this thesis Wolter’s conjecture in the case of

Kähler manifolds, and prove it affirmatively. Namely, we prove

Main Theorem. A homogeneous Kähler Einstein manifold of nonpositive curvature

operator is a Riemannian symmetric space.

To be more precise, let (M,J, g) be a homogeneous Kähler Einstein manifold of

nonpositive curvature. Recall that M is identified with a simply connected solvable

Lie group G with a left invariant almost complex structure J and a left invariant Kähler

metric 〈 , 〉, so that it suffices to study the structure of its Lie algebra (g, J, 〈 , 〉).
Note that (g, J, 〈 , 〉) satisfies the following conditions:

(K1) J2 = − id,

(K2) 〈JX, Y 〉 = −〈X, JY 〉,

(K3) 〈[X,Y ], JZ〉+ 〈[Y, Z], JX〉+ 〈[Z, X], JY 〉 = 0,

(K4) [JX, JY ]− J [X, JY ]− J [JX, Y ]− [X,Y ] = 0

for any X,Y, Z ∈ g. Also, by a result of Azencott and Wilson [1], we know that the

orthogonal complement a of the derived algebra n = [g, g] of g is abelian.

As remarked above, in the Ricci-flat case, it is obvious that the conjecture is true.

Hence it suffices to prove the conjecture in the case where (g, J, 〈 , 〉) is not Ricci flat.

Applying recent results of Heber [3], we first prove

Proposition 6.1. Let g be a solvable Lie algebra with an endomorphism J and an

Einstein metric 〈 , 〉 satisfying Conditions (K1)–(K4). Suppose that (g, 〈 , 〉) has

nonpositive sectional curvature and is not Ricci flat. Then the following hold:

(a) There exists an orthogonal basis {Ha}a∈Λ of a with respect to 〈 , 〉 such that

[Ha, JHa] = λaJHa for some λa > 0,

[Hb, JHa] = 0 if a 6= b.

Moreover, setting H =
∑

a∈Λ Ha, we have 〈H, X〉 = tr ad X for any X ∈ g.
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(b) Define a linear function λa : a → R by λa(Hb) = δabλa for any b ∈ Λ. Let n±b
a

and n0
a be subspaces of n defined by

n±b
a =

{
X ∈ n

∣∣∣∣ DAX =
1

2
(λa(A)± λb(A)) X for any A ∈ a

}
,

n0
a =

{
X ∈ n

∣∣∣∣ DAX =
1

2
λa(A)X for any A ∈ a

}
,

where λb(H) < λa(H), and set

na =
⊕

λb(H)<λa(H)

(
n+b

a ⊕ n−b
a

)⊕ n0
a.

Then g is decomposed into a direct sum g =
⊕

aR{Ha} ⊕ na ⊕ R{JHa} which

satisfies the following:

(i) Jn±b
a = n∓b

a .

(ii) [X,Y ] =
λa(Ha)

|Ha|2 〈JX, Y 〉JHa for X,Y ∈ na.

(iii) [JHb, X] = −λb(Hb)JX for X ∈ n−b
a .

(iv) [Y, X] = −J [JY, X] |[Y, X]|2 =
λb(Hb)

2

2|Hb|2 |Y |2 |X|2 for X ∈ n−b
a , Y ∈ nb.

(v) [Y, X] = [JY, JX], |[Y, X]|2 =
λb(Hb)

2

2|Hb|2 |Y |2 |X|2 for X ∈ n∓c
a , Y ∈ n±c

b .

(vi) [Y, X] = [JY, JX], |[Y, X]| = |[Y, JX]| for X ∈ n0
a, Y ∈ n0

b .

(vii) Set Λc = {a ∈ Λ | n±c
a 6= {0}} ∪ {c} for c ∈ Λ, and let a, b ∈ Λc. If a 6= b,

then λa(H) 6= λb(H). Moreover, if λa(H) > λb(H), then n±b
a 6= {0}.

Then, concerning the necessary and sufficient condition for (g, J, 〈 , 〉) to be sym-

metric, we obtain the following

Proposition 7.1. Let (g, J, 〈 , 〉) be as in Proposition 6.1. Then the following condi-

tions are equivalent:

(a) ∇R ≡ 0.

(b) For each c ∈ Λ, let Λc denote the subset {a ∈ Λ | n±c
a 6= {0}} ∪ {c} of Λ. Then

there exists a subset {a1, . . . , am} of Λ satisfying that Λa1 ∪ . . . ∪ Λam = Λ and

that Λai
∩ Λaj

= {0} if i 6= j. Moreover, the following hold:
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(i) If there exists ai such that n0
ai

= {0}, then n0
b = {0} for any b ∈ Λai

.

(ii)
λb(Hb)

|Hb| =
λc(Hc)

|Hc| for any b, c ∈ nai
.

Finally, by making full use of these conditions, we obtain the following proposition

which suffices to prove our Main Theorem.

Proposition 8.1 Let (g, J, 〈 , 〉) be as in Proposition 6.1. If (g, 〈 , 〉) has nonpositive

curvature operator, then ∇R = 0.

The present thesis is organized as follows.

In Chapter 1, after giving relevant definitions, we recall the conjecture proposed by

Wolter [11] in Section 1.

Section 2 is devoted to the statement of our Main Theorem.

In Section 3, we review the structure of homogeneous Kähler manifolds of nonpos-

itive curvature.

Section 4 is devoted to the computation of several curvature functions on metric

solvable Lie algebras.

In Section 5, we review fundamental results obtained by Heber [3].

In Section 6, we prove Proposition 6.1 using the results of Heber in Section 5.

In Section 7, by making use of Proposition 6.1, we obtain a necessary and sufficient

condition for a metric solvable Lie algebra under consideration to be symmetric.

Finally, in Section 8, we prove our main Theorem.

In Chapter 2, we determine the curvature operator of classical type irreducible

symmetric Kähler manifolds of noncompact type.
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Chapter 1

Homogeneous Kähler Einstein

manifolds of nonpositive

curvature operator

In this chapter, we study the structure of homogeneous Kähler Einstein manifolds of

nonpositive curvature operator.

1 Wolter’s Conjecture

Let (M, g) be a Riemannian manifold, and
∧2 TpM denote the space of skew-symmetric

(2, 0)-tensors on the tangent space TpM of M at a point p ∈ M . For any X,Y ∈ TpM ,

we define an element X ∧ Y ∈ ∧2 TpM by

X ∧ Y (Z, W ) = g(X,Z)g(Y, W )− g(X,W )g(Y, Z), Z,W ∈ TpM,

and an inner product 〈〈 , 〉〉 on
∧2 TpM by

〈〈X ∧ Y, Z ∧W 〉〉 = g(X,Z)g(Y, W )− g(X,W )g(Y, Z), X, Y, Z,W ∈ TpM.

The curvature tensor R of M then gives rise to the curvature operator R̂ :
∧2 TpM →∧2 TpM defined by

〈〈R̂(X ∧ Y ), Z ∧W 〉〉 = g(R(Z, W )Y, X)
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for any X,Y, Z, W ∈ TpM . It is easy to see that R̂ is self-adjoint with respect to 〈〈 , 〉〉,
so that the eigenvalues of R̂ are all real. We say that M has nonpositive curvature

operator if all eigenvalues of R̂ are nonpositive everywhere.

Recall that for each 2-plane π in TpM , the sectional curvature K(π) for π is defined

by

K(π) = 〈R(X,Y )Y, X〉 = 〈〈R̂(X ∧ Y ), X ∧ Y 〉〉,
where {X,Y } is an orthonormal basis for π. From this definition it is immediate to

see the following.

Remark 1.1. If the curvature operator R̂ of (M, g) is nonpositive, then (M, g) has

nonpositive sectional curvature everywhere.

However, the converse of Remark 1.1 is not true in general, even in the case of

homogenous manifolds. Indeed, as the following example shows, we have many solv-

able Lie groups with left invariant metric, which have nonpositive sectional curvature

everywhere but do not have nonpositive curvature operator.

Example 1.1 (1991, Wolter [10]). Let n be a two step nilpotent Lie algebra. We

call n a uniform Lie algebra of type (m,n, r) if it has a basis {V1, . . . , Vn, Z1, . . . , Zm}
satisfying the following conditions, where 1 ≤ i, j, k ≤ n and 1 ≤ l ≤,m :

(K1) [Vi, Vj] ∈ {0,±Z1, . . . ,±Zm} and [Vi, Zl] = [Zk, Zl] = 0.

(K2) If [Vi, Vj] = ±[Vi, Vk] 6= 0, then Vj = Vk.

(K3) For any Zl, the cardinality of {(Vi, Vj) | [Vi, Vj] = Zl} is r.

(K4) For any Vi, the cardinality of {Vj | [Vi, Vj] 6= 0} is s.

Note that, from Condition (3), the cardinality of {(Vi, Vj) | [Vi, Vj] 6= 0} is 2rm. On

the other hand, Condition (4) implies that the cardinality of {(Vi, Vj) | [Vi, Vj] 6= 0} is

sn. So we have s = 2rm/n.

Let n = span{V1, . . . , Vn, Z1, . . . , Zm} be a uniform Lie algebra of type (m,n, r)

with an inner product for which V1, . . . , Vn, Z1, . . . , Zm are orthonormal. Let Alt(v)

denote the space of alternating linear transformations on v with respect to 〈 , 〉.
Setting v = span{V1, . . . , Vn} and z = span{Z1, . . . , Zm}, we define a linear operator

j : z → Alt(v) by

〈j(Z)V, W 〉 = 〈[V, W ], Z〉,
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where V, W ∈ v and Z ∈ z. Also, we assume that n = 2r and that j(Zk)j(Zl) =

−j(Zl)j(Zk) for k 6= l. Then we have j(Zk)Vi ∈ {V1, . . . , Vn} and 〈j(Zk)Vi, j(Zl)Vi〉 =

δkl. Moreover, it holds that 〈j(Z)V, j(Z)V ′〉 = |Z|2〈V, V ′〉 for any Z ∈ z and V, V ′ ∈ v.

With these understood, let s = R{A} ⊕ n be the direct sum of R{A} and n. We

define on s an inner product 〈 , 〉 and a Lie bracket [ , ] by

〈aA + V + Z, bA + V ′ + Z ′〉 = ab + 〈V, V ′〉+ 〈Z, Z ′〉,
ad A|v =

1

2
id, ad A|z = id,

where id denotes the identity map on s. Then s becomes a solvable Lie algebra with

inner product 〈 , 〉.
Now, let S be a solvable Lie group with Lie algebra s, and extend the inner product

〈 , 〉 on s to a left invariant metric 〈 , 〉 on S. Then the Levi-Civita connection

∇, the curvature tensor R and the sectional curvature K on S define respectively

the corresponding Levi-Civita connection ∇, the curvature tensor R and the sectional

curvature K of s.

Given a 2-plane π in s spanned by an orthonormal basis {aA + V + Z, V ′ + Z ′}
with a ≥ 0, V, V ′ ∈ v and Z, Z ′ ∈ z, it is immediate to see that the sectional curvature

K(π) for π is given by

K(π) = −3

4
|[V, V ′] + aZ ′|2 − 1

4
− 3

4
|Z|2|Z ′|2 − 3

4
〈Z, Z ′〉2 − 3

2
〈j(Z)V, j(Z ′)V ′〉.

Note that a function f :
[
0,
√

1− a2
] × [0, 1] → R defined by f(s, t) = −(1/4) −

(3/4)s2t2 + (3/2)st
√

1− a2 − s2
√

1− t2 is nonpositive everywhere, that is, f(s, t) ≤ 0.

It follows from this that

K(π) ≤− 1

4
− 3

4
|Z|2|Z ′|2 − 3

2
〈j(Z)V, j(Z ′)V ′〉

≤ − 1

4
− 3

4
|Z|2|Z ′|2 +

3

2
|j(Z)V ||j(Z ′)V ′|

=− 1

4
− 3

4
|Z|2|Z ′|2 +

3

2
|Z||V ||Z ′||V ′|

=− 1

4
− 3

4
|Z|2|Z ′|2 +

3

2
|Z||Z ′|

√
1− a2 − |Z|2

√
1− |Z ′|2

≤ 0.
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Hence (s, 〈 , 〉) has nonpositive sectional curvature.

On the other hand, it was proved by Heintze [4] that∇R = 0 if and only if s satisfies

j(Zk)j(Zl)V ∈ span{j(Z1)V, . . . , j(Zm)V } for all V ∈ v and k 6= l. This implies that

∇R = 0 if and only if s satisfies j(Zk)j(Zl)Vi ∈ {±j(Z1)Vi, . . . ,±j(Zm)Vi} for all

i = 1, . . . , n and k 6= l. Then the following was proved by Wolter [10].

Claim 1.1. R̂ ≤ 0 if and only if ∇R = 0.

Proof. The ‘only if’ part is obvious, since it is well-known that a Riemannian symmetric

space of noncompact type has nonpositive curvature operator.

To see the converse, assume that R̂ ≤ 0. If ∇R 6= 0, then there exist Vi and

k 6= l such that j(Zk)j(Zl)Vi 6∈ {±j(Z1)Vi, . . . ,±j(Zm)Vi}. Set V = V1 and V ′ =

j(Zk)j(Zl)Vi. Then V and V ′ are orthogornal, and j(Zl)V = −j(Zk)V
′. Since

{j(Z1)Vi, . . . , j(Zm)Vi} ⊂ {V1, . . . , Vn} and j(Zk)j(Zl)Vi ∈ {V1, . . . , Vn}, we have [V, V ′] =

0. Now, let ω ∈ ∧2
s be an element defined by ω = V ∧ V ′ + 1/2 Zl ∧ Zk. Then, by

an easy computation, we see that 〈R̂(ω), ω〉 = 0. Since R̂ ≤ 0, this implies that ω

lies in the eigenspace of R̂ with eigenvalue 0, that is, R̂(ω) = 0. However, we have

〈R̂(ω), j(Zl)V ∧ j(Zk)V 〉 = 3/4, which contradicts R̂ ≤ 0. ¤

A Riemannian manifold (M, g) is called an Einstein manifold, or g is said to be an

Einstein metric, if the Ricci tensor Ric of M is proportional to g, that is, Ric = cg for

some constant c.

It should be noted that the metric given in Example 1.1 is an Einstein metric.

On the other hand, it is known that each Riemannian symmetric space of noncompact

type admits an Einstein metric, induced by the Killing form, with nonpositive curvature

operator. These observations motivated T. Wolter to propose the following

Conjecture (1991, Wolter [11]). A (simply connected) homogeneous Einstein man-

ifold with nonpositive curvature operator is a Riemannian symmetric space.

2 Main Theorem

An almost complex structure on a real differentiable manifold M is a tensor field J

which is, at every point p ∈ M , an endomorphism of the tangent space TpM such that

J2 = − id, where id denotes the identity transformation of TpM . A manifold with a

fixed almost complex structure is called an almost complex manifold. The Nijenhuis
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tensor N of an almost complex manifold (M,J) is a tensor field of type (1, 2) defined

by

N(X,Y ) = [JX, JY ]− J [JX, Y ]− J [X, JY ]− [X,Y ], (1.1)

where X and Y are vector fields on M .

Let M be an n-dimensional complex manifold and (z1, . . . , zn) a complex local

coordinate system in M . We set zi = xi +
√−1yi for i = 1, . . . , n. A complex structure

J of M is an almost complex structure J on M defined by

J

((
∂

∂xi

)

p

)
=

(
∂

∂yi

)

p

, J

((
∂

∂yi

)

p

)
= −

(
∂

∂xi

)

p

for each p ∈ M and i = 1, . . . , n. It is known that an almost complex structure is a

complex structure if and only if N vanishes identically.

A Hermitian metric on an almost complex manifold (M,J) is a Riemannian metric

g invariant by the almost complex structure J , that is, g(JX, JY ) = g(X,Y ) for any

vector fields X,Y on M . An almost complex manifold (resp. a complex manifold)

with a Hermitian metric is called an almost Hermitian manifold (resp. a Hermitian

manifold). The fundamental 2-form Φ of an almost Hermitian manifold M = (M,J, g)

is defined by Φ(X,Y ) = g(X, JY ) for any vector fields X,Y of M .

An almost Hermitian manifold M is called a Kähler manifold if the fundamental

2-form Φ of M is closed and the Nijenhuis tensor N of M vanishes identically. In this

case, a Hermitian metric g on M is called a Kähler metric. A Kähler manifold (M,J, g)

is called homogeneous if the group of holomorphic isometries of M acts transitively on

M .

In this thesis, we study Wolter’s Conjecture in the case of Kähler manifolds and

prove the following

Main Theorem. A homogeneous Kähler Einstein manifold with nonpositive curvature

operator is a Riemannian symmetric space.

3 Structure of homogeneous Kähler manifolds with

K ≤ 0

Let (M,J, g) be a connected, simply connected homogeneous Kähler manifold with non-

positive curvature, that is, the sectional curvature K of M is nonpositive everywhere.
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It is known, by a result of Heintze [4], that in the group of holomorphic isometries of

M there exists a solvable Lie subgroup G which acts simply transitively on M . More

precisely, we have the following

Theorem 3.1. A connected, simply connected homogeneous Kähler manifold (M,J, g)

with nonpositive curvature is identified with a connected solvable Lie group equipped

with a left invariant complex structure J and a left invariant Kähler metric 〈 , 〉.

Proof. First, by a result of Wolf [9], we know that in the group of holomorphic isome-

tries of M there exists a connected, closed, solvable Lie subgroup G acting transitively

on M . Thus M is represented as M = G/H, where H is the isotropy subgroup at a

given point p ∈ M and hence is a compact subgroup of G.

By the structure theory of solvable Lie groups ([7]), we know that there exist a

closed normal k-solvable subgroup L of G and a compact subgroup K of G such that

G is the semidirect product G = L ·K. Note that a k-solvable subgroup L is a solvable

Lie group for which the coset manifold L/T by the compact normal subgroup T in L is

simply connected, where T is the unique maximal compact subgroup in the center of

L. On the other hand, K is also a compact subgroup of the group of isometries of M .

By a theorem of Cartan ([6]), K has a fixed point p0 ∈ M , since M is simply connected

and has nonpositive sectional curvature. This implies that L acts on M transitively,

and hence M is represented as M = L/H ′ with an isotropy subgroup H ′ of L. Since

H ′ is compact, it is contained in the maximal compact subgroup T . Hence H ′ is a

normal subgroup of L. Note that L acts effectively on M , so that H ′ = {e}, where e is

a identity element of L. Hence M = L, and M is identified with a solvable Lie group

L.

Moreover, since L is a subgroup of holomorphic isometries of M , the complex

structure J of M induces a left invariant complex structure J of L. Also, the Kähler

metric g on M induces a left invariant Kähler metric 〈 , 〉 on L. ¤

Our first goal is to determine the structure of a connected, simply connected ho-

mogeneous Kähler manifold (M,J, g) with nonpositive curvature. By Theorem 3.1, we

see that such M is represented as a simply connected solvable Lie group G with a left

invariant complex structure J and a left invariant Kähler metric 〈 , 〉. Note that, since

G is simply connected, the structure of G is determined by its Lie algebra g up to

isomorphism. Then we obtain the following
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Lemma 3.1. Let (G, J, 〈 , 〉) be a connected, simply connected homogeneous Kähler

manifold with nonpositive curvature, and g the solvable Lie algebra consisting of left

invariant vector fields on G. Then the left invariant complex structure J and the left

invariant Kähler metric 〈 , 〉 on G induce, respectively, an endomorphism J and an

inner product 〈 , 〉 on g satisfying the following conditions:

(K1) J2 = − id,

(K2) 〈JX, Y 〉 = −〈X, JY 〉,

(K3) 〈[X,Y ], JZ〉+ 〈[Y, Z], JX〉+ 〈[Z, X], JY 〉 = 0,

(K4) [JX, JY ]− J [X, JY ]− J [JX, Y ]− [X,Y ] = 0

for any X,Y, Z ∈ g.

Proof. (K1) is obvious, and (K2) is immediate, since 〈 , 〉 is Hermitian. Also, (K4)

follows from the fact that the Nijenhuis tensor N equals 0.

For (K3), it suffices to recall that the fundamental 2-form Φ(X,Y ) = 〈X, JY 〉 of G

is closed, so that for any X,Y, Z ∈ g

0 = 3dΦ(X,Y, Z)

= XΦ(Y, Z)− Y Φ(X,Z) + ZΦ(X,Y )− Φ([Y, Z], X) + Φ([X,Z], Y )− Φ([X,Y ], Z)

= X〈Y, JZ〉 − Y 〈X, JZ〉+ Z〈X, JY 〉 − 〈[Y, Z], JX〉+ 〈[X,Z], JY 〉 − 〈[X,Y ], JZ〉
= −〈[Y, Z], JX〉+ 〈[X,Z], JY 〉 − 〈[X,Y ], JZ〉.

¤

4 Curvature functions on solvable Lie algebras

Let g be a solvable Lie algebra with inner product 〈 , 〉 on g. Let G be a Lie group

with Lie algebra g, and extend the inner product 〈 , 〉 on g to a left invariant metric

〈 , 〉 on G. Regarding g as the Lie algebra consisting of left invariant vector fields on

G, the Levi-Civita connection ∇, the curvature tensor R and the sectional curvature

K of G defines respectively the corresponding Levi-Civita connection ∇, the curvature

tensor R and the sectional curvature K of g. We first note the following
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Claim 4.1. For any X,Y ∈ g, the Levi-Civita connection ∇ is given by

∇XY =
1

2
[X,Y ] + U(X,Y ),

U(X,Y ) = −1

2
((ad X)∗Y + (ad Y )∗X),

where ad denotes the adjoint representation of g and ∗ the transpose with respect to

〈 , 〉.

Proof. It follows from the definition of the Levi-Civita connection ∇ that

〈∇XY, Z〉 =
1

2
(X〈Y, Z〉+ Y 〈X,Z〉 − Z〈X,Y 〉
− 〈[Y, Z], X〉 − 〈[X,Z], Y 〉+ 〈[X,Y ], Z〉)

=
1

2
(〈X, [Z, Y ]〉+ 〈Y, [Z, X]〉+ 〈[X,Y ], Z〉)

for any X,Y, Z ∈ g, since 〈X,Y 〉, 〈Y, Z〉, 〈Z, X〉 are constant functions on G. Hence

we have

∇XY = U(X,Y ) +
1

2
[X,Y ].

It should be remarked that U(X,Y ) (resp. (1/2)[X,Y ]) gives the symmetric (resp. the

skew-symmetric) part of ∇XY . ¤

As a consequence of Claim 4.1, we see that the curvature tensor R(X,Y )Z =

[∇X ,∇Y ]Z − ∇[X,Y ]Z of g is determined by the bracket product of g. Namely, the

following holds.

Claim 4.2. For any X,Y ∈ g, we have

〈R(X,Y )Y, X〉 = |U(X,Y )|2 − 〈U(X,X), U(Y, Y )〉 − 3

4
|[X,Y ]|2

− 1

2
〈[X, [X,Y ]], Y 〉 − 1

2
〈[Y, [Y, X]], X〉,

where | · | denotes the norm defined by 〈 , 〉.

Proof. It follows from Claim 4.1 that for any X,Y ∈ g

〈R(X,Y )Y, X〉 = 〈∇X∇Y Y −∇Y∇XY −∇[X,Y ]Y, X〉
=

1

2
(〈X, [X,∇Y Y ]〉+ 〈∇Y Y, [X,X]〉+ 〈[X,∇Y Y ], X〉)
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− 1

2
(〈Y, [X,∇XY ]〉+ 〈∇XY, [X,Y ]〉+ 〈[Y,∇XY ], X〉)

− 1

2
(〈[X,Y ], [X,Y ]〉+ 〈Y, [X, [X,Y ]]〉+ 〈[[X,Y ], Y ], X〉)

= −〈U(X,X),∇Y Y 〉+ 〈U(X,Y ),∇XY 〉 − 1

2
〈U(X,Y ), [X,Y ]〉

− 1

4
|[X,Y ]|2 − 1

2
|[X,Y ]|2 − 1

2
〈[[Y, X], X], Y 〉 − 1

2
〈[[X,Y ], Y ], X〉

= −〈U(X,X), U(Y, Y )〉+ 〈U(X,Y ), U(X,Y )〉
+

1

2
〈U(X,Y ), [X,Y ]〉 − 1

2
〈U(X,Y ), [X,Y ]〉

− 3

4
|[X,Y ]|2 − 1

2
〈[[X,Y ], Y ], X〉 − 1

2
〈[[Y, X], X], Y 〉

= −〈U(X,X), U(Y, Y )〉+ |U(X,Y )|2 − 3

4
|[X,Y ]|2

− 1

2
〈[[X,Y ], Y ], X〉 − 1

2
〈[[Y, X], X], Y 〉.

¤

Let {e1, . . . , en} be an orthonormal basis of g with respect to 〈 , 〉, and B the Killing

form of g. We now define H ∈ g by

〈H, X〉 = tr ad X, X ∈ g.

Then we see that H is orthogonal to the derived algebra n = [g, g]. Indeed, for any

X,Y ∈ g, we have

〈H, [X,Y ]〉 = tr ad[X,Y ] = tr[ad X, ad Y ] = 0.

Claim 4.3. Let B be the Killing form of (g, 〈 , 〉). Then the Ricci tensor Ric and the

scalar curvature sc of g can be expressed as follows:

(1) Ric(X,X) = −〈ad(H)X,X〉− 1

2
B(X,X)− 1

2
tr ad X ◦ad X∗+

1

4

n∑
i,j=1

〈[ei, ej], X〉2

for all X ∈ g.

(2) sc = −〈H, H〉 − 1

2

n∑
i=1

B(ei, ei)− 1

4

n∑
i=1

tr(ad ei)
∗ ◦ ad ei.

Proof. (1) Let X ∈ g. It follows from the definition of H ∈ g and Claim 4.1 that

tr ad∇XX = 〈H,∇XX〉 =
1

2
(〈H, [X,X]〉 − 〈H, (ad X)∗X〉 − 〈H, (ad X)∗X〉)
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= −〈[X,H], X〉 = 〈ad H(X), X〉.

This together with Claim 4.2 then yields

Ric(X,X) =
n∑

i=1

〈R(ei, X)X, ei〉

=
n∑

i=1

(
|U(ei, X)|2 − 〈U(ei, ei), U(X,X)〉

− 3

4
|[ei, X]|2 − 1

2
〈[ei, [ei, X]], X〉 − 1

2
〈[X, [X, ei]], ei〉

)

=
n∑

i=1

(
1

4

n∑
j=1

(〈X, [ei, ej]〉+ 〈ei, [X, ej]〉)2 + 〈(ad ei)
∗ei,∇XX〉

−3

4
〈(ad X)∗ ◦ ad X(ei), ei〉 − 1

2
〈[ei, [ei, X]], X〉 − 1

2
〈[X, [X, ei]], ei〉

)

=
1

4

n∑
i,j=1

〈X, [ei, ej]〉2 +
1

2

n∑
i=1

〈X, [[X, ei], ej]〉+
1

4

n∑
i=1

〈[X, ei], [X, ei]〉

− tr ad∇XX − 3

4
tr(ad X)∗ ◦ ad X − 1

2

n∑
i=1

〈[ei, [ei, X]], X〉 − 1

2
B(X,X)

=
1

4

n∑
i,j=1

〈X, [ei, ej]〉2 − 1

2
tr ad X ◦ (ad X)∗ − 〈ad H(X), X〉 − 1

2
B(X,X).

(2) Using (1), we see that the scalar curvature sc of g is given by

sc =
n∑

k=1

Ric(ek, ek)

=
n∑

k=1

(
−〈ad Hek, ek〉 − 1

2
B(ek, ek)− 1

2
tr ad ek ◦ ad ek

∗ +
1

4

n∑
i,j=1

〈[ei, ej], ek〉2
)

= − tr ad H − 1

2

n∑

k=1

B(ek, ek)− 1

2

n∑

k=1

tr ad ek ◦ ad ek
∗ +

1

4

n∑
i,j=1

〈[ei, ej], [ei, ej]〉

= −〈H, H〉 − 1

2

n∑

k=1

B(ek, ek)− 1

4

n∑

k=1

tr ad ek ◦ ad ek
∗.

¤
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5 Results of Heber

This section is devoted to recalling several relevant results proved by Heber [3] which

will be used throughout this thesis.

Let g be a Lie algebra with inner product Q, and let k and p denote the spaces of

skew-symmetric and symmetric derivations of g with respect to Q, respectively. Note

that the direct sum k ⊕ p yields a subalgebra of the Lie algebra Der(g) of derivations

of g.

We now define an involutive Lie algebra automorphism θ of k ⊕ p by θ(X + Y ) =

X − Y for X ∈ k and Y ∈ p, and an inner product 〈 , 〉 on k⊕ p by

〈A,B〉 = − trQ θ(A) ◦B, A,B ∈ k⊕ p.

Then, for A1, A2, A3 ∈ k⊕ p, we have

〈[A1, A2], A3〉 = − trQ θ([A1, A2]) ◦ A3 = − trQ[θ(A1), θ(A2)] ◦ A3

= − trQ(θ(A1) ◦ θ(A2)− θ(A2) ◦ θ(A1)) ◦ A3

= − trQ(θ(A2) ◦ A3 ◦ θ(A1)− θ(A2) ◦ θ(A1) ◦ A3

= − trQ θ(A2) ◦ [A3, θ(A1)]

= −〈A2, [θ(A1), A3]〉,

(1.2)

which shows that if A ∈ k, then ad A is skew-symmetric with respect to 〈 , 〉. Similarly,

it also holds that if A ∈ p, then ad A is symmetric with respect to 〈 , 〉.
Claim 5.1. k⊕p is a reductive subalgebra of Der(g), that is, k⊕p is decomposed into a

direct sum k⊕p = z(k⊕p)⊕ [k⊕p, k⊕p] of the center z(k⊕p) of k⊕p and a semisimple

ideal [k⊕ p, k⊕ p].

Proof. For any Z ∈ z(k⊕ p) and X,Y ∈ k⊕ p, it follows from (1.2) that

〈Z, [X,Y ]〉 = −〈[θ(X), Z], Y 〉 = 0,

which implies that z(k⊕p) is orthogonal to [k⊕p, k⊕p]. Conversely, choose an element

Z ∈ k⊕p which is orthogonal to [k⊕p, k⊕p]. For X,Y ∈ k⊕p and Z, (1.2) then yields

that

〈[X,Z], Y 〉 = −〈Z, [θ(X), Y ]〉 = 0,

and hence Z ∈ z(k ⊕ p). In consequence, z(k ⊕ p) is an orthogonal complement of

[k⊕ p, k⊕ p], that is, k⊕ p = z(k⊕ p)⊕ [k⊕ p, k⊕ p].
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Since θ is a Lie algebra automorphism of k⊕p, [k⊕p, k⊕p] is invariant by θ. Let B

denote the Killing form of [k⊕ p, k⊕ p], and {Ek} an orthonormal basis of [k⊕ p, k⊕ p]

with respect to 〈 , 〉. For X ∈ [k⊕ p, k⊕ p], we have

B(θ(X), X) = tr ad θ(X) ◦ ad X =
∑

k

〈[θ(X), [X,Ek]], Ek〉

= −
∑

k

〈[X,Ek], [θ
2(X), Ek]〉 = −

∑

k

〈[X,Ek], [X,Ek]〉.

Assume that B is degenerate. Then there exists some X0 ∈ [k ⊕ p, k ⊕ p] such that

B(X0, ·) = 0. In particular, we have B(θ(X0), X0) = 0, which implies that [X0, Ek] = 0

for any k. Hence X ∈ z(k ⊕ p), contradicting that X ∈ [k ⊕ p, k ⊕ p]. Therefore, B is

non-degenerate, that is, [k⊕ p, k⊕ p] is semisimple. ¤

Claim 5.2. Let g be a solvable Lie algebra with inner product Q. If there exists X ∈ g

such that ad X ∈ k⊕ p, then (ad X)k, (ad X)p ∈ z(k⊕ p), where (ad X)k (resp. (ad X)k)

denotes the k (resp. p) component of ad X.

Proof. Let h = ad(g) ∩ k ⊕ p, a subspace of k ⊕ p. Since g is solvable, h is a solvable

ideal of k⊕ p. Moreover, in Claim 5.1 we see that k⊕ p is reductive. Hence z(k⊕ p) is

a radical, and hence h ⊂ z(k⊕ p).

Let X ∈ g for which ad X ∈ h, and let (ad X)k and (ad X)p be as above. Then it is

easy to see that [k, k] ⊂ k, [p, k] ⊂ p and [p, p] ⊂ k. Hence we have [(ad X)k, k] ⊂ k and

[(ad X)p, k] ⊂ p. It then follows from [ad X, k] = 0 that [(ad X)k, k] = [(ad X)p, k] = 0.

Similarly, we have [(ad X)k, p] = [(ad X)p, p] = 0. Consequently, (ad X)k, (ad X)p ∈
z(k⊕ p). ¤

Let Sym(g) denote the space of symmetric bilinear forms on g, and let GL+(g) be

the group of linear endomorphisms of g with positive determinant. Also, we denote by

P ⊂ Sym(g) the open convex cone of inner products on g.

For any Q ∈ P and h ∈ Sym(g), there exists a symmetric endomorphism C ∈
End(g) relative to Q such that h = Q(C·, ·). We now define a curve Q(t) ∈ P by

Q(t) = Q(etC ·, ·) ∈ P, etC =
∞∑

k=0

tk

k!
Ck.

Then the differential of Q(t) at t = 0 is given by

Q′(0)(·, ·) =
d

dt
Q(etC ·, ·)

∣∣∣∣
t=0

= Q(C·, ·) = h,

22



which implies that Sym(g) is a subspace of the tangent space TQP of P at Q ∈ P. On

the other hand, obviously TQP is a subspace of Sym(g). Hence we have TQP = Sym(g).

We now define an inner product gQ on TQP = Sym(g) by

gQ(h, k) =
∑
i,j

h(ei, ej)k(ei, ej), h, k ∈ TQP,

where {e1, . . . , en} is an orthonormal basis of g with respect to Q. Note that gQ is

well-defined, that is, independent of the choice of an orthonormal basis of g. Setting

g = {gQ}Q, we obtain a Riemannian metric g on P.

Given Q ∈ P and a ∈ GL+(g), we define an action a ·Q of GL+(g) on P by

(a ·Q)(X,Y ) = Q(a−1X, a−1Y ).

Note that this action of GL+(g) is transitive and isometric on P with respect to g.

Moreover, the isotropy subgroup GL+(g)Q of GL+(g) at Q coincides with the special

orthogonal group SO(g, Q) of g with respect to Q, and hence is compact.

We now fix Q ∈ P, and define an involutive automorphism σ : GL+(g) → GL+(g)

by σ(g) = (g∗)−1, where ∗ denotes the transpose with respect to Q. Then the set of

fixed points of σ coincides with SO(g, Q). Consequently, (GL+(g), SO(g, Q)) is a Rie-

mannian symmetric pair, and hence (P, g) = (GL+(g)Q/SO(g, Q), g) is a Riemannian

symmetric space. Note that, for any geodesic Q̃(t) ∈ P with Q̃(0) = Q, there exists a

symmetric endomorphism C of g with respect to Q such that Q̃(t) = e−t/2 C ·Q ∈ P.

Let BQ denote the Killing form of (g, Q). We define HQ ∈ g by

Q(HQ, X) = tr ad X, X ∈ g.

We also define the following functions on P:

RicQ = the Ricci tensor of (g, Q),

sc(Q) = the scalar curvature of (g, Q),

h(Q) = Q(HQ, HQ),

b(Q) = trQ BQ,

n(Q) = sc(Q) + h(Q) +
1

2
b(Q).

Recall that the scalar curvature sc(Q) is given by

sc(Q) = −Q(HQ, HQ)− 1

2

n∑
i=1

BQ(ei, ei)− 1

4

n∑
i=1

trQ(ad ei)
∗ ◦ ad ei,
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where {e1, . . . , en} is an orthonormal basis of g with respect to Q, and ∗ denotes the

transpose with respect to Q. Then the function n is given by

n(Q) = −1

4

n∑
i=1

trQ(ad ei)
∗
Q ◦ ad ei.

Claim 5.3. (1) (grad n)Q = −RicQ−Q(DHQ
·, ·)− (1/2) BQ holds at any point Q ∈

P, where DHQ
denotes the symmetric part of ad HQ with respect to Q.

(2) The function n is concave on P, that is, (n ◦ Q)′′ ≤ 0 holds along any geodesic

Q(t) in P.

(3) Define a curve Q(t) = e−t C/2 · Q in P, where C is a symmetric endomorphism

of g with respect to Q. If (n ◦Q)′′(0) = 0, then C is a derivation of g.

Proof. (2) Fix Q ∈ P. Let C be a symmetric endomorphism of g with respect to Q, and

{e1, . . . , en} an orthonormal basis of g with respect to Q. Without loss of generality,

we may suppose that each ei is an eigenvector of C, that is, Cei = µiei for µi ∈ R.

Now, consider a geodesic Q(t) = e−t/2 C ·Q ∈ P. Note that {e−t/2 µ1e1, . . . , e
−t/2 µnen}

yields an orthonormal basis of g with respect to Q(t). Since A∗
Q(t) denotes the transpose

of an endomorphism A of g with respect to Q(t), we obtain

n ◦Q(t) = −1

4

n∑
i=1

trQ(t)

(
ad

(
e−tµi/2ei

))∗
Q(t)

◦ ad
(
e−tµi/2ei

)

= −1

4

n∑
i,j=1

Q(t)
((

ad
(
e−tµi/2ei

))∗
Q(t)

◦ ad
(
e−tµi/2ei

)
e−tµj/2ej, e

−tµj/2ej

)

= −1

4

n∑
i,j=1

Q(t)
([

e−tµi/2ei, e
−tµj/2ej

]
,
[
e−tµi/2ei, e

−tµj/2ej

])

= −1

4

n∑
i,j=1

e−t(µi+µj)Q
(
etC/2[ei, ej], e

tC/2[ei, ej]
)

= −1

4

n∑

i,j,k=1

e−t(µi+µj)Q
(
etC/2[ei, ej], ek

)2

= −1

4

n∑

i,j,k=1

e−t(µi+µj−µk)Q ([ei, ej], ek)
2 .
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Hence the second order derivative of n ◦Q(t) is given by

(n ◦Q)′′(t) = −1

4

n∑

i,j,k=1

(µi + µj − µk)
2e−t(µi+µj−µk)Q ([ei, ej], ek)

2 ,

which shows that (n ◦Q)′′(t) ≤ 0. Hence n is concave on P.

(3) Let gµi
denote the eigenspace relative to an eigenvalue µi. It follows from (2)

that

(n ◦Q)′′(0) = −1

4

n∑

i,j,k=1

(µi + µj − µk)
2Q ([ei, ej], ek)

2 = 0.

If µi + µj − µk 6= 0, then Q ([ei, ej], ek) = 0, that is, [gµi
, gµj

] is orthogonal to gµk
. On

the other hand, if µi + µj − µl = 0, then for µk 6= µl, µi + µj − µk 6= 0 holds. Hence we

have [gµi
, gµj

] ⊂ gµl
with µi + µj = µl. Consequently, C is a derivation of g.

(1) The first order derivative of n ◦Q(t) at t = 0 is given by

〈grad n,Q′(0)〉Q = (n ◦Q)′(0) =
1

4

n∑

i,j,k=1

(µi + µj − µk)Q ([ei, ej], ek)
2

=
1

2

n∑

i,j,k=1

µiQ ([ei, ej], ek)
2 − 1

4

n∑

i,j,k=1

µkQ ([ei, ej], ek)
2

=
1

2

n∑
i,j=1

µiQ ([ei, ej], [ei, ej])− 1

4

n∑

i,j,k=1

µiQ ([ej, ek], ei)
2

=
n∑

i=1

µi

{
1

2
trQ(ad ei)

∗
Q ◦ ad ei − 1

4

n∑

j,k=1

Q ([ej, ek], ei)
2

}

=
n∑

i=1

Q(Cei, ei)

(
−RicQ(ei, ei)−Q(DHQ

ei, ei)− 1

2
B(ei, ei)

)

=

〈
Q′(0),−RicQ−Q(DHQ

·, ·)− 1

2
B

〉

Q

.

Hence we have (grad n)Q = −RicQ−Q(DHQ
·, ·)− (1/2)B. ¤

Claim 5.4. Let a ∈ GL+(g) be a Lie algebra automorphism of g with positive deter-

minant. Then the function n satisfies n(a ·Q) = n(Q) for any Q ∈ P.

Proof. Let {e1, . . . , en} be an orthonormal basis of g with respect to Q, and note

that {ae1, . . . , aen} yields an orthonormal basis with respect to a · Q. Since a is an
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automorphism of g, n(a ·Q) is given by

n(a ·Q) = −1

4

n∑
i=1

tra·Q (ad (aei))
∗
a·Q ◦ ad (aei)

= −1

4

n∑
i,j=1

(a ·Q)
(
(ad (aei))

∗
a·Q ◦ ad (aei) (aej) , (aej)

)

= −1

4

n∑
i,j=1

(a ·Q) ([aei, aej] , [aei, aej])

= −1

4

n∑
i,j=1

(a ·Q) (a[ei, ej], a[ei, ej])

= −1

4

n∑
i,j=1

Q ([ei, ej], [ei, ej])

= −1

4

n∑
i=1

trQ (ad ei)
∗
Q ◦ ad ei = n(Q).

Since Q is arbitrary, we obtain Claim 5.4. ¤

Note that each derivation A of g induces a Lie algebra automorphism etA of g with

positive determinant. We define a 1-parameter group φ : R×P → P of transformations

of P by φt(Q) = etA ·Q for any Q ∈ P and t ∈ R. Let {e1, . . . , en} be an orthonormal

basis of g with respect to Q. For any h ∈ TQP = Sym(g), we then have

(dφt)Qh =
d

ds
φt(exp sh)

∣∣∣∣
s=0

=
d

ds
(etA · exp sh)

∣∣∣∣
s=0

= etA · h.

Since {etAe1, . . . , e
tAen} is an orthonormal basis of g with respect to φt(Q), we have for

h, k ∈ TQP

〈(dφt)Qh, (dφt)Qk〉 = 〈etA · h, etA · k〉

=
n∑

i,j=1

(
etA · h) (

etAei, e
tAej

) (
etA · k) (

etAei, e
tAej

)

=
n∑

i,j=1

h(ei, ej)k(ei, ej) = 〈h, k〉Q.

This shows that φt is an isometry on P for any t ∈ R. Hence the infinitesimal trans-

formation Ã of φ is a Killing vector filed on P.
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Claim 5.5. The Hessian of n in the direction ÃQ at Q ∈ P is given by

Hess n(ÃQ, ÃQ)

= −
∑

i

RicQ([A,A∗
Q]ei, ei)− trQ DHQ

◦ [A,A∗
Q]− 1

2

∑
i

B([A,A∗]ei, ei),

where DHQ
denotes the symmetric part of ad HQ with respect to Q.

Proof. We define a function f on P by f(Q) = 〈ÃQ, ÃQ〉Q. Since φt(Q) = Q(e−tA·, e−tA·)
= Q(e−tA∗Q · e−tA·, ·), Ã is given by

ÃQ =
d

dt
φt(Q)

∣∣∣∣
t=0

=
d

dt
Q(e−tA∗Qe−tA·, ·)

∣∣∣∣
t=0

= Q(−(A∗
Q + A)·, ·).

Fix Q ∈ P, and let {eq, . . . , en} be an orthonormal basis of g with respect to Q. Then

f is given by

f(Q) =
〈
Q(−(A∗

Q + A)·, ·), Q(−(A∗
Q + A)·, ·)〉

Q

=
n∑

i,j=1

Q(−(A∗
Q + A)ei, ej)

2

=
n∑

i=1

Q((A∗
Q + A)2ei, ei) = trQ(A∗

Q + A)2

= 2 trQ(A2 + A∗
QA).

Given a symmetric endomorphism C of g with respect to Q, we look at a curve Q(t) =

e−(t/2)CQ ∈ P to obtain

〈gradf, Q′(0)〉Q
=

d

dt
f ◦Q(t)

∣∣∣∣
t=0

= 2
d

dt
trQ(t)(A

2 + A∗
Q(t)A)

∣∣∣∣
t=0

= 2
d

dt

n∑
i=1

Q(t)
(
(A2 + A∗

Q(t)A)e−tC/2ei, e
−tC/2ei

)
∣∣∣∣∣
t=0

= 2
d

dt

n∑
i=1

(
Q(t)(A2e−tC/2ei, e

−tC/2ei) + Q(t)(Ae−tC/2ei, Ae−tC/2ei)
)
∣∣∣∣∣
t=0

= 2
d

dt

n∑
i=1

(
Q(etC/2A2e−tC/2ei, ei) + Q(etC/2Ae−tC/2ei, e

tC/2Ae−tC/2ei)
)
∣∣∣∣∣
t=0
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= 2
d

dt
trQ

(
etC/2A2e−tC/2 + e−tC/2A∗

QetCAe−tC/2
)∣∣∣∣

t=0

= 2
d

dt
trQ

(
A2 + A∗

QetCAe−tC
)∣∣∣∣

t=0

= 2 trQ(A∗
QCA− A∗

QAC) = 2 trQ[A,A∗
Q]C

= 2
n∑

i=1

Q([A,A∗
Q]Cei, ei) = 2

n∑
i,j=1

Q([A,A∗
Q]ej, ei)Q(Cei, ej)

= 2〈Q([A,A∗
Q]·, ·), Q′(0)〉Q,

which implies that (grad f)Q = 2Q([A,A∗
Q]·, ·).

On the other hand, since Ã is a Killing vector field, we have for X ∈ TQP

〈∇ÃÃ,X〉Q = Ã〈Ã,X〉Q − 〈Ã,∇ÃX〉Q
= 〈[Ã, Ã], X〉Q + 〈Ã, [Ã,X]〉Q − 〈Ã, [Ã,X] +∇XÃ〉Q
= −〈Ã,∇XÃ〉Q = −1

2
X〈Ã, Ã〉Q

= −1

2
Xf = −1

2
〈grad f, X〉Q

= −〈Q([A,A∗
Q]·, ·), X〉Q,

which implies that (∇ÃÃ)Q = −Q([A,A∗
Q]·, ·). Moreover, it follows from Claim 5.4

that

ÃQ · n =
d

dt
n ◦ φt(Q)

∣∣∣∣
t=0

=
d

dt
n(etA ·Q)

∣∣∣∣
t=0

=
d

dt
n(Q)

∣∣∣∣
t=0

= 0.

Consequently, it follows from Claim 5.3 (1) that

Hess n(ÃQ, ÃQ)

= ÃQ(Ã · n)−∇ÃQ
Ã · n

= −〈grad n,∇ÃQ
Ã〉Q

= −
〈
−RicQ−Q(DHQ

·, ·)− 1

2
BQ,−Q([A,A∗

Q]·, ·)
〉

=
n∑

i,j=1

(
−RicQ(ei, ej)−Q(DHQ

ei, ej)− 1

2
BQ(ei, ej)

)
Q([A,A∗

Q]ei, ej)

=
n∑

i=1

(
−RicQ(ei, [A,A∗

Q]ei)−Q(DHQ
ei, [A,A∗

Q]ei)− 1

2
BQ(ei, [A,A∗

Q]ei)

)
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= −
n∑

i=1

RicQ(ei, [A,A∗
Q]ei)− trQ DHQ

◦ [A,A∗
Q]− 1

2

∑
i

B([A,A∗
Q]ei, ei),

which proves Claim 5.5. ¤

Lemma 5.1. Let g be a solvable Lie algebra with an Einstein metric Q0, and H0 =

HQ0 ∈ g a vector defined by Q0(H0, X) = trQ0 ad X for any X ∈ g. Then, for any

derivation A, the following inequality holds:

tr ad A(H0) ◦ A∗ +
1

2

∑
i

B(A∗Aei, ei) ≤ 0, (1.3)

where {ei} is an orthonormal basis of g with respect to Q0, B denotes the Killing form

of g, and ∗ denotes the transpose with respect to Q0. In particular, the equality holds

if and only if A∗ is a derivation of g.

Proof. Since Q0 is an Einstein metric, the Ricci tensor RicQ0 relative to Q0 satisfies

RicQ0 = λQ0 for some constant λ. Hence we have

n∑
i=1

RicQ0(ei, [A,A∗
Q0

]ei) =
n∑

i=1

λQ0(ei, [A,A∗
Q0

]ei) = λ trQ0 [A,A∗
Q0

] = 0.

For a derivation A of g, let Ã denote the infinitesimal transformation of a 1-

parameter group φt(Q) = etA · Q for t ∈ R and Q ∈ P. Let SH0 denote the skew-

symmetric part of ad H0 with respect to Q0. Since AA∗
Q0

and A∗
Q0

A are symmetric

with respect to Q0, we have trQ0 SH0AA∗
Q0

= trQ0 SH0A
∗
Q0

A = 0. Hence we obtain

trQ0 DH0 ◦ [A,A∗
Q0

] = trQ0 ad H0 ◦ [A,A∗
Q0

]

= − trQ0 [A, ad H0] ◦ A∗
Q0

= − trQ0 ad A(H0) ◦ A∗
Q0

.

Since g is solvable, A(g) is a subalgebra of a maximal nilpotent ideal of g. Thus

B(AA∗
Q0

ei, ei) = 0 holds for all i, and hence we have

∑
i

B([A,A∗
Q0

]ei, ei) = −
∑

i

B(A∗
Q0

Aei, ei).

Consequently, it follows from Claim 5.5 that

Hess n(ÃQ0 , ÃQ0) = trQ0 ad A(H0) ◦ A∗
Q0

+
1

2

∑
i

B(A∗
Q0

Aei, ei).
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Recall that the function n is concave on P by Claim 5.3. Hence we have Hess n(ÃQ0 , ÃQ0)

≤ 0, that is,

trQ0 ad A(H0) ◦ A∗
Q0

+
1

2

∑
i

B(A∗
Q0

Aei, ei) ≤ 0.

Now, recalling that ÃQ = Q(−(A∗
Q + A)·, ·), let C be a symmetric endomorphism

defined by C = −(A∗
Q0

+ A) with respect to Q0. Setting Q0(t) = e−tC/2Q0, we have

Q′
0(0) = Q0(−(A∗

Q0
+ A)·, ·) = ÃQ0 . If Hess n(ÃQ0 , ÃQ0) = 0, then (n ◦ Q0)

′′(0) = 0.

Hence Claim 5.3 (3) shows that C = −(A∗
Q0

+ A) is a derivation of g. Since A is a

derivation, A∗
Q0

is also a derivation. ¤

A solvable Lie algebra g with an inner product Q is called unimodular if trQ ad X = 0

for all X ∈ g. Note that HQ = 0 if and only if g is unimodular.

Lemma 5.2. Let g be a solvable Lie algebra with Einstein metric Q0 on g. Then the

following are equivalent:

(1) g is unimodular.

(2) (g, Q0) is flat.

(3) (g, Q0) is Ricci flat.

(4) The orthogonal complement a of the derived algebra n = [g, g] is abelian, and

ad A is skew-symmetric with respect to Q0 for any A ∈ a.

Proof. (1) ⇒ (3) Since g is solvable, the orthogonal complement a of the derived

algebra [g, g] is not zero. Let A ∈ a, and let {e1, . . . , en} be an orthonormal basis of g

with respect to Q0 such that DAei = λiei for i = 1, . . . , n. Applying Claim 4.3 to A,

we have

RicQ0(A,A) = −1

2
BQ0(A,A)− 1

2
trQ0 ad A ◦ ad A∗ +

1

4

n∑
i,j=1

Q0([ei, ej], A)2

= −1

2
trQ0 ad A ◦ ad A− 1

2
trQ0 ad A ◦ ad A∗

= − trQ0 ad A ◦DA = −
n∑

i=1

Q0(ad A ◦DAei, ei)

= −
n∑

i=1

λiQ0(ad Aei, ei) = −
n∑

i=1

λiQ0(DAei, ei)
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= −
n∑

i=1

λ2
i ≤ 0.

On the other hand, it is proved by Miatello [8] that no unimodular solvable Lie algebra

admits inner product of strictly negative Ricci curvature. Hence, since Q0 is Einstein,

we have RicQ0 = 0, that is, (g, Q0) is Ricci flat.

(3)⇒ (4) It is proved by Jensen [5] that for a solvable Lie algebra with inner prod-

uct Q, its scalar curvature sc(Q) satisfies sc(Q) ≤ sc(Q) + Q(HQ, HQ) ≤ 0. Moreover,

if sc(Q) + Q(HQ, HQ) = 0, then g satisfies Condition (4).

Since Q0 is a Ricci flat Einstein metric, the scalar curvature of (g, Q0) vanishes,

that is, sc(Q0) = 0. Hence we also have sc(Q0) + Q(HQ0 , HQ0) = 0, which implies the

result.

(4) ⇒ (1) It follows from (3) that tr adA = 0 for A ∈ a. Moreover, it is easy to

see that tr ad Y = 0 for Y ∈ n = [g, g]. Hence we have tr ad X = 0 for all X ∈ g.

(4) ⇒ (2) It is not hard to see that ∇A = ad A for A ∈ a, and ∇X = 0 for

X ∈ n. A straightforward computation then yields that R(A,A′) = 0, R(A,X) = 0

and R(X,X ′) = 0 for any A,A′ ∈ a and X,X ′ ∈ n.

(2) ⇒ (3) is trivial. ¤

Claim 5.6. If g be a non-unimodular solvable Lie algebra with Einstein metric Q0,

then the Ricci curvature of (g, Q0) is strictly negative.

Proof. As stated above, it is proved by Jensen [5] that any solvable Lie algebra with

inner product has nonpositive scalar curvature. Since Q0 is an Einstein metric, its

scalar curvature sc(Q0) is zero or strictly negative. If sc(Q0) = 0, then (g, Q0) is

Ricci flat, and hence g is unimodular by Lemma 5.2, which is a contradiction. Hence,

sc(Q0) < 0, and the Ricci curvature of (g, Q0) is strictly negative. ¤

Let n = [g, g] be the derived algebra of g, and a be the orthogonal complement of

n with respect to Q. For any A ∈ a, we denote by DA and SA the symmetric and

skew-symmetric parts of ad A with respect to Q, respectively.

Lemma 5.3. Let g be a non-unimodular solvable Lie algebra with Einstein metric Q0,

a the orthogonal complement of the derived algebra n = [g, g], and H0 = HQ0 ∈ g the

vector defined by Q0(H0, X) = tr ad X for any X ∈ g. Assume that a is abelian. Then

the following holds:
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(1) For any A ∈ a, DA and SA are derivations of g. Moreover, {DA, SA | A ∈ a} is

abelian.

(2) DA 6= 0 for any A ∈ a, and the restriction DH0|n of DH0 to n is positive definite.

Proof. (1) Let {n(i)} be the lower central series of n defined by

n(1) = n ⊇ n(2) = [n, n(1)] ⊇ · · · ⊇ n(i+1) = [n, n(i)] ⊇ · · · ,

and ai be the orthogonal complement of n(i+1) in n(i) with respect to Q0. Since g is

solvable, n is nilpotent. Hence there exists r > 0 such that n(r) 6= {0} and n(r+1) = {0}.
Then g is decomposed into a direct sum g = a⊕ n = a⊕ a1 ⊕ · · · ⊕ ar. We set a0 = a,

and let {ei
p} be an orthonormal basis of ap with respect to Q0 for p = 0, 1, . . . , r.

Let A ∈ a, and consider the derivation adA of g. Recall that H0 is orthogonal to

n, that is, H0 ∈ a. Substituting ad A for A in the left hand side of (1.3), we have

tr ad(ad A(H0)) ◦ (ad A)∗ +
1

2

∑
i,p

B((ad A)∗ ad Aei
p, e

i
p)

=
1

2

∑
i,j,p,q

Q0

([
(ad A)∗([A, ei

p]), [e
i
p, e

j
q]
]
, ej

q

)
= 0.

Hence it follows from Lemma 5.1 that DA and SA are derivations of g.

Let k (resp. p) denote the space of skew-symmetric (resp. symmetric) derivations

of g with respect to Q0, and z(k ⊕ p) be the center of a Lie algebra k ⊕ p. Then it

follows from Claim 5.2 that DA, SA ∈ z(k ⊕ p), since ad A ∈ k ⊕ p. This implies that

{DA, SA | A ∈ a} is abelian, thereby proving (1).

(2) Since DA is a derivation of g for each A ∈ a, we define a new Lie bracket [ , ]+

on g by

[A,X]+ = DAX, [X,Y ]+ = [X,Y ] A ∈ a, X, Y ∈ n.

Then we have a new solvable Lie algebra g+ = (g, [ , ]+). Moreover, it is easy to see

that Q0 yields an Einstein metric on g+.

Let ad+ denote the adjoint representation of g+, and B+ the Killing form of g+.

Let H+
0 ∈ g+ be defined by Q0(H

+
0 , X) = tr ad+ X for any X ∈ g+. Then, for X ∈ g+,

we have

tr ad+ X =
∑

i

Q0[X, ei]
+, ei) =

∑
i

Q0([X, ei], ei) = tr ad X,

where {e1, . . . , en} is an orthonormal basis of g+ with respect to Q0. Hence we have

H+
0 = H0.
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Let {ei
p} be an orthonormal basis of g with respect to Q0 given in (1). Then, for

A ∈ a and X ∈ n, we obtain

B+(A + X,A + X)

= tr ad+(A + X) ◦ ad+(A + X)

= tr
(
ad+ A ◦ ad+ A + 2 ad+ X ◦ ad+ A + ad+ X ◦ ad+ X

)

=
∑
i,p

(
Q0(DADAei

p, e
i
p) + 2Q0([X,DAei

p]
+, ei

p) + Q0([X, [X, ei
p]

+]+, ei
p)

)

=
∑
i,p

Q0(DAei
p, DAei

p) ≥ 0,

which shows that B+ is positive definite.

Choose a unit vector X ∈ n such that ad+ H0(X) = αX. Since (ad+ X)∗ ◦ ad+ X is

symmetric with respect to Q0, there exists an orthonormal basis {ei} of g with respect

to Q0, satisfying (ad+ X)∗ ◦ ad+ X(ei) = µiei. We first note that µi ≥ 0 for all i.

Indeed, we have

µiQ0(ei, ei) = Q0

(
(ad+ X)∗ ◦ ad+ X(ei), ei

)
= Q0(ad+ X(ei), ad+ X(ei)) ≥ 0.

Then, substituting ad+ X for A in (1.3), the left side of (1.3) is given by

tr ad+(ad+ X(H0)) ◦ (ad+ X)∗ +
1

2

∑
i

B+((ad+ X)∗ ◦ ad+ Xei, ei)

=− α tr ad+ X ◦ (ad+ X)∗ +
1

2

∑
i

µiB
+(ei, ei)

=− α
∑

i

Q0(((ad+ X)∗ ◦ ad+ X)ei, ei) +
1

2

∑
i

µiB
+(ei, ei)

=− α
∑

i

µi +
1

2

∑
i

µiB
+(ei, ei).

Hence we have

−α
∑

i

µi ≤ −1

2

∑
i

µiB
+(ei, ei) ≤ 0,

which implies that α ≥ 0.

Assume that α = 0. Then from the above inequality we have
∑

µiB
+(ei, ei) = 0,

which implies that

tr ad+(ad+ X(H0)) ◦ (ad+ X)∗ +
1

2

∑
i

B+((ad+ X)∗ ◦ ad+ Xei, ei) = 0.
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Hence, by Lemma 5.1, the symmetric and the skew-symmetric parts of ad+ X are

commutative derivations of g. Since n is nilpotent, ad+ X|n, the restriction of ad+ X

to n, is also nilpotent. Hence ad+ X is nilpotent on g, since ad+ X(g) ⊂ n. Note that

(ad+ X)∗ is also nilpotent on g. Since (ad+ X)∗ ◦ ad+ X = ad+ X ◦ (ad+ X)∗ holds, the

symmetric and the skew-symmetric parts of ad+ X are both nilpotent on g. Hence the

symmetric part of ad+ X vanishes, so that ad+ X is a skew-symmetric derivation of g

with respect to Q0. Then the Ricci curvature Ric(X,X) in the direction X is given by

Ric(X,X) =−Q0(ad+(H0)X,X)− 1

2
B+(X,X)

− 1

2
tr ad+ X ◦ (ad+ X)∗ +

1

4

∑
i,j

Q0([ei, ej]
+, X)2

=− 1

2
tr ad+ X ◦ ad+ X +

1

2
tr ad+ X ◦ ad+ X +

1

4

∑
i,j

Q0([ei, ej]
+, X)2

=
1

4

∑
i,j

Q0([ei, ej]
+, X)2 ≥ 0.

This contradicts Claim 5.6. Therefore, we have α > 0, that is, the restriction DH0 |n of

DH0 to n is positive definite.

Assume that there exists A ∈ a such that DA = 0, that is, ad+ A = 0. The Ricci

curvature Ric(A,A) in the direction A is then given by

Ric(A,A) =−Q0(ad+(H0)A,A)− 1

2
B+(A,A)

− 1

2
tr ad+ A ◦ (ad+ A)∗ +

1

4

∑
i,j

Q0([ei, ej]
+, A)2

=− 1

2
tr ad+ A ◦ ad+ A = 0,

which contradicts Claim 5.6. Hence DA 6= 0 for any A ∈ a. ¤

6 Structure of homogeneous Kähler Einstein man-

ifolds with K ≤ 0

Let M = (M,J, g) be a connected, simply connected homogeneous Kähler manifold

with nonpositive sectional curvature K ≤ 0. Recall that M is identified with a simply

connected solvable Lie group G with a left invariant complex structure J and a left
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invariant Kähler metric 〈 , 〉 on G (cf. Theorem 3.1 of §3). By Lemma 3.1, the Lie

algebra g of G admits an endomorphism J and an inner product 〈 , 〉 on g satisfying

Conditions (K1)–(K4). Also, the Levi-Civita connection ∇, the curvature tensor R

and the sectional curvature K of g are defined in the natural way.

Let n = [g, g] be the derived algebra of g, and a the orthogonal complement of n

with respect to 〈 , 〉. For any A ∈ a, we denote by DA and SA the symmetric and the

skew-symmetric parts of ad A : g → n, respectively.

From now on we assume that 〈 , 〉 is an Einstein metric. Since the sectional

curvature of (g, 〈 , 〉) is nonpositive, the Ricci curvature of (g, 〈 , 〉) is either strictly

negative or zero. We have already seen in Lemma 5.2 that if (g, 〈 , 〉) is Ricci flat, then

(g, 〈 , 〉) is flat. Suppose that (g, 〈 , 〉) is not Ricci flat. In order to describe basic

properties of (g, J, 〈 , 〉) in the language of Lie algebra, we first prove

Proposition 6.1. Let g be a solvable Lie algebra with an endomorphism J and an

Einstein metric 〈 , 〉 satisfying Conditions (K1)–(K4). Suppose that (g, 〈 , 〉) has

nonpositive sectional curvature and is not Ricci flat. Then the following hold:

(a) There exists an orthogonal basis {Ha}a∈Λ of a with respect to 〈 , 〉 such that

[Ha, JHa] = λaJHa for some λa > 0,

[Hb, JHa] = 0 if a 6= b.

Moreover, setting H =
∑

a∈Λ Ha, we have 〈H, X〉 = tr ad X for any X ∈ g.

(b) Define a linear function λa : a → R by λa(Hb) = δabλa for any b ∈ Λ. Let n±b
a

and n0
a be the subspaces of n defined by

n±b
a =

{
X ∈ n

∣∣∣∣ DAX =
1

2
(λa(A)± λb(A)) X for any A ∈ a

}
,

n0
a =

{
X ∈ n

∣∣∣∣ DAX =
1

2
λa(A)X for any A ∈ a

}
,

where λb(H) < λa(H), and set

na =
⊕

λb(H)<λa(H)

(
n+b

a ⊕ n−b
a

)⊕ n0
a.

Then g is decomposed into a direct sum g =
⊕

aR{Ha} ⊕ na ⊕ R{JHa} which

satisfies the following:
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(i) Jn±b
a = n∓b

a .

(ii) [X,Y ] =
λa(Ha)

|Ha|2 〈JX, Y 〉JHa for X,Y ∈ na.

(iii) [JHb, X] = −λb(Hb)JX for X ∈ n−b
a .

(iv) [Y, X] = −J [JY, X], |[Y, X]|2 =
λb(Hb)

2

2|Hb|2 |Y |2 |X|2 for X ∈ n−b
a , Y ∈ nb.

(v) [Y, X] = [JY, JX], |[Y, X]|2 =
λb(Hb)

2

2|Hb|2 |Y |2 |X|2 for X ∈ n∓c
a , Y ∈ n±c

b .

(vi) [Y, X] = [JY, JX], |[Y, X]| = |[Y, JX]| for X ∈ n0
a, Y ∈ n0

b .

(vii) Set Λc = {a ∈ Λ | n±c
a 6= {0}} ∪ {c} for c ∈ Λ, and let a, b ∈ Λc. If a 6= b,

then λa(H) 6= λb(H). Moreover, if λa(H) > λb(H), then n±b
a 6= {0}.

Proof. (a) Let n = [g, g] be the derived algebra of g, and a the orthogonal complement

of n with respect to 〈 , 〉. Then it is known by Azencott and Wilson [1] that a is

abelian, since g has nonpositive sectional curvature K ≤ 0.

Since (g, 〈 , 〉) is not Ricci flat, g is non-unimodular by Lemma 5.2. Hence there

exists a non-zero vector H ∈ g such that 〈H, X〉 = tr ad X for all X ∈ g. We have

already seen in §4 that H is orthogonal to n, and hence H ∈ a.

Moreover, by Lemma 5.3, {DA, SA | A ∈ a} is a commuting family of derivations

of g that annihilate a. Also, DA 6= 0 for any A ∈ a, and DH is positive definite on n.

Claim 6.1. (1) SAJ − JSA = 0 for any A ∈ a.

(2) SAJa = {0} for any A ∈ a.

(3) DBJA−DAJB = 0 for any A,B ∈ a.

(4) [JA, JB] = 0 for any A,B ∈ a.

Proof. (1) It follows from Conditions (K3) and (K4) with X,Y ∈ g and A ∈ a that

0 = 〈[JX, JY ]− J [JX, Y ]− J [X, JY ]− [X,Y ], JA〉
= −〈[JY, A], J2X〉 − 〈[A, JX], J2Y 〉+ 〈[Y, A], JX〉+ 〈[A,X], JY 〉
= −〈ad AJY, X〉+ 〈ad AJX, Y 〉 − 〈ad AY, JX〉+ 〈ad AX, JY 〉
= 〈Y, J(ad A)∗X〉+ 〈ad AJX, Y 〉 − 〈Y, (ad A)∗JX〉 − 〈J ad AX, Y 〉
= 2〈(SAJ − JSA)X,Y 〉.
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Since X and Y are arbitrary in g, we have SAJ − JSA = 0.

(2) Let A,B ∈ a. Then as stated above, we have SAB = 0. Hence, setting X = B

in (1), we obtain SAJB = JSAB = 0. This proves (2).

(3) Let A,B ∈ a, and X ∈ g. By Condition (K3) together with (2), we have

0 = 〈[A,B], JX〉+ 〈[B, X], JA〉+ 〈[X,A], JB〉
= 〈(DB + SB)X, JA〉 − 〈(DA + SA)X, JB〉
= 〈X, (DB − SB)JA〉 − 〈X, (DA − SA)JB〉
= 〈X,DBJA−DAJB〉,

implying that DBJA−DAJB = 0.

(4) For any A,B ∈ a, it follows from Condition (K4) together with (2) and (3) that

0 = [JA, JB]− J [JA, B]− J [A, JB]− [A,B]

= [JA, JB] + J(DBJA + SBJA)− J(DAJB + SAJB)

= [JA, JB] + J(DBJA−DAJB)

= [JA, JB].

¤

Let {n(i)} be the lower central series of n defined by

n(1) = n ⊇ n(2) = [n, n(1)] ⊇ · · · ⊇ n(i+1) = [n, n(i)] ⊇ · · · .

Note that n is nilpotent, since g is solvable. Hence there exists r > 0 such that

n(r) 6= {0} and n(r+1) = {0}.
Claim 6.2. Jn(r) ⊂ a.

Proof. We first note that a derivation DH of n leaves n(r) invariant. Let λr,1, . . . , λr,s

be the eigenvalues of DH |n(r) and n
(r)
i be the eigenspace associated with λr,i for each

i = 1, . . . , s. Then g can be decomposed into a direct sum n(r) = n
(r)
1 ⊕· · ·⊕n

(r)
s , where

n
(r)
i is orthogonal to n

(r)
j for i 6= j.

For each i, let Z ∈ n
(r)
i be an arbitrary vector in n

(r)
i , and let X ∈ n be any vector

in n. It follows from Condition (K3) together with (1) of Claim 6.1 with X,Z and H

that

0 = 〈[X,Z], JH〉+ 〈[Z, H], JX〉+ 〈[H, X], JZ〉
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= −〈λr,iZ + SHZ, JX〉+ 〈(DH + SH)X, JZ〉
= 〈λr,iJZ + JSHZ + DHJZ − SHJZ, X〉
= 〈(λr,i id +DH)JZ,X〉,

where id denotes the identity map of g.

As already remarked, DH is positive definite on n. Hence (λr,i id +DH)|n is non-

degenerate. This implies that JZ is orthogonal to n, so that Jn
(r)
i ⊂ a. Since i is

arbitrary, we have Jn(r) ⊂ a. ¤

Claim 6.3. If r = 1, then g is decomposed into a direct sum

g = R{H1} ⊕ · · · ⊕ R{Hs} ⊕ R{JH1} ⊕ · · · ⊕ R{JHs}

satisfying (a) of Proposition 6.1.

Proof. Claim 6.2 shows that a contains Jn. If there exists some A0 ∈ a which is

perpendicular to Jn, then by (3) of Claim 6.1 we have

DA0JB = DBJA0 = 0 for all B ∈ Jn,

implying that DA0 = 0. This contradicts that DA is nonvanishing for all A ∈ a. Hence

we have Jn = a.

Since {DA |A ∈ a} is a commutative family of derivations on n, there exist linear

functions λ1, . . . , λs : a → R satisfying

ni = {X ∈ n |DAX = λi(A)X for all A ∈ a} 6= {0}.

Then we have a direct sum decomposition n = n1 ⊕ · · · ⊕ ns of n. Note that for i 6= j,

ni and nj are perpendicular to each other with respect to 〈 , 〉. Since {DA |A ∈ a} is

commutative, DA leaves ni invariant for all A ∈ a and i = 1, . . . , s.

Setting ai = Jni, we get a direct sum decomposition a = a1 ⊕ . . . ⊕ as of a.

Accordingly, we write H = H1 + · · ·+ Hs, where Hi ∈ ai for i = 1, . . . , s.

We shall show that if i 6= j, then DAi
aj = 0 for any Ai ∈ ai. Let Ai ∈ ai and

Bj ∈ aj, respectively. By (3) of Claim 6.1 we have

DAi
JBj = DBj

JAi = 0,
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proving the assertion. In particular, substituting Hj for Bj in the above equation, we

obtain that DHj
JAi = λi(Hj)JAi = 0, and hence λi(Hj) = 0 for i 6= j. This implies

that

λi(H) = λi(H1 + · · ·+ Hs) = λi(Hi) > 0,

since DH is positive definite.

Finally, to prove that dim ni = 1 for each i = 1, . . . , s, let Ai be an arbitrary vector

in ai. Applying (3) of Claim 6.1 to Ai and Hi, we see that

λi(Ai)JHi = DAi
JHi = DHi

JAi = λi(Hi)JAi,

which implies that JAi ∈ R{JHi}. Hence we obtain ni = R{JHi}. ¤

Claim 6.3 proves Proposition 6.1 in the case where r = 1. Hence, from now on, we

assume that r ≥ 2.

Let a(r) denote Jn(r), and let ar be the orthogonal complement of a(r) in a, so that

a is decomposed into a direct sum a = a(r) ⊕ ar. Then H ∈ a can be uniquely written

as H = H(r) + Hr, where H(r) ∈ a(r) and Hr ∈ ar.

Let nr be the orthogonal complement of n(r) in n, that is, n = nr ⊕ n(r). Since DA

is a derivation of n, it leaves n(r) invariant for all A ∈ a, and hence also nr. Let A(r)

and Ar be arbitrary vectors in a(r) and ar, respectively. Since JAr ∈ ar ⊕ nr by the

definition of ar and nr, we get DA(r)JAr ∈ nr. Similarly, we have DArJA(r) ∈ n(r).

Hence, setting A = A(r) and B = Ar in (3) of Claim 6.1, we obtain

DA(r)JAr = DArJA(r) = 0. (1.4)

For any linear function λ : a(r) → R, we define the subspace (nr)λ of nr by

(nr)λ =

{
X ∈ nr

∣∣∣∣ DA(r)X =
1

2
λ

(
A(r)

)
X for all A(r) ∈ a(r)

}
.

Since {DA |A ∈ a} is abelian, there exists a linear functional λ : a(r) → R such that

(nr)λ 6= {0}. Let λr,0 = 0, λr,1, . . . , λr,s be linear functions such that (nr)λr,i
6= {0} for

i = 0, . . . , s, and let nr,i denote the subspace (nr)λr,i
for each i = 0, 1, . . . , s. Then we

have a direct sum decomposition of nr as

nr = nr,0 ⊕ nr,1 ⊕ · · · ⊕ nr,s.
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It is clear that nr,0, . . . , nr,s are mutually orthogonal with respect to 〈 , 〉. We remark

that DA and SA leave nr,i invariant for i = 0, . . . , s, since {DA, SA |A ∈ a} is abelian.

Moreover, by Equation (1.4) we have Jar ⊂ ar ⊕ nr,0.

Claim 6.4. (1) Jnr,i = nr,i for any i = 1, . . . , s.

(2) [nr,0, nr,k] ⊂ nr,k for any k = 0, 1, . . . , s.

(3) λr,i(H
(r)) > 0 for any i = 1, . . . , s.

(4) [nr,i, nr,i] ⊂ n(r) for any i = 1, . . . , s.

(5) [nr,i, nr,j] = {0} for any 1 ≤ i < j ≤ s.

Proof. (1) For a fixed 1 ≤ i ≤ s, let X ∈ nr,i and A(r) ∈ a(r). By making use of

Condition (K4) for A(r) and JX, and applying (1) of Claim 6.1, we obtain

0 = [JA(r), J2X]− J [JA(r), JX]− J [A(r), J2X]− [A(r), JX]

= J

(
1

2
λr,i(A

(r))X + SA(r)X

)
−DA(r)JX − SA(r)JX

=
1

2
λr,i(A

(r))JX −DA(r)JX,

which implies that JX ∈ nr,i. Hence we have Jnr,i ⊂ nr,i. Since J is non-degenerate,

we obtain Jnr,i = nr,i.

(2) We first show that [nr,0, nr,k] is perpendicular to n(r). For each k = 0, 1, . . . , s,

let Xk ∈ nr,k. Also, let Y ∈ nr,0 and A(r) ∈ a(r). It follows from Condition (K3) and

(1) of Claim 6.1 with Xk, Y and A(r) that

〈[Y, Xk], JA(r)〉 = −〈[Xk, A
(r)], JY 〉 − 〈[A(r), Y ], JXk〉

=

〈
1

2
λrk

(A(r))Xk + SA(r)Xk, JY

〉
− 〈SA(r)Y, JXk〉

=
1

2
λr,k(A

(r))〈JY,Xk〉 − 〈(SA(r)J − JSA(r))Y, Xk〉

= −1

2
λr,k(A

(r))〈Y, JXk〉.

When k ≥ 1, (1) yields 〈Y, JXk〉 = 0, and hence we have 〈[Y, Xk], JA(r)〉 = 0. If k = 0,

then we have λr,0(A
(r)) = 0, which implies that 〈[Y, X0], JA(r)〉 = 0. As a consequence,

for all k = 0, 1, . . . , s, we obtain 〈[Y, Xk], JA(r)〉 = 0. This proves the assertion that

[nr,0, nr,k] is perpendicular to n(r).
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To show that [nr,0, nr,k] ⊂ nr,k, it suffices to see that

DA(r) [Y, Xk] = [DA(r)Y, Xk] + [Y, DA(r)Xk] =
1

2
λr,i(A

(r))[Y, Xk],

where Xk ∈ nr,k, Y ∈ nr,0 and A(r) ∈ a(r).

(3) Let Xi ∈ nr,i. By (1), we have

DA(r) [X, JX] = λr,i(A
(r))[X, JX] for any A(r) ∈ a(r),

and hence [X, JX] is perpendicular to nr,0. It then follows that 〈[X, JX], JHr〉 = 0,

that is,

〈[X, JX], JH〉 = 〈[X, JX], JH(r)〉.

By making use of Condition (K3) with X, JX and H, we have

〈[X, JX], JH〉 = −〈[JX, H], JX〉 − 〈[H, X], J2X〉
= 〈DHJX, JX〉+ 〈DHX,X〉 > 0.

(1.5)

Again, by Condition (K3) for X, JX and H, we have

〈[X, JX], JH(r)〉 = 〈DH(r)JX, JX〉+ 〈DH(r)X,X〉 = λr,i(H
(r))〈X,X〉. (1.6)

Combining (1.5) and (1.6), we obtain λr,i(H
(r))〈X,X〉 > 0, that is, λr,i(H

(r)) > 0.

(5) We first prove that [nr,i, nr,j] is perpendicular to nr,0 for any i, j = 1, . . . , s. Let

X ∈ nr,i and Y ∈ nr,j, respectively. Then we have

DA(r) [X,Y ] =
1

2

(
λr,i(A

(r)) + λr,j(A
(r))

)
[X,Y ] for all A(r) ∈ a(r).

In particular, if A(r) = H(r), then we have λr,i(H
(r)) + λr,j(H

(r)) > 0 by (3). This

proves that [nr,i, nr,j] is perpendicular to nr,0.

In order to prove that [nr,i, nr,j] ⊂ n(r) for i, j = 1, . . . , s, let X ∈ nr,i and Y ∈ nr,j,

respectively. For k = 1, . . . , s, let W ∈ nr,k. Applying Condition (K3) to these X,Y,W ,

we have

〈[X,Y ], JW 〉 = −〈[Y, W ], JX〉 − 〈[W,X], JY 〉.
Assume that there exists some W ∈ nr,k such that 〈[X,Y ], JW 〉 6= 0. Then it follows

from the above equation that either of the following holds:
{

λr,i + λr,j = λr,k

λr,j + λr,k = λr,i

or

{
λr,i + λr,j = λr,k

λr,k + λr,i = λr,j.
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Solving the first equations, we have λr,i = 0, which contradicts i = 1, . . . , s. Similarly,

the second equations imply that λr,j = 0, contradicting j = 1, . . . , s. Hence [X,Y ] is

orthogonal to nr,k for all k = 1, . . . , s, which implies that [nr,i, nr,j] ⊂ n(r) for i, j =

1, . . . , s.

Finally, to prove [nr,i, nr,j] = {0} for 1 ≤ i < j ≤ s, let X ∈ nr,i and Y ∈ nr,j,

respectively. Let A(r) be an arbitrary vector in a(r). Using Condition (K3) with these

X,Y and A(r), and applying (1) and (1) of Claim 6.1, we obtain

〈[X,Y ], JA(r)〉 = −〈[Y, A(r)], JX〉 − 〈[A(r), X], JY 〉

=

〈
1

2
λr,j(A

(r))Y + SA(r)Y, JX

〉
−

〈
1

2
λr,i(A

(r))X + SA(r)X, JY

〉

=
1

2

(
λr,i(A

(r)) + λr,j(A
(r))

) 〈JX, Y 〉 − 〈(SA(r)J − JSA(r))X,Y 〉
= 0,

which shows that [nr,i, nr,j] is perpendicular to n(r). It follows from these assertions

that [nr,i, nr,j] = {0} for 1 ≤ i < j ≤ s.

(4) In proving (5), we have [nr,i, nr,i] ⊂ n(r) for any i = 1 . . . s. Moreover, Equation

(1.6) in the proof of (3) yields [nr,i, nr,i] 6= {0}. Hence the assertion follows. ¤

Now, we note that it follows from Claim 6.4 that

n(2) = [n, n]

= [nr,0 ⊕ nr,1 ⊕ · · · ⊕ nr,s ⊕ n(r), nr,0 ⊕ nr,1 ⊕ · · · ⊕ nr,s ⊕ n(r)]

=
s∑

k=0

[nr0 , nr,k] +
s∑

i=1

[nr,i, nr,i],

and
s∑

k=0

[nr0 , nr,k] ⊆ nr,
s∑

i=1

[nr,i, nr,i] ⊆ n(r).

From the lower central series we have n(2) ⊇ n(r), so that

s∑
i=1

[nr,i, nr,i] ⊇ n(r),

which implies
s∑

i=1

[nr,i, nr,i] = n(r).
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For each i, let zi denote the subspace [nr,i, nr,i] of n(r). Note that the restriction

DA(r) |zi
of DA(r) to zi is given by DA(r) |zi

= λr,i(A
(r)) id for any A(r) ∈ a(r) and i =

1, . . . , s. Hence we have the decomposition n(r) = z1 ⊕ · · · ⊕ zs of n(r) into a direct

sum. Moreover, it is clear that zi and zj are perpendicular to each other with respect

to 〈 , 〉 for i 6= j. By the definition of a(r), it is automatically decomposed into a

direct sum a(r) = Jz1 ⊕ . . . ⊕ Jzs. Hence H(r) ∈ a(r) can be uniquely written as

H(r) = Hr,1 + · · ·+ Hr,s, where Hr,i ∈ Jzi for each i = 1, . . . s.

Claim 6.5. λr,i(Hr,j) = δijλr,i(H
(r)).

Proof. Let X ∈ n
(r)
i . It follows from Condition (K3) with X, JX and Hr,j that

〈[X, JX], JHr,j〉 = −〈[JX, Hr,j], JX〉 − 〈[Hr,j, X], J2X〉
= 〈DHr,j

JX, JX〉+ 〈DHr,j
X,X〉

= λr,i(Hr,j)〈X,X〉.

If i 6= j, [X, JX] is orthogonal to JHr,j, that is, 〈[X, JX], JHr,j〉 = 0, which implies

that λr,i(Hr,j) = 0 for i 6= j. Hence we have λr,i(H
(r)) = λr,i(Hr,1) + · · · + λr,i(Hr,s) =

λr,i(Hr,i). ¤

As a consequence of Claim 6.5 together with (3) of Claim 6.4, we have λr,i(Hr,i) > 0.

Claim 6.6. [X,Y ] = 〈JX, Y 〉λr,i(Hr,i)

|Hr,i|2 JHr,i for any X,Y ∈ nr,i.

Proof. In the same way as we proved Claim 6.3, we conclude that dim zi = 1 for each

i = 1, . . . , s. Hence we have zi = R{JHr,i}.
On the other hand, using Condition (K3) and applying (1) of Claim 6.1 as well as

(1) of Claim 6.4, we have for any X,Y ∈ nr,i

[X,Y ] =
1

|Hr,i|2 〈[X,Y ], JHr,i〉JHr,i

=
1

|Hr,i|2 (−〈[Y, Hr,i], JX〉 − 〈[Hr,i, X], JY 〉) JHr,i

=
1

|Hr,i|2
(〈(DHr,i

+ SHr,i
)Y, JX〉 − 〈(DHr,i

+ SHr,i
)X, JY 〉) JHr,i

=
1

|Hr,i|2
(
λr,i(Hr,i)〈Y, JX〉 − 〈(SHr,i

J − JSHr,i
)X,Y 〉) JHr,i
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=
λr,i(Hr,i)

|Hr,i|2 〈Y, JX〉JHr,i.

¤

As already shown before Claim 6.4, DAr leaves nr,i invariant for any Ar ∈ ar

and i = 1, . . . , s. Since {DAr |Ar ∈ ar} is commutative, there exist linear functions

µ1
r,i, . . . , µ

tr,i

r,i : ar → R such that

np
r,i =

{
X ∈ nr,i | DArX = µp

r,i(Ar)X for all Ar ∈ ar

} 6= {0}

for each p = 1, . . . , tr,i. Hence we have a decomposition nr,i = n1
r,i ⊕ · · · ⊕ n

tr,i

r,i of nr,i

into a direct sum. Moreover, n1
r,i, . . . , nr,i are mutually orthogonal with respect to 〈 , 〉.

Claim 6.7. For any p ∈ {1, . . . , tr,i}, there exists a unique q ∈ {1, . . . , tr,i} satisfying

µp
r,i + µq

r,i = 0, and Jnp
r,i = nq

r,i.

Proof. Let X ∈ np
r,i and Ar ∈ ar. Since JX belongs to nr,i (cf. (1) of Claim 6.4), there

exists q ∈ {1, . . . , tr,i} such that 〈JX, Y 〉 6= 0 for some Y ∈ nq
r,i. It follows from (4)

of Claim 6.4 that [X,Y ] is perpendicular to JAr. Then, applying Condition (K3) to

X,Y and Ar and using (1) of Claim 6.1, we have

0 = 〈[X,Y ], JAr〉+ 〈[Y, Ar], JX〉+ 〈[Ar, X], JY 〉
= −〈µq

r,i(Ar)Y + SArY, JX〉+ 〈µp
r,i(Ar)X + SArX, JY 〉

= − (
µp

r,i(Ar) + µq
r,i(Ar)

) 〈JX, Y 〉,

which implies that µp
r,i(Ar)+µq

r,i(Ar) = 0. Since Ar is arbitrary, we have µp
r,i +µq

r,i = 0,

which also shows that q is uniquely determined.

Now we prove that if µp
r,i + µq

r,i = 0, then Jnp
r,i = nq

r,i. To this end, let X ∈
np

r,i, and Y ′ ∈ nq′
r,i for q′ 6= q. Since µp

r,i + µq′
r,i 6= 0, there exists Ar ∈ ar such that

µp
r,i(Ar) + µq′

r,i(Ar) 6= 0. By Condition (K3) with these X,Y ′ and Ar, and using (1) of

Claim 6.1 together with (4) of Claim 6.4, we have

0 = 〈[X,Y ′], JAr〉+ 〈[Y ′, Ar], JX〉+ 〈[Ar, X], JY ′〉
= 〈µq′

r,i(Ar)Y
′ + SArY

′, JX〉 − 〈µp
r,i(Ar)X + SArX, JY ′〉

=
(
µp

r,i(Ar) + µq′
r,i(Ar)

)
〈JX, Y ′〉,
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which implies that 〈JX, Y ′〉 = 0, and hence Jnp
r,i is perpendicular to nq′

r,i. It follows

from the choice of q′ that Jnp
r,i ⊆ nq

r,i. Interchanging p and q, we also obtain Jnq
r,i ⊆ np

r,i.

Consequently, Jnp
r,i = nq

r,i. ¤

For each i = 1, . . . , s, we extend λr,i to a linear function on a by setting

λr,i(A) =

{
λr,i(A) if A ∈ a(r),

0 if A ∈ ar.

Similarly, we extend µp
r,i to a linear function on a by setting

µp
r,i(A) =

{
0 if A ∈ a(r),

µp
r,i(A) if A ∈ ar

for any p = 1, . . . , tr,i and i = 1, . . . , s. Then the subspace np
r,i can be expressed as

np
r,i = {X ∈ n | DAX = ((1/2) λr,i + µp

r,i)(A)X for all A ∈ a}.

In what follows, we call ((1/2) λr,i + µp
r,i) a root of a in n, and call np

r,i the root space

associated with a root ((1/2) λr,i + µp
r,i) for each i = 1, . . . , s and p = 1, . . . , tr,i. Note

that it follows from Claims 6.6, 6.1 that [A, JHr,i] = λr,i(A)JHr,i for A ∈ a.

We next consider ar⊕nr,0. Obviously, ar is abelian, and nr,0 is nilpotent. Also, it is

easy to see that the restriction DHr |nr,0 of DHr to nr,0 is positive definite and ar ⊕ nr,0

is invariant by J . Then we can repeat the above argument with a ⊕ n replaced by

ar ⊕ nr,0. In consequence, we obtain a decomposition

ar ⊕ nr,0 = ar2 ⊕ nr2,0 ⊕
s2⊕

i=1

(
R{Hr2,i} ⊕ n1

r2,i ⊕ · · · ⊕ n
tr2,i

r2,i ⊕ R{JHr2,i}
)

of ar ⊕ nr,0 into a direct sum.

For each Hr2,i, there exists a linear function λr2,i : ar → R satisfying [A, JHr2,i] =

λr2,i(A)JHr2,i for any A ∈ ar. Moreover, for each np
r2,i, there exists a linear function

µp
r2,i : ar → R such that ((1/2) λr2,i + µp

r2,i) is a root of ar in nr,0. Then np
r2,i can be

expressed as

np
r2,i = {X ∈ nr,0 | DAX = ((1/2) λr2,i + µp

r2,i)(A)X for all Ar ∈ ar}.

Now we extend λr2,i to a linear function on a by setting

λr2,i(A) =

{
λr2,i(A) if A ∈ ar,

0 otherwise.
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Similarly, we extend µp
r2,i to a linear function on a by setting

µp
r2,i(A) =

{
µp

r2,i(A) if A ∈ ar,

0 otherwise

for any p = 1, . . . , tr,i and i = 1, . . . , s. Then the subspace np
r2,i can be expressed as

np
r2,i = {X ∈ n | DAX = ((1/2) λr2,i + µp

r2,i)(A)X for all A ∈ a}.

As a consequence, setting r1 = r, we obtain a direct sum decomposition of g as

g = ar2 ⊕ nr2,0 ⊕
2⊕

α=1

sα⊕
i=1

(
R{Hrα,i} ⊕ n1

rα,i ⊕ · · · ⊕ n
trα,i

rα,i ⊕ R{JHrα,i}
)

,

where np
rα,i is given by

np
rα,i = {X ∈ n | DAX = ((1/2) λrα,i + µp

rα,i)(A)X for all A ∈ a}

for any p = 1, . . . , tr,i, i = 1, . . . , s and α = 1, 2. Again, we call ((1/2) λrα,i + µp
rα,i) is a

root of a in n for any p = 1, . . . , tr,i, i = 1, . . . , s and α = 1, 2.

Iterating the same argument, we finally obtain the direct sum decomposition of g

as

g = arm ⊕
m⊕

α=1

sα⊕
i=1

(
R{Hrα,i} ⊕ n1

rα,i ⊕ · · · ⊕ n
trα,i

rα,i ⊕ R{JHrα,i}
)

.

Note that for each Hrα,i, there exists a linear function λrα,i : a → R satisfying [A, JHrα,i] =

λrα,i(A)JHrα,i for any A ∈ a. Moreover, for any np
rα,i, there exists linear function

µp
rα,i : a → R such that ((1/2) λrα,i +µp

rα,i) is a root of a in n. Also, np
rα,i can be written

as

np
rα,i = {X ∈ n | DAX = ((1/2) λrα,i + µp

rα,i)(A)X for all A ∈ a}.
Obviously, we have Jarm = arm . To prove arm = {0}, let A ∈ arm and X ∈ np

rα,i

for any α, i and p. Applying Condition (K4) to A and X together with Claim 6.1 and

Claim 6.7, we obtain

0 = 〈[JA, JX]− J [JA, X]− J [A, JX]− [A,X], X〉
= 〈−µp

rα,i(JA)JX + SJAJX − J(µp
rα,i(JA)X + SJAX)

− J(−µp
rα,i(A)JX + SAJX)− µp

rα,i(A)X − SAX,X〉
=

〈−2µp
rα,i(JA)JX − 2µp

rα,i(A)X,X
〉
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= −2µp
rα,i(A)〈X,X〉,

which implies µp
rα,i(A) = 0. Since rα, i, p are arbitrary, we have DA = 0. This contra-

dicts that DA 6= 0 for all A ∈ a, and hence we have arm = {0}, completing the proof of

(a).

We now prove the first assertion of (b). Let nrα,i = n1
rα,i ⊕ · · · ⊕ n

trα,i

rα,i . Recall that

Claim 6.3 asserts that if rα = 1, then n1,i = {0} for any i. Moreover, it follows from

Claim 6.4 and Claim 6.6 that if rα = 2, then [JH1,j, n2,i] = 0 for any i, j. Hence we

may assume rα ≥ 3, and consider nrα,i.

Claim 6.8. For rα ≥ 3, there exists some rβ < rα and j ∈ {1, . . . , sβ} such that the

restriction DHrβ,j
|nrα,i

of DHrβ,j
does not vanish identically.

Proof. We fix rα ≥ 3 and i ∈ {1, . . . , sα}. Assume that DHrβ,j
|nrα,i

= 0 for all rβ < rα

and j = 1, . . . sβ. We first prove that for any rβ < rα and j = 1, . . . , sβ

[nrβ ,j, nrα,i] = {0}, and [JHrβ ,j, nrα,i] = {0}. (1.7)

Indeed, let X ∈ nrα,i, and Y ∈ nrβ ,j for rβ < rα. Since DHrβ,j
is a derivation of n, we

have

DHrβ,j
[Y, X] =

1

2
λrβ ,j(Hrβ ,j)[Y, X],

DHrβ,j
[JHrβ ,j, X] = λrβ ,j(Hrβ ,j)[JHrβ ,j, X].

Since λrβ ,j(Hrβ ,j) > 0, these equations show that [Y, X] and [JHrβ ,j, X] are perpendic-

ular to nrα,i. On the other hand, it follows from Claim 6.4 that nrα,i contains [Y, X]

and [JHrβ ,j, X]. Consequently, we have [Y, X] = 0 and [JHrβ ,j, X] = 0, which implies

that [nrβ ,j, nrα,i] = {0} and [JHrβ ,j, nrα,i] = {0} for any j = 1, . . . , sβ.

We now define subspaces bα and crα,i of n respectively by

bα =
⊕

rβ<rα

sβ⊕
j=1

(
nrβ ,j ⊕ R{JHrβ ,j}

)
, crα,i = bα ⊕ nrα,i ⊕ R{JHrα,i}.

The lower central series of crα,i, is then given by

c
(1)
rα,i = crα,i ⊇ c

(2)
rα,i = [crα,i, c

(1)
rα,i] ⊇ · · · ⊇ c

(k+1)
rα,i = [crα,i, c

(k)
rα,i] ⊇ · · · .

By a direct calculation using (1.7), we have c
(3)
rα,i = [bα, [bα, bα]] ⊆ bα. On the other

hand, by the definition of JHrα,i, c
(rα)
rα,i = R{JHrα,i} must hold. Since we assume that
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rα ≥ 3, the lower central series yields c
(3)
rα,i ⊇ c

(r)
rα,i, which implies that bα ⊇ R{JHrα,i}.

This contradicts that bα is orthogonal to R{JHrα,i}. Therefore, there exist some rβ <

rα and j such that DHrβ,j
|nrα,i

6= 0. ¤

Note that if DHrβ,j
|nrα,i

6= 0 for some rβ < rα and j ∈ {1, . . . , sβ}, then there exists

p ∈ {1, . . . , trα,i} such that µp
rα,i(Hrβ ,j) 6= 0.

Claim 6.9. If there exists rβ(< rα) and j ∈ {1, . . . , sβ} such that µp
rα,i(Hrβ ,j) 6= 0,

then µp
rα,i is given by µp

rα,i = ±(1/2)λrβ ,j.

Proof. Let X ∈ np
rα,i. Applying Condition (K4) to Hrβ ,j and X, and combining Claims

6.1 and 6.7, we have

0 = [JHrβ ,j, JX]− J [JHrβ ,j, X]− J [Hrβ ,j, JX]− [Hrβ ,j, X]

= [JHrβ ,j, JX]− J [JHrβ ,j, X]

− J
(
−µp

rα,i(Hrβ ,j)JX + SHrβ,j
JX

)
−

(
µp

rα,i(Hrβ ,j)X + SHrβ,j
X

)

= [JHrβ ,j, JX]− J [JHrβ ,j, X]− 2µp
rα,i(Hrβ ,j)X.

(1.8)

We now look at the eigenvalues of DHrγ,k
associated with [JHrβ ,j, JX], J [JHrβ ,j, X]

and X for rγ < rα and k = 1, . . . , sγ. Then we obtain

DHrβ,j
DHrγ,k

[JHrβ ,j, JX] λrβ ,j(Hrβ ,j)− µp
rα,i(Hrβ ,j) −µp

rα,i(Hrγ ,k)

J [JHrβ ,j, X] −λrβ ,j(Hrβ ,j)− µp
rα,i(Hrβ ,j) −µp

rα,i(Hrγ ,k)

X µp
rα,i(Hrβ ,j) µp

rα,i(Hrγ ,k)

(1.9)

where (rγ, k) 6= (rβ, j).

If [JHrβ ,j, JX] and J [JHrβ ,j, X] belong to the same eigenspace of DHrβ,j
, then it

follows from (1.9) that λrβ ,j(Hrβ ,j) = 0, which contradicts λrβ ,j(Hrβ ,j) > 0. Hence (1.8)

implies that either of the following holds:

[JHrβ ,j, JX] = 2µp
rα,i(Hrβ ,j)X,

J [JHrβ ,j, X] = −2µp
rα,i(Hrβ ,j)X.

If [JHrβ ,j, JX] = 2µp(Hrβ ,j)X holds, then we see from (1.9) that

µp
rα,i(Hrβ ,j) =

1

2
λrβ ,j(Hrβ ,j), µp

rα,i(Hrγ ,k) = 0
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for rγ < rα and (rγ, k) 6= (rβ, j). This shows that µp
rα,i = (1/2)λrβ ,j, and hence we have

[JHrβ ,j, JX] = λrβ ,j(Hrβ ,j)X.

If J [JHrβ ,j, X] = −2µp(Hrβ ,j)X holds, then we see from (1.9) that

µp
rα,i(Hrβ ,j) = −1

2
λrβ ,j(Hrβ ,j), µp

rα,i(Hrγ ,k) = 0

for rγ < rα and (rγ, k) 6= (rβ, j). This shows that µp
rα,i = −(1/2)λrβ ,j, and hence we

have [JHrβ ,j, X] = −λrβ ,j(Hrβ ,j)X. This completes the proof. ¤

When µp
rα,i = ±(1/2)λrβ ,j, the subspace np

rα,i of n is denoted by n
±rβ ,j
rα,i . If µp

rα,i

vanishes identically, we denote by n0
rα,i the subspace np

rα,i of n. Summing up,we prove

the first assertion of (b). Combining Claim 6.7 with (1) of Claim 6.4, we complete

proving (i) of (b). Claim 6.6 proves (ii) of (b). (iii) of (b) is verified in the proof of

Claim 6.9.

We are now going to prove that [n
+rβ ,j
rα,i , n+rδ ,l

rγ ,k ] = {0} for any α, β, γ, δ and i, j, k, l.

Let X ∈ n
+rγ ,k
rα,i and Y ∈ n+rδ ,l

rβ ,j . Since DA is a derivation of n for any A ∈ a, we have

DA[X,Y ] =
1

2

(
λrα,i(A) + λrβ ,j(A) + λrγ ,k(A) + λrδ ,l(A)

)
[X,Y ].

On the other hand, from Claim 6.9 we see that no subspace np
rα,i is expressed as

np
rα,i =

{
X ∈ n | DAX = (1/2)

(
λrα,i + λrβ ,j + λrγ ,k + λrδ ,l

)
(A)X for all A ∈ a

}
.

Hence we obtain [X,Y ] = 0, that is, [n
+rβ ,j
rα,i , n+rδ ,l

rγ ,k ] = {0} for any α, β, γ and δ.

Similarly, we obtain that

[n
−rβ ,j
rα,i , n−rδ ,l

rγ ,k ] = {0} for (rα, i) 6= (rδ, l) and (rβ, j) 6= (rγ, k),

[n
+rβ ,j
rα,i , n−rδ ,l

rγ ,k ] = {0} for (rα, i) 6= (rδ, l) and (rβ, j) 6= (rδ, l),

[n0
rα,i, n

−rδ ,l
rγ ,k ] = {0} for (rα, i) 6= (rδ, l),

[n0
rα,i, n

+rδ ,l
rγ ,k ] = {0}.

Claim 6.10. (1) [Y, X] = −J [JY, X] for X ∈ n
−rβ ,j
rα,i , Y ∈ nrβ ,j.

(2) [Y, X] = [JY, JX] for X ∈ n
∓rγ ,k
rα,i , Y ∈ n

±rγ ,k
rβ ,j .

(3) [Y, X] = [JY, JX] for X ∈ n0
rα,i, Y ∈ n0

rβ ,j.
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Proof. (1) Let X ∈ n
−rβ ,j
rα,i and Y ∈ nrβ ,j. Applying Condition (K4) to X and Y , we

have

0 = [JY, JX]− J [JY,X]− J [Y, JX]− [X,Y ] = −J [JY,X]− [Y, X].

This shows that [Y, X] = −J [JY, X].

(2) It follows from Condition (K4) with X ∈ n
±rγ ,k
rα,j and Y ∈ n

∓rγ ,k
rβ ,j that

0 = [JY, JX]− J [JY,X]− J [Y, JX]− [X,Y ] = [JY, JX]− [X,Y ],

that is, [Y, X] = [JY, JX].

(3) For any X ∈ n0
rα,j and Y ∈ n0

rβ ,j, Condition (K4) yields

0 = [JY, JX]− J [JY, X]− J [Y, JX]− [X,Y ].

It is easy to see that [JY, JX], [X,Y ] ∈ n
+rβ ,j
rα,i and J [JY, X], J [Y, JX] ∈ n

−rβ ,j
rα,i . Hence

we have [Y, X] = [JY, JX]. ¤

From Claim 6.10 we obtain the first identities in (iv), (v) and (vi) of (b).

Claim 6.11. Let X ∈ n
−rβ ,j
rα,i and Y ∈ nrβ ,i. Then we have

|[Y, X]|2 =
1

2

λrβ ,j(Hrβ ,j)
2

|Hrβ ,j|2 |Y |2|X|2.

Proof. Let X ∈ n
−rβ ,j
rα,i and Y ∈ nrβ ,i. On account of Claim 6.10, we have

[[Y, JY ], X] = [Y, [JY,X]]− [JY, [Y, X]]

= [Y, [JY,X]] + [JY, J [JY,X]] = 2[Y, [JY, X]].
(1.10)

This together with (ii) and (iii) of (b) implies that for X,Y

[[Y, X], J [Y, X]] = −[[Y, X], [JY, X]] = [Y, [X, [JY,X]]]− [X, [Y, [JY, X]]]

= −1

2
[X, [[Y, JY ], X]]

= −1

2

λrβ ,j(Hrβ ,j)

|Hrβ ,j|2 |Y |2[X, [JHrβ ,j, X]]

=
1

2

λrβ ,j(Hrβ ,j)
2

|Hrβ ,j|2 |Y |2[X, JX]
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=
1

2

λrβ ,j(Hrβ ,j)
2

|Hrβ ,j|2 |Y |2λrα,i(Hrα,i)

|Hrα,i|2 |X|2JHrα,i.

On the other hand, by (ii) of (b), we have

[[Y, X], J [Y, X]] =
λrα,i(Hrα,i)

|Hrα,i|2 |[Y, X]|2JHrα,i.

Combining these two equations, we finally obtain

|[Y, X]|2 =
1

2

λrβ ,j(Hrβ ,j)
2

|Hrβ ,j|2 |Y |2|X|2.
¤

We have thus completed the proof of (iv) of (b).

Claim 6.12. (1) Let X,X ′ ∈ n
−rβ ,j
rα,i be orthogonal vectors, and let Y ∈ nrβ ,j. Then

〈[Y, X], [Y, X ′]〉 vanishes identically.

(2) Let {E1, . . . , En} be an orthonormal basis of n
−rβ ,j
rα,i with respect to 〈 , 〉, and

Y ∈ n
±rγ ,k
rβ ,j be a non-zero vector in n

±rγ ,k
rβ ,j . Set ei = (1/|[Y, Ei]|)[Y, Ei] for each

i = 1, . . . , n. Then {e1, . . . , en} is an orthonormal basis of n
±rγ ,k
rα,i with respect to

〈 , 〉.

Proof. (1) Let X,X ′ ∈ n
−rβ ,j
rα,i be orthogonal vectors, and let Y be a non-zero vector in

nrβ ,j. Then it follows from Claim 6.11 that

|[Y, X + X ′]|2 =
1

2

λrβ ,j(Hrβ ,j)
2

|Hrβ ,j|2 |Y |2(|X + X ′|2)

=
1

2

λrβ ,j(Hrβ ,j)
2

|Hrβ ,j|2 |Y |2(|X|2 + |X ′|2)

= |[Y, X]|2 + |[Y, X ′]|2.

On the other hand, a direct calculation shows that

|[Y, X + X ′]|2 = |[Y, X]|2 + 2〈[Y, X], [Y, X ′]〉+ |[Y, X ′]|2 .

Combining these two identities, we obtain 〈[Y, X], [Y, X ′]〉 = 0. This completes the

proof of (1).

(2) Let {E1, . . . , En} be an orthonormal basis of n
−rβ ,j
rα,i with respect to 〈 , 〉, and let

Y ∈ n
+rγ ,k
rβ ,j . Claim 6.11 shows that [Y, Ei] does not vanish for i = 1, . . . , n. Moreover,
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it follows from (1) that [Y, E1], . . . , [Y, En] are perpendicular to each other with respect

to 〈 , 〉.
To prove that {[Y, E1], . . . , [Y, En]} is an orthogonal basis of n

+rγ ,k
rα,i , assume that

there exists X ∈ n
+rγ ,k
rα,i which is perpendicular to [Y, Ei] for all i = 1, . . . , n. We

remark here that, by virtue of (i) of (b), {JE1, . . . , JEn} is also an orthonormal basis

of n
+rβ ,j
rα,i . Then, using Condition (K3), we have

[JX, Y ] =
n∑

i=1

〈[JX, Y ], JEi〉JEi =
n∑

i=1

(〈[Y, Ei], X〉 − 〈[Ei, JX], JY 〉) JEi = 0.

Hence Claim 4.2 yields that

〈R(JX, Y )Y, JX〉 = |U(JX, Y )|2 − 〈U(JX, JX), U(Y, Y )〉 − 3

4
|[JX, Y ]|2

− 1

2
〈[JX, [JX, Y ]], Y 〉 − 1

2
〈[Y, [Y, JX]], JX〉,

= −〈U(JX, JX), U(Y, Y )〉
= − 1

|Hrγ ,k|2 〈U(JX, JX), Hrγ ,k〉〈U(Y, Y ), Hrγ ,k〉

= − 1

|Hrγ ,k|2 〈JX, DHrγ,k
JX〉〈Y, DHrγ,k

Y 〉

= − 1

|Hrγ ,k|2
(−λrγ ,k(Hrγ ,k)

) |JX|2 (
+λrγ ,k(Hrγ ,k)

) |Y |2

=
λrγ ,k(Hrγ ,k)

2

4|Hrγ ,k|2 |X|2|Y |2 > 0,

which contradicts (g, 〈 , 〉) having non-positive sectional curvature K ≤ 0. Conse-

quently, we conclude that {[Y, E1], . . . , [Y, En]} is an orthogonal basis of n
+rγ ,k
rα,i . In the

same argument, we can also prove that for Y ∈ n
−rβ ,j
rα,i {[Y, E1], . . . , [Y, En]} is an or-

thogonal basis of n
−rγ ,k
rα,i . This completes the proof of (2). ¤

To verify the second identities in (v) of (b), let X ∈ n
+rγ ,k
rα,i and Y ∈ n

−rγ ,k
rβ ,j . Suppose

that rα > rβ. Let {E1, . . . , En} be an orthonormal basis of n
−rβ ,j
rα,i with respect to 〈 , 〉.

By virtue of Claim 6.12, setting ei = (1/|[Y, Ei]|)[Y, Ei] for i = 1, . . . , n, an orthonormal

basis {e1, . . . , en} of n
−rγ ,k
rα,i . Then, by making use of Condition (K3), we have

|[X,Y ]|2 =

∣∣∣∣∣
n∑

i=1

〈[X,Y ], JEi〉JEi

∣∣∣∣∣

2

=
n∑

i=1

〈[X,Y ], JEi〉2
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=
n∑

i=1

(−〈[Y, Ei], JX〉 − 〈[Ei, X], JY 〉)2

=
n∑

i=1

〈|[Y, Ei]| ei, JZ〉2

=
n∑

i=1

λrα,i(Hrα,i)
2

2|Hrα,i|2 |Y |2〈ei, JX〉2

=
λrα,i(Hrα,i)

2

2|Hrα,i|2 |Y |2|X|2.

This completes the proof of (v) of (b).

To prove the second identity in (vi) of (b), let Y ∈ n0
rβ ,j. We now consider the

restriction ad Y |n0
rα,j

: n0
rα,j → n

+rβ ,j
rα,j of the derivation ad Y to n0

rα,j.

Claim 6.13. (1) Im
(
ad Y |n0

rα,j

)
= n

+rβ ,j
rα,j .

(2) n0
rα,i is decomposed into a direct sum n0

rα,i = Ker
(
ad Y |n0

rα,j

)
⊕

[
JY, n

−rβ ,j
rα,j

]
.

(3) Ker
(
ad Y |n0

rα,j

)
and

[
JY, n

−rβ ,j
rα,j

]
are invariant by J .

Proof. (1) Let Z ∈ n
+rβ ,j
rα,i . Note that Claim 6.11 implies [JY, JZ] 6= 0. We then define

a non-zero vector X ∈ n0
rα,i by

X =
2|Hrβ ,j|2

λrβ ,j(Hrβ ,j)2|Y |2 [JY, JZ].

Using Equation (1.10) in the proof of Claim 6.11, (ii) and (iii) of (b), we have

ad Y (X) =
2|Hrβ ,j|2

λrβ ,j(Hrβ ,j)2|Y |2 [Y, [JY, JZ]]

=
|Hrβ ,j|2

λrβ ,j(Hrβ ,j)2|Y |2 [[Y, JY ], JZ]

=
|Hrβ ,j|2

λrβ ,j(Hrβ ,j)2|Y |2
λrβ ,j(Hrβ ,j)

|Hrβ ,j|2 |Y |2[JHrβ ,j, JZ]

= − 1

λrβ ,j(Hrβ ,j)
λrβ ,j(Hrβ ,j)J

2Z = Z.

This implies that ad Y |n0
rα,j

is surjective, that is, Im(ad Y |n0
rα,j

) = n
+rβ ,j
rα,j .
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(2) We first prove that Ker
(
ad Y |n0

rα,j

)
is perpendicular to

[
JY, n

−rβ ,j
rα,j

]
. Let X ∈

Ker
(
ad Y |n0

rα,j

)
and let W ∈ n

−rβ ,j
rα,j . Applying Condition (K3) to JX, JY and W , and

then using the first identity in (vi) of (b), we have

0 =〈J2X, [JY, W ]〉+ 〈J2Y, [W,JX]〉+ 〈JW, [JX, JY ]〉
=− 〈X, [JY,W ]〉+ 〈JW, [X,Y ]〉
=− 〈X, [JY,W ]〉.

Since X and W are arbitrary, the assertion follows.

We now remark that by (1) of Claim 6.12 together with Claim 6.11, the sub-

space
[
JY, n

−rβ ,j
rα,i

]
has the same dimension as that of n

−rβ ,j
rα,i . This combined with (1)

and (i) of (b) implies that the dimension of
[
JY, n

−rβ ,j
rα,i

]
is equal to the dimension of

Im
(
ad Y |n0

rα,j

)
.

Since ad Y |n0
rα,j

is a linear operator, we have

dim n0
rα,i − dim Ker

(
ad Y |n0

rα,j

)
= dim Im

(
ad Y |n0

rα,j

)
= dim

[
JY, n

−rβ ,j
rα,j

]
.

Hence we obtain a decomposition n0
rα,i = Ker

(
ad Y |n0

rα,j

)
⊕

[
JY, n

−rβ ,j
rα,j

]
of n0

rα,i into a

direct sum.

(3) Let X ∈ Ker
(
ad Y |n0

rα,j

)
, and let {E1, . . . , En} be an orthonormal basis of

n
−rβ ,j
rα,i with respect to 〈 , 〉. Applying Claim 4.2 to X and Y and using Condition (K3),

we obtain

〈R(X,Y )Y, X〉 = |U(X,Y )|2 − 〈U(X,X), U(Y, Y )〉 − 3

4
|[X,Y ]|2

− 1

2
〈[X, [X,Y ]], Y 〉 − 1

2
〈[Y, [Y, X]], X〉,

= |U(X,Y )|2 =
n∑

i=1

〈U(X,Y ), Ei〉2

=
n∑

i=1

1

4
〈X, [Y, Ei]〉2

=
n∑

i=1

1

4
(〈JY, [Ei, JX]〉+ 〈JEi, [JX, Y ]〉)2

= |[JX, Y ]|2.
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Since the sectional curvature K is nonpositive, we have [JX, Y ] = 0, that is, JX ∈
Ker

(
ad Y |n0

rα,j

)
. This yields that J Ker

(
ad Y |n0

rα,j

)
= Ker

(
ad Y |n0

rα,j

)
. By virtue of

(2), it is now immediate to see that
[
JY, n

−rβ ,j
rα,j

]
is invariant by J . ¤

Let X ∈ n0
rα,i. Then Claim 6.13 shows that X can be uniquely written as X =

X1 + X2, where X1 ∈ Ker
(
ad Y |n0

rα,j

)
and X2 ∈

[
JY, n

−rβ ,j
rα,j

]
.

Let {E1, . . . , En} be an orthonormal basis of n
−rβ ,j
rα,i with respect to 〈 , 〉. Note that

by (1) of Claim 6.12, [JY, E1], . . . , [JY, En] are perpendicular to each other. Setting

ei = (1/|[JY, Ei]|)[JY,Ei] for i = 1, . . . , n, we obtain an orthonormal basis {e1, . . . , en}
of the subspace

[
JY, n

−rβ ,j
rα,j

]
with respect to 〈 , 〉. Then, it follows from Condition (K3)

together with the first identities of (vi), (v) and (vi) of (b) that

|[X,Y ]|2 = |[X1 + X2, Y ]|2 = |[X2, Y ]|2

=
n∑

i=1

〈[X2, Y ], JEi〉2 =
n∑

i=1

(−〈[Y, Ei], JX2〉 − 〈[Ei, X2], Y 〉)2

=
n∑

i=1

〈[Y, Ei], JX2〉2 =
n∑

i=1

〈[JY, Ei], X2〉2

=
n∑

i=1

|[JY, Ei]|2〈ei, X2〉2

=
1

2

λrβ ,j(Hrβ ,j)
2

|Hrβ ,j|2 |Y |2
n∑

i=1

〈ei, X2〉2

=
1

2

λrβ ,j(Hrβ ,j)
2

|Hrβ ,j|2 |Y |2|X2|2.

On the other hand, we now consider JX = JX1 + JX2. We remark here that by

(3) of Claim 6.13, JX1 ∈ Ker
(
ad Y |n0

rα,j

)
and JX2 ∈

[
JY, n

−rβ ,j
rα,j

]
. Then, substituting

JX for X in the above equation, we obtain

|[JX, Y ]|2 =
1

2

λrβ ,j(Hrβ ,j)
2

|Hrβ ,j|2 |Y |2|JX2|2 =
1

2

λrβ ,j(Hrβ ,j)
2

|Hrβ ,j|2 |Y |2|X2|2.

Combining these two identities, we have |[X,Y ]|2 = |[JX, Y ]|2. This completes the

proof of (vi) of (b).

Claim 6.14. If n
±rβ ,j
rα,i 6= {0}, then n

±rβ ,j

rα,k = {0} for i 6= k.
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Proof. Let X ∈ n
+rβ ,j
rα,i . If there exists a non-zero vector Y ∈ n

−rβ ,j

rα,k for i 6= k, then it

follows from Claim 4.2 with X and Y that

〈R(X,Y )Y, X〉 = |U(X,Y )|2 − 〈U(X,X), U(Y, Y )〉 − 3

4
|[X,Y ]|2

− 1

2
〈[X, [X,Y ]], Y 〉 − 1

2
〈[Y, [Y, X]], X〉

=
1

|Hrβ ,j|2 〈U(X,Y ), Hrβ ,j〉2 − 1

|Hrβ ,j|2 〈U(X,X), Hrβ ,j〉〈U(Y, Y ), Hrβ ,j〉

= − 1

|Hrβ ,j|2 〈DHrβ,j
X,Y 〉2 − 1

|Hrβ ,j|2 〈DHrβ,j
X,X〉〈DHrβ,j

Y, Y 〉

= −λrβ ,j(Hrβ ,j)
2

4|Hrβ ,j|2 〈X,Y 〉2 +
λrβ ,j(Hrβ ,j)

2

4|Hrβ ,j|2 〈X,X〉〈Y, Y 〉

=
λrβ ,j(Hrβ ,j)

2

4|Hrβ ,j|2 〈X,X〉〈Y, Y 〉 > 0,

which contradicts that (g, 〈 , 〉) has nonpositive sectional curvature K ≤ 0. Hence we

have n
−rβ ,j

rα,k = {0}. ¤

Claim 6.14 proves (vii) of (b). This completes the proof of Proposition 6.1.

Let (g, J, 〈 , 〉) be a solvable Lie algebra under the assumption of Proposition 6.1.

We prepare a few Remarks for the properties of (g, J, 〈 , 〉).
Remark 6.1. The Levi-Civita connection ∇ and the curvature tensor R of g have the

following properties:

(1) ∇XJY = J∇XY for all X,Y ∈ g.

(2) R(X,Y )JZ = JR(X,Y )Z and R(JX, JY ) = R(X,Y ) for all X,Y, Z ∈ g.

Proof. (1) Using Condition (K1)–(K4), we have

2〈∇XJY, Z〉 = 〈[X, JY ], Z〉 − 〈JY, [X,Z]〉 − 〈X, [JY, Z]〉
= 〈[JY, JZ], JX〉 − 〈[JZ,X], Y 〉+ 〈JX, [Z, Y ]〉+ 〈JZ, [Y, X]〉

+ 〈X, [Y, JZ]〉+ 〈JX, [Y, Z]〉 − 〈JX, [JY, JZ]〉
= −〈[JZ,X], Y 〉+ 〈JZ, [Y, X]〉+ 〈X, [Y, JZ]〉
= −2〈∇XY, JZ〉
= 2〈J∇XY, Z〉
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for any X,Y, Z ∈ g, thereby, proving (1).

(2) It follows from (1) that R(X,Y )JZ = JR(X,Y )Z for any X,Y, Z ∈ g. Hence

the symmetry property of R yields

〈R(JX, JY )Z, W 〉 = 〈R(Z, W )JX, JY 〉 = 〈R(Z, W )X,Y 〉 = 〈R(X,Y )Z, W 〉

for X,Y, Z, W ∈ g, which implies that R(JX, JY ) = R(X,Y ). ¤

Let {(E±b
a )1, . . . , (E

±b
a )n} denote an orthonormal basis of n±b

a with respect to 〈 , 〉,
respectively. Also, let {(E0

a)1, . . . , (E
0
a)n} denote an orthonormal basis of n0

a with re-

spect to 〈 , 〉.
Remark 6.2. Assume that λa(H) > λb(H). The Levi-Civita connection ∇ is given

by the following formulas:

(1) ∇AB = 0 for A,B ∈ a.

(2) ∇AX = SAX for A ∈ a and X ∈ n.

(3) ∇XA = −DAX for A ∈ a and X ∈ n.

(4) ∇XY = ∇Y X =
1

2
[JX, JY ] for X ∈ n+b

a , Y ∈ nb.

(5) ∇XY = −∇Y X =
1

2
[X,Y ] for X ∈ n−b

a , Y ∈ nb.

(6) ∇XY = ∇Y X = −1

2
J [X, JY ] for X ∈ n±d

a , Y ∈ n±d
b .

(7) ∇XY =
1

2
[X,Y ]− 1

2
J [X, JY ] for X ∈ n0

a, Y ∈ n0
b .

(8) ∇JHaX = −1

2
λa(Ha)JX for X ∈ na.

(9) ∇JHb
X = −1

2
λb(Hb)JX for X ∈ n+b

a .

(10) ∇XY =
λa(Ha)

2|Ha|2 〈X,Y 〉Ha +
λb(Hb)

2|Hb|2 〈X,Y 〉Hb for X,Y ∈ n+b
a .

(11) If λb(H) > λd(H), then we have

∇XY = ∇Y X = −1

2

n∑
p=1

〈X, [Y, (E−d
b )p]〉(E−d

b )p for X ∈ n+b
a , Y ∈ n+d

a .
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(12) ∇XY = ∇Y X = −1

2

m∑
p=1

〈X, [Y, (E0
b )p]〉(E0

b )p for X ∈ n+b
a , Y ∈ n0

a.

(13) ∇XY =
λa(Ha)

2|Ha|2 (〈X,Y 〉Ha + 〈JX, Y 〉JHa) for X,Y ∈ n0
a.

(14) If a 6= c, d and b 6= c, d, then ∇XY = 0 for X ∈ n+b
a and Y ∈ n±d

c .

Proof. We first remark that for any A ∈ a and X,Y ∈ n,

〈U(X,Y ), A〉 = −1

2
(〈Y, [X,A]〉+ 〈X, [Y, A]〉)

=
1

2
(〈Y, ad A(X)〉+ 〈ad A∗(X), Y 〉)

= 〈DAX,Y 〉.

(1.11)

To prove (1), (2) and (3), let A ∈ a and X ∈ n. It is easy to see that (ad Y )∗A = 0 for

any Y ∈ g. It then follows from Claim 4.1 that

∇AB =
1

2
[A,B] + U(A,B) = −1

2
((ad A)∗B + (ad B)∗A) = 0,

∇AX =
1

2
ad AX − 1

2
((ad A)∗X + (ad X)∗A) =

1

2
(ad A− (ad A)∗) X = SAX,

∇XA =
1

2
[X,A]− 1

2
((ad X)∗A + (ad A)∗X) = −1

2
(ad A + (ad A)∗) X = −DAX.

This completes the proof of (1), (2) and (3).

(4) It follows from Condition (K3) with X ∈ n+b
a , Y ∈ nb and Z ∈ g that

〈∇XY, Z〉 =
1

2
(〈[X,Y ], Z〉 − 〈Y, [X,Z]〉 − 〈X, [Y, Z]〉) = −1

2
〈X, [Y, Z]〉

= −1

2
(〈JY, [Z, JX]〉+ 〈JZ, [JX, Y ])

=
1

2
〈JZ, J [JX, JY ]〉

=
1

2
〈Z, [JX, JY ]〉,

which implies that ∇XY = (1/2)[JX, JY ].

(5) For any X ∈ n−b
a and Y ∈ nb, it is easy to see that U(X,Y ) = 0, and hence we

obtain ∇XY = (1/2)[X,Y ].

(6) and (7) are proved in a way similar to that for (4).
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(8) Let X ∈ n±b
a . Then it follows from Remark 6.1 together with (3) that

∇JHaX = [JHa, X] +∇XJHa = J∇XHa = −1

2
λa(Ha)JX.

In a similar manner, we can also prove (9).

(10) For any X,Y ∈ n+b
a and W ∈ n, we have

〈U(X,Y ),W 〉 = −1

2
(〈Y, [X,W ]〉+ 〈X, [Y, W ]〉) = 0.

It then follows from (1.11) that U(X,Y ) ∈ R{Ha} ⊕ R{Hb}. Hence we have

∇XY =
1

2
[X,Y ] + U(X,Y )

=
1

|Ha|2 〈U(X,Y ), Ha〉Ha +
1

|Hb|2 〈U(X,Y ), Hb〉Hb

=
1

|Ha|2 〈DHaX,Y 〉Ha +
1

|Hb|2 〈DHb
X,Y 〉Hb

=
λa(Ha)

2|Ha|2 〈X,Y 〉Ha +
λb(Hb)

2|Hb|2 〈X,Y 〉Hb.

The proof of (11) and (12) are done by straightforward computations using Claim

4.1.

(13) For X,Y ∈ n0
a and W ∈ n, we have

〈U(X,Y ),W 〉 = −1

2
(〈Y, [X,W ]〉+ 〈Y, [X,W ]〉) = 0.

Moreover, using (1.11), it is easy to see that U(X,Y ) ∈ R{Ha}. Hence we have

∇XY =
1

2
[X,Y ] + U(X,Y )

=
λa(Ha)

2|Ha|2 〈JX, Y 〉JHa +
1

|Ha|2 〈U(X,Y ), Ha〉Ha

=
λa(Ha)

2|Ha|2 〈JX, Y 〉JHa +
λa(Ha)

|Ha|2 〈X,Y 〉Ha.

(14) can be seen by easy computations. ¤

Remark 6.3. If SA is a derivation of g for A ∈ a, then the following hold:

(1) SA∇XY = ∇SAXY +∇XSAY ,
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(2) R(A,X)Y = −∇DAXY

for any X,Y ∈ g.

Proof. (1) Let A ∈ a and X,Y, Z ∈ g. Since SA is a skew-symmetric derivation, it

follows from Claim 4.1 with X,Y, Z and A that

〈SA∇XY, Z〉 = −〈∇XY, SAZ〉
=

1

2
(−〈[X,Y ], SAZ〉+ 〈Y, [X,SAZ]〉+ 〈X, [Y, SAZ]〉)

=
1

2
(〈SA[X,Y ], Z〉+ 〈Y, SA[X,Z]− [SAX,Z]〉

+ 〈X,SA[Y, Z]− [SAY, Z]〉)
=

1

2
(〈[SAX,Y ], Z〉+ 〈[X,SAY ], Z〉 − 〈SAY, [X,Z]〉 − 〈Y, [SAX,Z]〉
− 〈SAX, [Y, Z]〉 − 〈X, [SAY, Z]〉)

= 〈∇SAXY, Z〉+ 〈∇XSAY , Z〉

which implies that SA∇XY = ∇SAXY +∇XSAY .

(2) Let A ∈ a and X,Y ∈ g. By making use of Remark 6.2 and (1), the curvature

tensor R(A,X)Y is given by

R(A,X)Y = ∇A∇XY −∇X∇AY −∇[A,X]Y

= SA∇XY −∇XSAY −∇DAX+SAXY

= ∇SAXY +∇XSAY −∇XSAY −∇DAXY −∇SAXY

= −∇DAXY.

¤

Remark 6.4. If n+b
a 6= {0}, then the following holds:

λb(Hb)
2

2|Hb|2 ≤ λa(Ha)
2

|Ha|2 .

Proof. Let X be a non-zero vector in n+b
a . Then, using Remarks 6.1 and 6.2, we have

〈R(JX, X)X, JX〉
= 〈∇JX∇XX −∇X∇JXX −∇[JX,X]X, JX〉
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=

〈
∇JX

(
λa(Ha)

2|Ha|2 |X|
2Ha +

λb(Hb)

2|Hb|2 |X|
2Hb

)

−∇X

(
−λa(Ha)

2|Ha|2 |X|
2JHa +

λb(Hb)

2|Hb|2 |X|
2JHb

)
+

λa(Ha)

|Ha|2 |X|
2∇JHaX, JX

〉

=

〈
−λa(Ha)

2

4|Ha|2 |X|
2JX +

λb(Hb)
2

4|Hb|2 |X|
2JX

− λa(Ha)
2

4|Ha|2 |X|
2JX +

λb(Hb)
2

4|Hb|2 |X|
2JX − λa(Ha)

2

2|Ha|2 |X|
2JX, JX

〉

= −λa(Ha)
2

|Ha|2 |X|4 +
λb(Hb)

2

2|Hb|2 |X|
4.

The nonpositivity of the sectional curvature K then implies that

λb(Hb)
2

2|Hb|2 ≤ λa(Ha)
2

|Ha|2 .

¤

Remark 6.5. (1) Let X,X ′ ∈ n−b
a and Y, Y ′ ∈ nb. Then we have

〈[Y, X], [Y ′, X]〉 =
λb(Hb)

2

2|Hb|2 |X|
2〈Y, Y ′〉,

〈[Y, X], [Y, X ′]〉 =
λb(Hb)

2

2|Hb|2 |Y |
2〈X,X ′〉,

(〈[Y, X], [Y ′, X ′]〉+ 〈[Y ′, X], [Y, X ′]〉) =
λb(Hb)

2

|Hb|2 〈X,X ′〉〈Y, Y ′〉.

(2) Let X,X ′ ∈ n±c
a and Y, Y ′ ∈ n∓c

b for λb(H) < λa(H). Then we have

〈[Y, X], [Y ′, X]〉 =
λb(Hb)

2

2|Hb|2 |X|
2〈Y, Y ′〉,

〈[Y, X], [Y, X ′]〉 =
λb(Hb)

2

2|Hb|2 |Y |
2〈X,X ′〉,

(〈[Y, X], [Y ′, X ′]〉+ 〈[Y ′, X], [Y, X ′]〉) =
λb(Hb)

2

|Hb|2 〈X,X ′〉〈Y, Y ′〉.

(3) Let X,X ′ ∈ n0
a and Y, Y ′ ∈ n0

b for λb(H) < λa(H). Then we have

〈[Y, X], [Y ′, X ′]〉+ 〈[Y, X ′], [Y ′X]〉
− 〈[Y, JX], [Y ′, JX ′]〉 − 〈[Y, JX ′], [Y ′, JX]〉 = 0.

61



Proof. (1) Let X,X ′ ∈ n−b
a and Y, Y ′ ∈ nb. Applying (iv) of (b) in Proposition 6.1 to

X and Y + Y ′, we have

|[Y + Y ′, X]|2 =
λb(Hb)

2

2|Hb|2 |Y + Y ′|2 |X|2 .

Here we remark that each side of this equation may be written as follows:

LHS = |[Y, X]|2 + 2〈[Y, X], [Y ′, X]〉+ |[Y ′, X]|2

=
λb(Hb)

2

2|Hb|2 |Y |
2|X|2 + 2〈[Y, X], [Y ′, X]〉+

λb(Hb)
2

2|Hb|2 |X|
2|Y ′|2.

RHS =
λb(Hb)

2

2|Hb|2
(|Y |2 + 2〈Y, Y ′〉+ |Y ′|2) |X|2 ,

Hence we have

2〈[Y, X], [Y ′, X]〉 =
λb(Hb)

2

|Hb|2 〈Y, Y ′〉 |X|2 , (1.12)

which proves the first identity in (1).

Similarly, from (iv) of (b) in Proposition 6.1, we obtain

2〈[Y, X], [Y, X ′]〉 =
λb(Hb)

2

|Hb|2 〈X,X ′〉|Y |2,

which is the second identity in (1).

We now prove the third identity in (1). Substituting X + X ′ for X in (1.12), we

have

2〈[Y, X + X ′], [Y ′, X + X ′]〉 =
λb(Hb)

2

|Hb|2 〈Y, Y ′〉 |X + X ′|2 .

The left hand side of this equation is given by

2〈[Y, X + X ′],[Y ′, X + X ′]〉
= 2〈[Y, X], [Y ′, X]〉+ 2〈[Y, X], [Y ′, X ′]〉

+ 2〈[Y, X ′], [Y ′, X]〉+ 2〈[Y, X ′], [Y ′, X ′]〉.

On the other hand, the right hand side is equal to

λb(Hb)
2

|Hb|2 〈Y, Y ′〉 |X + X ′|2

=
λb(Hb)

2

|Hb|2 〈Y, Y ′〉 (|X|2 + 2〈X,X ′〉+ |X ′|2)
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= 2〈[Y, X], [Y ′, X]〉+ 2
λb(Hb)

2

|Hb|2 〈Y, Y ′〉〈X,X ′〉+ 2〈[Y, X ′], [Y ′, X ′]〉.

Hence we obtain

〈[Y, X], [Y ′, X ′]〉+ 〈[Y, X ′], [Y ′, X]〉 =
λb(Hb)

2

|Hb|2 〈Y, Y ′〉〈X,X ′〉,

which completes the proof of (1).

(2) This is proved in a similar manner to (1).

(3) Let X,X ′ ∈ n0
a and Y, Y ′ ∈ n0

b . Applying (vi) of (b) in Proposition 6.1 to X

and Y + Y ′, we have

|[Y + Y ′, X]|2 = |[Y + Y ′, JX]|2.

Again, by (vi) of (b) in Proposition 6.1, we also see that

LHS = |[Y, X]|2 + 2〈[Y, X], [Y ′, X]〉+ |[Y ′, X]|2
= |[Y, JX]|2 + 2〈[Y, X], [Y ′, X]〉+ |[Y ′, JX]|2,

RHS = |[Y, JX]|2 + 2〈[Y, JX], [Y ′, JX]〉+ |[Y ′, JX]|2.

Hence we obtain

〈[Y, X], [Y ′, X]〉 = 〈[Y, JX], [Y ′, JX]〉. (1.13)

Substituting X + X ′ for X in (1.13), we have

〈[Y, X + X ′], [Y ′, X + X ′]〉 = 〈[Y, JX + JX ′], [Y ′, JX + JX ′]〉.

Again, by (1.13), we see that the left hand side of this equation is given by

〈[Y, X + X ′], [Y ′, X + X ′]〉
= 〈[Y, X], [Y ′, X]〉+ 〈[Y, X], [Y ′, X ′]〉

+ 〈[Y, X ′], [Y ′, X]〉+ 〈[Y, X ′], [Y ′, X ′]〉
= 〈[Y, JX], [Y ′, JX]〉+ 〈[Y, X], [Y ′, X ′]〉

+ 〈[Y, X ′], [Y ′, X]〉+ 〈[Y, JX ′], [Y ′, JX ′]〉.

On the other hand, the right hand side is given by

〈[Y, JX + JX ′], [Y ′, JX + JX ′]〉
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= 〈[Y, JX], [Y ′, JX]〉+ 〈[Y, JX], [Y ′, JX ′]〉
+ 〈[Y, JX ′], [Y ′, JX]〉+ 〈[Y, JX ′], [Y ′, JX ′]〉.

Hence we have

〈[Y, X], [Y ′, X ′]〉+ 〈[Y, X ′], [Y ′, X]〉 = 〈[Y, JX], [Y ′, JX ′]〉+ 〈[Y, JX ′], [Y ′, JX]〉.

This completes the proof of Claim 6.5.

Remark 6.6. Assume that λa(H) > λb(H) for a, b ∈ Λc. Then the following conditions

hold:

(1) dim n±c
a ≥ dim n±c

b .

(2) dim n±b
a = dim n±c

a .

(3) dim n±b
a ≥ dim n±c

b .

(4) dim n0
a ≥ dim n0

b .

Proof. (1) Let {E1, . . . , Et} be an orthonormal basis of n+c
b with respect to 〈 , 〉, and let

Y be a non-zero vector in n−b
a . By (iv) of (b) of Proposition 6.1, we have [Y, Ei] 6= 0 for

each i = 1, . . . , n. Moreover, it follows from (1) of Remark 6.5 that [Y, E1], . . . , [Y, Et]

are perpendicular to each other. Hence dim n±c
a ≥ dim n±c

b .

(2) is proved by (2) of Claim 6.12. (3) follows from (1) and (2). The proof of (4) is

similar to that of (1). ¤

7 Necessary and sufficient condition

Let (M,J, g) be a connected, simply connected homogneouns Einstein Kähler manifold

with non-positive curvature. In this section, we shall give the necessary and sufficient

condition for M to be a Riemannian symmetric space.

Recall that by Theorem 3.1, (M,J, g) is identified with a simply connected solvable

Lie group G with left invariant almost complex structure J and a left invariant Kähler

Einstein metric 〈 , 〉. Also, since G is simply connected, G is determined by its Lie

algebra g up to isomorphism.

Now, let g be a Lie algebra of G. Then the left invariant almost complex structure

J on G induces an endomorphism on g, denoted also by J , and the left invariant Kähler
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Einstein metric 〈 , 〉 on G induces a inner product on g, denoted also by 〈 , 〉. From

Lemma 3.1 we see that (g, J, 〈 , 〉) satisfies Condition (K1)–(K4). As remarked at the

beginning of §4, the Levi-Civita connection ∇, the curvature tensor R and the sectional

curvature K of g is defined by the Levi-Civita connection ∇, the curvature tensor R

and the sectional curvature K of G, respectively.

Since 〈 , 〉 is a Einstein with nonpositive curvature, the Ricci curvature Ric of

(g, 〈 , 〉) is either strictly negative or zero. If Ric vanishes, then (g, 〈 , 〉) is flat (cf.

Lemma 5.2) and we have done. Therefore, it suffices to investigate the case where Ric

is strictly negative.

From now on we assume that (g, 〈 , 〉) is not Ricci flat. Let n = [g, g] be the derived

algebra of g, and a the orthogonal complement of n with respect to 〈 , 〉. For any

A ∈ a let DA (resp. SA) denote the symmetric (resp. skew-symmetric) part of ad A

for A ∈ a.

Applying Proposition 6.1 to (g, J, 〈 , 〉), there exists an orthogonal basis {Ha}a∈Λ

of a with respect to 〈 , 〉 such that

[Ha, JHa] = λaJHa for some λa > 0,

[Hb, JHa] = 0 if a 6= b.

We define a linear function λa : a → R by λa(Hb) = δabλa for any b ∈ Λ. Also, let n±b
a

and n0
a be subspaces of n defined by

n±b
a =

{
X ∈ n

∣∣∣∣ DAX =
1

2
(λa(A)± λb(A)) X for any A ∈ a

}
,

n0
a =

{
X ∈ n

∣∣∣∣ DAX =
1

2
λa(A)X for any A ∈ a

}
,

where λb(Hb) < λa(Ha). Setting

na =
⊕

λb(Hb)<λa(Ha)

(
n+b

a ⊕ n−b
a

)⊕ n0
a,

we have a direct sum decomposition g =
⊕

aR{Ha} ⊕ na ⊕ R{JHa} of g.

Proposition 7.1. Let (g, J, 〈 , 〉) be a solvable Lie algebra which has as a direct sum

decomposition g =
⊕

a∈ΛR{Ha} ⊕ na ⊕ R{JHa} as in Proposition 6.1. Then the

following conditions are equivalent:

(a) ∇R ≡ 0.
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(b) For each c ∈ Λ, let Λc denote a subset {a ∈ Λ | n±c
a 6= {0}} ∪ {c} of Λ. Then

there exists a subset {a1, . . . , am} of Λ satisfying that Λa1 ∪ . . . ∪ Λam = Λ and

that Λai
∩ Λaj

= {0} if i 6= j. Moreover, the following hold:

(i) If there exists ai such that n0
ai

= {0}, then n0
b = {0} for any b ∈ Λai

.

(ii)
λb(Hb)

|Hb| =
λc(Hc)

|Hc| for any b, c ∈ nai
.

Proof. Let n = [g, g] be the derived algebra of g, and a the orthogonal complement of

n with respect to 〈 , 〉. It is known by Azencott and Wilson [1] that a is abelian, since

g has nonpositive sectional curvature K ≤ 0. By Lemma 5.3, {DA, SA | A ∈ a} is a

commuting family of derivations of g which vanishes on a, where DA and SA denote

the symmetric and skew-symmetric parts of ad A for A ∈ a. Also, by Lemma 5.3, DA

is a nonzero operator for any A ∈ a, and DH is positive definite on n.

We first prove (a) ⇒ (b).

Claim 7.1. If b and c are elements in Λ such that b 6∈ Λc and c 6∈ Λb, then Λc∩Λb = {0}.
Proof. Assume that Λb ∩ Λc 6= {0}. For any a ∈ Λb ∩ Λc let X ∈ n+b

a , and Y ∈ n+c
a .

Since b 6∈ Λc and c 6∈ Λb, it is easy to see that ∇XY = 0 by Claim 4.1. Then, using

Remarks 6.2 and 6.3, (∇XR)(Hb, Y, Y ) is given by

(∇XR)(Hb, Y, Y )

= ∇X(R(Hb, Y )Y )−R(∇XHb, Y )Y −R(Hb,∇XY )Y −R(Hb, Y )∇XY

=
1

2
λb(Hb)R(X,Y )Y =

1

2
λb(Hb)∇X∇Y Y

=
1

2
λb(Hb)∇X

(
λa(Ha)

2|Ha|2 |Y |
2Ha +

λc(Hc)

2|Hc|2 |Y |
2Hc

)

= −1

2
λb(Hb)

λa(Ha)
2

4|Ha|2 |Y |
2X.

This contradicts ∇R = 0, and hence we conclude Λb ∩ Λc = {0}. ¤

Claim 7.1 implies that there exists a subset {a1, . . . , am} of Λ such that Λa1 ∪ · · · ∪
Λam = Λ and Λai

∩ Λaj
= {0} for i 6= j. We set Λai

= {ai = i1, . . . , imi
} for each

i = 1, . . . , m. Without loss of generality, we may suppose λi1(H) < · · · < λimi
(H).

Then g can be written as

g =
m⊕

i=1

mi⊕
α=1

(R{Hiα} ⊕ niα ⊕ R{JHiα})
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where niα is given by

niα =
α−1⊕

β=1

(
n

+iβ
iα

⊕ n
−iβ
iα

)
⊕ n0

iα .

Claim 7.2. If ni1 = {0}, then n0
iα = {0} for all α = 1, . . . , mi.

Proof. Assume that ni1 = {0} and there exists α ∈ {1, . . . , mi} such that n0
iα 6= {0}.

Let X ∈ n+i1
iα

and Y ∈ n0
iα . It follows from the assumption ni1 = {0} that ∇XY = 0.

Then, by making use of Remark 6.2, we see that (∇XR)(X,Y, Y ) is given by

(∇XR)(X,Y, Y )

= ∇X(R(X,Y )Y )−R(∇XX,Y )Y −R(X,∇XY )Y −R(X,Y )∇XY

= ∇X∇X∇Y Y −R

(
λiα(Hiα)

2|Hiα|2
|X|2Hiα +

λi1(Hi1)

2|Hi1|2
|X|2Hi1 , Y

)
Y

= ∇X∇X

(
λα,i(Hα,i)

2|Hiα|2
|Y |2Hiα

)
+

λiα(Hiα)2

2|Hiα|2
|X|2∇Y Y

= −λiα(Hiα)2

2|Hiα|2
|Y |2∇XX +

λiα(Hiα)2

2|Hiα|2
|X|2∇Y Y

= −λiα(Hiα)2

2|Hiα|2
|X|2|Y |2

(
λiα(Hiα)

2|Hiα|2
Hiα +

λi1(Hi1)

2|Hi1|2
Hi1 −

λiα(Hiα)

2|Hiα|2
Hiα

)

= −λiα(Hiα)2

2|Hiα|2
λi1(Hi1)

2|Hi1|2
|X|2|Y |2Hi1 .

This contradicts ∇R = 0. Hence, n0
iα = {0}. ¤

Claim 7.2 proves (i) of (b). Next we prove

Claim 7.3. If n±b
a 6= {0}, then

λa(Ha)

|Ha| =
λb(Hb)

|Hb| .

Proof. Assume n±b
a 6= {0}, and let X ∈ n−b

a . It follows from Remark 6.2 together with

Remark 6.1 that for X and Hb, we have

(∇JXR)(Hb, X, X)

=∇JX(R(Hb, X)X)−R(∇JXHb, X)X −R(Hb,∇JXX)X −R(Hb, X)∇JXX

=
1

2
λb(Hb)∇JX∇XX +

1

2
λb(Hb)R(JX, X)X

67



−R

(
Hb,−λa(Ha)

2|Ha|2 |X|
2JHa − λa(Hb)

2|Hb|2 |X|
2JHb

)
X − 1

2
λb(Hb)∇X∇JXX

=λb(Hb) (∇JX∇XX −∇X∇JXX)− 1

2
λb(Hb)∇[JX,X]X − λb(Hb)

2

2|Hb|2 |X|
2∇JHb

X

=λb(Hb)∇JX

(
λa(Ha)

2|Ha|2 |X|
2Ha − λb(Hb)

2|Hb|2 |X|
2Hb

)

− λb(Hb)∇X

(
λa(Ha)

2|Ha|2 |X|
2JHa +

λb(Hb)

2|Hb|2 |X|
2JHb

)

+ λb(Hb)
λa(Ha)

2|Ha|2 |X|
2∇JHaX − λb(Hb)

2

2|Hb|2 |X|
2∇JHb

X

=λb(Hb)

(
−λa(Ha)

2

2|Ha|2 |X|
2JX +

λb(Hb)

2|Hb|2 |X|
2JX

)

− λb(Hb)

(
−λa(Ha)

2

2|Ha|2 |X|
2JX +

λb(Hb)

2|Hb|2 |X|
2JX

)

− λb(Hb)
λa(Ha)

2

4|Ha|2 |X|
2JX +

λb(Hb)
3

4|Hb|2 |X|
2JX

=− λb(Hb)
1

4

(
λa(Ha)

2

|Ha|2 − λb(Hb)
2

|Hb|2
)
|X|2JX.

Since ∇R = 0, this implies that

λa(Ha)

|Ha| =
λb(Hb)

|Hb| .

¤

This completes the proof that (a) implies (b).

We now prove the converse (b) ⇒ (a). Assume that (b) holds, and let {a1, . . . , am}
be a subset of Λ satisfying that Λa1 ∪ . . . ∪ Λam = Λ and that Λai

∩ Λaj
= {0} if i 6= j.

By rearranging the indices, we may assume that n0
ak
6= {0} for 1 ≤ k ≤ n and n0

al
= {0}

for n < l ≤ m, where 1 ≤ n ≤ m. For k ∈ {1, . . . , n}, we define a subspace gk of g by

gk = R{Hak
} ⊕ R{JHak

} ⊕
⊕

ak 6=α∈Λak

(R{Hα} ⊕ nα ⊕ R{JHα}) ,

where nα is given by

nα =
⊕

λβ(H)<λα(H)

(
n+β

α ⊕ n−β
α

)
.
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Moreover, for l ∈ {n + 1, . . . , m}, we define a subspace gl of g by

gl =
⊕

γ∈Λal

(R{Hγ} ⊕ nγ ⊕ R{JHγ}) ,

where nγ is given by

nγ =
⊕

λδ(H)<λγ(H)

(
n+δ

γ ⊕ n−δ
γ

)⊕ n0
γ.

Then g is decomposed into a direct sum g1⊕· · ·⊕gm. Obviously, we have [gi, gi′ ] = {0}
for 1 ≤ i < i′ ≤ m.

We first investigate the case where n0
ak
6= {0} for 1 ≤ k ≤ n. Fix k ∈ {1, . . . , n}. For

the sake of convenience, we set Λak
= {1(= ak), . . . , mk}. Without loss of generality,

we may assume that λ1(H) < · · · < λmk
(H). Moreover, unless otherwise stated, Greek

indices α, β, . . . run from 1 to mk.

Claim 7.4. (1) dim n±β
α = dim n±1

mk
for any β < α.

(2) dim n0
α = dim n1 for any α.

Proof. Since 〈 , 〉 is Einstein, we have

1

|Hα|2 Ric(Hα, Hα) =
1

|Hmk
|2 Ric(Hmk

, Hmk
).

By making use of Remarks 6.2 and 6.3, the Ricci curvature in the directions Hα and

Hmk
are given respectively by

Ric(Hα, Hα) = −1

4
λα(Hα)2

(
dim nα + 4 +

m∑

β=α+1

2 dim n+α
β

)
,

Ric(Hmk
, Hmk

) = −1

4
λmk

(Hmk
)2 (dim nmk

+ 4) .

Hence we have

−λα(Hα)2

4|Hα|2
(

dim nα + 4 +

mk∑

β=α+1

2 dim n+α
β

)
= −λmk

(Hmk
)2

4|Hmk
|2 (dim nmk

+ 4) .

This combined with (ii) of (b) implies that

dim nα +

mk∑

β=α+1

2 dim n+α
β = dim nmk

,
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and hence

0 = dim nmk
−

(
dim nα +

m∑

β=α+1

2 dim n+α
β

)

= 2

mk−1∑

β=1

dim n+β
mk

+ dim n0
mk
−

(
2

α−1∑

β=1

dim n+β
α + dim n0

α + 2

mk∑
γ=α+1

dim n+α
γ

)

= 2
α−1∑

β=1

(
dim n+β

mk
− dim n+β

α

)
+ dim n0

mk
− dim n0

α + 2

mk∑
γ=α+1

(
dim n+γ

mk
− dim n+α

γ

)
.

Recall that it is proved in Remark 6.6 that for β < α < γ < mk

dim n+β
mk
− dim n+β

α ≥ 0,

dim n0
mk
− dim n0

α ≥ 0,

dim n+γ
mk
− dim n+α

γ ≥ 0.

Hence we have

dim n+β
mk
− dim n+β

α = 0,

dim n0
mk
− dim n0

α = 0,

dim n+γ
mk
− dim n+α

γ = 0.

Since, by (2) of Remark 6.6, we have dim n+1
mk

= dim n+β
mk

for β < mk, we obtain

dim n+1
mk

= dim n+β
α for β < α. This proves (1).

We remark here that n0
1 = n1. Since α is arbitrary, we obtain

dim n0
mk

= · · · = dim n0
1 = dim n1,

which proves (2). This completes the proof of Claim 7.4.

We define a lexicographic order on a set Lk = {(α, β) | mk ≥ α > β ≥ 0} by

(α, β) > (α′, β′) ⇐⇒
{

α > α′.

If α = α′, then β > β′.

By virtue of Claim 7.4, we set

sk = dim n±β
α for α > β > 0,

tk = dim n±β
α for α > 0.
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Let {(E±β
α )1, . . . , (E

±β
α )sk

} denote an orthonormal basis of n±β
α with respect to 〈 , 〉 for

α > β > 0, respectively. Also, let {(E0
α)1, . . . , (E

0
α)tk} denote an orthonormal basis of

n0
α with respect to 〈 , 〉 for α > 0.

Claim 7.5. (1) Let (α, β), (γ, δ) ∈ Lk, and suppose (α, β) > (γ, δ). Let X ∈ n+β
α

and Y ∈ n±δ
γ ⊕ n−β

α . Then, for any Z ∈ g, we have

R(X,Y )Z = −∇∇XY Z.

(2) Let α > β > γ > 0. Then, for X,Y ∈ n+β
α and Z ∈ n+γ

β , we have

R(X,Y )Z = −1

4

sk∑
p=1

(〈[Z, JY ], [(E+γ
β )p, JX]〉 − 〈[Z, JX], [(E+γ

β )p, JY ]〉) (E+γ
β )p.

(3) Let α > γ > β > 0. Then, for X,Y ∈ n+β
α and Z ∈ n+β

γ , we have

R(X,Y )Z = −1

4

sk∑
p=1

(〈[Z, JY ], [(E+β
γ )p, JX]〉 − 〈[Z, JX], [(E+β

γ )p, JY ]〉) (E+β
γ )p.

(4) Let α > β > γ ≥ 0. Then, for X,Y ∈ n+β
α and Z ∈ n+γ

α , we have

R(X,Y )Z =− 1

4

sk∑
p=1

〈Y, [Z, (E−γ
β )p]〉[JX, J(E−γ

β )p]

+
1

4

sk∑
p=1

〈X, [Z, (E−γ
β )p]〉[JY, J(E−γ

β )p].

(5) Let α > β > 0. Then, for X,Y, Z ∈ n+β
α , we have

R(X,Y )Z = −λα(Hα)2

2|Hα|2 (〈Y, Z〉X − 〈X,Z〉Y ) .

(6) Let α > γ > β > 0. Then, for X,Y ∈ n+β
α and Z ∈ n+γ

α , we have

R(X,Y )Z = −1

4

sk∑
p=1

〈Z, [Y, (E−β
γ )p]〉[X, (E−β

γ )p]− 〈Z, [X, (E−β
γ )p]〉[Y, (E−β

γ )p].

(7) Let γ > α > β > 0. Then, for X,Y ∈ n+β
α and Z ∈ n+β

γ , we have

R(X,Y )Z =
1

4
[J [Z, JY ], X]− 1

4
[J [Z, JX], Y ].
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(8) Let γ > α > β > 0. Then, for X,Y ∈ n+β
α and Z ∈ n+α

γ , we have

R(X,Y )Z =
1

4
[X, [JY, JZ]]− 1

4
[Y, [JX, JZ]].

(9) Let α > γ > 0. Then, for X,Y ∈ n0
α and Z ∈ n0

γ, we have

R(X,Y )Z =
1

2

tk∑
p=1

(〈[X,Z], [Y, (E0
c )p]〉 − 〈[JY, Z], [JX, (E0

c )p]〉
)
(E0

c )p.

(10) Let α > γ > 0. Then, for X,Y ∈ n0
α and Z ∈ n+γ

α , we have

R(X,Y )Z = −1

4

tk∑
p=1

(〈Z, [Y, (E0
γ)p]〉[X, (E0

γ)p]− 〈Z, [X, (E0
γ)p]〉[Y, (E0

γ)p]
)

+
λα(Hα)2

4|Hα|2 〈JX, Y 〉JZ.

(11) Let α > 0. Then, for X,Y, Z ∈ n0
α, we have

R(X,Y )Z =
λα(Hα)2

4|Hα|2 (−〈Y, Z〉X − 〈JY, Z〉JX

+〈X,Z〉Y + 〈JX, Z〉JY + 2〈JX, Y 〉JZ) .

(12) Let γ > α > 0. Then, for X,Y ∈ n0
α and Z ∈ n+α

γ , we have

R(X,Y )Z =
1

2
[[X, JZ], JY ]− λa(Ha)

2

4|Ha|2 〈X,Y 〉Z +
λa(Ha)

2

4|Ha|2 〈JX, Y 〉JZ.

(13) Let γ > α > 0. Then, for X,Y ∈ n0
α and Z ∈ n0

γ, we have

R(X,Y )Z =
1

4
([J [Y, Z], JX]− [X, J [Z, JY ]]− [J [X,Z], JY ] + [Y, J [Z, JX]]).

Proof. (1) Suppose that α > β > γ > δ > 0. We first prove the case where X ∈
n+γ

α , Y ∈ n−γ
β and Z ∈ n+δ

β . Let {(E+δ
γ )1, . . . , (E

+δ
γ )sk

} be an orthonormal basis of n+γ
β f

with respect to 〈 , 〉. By virtue of Remark 6.5, [JX, J(E+δ
γ )1], . . . , [JX, J(E+δ

γ )sk
] are

mutually perpendicular in n−γ
α . This combined with Claim 7.4 implies that, setting

ep =
1

|[JX, J(E+δ
γ )p]| [JX, J(E+δ

γ )p],
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we obtain an orthonormal basis {e1, . . . , esk
} of n−γ

α .

It follows from Remarks 6.2 and 6.5 together with Condition (K3) that

R(X,Y )Z =∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z

=∇X

(
−1

2

sk∑
p=1

〈Z, [Y, (E+δ
γ )p]〉(E+δ

γ )p

)
− 1

2
[J [X,Y ], JZ]

=− 1

4

sk∑
p=1

〈Z, [Y, (E+δ
γ )p]〉[JX, J(E+δ

γ )p]− 1

2
[J [X,Y ], JZ]

=− 1

4

sk∑
p=1

〈JY, [(E+δ
γ )p, JZ]〉[JX, J(E+δ

γ )p]− 1

2
[J [X,Y ], JZ]

=− 1

4

sk∑
p=1

2|Hβ|2
λβ(Hβ)|X|2 〈[JY, JX], [[(E+δ

γ )p, JZ], JX]〉[JX, J(E+δ
γ )p]

− 1

2
[J [X,Y ], JZ]

=− 1

4

sk∑
p=1

2|Hβ|2
λβ(Hβ)|X|2 〈[JY, JX], [[JX, J(E+δ

γ )p], Z〉[JX, J(E+δ
γ )p]

− 1

2
[J [X,Y ], JZ]

=− 1

4

sk∑
p=1

2|Hβ|2|[JX, J(E+δ
γ )p]|2

λβ(Hβ)|X|2 〈[JY, JX], [ep, Z]〉ep − 1

2
[J [X,Y ], JZ]

=
1

4

sk∑
p=1

〈ep, [JZ, J [Y, X]]〉ep − 1

2
[J [X,Y ], JZ]

=− 1

4
[J [X,Y ], JZ]

=−∇∇XY Z.

It remains to show that R(X,Y )Z = −∇∇XY Z in the other cases of (1). However,

since the proof is quite similar, we omit the detail.

The proof of (2) (resp. (3), (4), (5), (6), (7) and (8)) is done by a straightforward

calculation, using Remark 6.2 together with (iv), (v) and (vi) of (b) in Proposition 6.1.

Hence we omit the detail of the caluculation.

(9) For α > γ > 0, let X,Y ∈ n0
α and Z ∈ n0

γ. Let {(E0
γ)1, . . . , (E

0
γ)tk} be an

orthonormal basis of n0
γ. By making use of Remarks 6.2 and 6.5, we have

R(X,Y )Z =∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z

73



=∇X

(
1

2
[Y, Z]− 1

2
J [Z, JY ]

)
−∇Y

(
1

2
[X,Z]− 1

2
J [Z, JX]

)

− λα(Hα)

|Hα|2 〈JX, Y 〉∇JHαZ

=− 1

4

tk∑
p=1

〈[Y, Z], [X, (E0
γ)p]〉(E0

γ)p +
1

4

tk∑
p=1

〈X, [J [Z, JY ], (E0
γ)p]〉(E0

γ)p

+
1

4

tk∑
p=1

〈[X,Z], [Y, (E0
γ)p]〉(E0

γ)p − 1

4

tk∑
p=1

〈Y, [J [Z, JX], (E0
γ)p]〉(E0

γ)p

=− 1

4

tk∑
p=1

〈[Y, Z], [X, (E0
γ)p]〉(E0

γ)p − 1

4

tk∑
p=1

〈[Z, JY ], [(E0
γ)p, JX]〉(E0

γ)p

+
1

4

tk∑
p=1

〈[X,Z], [Y, (E0
γ)p]〉(E0

γ)p +
1

4

tk∑
p=1

〈[Z, JX], [(E0
γ)p, JY ]〉(E0

γ)p

=
1

2

tk∑
p=1

(〈[X,Z], [Y, (E0
γ)p]〉 − 〈[JY, Z], [JX, (E0

γ)p]〉
)
(E0

γ)p.

(10) For α > γ > 0, let X,Y ∈ n0
α and Z ∈ n+γ

α . Let {(E0
γ)1, . . . , (E

0
γ)tk} be an

orthonormal basis of n0
γ, and {(E−γ

α )1, . . . , (E
−γ
α )sk

} an orthonormal basis of n−γ
α . It

follows from Remark 6.5 that [(E0
γ)1, (E

−γ
α )q], . . . , [(E

0
γ)tk , (E

−γ
α )q] are mutually orthog-

onal for each q = 1, . . . , sk. Combining this with Claim 7.4, and setting

(eq)p =
1

|[(E0
γ)p, (E

−γ
α )q]|

[(E0
γ)p, (E

−γ
α )q] for p = 1, . . . , tk,

we obtain an orthonormal basis {(eq)1, . . . , (eq)tk} of n0
α.

Then, by making use of Remarks 6.2 and 6.5, we have

R(X,Y )Z =∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z

=∇X

(
−1

2

tk∑
p=1

〈Z, [Y, (E0
γ)p]〉(E0

γ)p

)

−∇Y

(
−1

2

tk∑
p=1

〈Z, [X, (E0
γ)p]〉(E0

γ)p

)

− λα(Hα)

|Hα|2 〈JX, Y 〉∇JHaZ

=− 1

2

tk∑
p=1

〈Z, [Y, (E0
γ)p]〉

(
1

2
[X, (E0

γ)p]− 1

2
J [X, J(E0

γ)p]

)
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+
1

2

tk∑
p=1

〈Z, [X, (E0
γ)p]〉

(
1

2
[Y, (E0

γ)p]− 1

2
J [Y, J(E0

γ)p]

)

+
λα(Hα)2

2|Hα|2 〈JX, Y 〉JZ

=− 1

4

tk∑
p=1

〈Z, [Y, (E0
γ)p]〉[X, (E0

γ)p] +
1

4

tk∑
p=1

〈Z, [X, (E0
γ)p]〉[Y, (E0

γ)p]

+
1

4

tk∑
p=1

sk∑
q=1

〈Z, [Y, (E0
γ)p]〉〈J [X, J(E0

γ)p], (E
−γ
α )q〉(E−γ

α )q

− 1

4

tk∑
p=1

〈Z, [X, J(E0
γ)p]〉J [Y, J2(E0

γ)p]

+
λα(Hα)2

2|Hα|2 〈JX, Y 〉JZ

=− 1

4

tk∑
p=1

(〈Z, [Y, (E0
γ)p]〉[X, (E0

γ)p]− 〈Z, [X, (E0
γ)p]〉[Y, (E0

γ)p]
)

+
1

4

tk∑
p=1

sk∑
q=1

〈Z, [Y, (E0
γ)p]〉〈[(E0

γ)p, (E
−γ
α )q], X〉(E−γ

α )q

− 1

4

tk∑
p=1

sk∑
q=1

〈Z, [JX, (E0
γ)p]〉〈J [Y, (E0

γ)p], (E
−γ
α )q〉(E−γ

α )q

+
λα(Hα)2

2|Hα|2 〈JX, Y 〉JZ

=− 1

4

tk∑
p=1

(〈Z, [Y, (E0
γ)p]〉[X, (E0

γ)p]− 〈Z, [X, (E0
γ)p]〉[Y, (E0

γ)p]
)

+
1

4

tk∑
p=1

sk∑
q=1

〈JY, [(E0
γ)p, JZ]〉〈[(E0

γ)p, (E
−γ
α )q], X〉(E−γ

α )q

+
1

4

tk∑
p=1

sk∑
q=1

〈X, [(E0
γ)p, JZ]〉〈[(E0

γ)p, (E
−γ
α )q], JY 〉(E−γ

α )q

+
λα(Hα)2

2|Hα|2 〈JX, Y 〉JZ

=− 1

4

tk∑
p=1

(〈Z, [Y, (E0
γ)p]〉[X, (E0

γ)p]− 〈Z, [X, (E0
γ)p]〉[Y, (E0

γ)p]
)
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+
1

4

tk∑
p,r=1

sk∑
q=1

|[(E0
γ)p, (E

−γ
α )q]|〈[(E0

γ)p, JZ], (eq)r〉

× 〈JY, (eq)r〉〈(eq)p, X〉(E−γ
α )q

+
1

4

tk∑
p,r=1

sk∑
q=1

|[(E0
γ)p, (E

−γ
α )q]|〈[(E0

γ)p, JZ], (eq)r〉

× 〈X, (eq)r〉〈(eq)p, JY 〉(E−γ
α )q

+
λα(Hα)2

2|Hα|2 〈JX, Y 〉JZ

=− 1

4

tk∑
p=1

(〈Z, [Y, (E0
γ)p]〉[X, (E0

γ)p]− 〈Z, [X, (E0
γ)p]〉[Y, (E0

γ)p]
)

+
1

4

tk∑
p,r=1

sk∑
q=1

〈[(E0
γ)p, JZ], [(E0

γ)r, (E
−γ
α )q]〉〈JY, (eq)r〉〈(eq)p, X〉(E−γ

α )q

+
1

4

tk∑
p,r=1

sk∑
q=1

〈[(E0
γ)p, JZ], [(E0

γ)r, (E
−γ
α )q]〉〈X, (eq)r〉〈(eq)p, JY 〉(E−γ

α )q

+
λα(Hα)2

2|Hα|2 〈JX, Y 〉JZ

=− 1

4

tk∑
p=1

(〈Z, [Y, (E0
γ)p]〉[X, (E0

γ)p]− 〈Z, [X, (E0
γ)p]〉[Y, (E0

γ)p]
)

+
1

4

tk∑
p,r=1

sk∑
q=1

〈JY, (eq)r〉〈(eq)p, X〉

× (〈[(E0
γ)p, JZ], [(E0

γ)r, (E
−γ
α )q]〉

+ 〈[(E0
γ)r, JZ], [(E0

γ)p, (E
−γ
α )q]〉

)
(E−γ

α )q

+
λα(Hα)2

2|Hα|2 〈JX, Y 〉JZ

=− 1

4

tk∑
p=1

(〈Z, [Y, (E0
γ)p]〉[X, (E0

γ)p]− 〈Z, [X, (E0
γ)p]〉[Y, (E0

γ)p]
)

+
1

4

tk∑
p,r=1

sk∑
q=1

λα(Hα)

|Hα|2 〈(E
0
γ)p, (E

0
γ)r〉〈JZ, (E−γ

α )q〉

× 〈JY, (eq)r〉〈(eq)p, X〉(E−γ
α )q
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+
λα(Hα)2

2|Hα|2 〈JX, Y 〉JZ

=− 1

4

tk∑
p=1

(〈Z, [Y, (E0
γ)p]〉[X, (E0

γ)p]− 〈Z, [X, (E0
γ)p]〉[Y, (E0

γ)p]
)

+
1

4

λα(Hα)

|Hαa|2 〈JY,X〉JZ +
λα(Hα)2

2|Hα|2 〈JX, Y 〉JZ

=− 1

4

tk∑
p=1

(〈Z, [Y, (E0
γ)p]〉[X, (E0

γ)p]− 〈Z, [X, (E0
γ)p]〉[Y, (E0

γ)p]
)

+
1

4

λα(Hα)

|Hα|2 〈JX, Y 〉JZ.

The verification of (11), (12) and (13) is quite similar to that of (10). This completes

the proof of Claim 7.5.

Claim 7.6. Let A ∈ a. Then we have

∇AR = 0.

Proof. Let A ∈ a, and let X,Y, Z ∈ g. It follows from Remark 6.3 that

SA(R(X,Y )Z) =SA(∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z)

=∇SAX∇Y Z +∇X∇SAY Z +∇X∇Y SAZ

−∇SAY∇XZ −∇Y∇SAXZ −∇Y∇XSAZ

−∇[SAX,Y ]Z −∇[X,SAY ]Z −∇[X,Y ]SAZ

=R(SAX,Y )Z + R(X,SAY )Z + R(X,Y )SAZ,

which implies that

(∇AR)(X,Y, Z) = ∇A(R(X,Y )Z)−R(∇AX,Y )Z −R(X,∇AY )Z −R(X,Y )∇AZ

= SA(R(X,Y )Z)−R(SAX,Y )Z −R(X,SAY )Z −R(X,Y )SAZ

= SA(R(X,Y )Z)− SA(R(X,Y )Z)

= 0.

Since X,Y and Z are arbitrary, we have (∇AR) = 0. ¤

77



Claim 7.7. Let X ∈ n+β
α . Then we have

∇XR = 0.

Proof. Assume that α > β > γ > δ > 0. Let A,B ∈ a and W ∈ g. To prove this

Claim, we need to check the following cases:

(1) (∇XR)(A,B,W ) = 0 for any X ∈ g.

(2) (∇XR)(A,Z,W ) = 0 for X ∈ n+β
α and Z ∈ n±δ

γ .

(3) (∇XR)(A,Z,W ) = 0 for X ∈ n+β
α and Z ∈ n0

γ.

(4) (∇XR)(A,Z,W ) = 0 for X ∈ n+β
α and Z ∈ n±γ

β .

(5) (∇XR)(A,Z,W ) = 0 for X ∈ n+β
α and Z ∈ n0

β.

(6) (∇XR)(A,Z,W ) = 0 for X ∈ n+γ
α and Z ∈ n±δ

β .

(7) (∇XR)(A,Z,W ) = 0 for X ∈ n+γ
α and Z ∈ n±γ

β .

(8) (∇XR)(A,Z,W ) = 0 for X ∈ n+δ
α and Z ∈ n±γ

β .

(9) (∇XR)(A,Z,W ) = 0 for X ∈ n+γ
α and Z ∈ n0

β.

(10) (∇XR)(A,Z,W ) = 0 for X ∈ n+β
α and Z ∈ n±γ

α .

(11) (∇XR)(A,Z,W ) = 0 for X ∈ n+β
α and Z ∈ n±β

α .

(12) (∇XR)(A,Z,W ) = 0 for X ∈ n+γ
α and Z ∈ n±β

α .

(13) (∇XR)(A,Z,W ) = 0 for X ∈ n+β
α and Z ∈ n0

α.

(14) (∇XR)(A,Z,W ) = 0 for X ∈ n+γ
β and Z ∈ n±δ

α .

(15) (∇XR)(A,Z,W ) = 0 for X ∈ n+γ
β and Z ∈ n±γ

α .

(16) (∇XR)(A,Z,W ) = 0 for X ∈ n+δ
β and Z ∈ n±γ

α .

(17) (∇XR)(A,Z,W ) = 0 for X ∈ n+γ
β and Z ∈ n±β

α .

(18) (∇XR)(A,Z,W ) = 0 for X ∈ n+δ
γ and Z ∈ n±β

α .
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(19) (∇XR)(A,Z,W ) = 0 for X ∈ n+γ
β and Z ∈ n0

α.

(20) (∇XR)(A, JHβ,W ) = 0 for X ∈ n+β
α .

(21) (∇XR)(A, JHα,W ) = 0 for X ∈ n+β
α .

(22) (∇XR)(A, JHε,W ) = 0 for X ∈ n+β
α and ε 6= α, β.

(23) (∇XR)(Y, Z, W ) = 0 for X ∈ n+β
α , Y ∈ n+γ

β , Z ∈ n±δ
γ .

(24) (∇XR)(Y, Z, W ) = 0 for X ∈ n+β
α , Y ∈ n+γ

β , Z ∈ n0
γ.

(25) (∇XR)(Y, Z, W ) = 0 for X ∈ n+β
α , Y ∈ n+δ

β , Z ∈ n±δ
γ .

(26) (∇XR)(Y, Z, W ) = 0 for X ∈ n+β
α , Y ∈ n+γ

β , Z ∈ n±δ
β .

(27) (∇XR)(Y, Z, W ) = 0 for X ∈ n+β
α , Y ∈ n+γ

β , Z ∈ n±γ
β .

(28) (∇XR)(Y, Z, W ) = 0 for X ∈ n+β
α , Y ∈ n+γ

β , Z ∈ n0
β.

(29) (∇XR)(Y, Z, W ) = 0 for X ∈ n+β
α , Y ∈ n0

β, Z ∈ n0
γ.

(30) (∇XR)(Y, Z, W ) = 0 for X ∈ n+β
α , Y ∈ n0

β, Z ∈ n0
β.

(31) (∇XR)(Y, Z, W ) = 0 for X ∈ n+γ
α , Y ∈ n+δ

β , Z ∈ n±δ
γ .

(32) (∇XR)(Y, Z, W ) = 0 for X ∈ n+γ
α , Y ∈ n+γ

β , Z ∈ n±δ
γ .

(33) (∇XR)(Y, Z, W ) = 0 for X ∈ n+γ
α , Y ∈ n+γ

β , Z ∈ n0
γ.

(34) (∇XR)(Y, Z, W ) = 0 for X ∈ n+δ
α , Y ∈ n+δ

β , Z ∈ n±δ
γ .

(35) (∇XR)(Y, Z, W ) = 0 for X ∈ n+γ
α , Y ∈ n+γ

β , Z ∈ n±δ
β .

(36) (∇XR)(Y, Z, W ) = 0 for X ∈ n+γ
α , Y ∈ n+γ

β , Z ∈ n±γ
β .

(37) (∇XR)(Y, Z, W ) = 0 for X ∈ n+γ
α , Y ∈ n+γ

β , Z ∈ n0
β.

(38) (∇XR)(Y, Z, W ) = 0 for X ∈ n+δ
α , Y ∈ n+γ

β , Z ∈ n±δ
γ .

(39) (∇XR)(Y, Z, W ) = 0 for X ∈ n+δ
α , Y ∈ n+γ

β , Z ∈ n±δ
β .

(40) (∇XR)(Y, Z, W ) = 0 for X ∈ n+γ
α , Y ∈ n0

β, Z ∈ n0
γ.
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(41) (∇XR)(Y, Z, W ) = 0 for X ∈ n+β
α , Y ∈ n+γ

α , Z ∈ n±δ
γ .

(42) (∇XR)(Y, Z, W ) = 0 for X ∈ n+β
α , Y ∈ n+γ

α , Z ∈ n0
γ.

(43) (∇XR)(Y, Z, W ) = 0 for X ∈ n+β
α , Y ∈ n+δ

α , Z ∈ n±δ
γ .

(44) (∇XR)(Y, Z, W ) = 0 for X ∈ n+β
α , Y ∈ n+γ

α , Z ∈ n±δ
β .

(45) (∇XR)(Y, Z, W ) = 0 for X ∈ n+β
α , Y ∈ n+γ

α , Z ∈ n±γ
β .

(46) (∇XR)(Y, Z, W ) = 0 for X ∈ n+β
α , Y ∈ n+δ

α , Z ∈ n±γ
β .

(47) (∇XR)(Y, Z, W ) = 0 for X ∈ n+β
α , Y ∈ n+γ

α , Z ∈ n0
β.

(48) (∇XR)(Y, Z, W ) = 0 for X ∈ n+γ
α , Y ∈ n+δ

α , Z ∈ n±δ
β .

(49) (∇XR)(Y, Z, W ) = 0 for X ∈ n+γ
α , Y ∈ n+δ

α , Z ∈ n±γ
β .

(50) (∇XR)(Y, Z, W ) = 0 for X ∈ n+β
α , Y ∈ n+γ

α , Z ∈ n±δ
α .

(51) (∇XR)(Y, Z, W ) = 0 for X ∈ n+β
α , Y ∈ n+γ

α , Z ∈ n±γ
α .

(52) (∇XR)(Y, Z, W ) = 0 for X ∈ n+β
α , Y ∈ n+γ

α , Z ∈ n0
α.

(53) (∇XR)(Y, Z, W ) = 0 for X ∈ n+β
α , Y ∈ n+β

α , Z ∈ n±γ
β .

(54) (∇XR)(Y, Z, W ) = 0 for X ∈ n+β
α , Y ∈ n+β

α , Z ∈ n0
β.

(55) (∇XR)(Y, Z, W ) = 0 for X ∈ n+γ
α , Y ∈ n+γ

α , Z ∈ n±γ
β .

(56) (∇XR)(Y, Z, W ) = 0 for X ∈ n+β
α , Y ∈ n+β

α , Z ∈ n±γ
β .

(57) (∇XR)(Y, Z, W ) = 0 for X ∈ n+β
α , Y ∈ n+β

α , Z ∈ n±β
α .

(58) (∇XR)(Y, Z, W ) = 0 for X ∈ n+β
α , Y ∈ n+β

α , Z ∈ n0
α.

(59) (∇XR)(Y, Z, W ) = 0 for X ∈ n+γ
α , Y ∈ n+β

α , Z ∈ n±δ
γ .

(60) (∇XR)(Y, Z, W ) = 0 for X ∈ n+γ
α , Y ∈ n+β

α , Z ∈ n0
γ.

(61) (∇XR)(Y, Z, W ) = 0 for X ∈ n+δ
α , Y ∈ n+β

α , Z ∈ n±δ
γ .

(62) (∇XR)(Y, Z, W ) = 0 for X ∈ n+γ
α , Y ∈ n+β

α , Z ∈ n±δ
β .
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(63) (∇XR)(Y, Z, W ) = 0 for X ∈ n+γ
α , Y ∈ n+β

α , Z ∈ n±γ
β .

(64) (∇XR)(Y, Z, W ) = 0 for X ∈ n+δ
α , Y ∈ n+β

α , Z ∈ n±γ
β .

(65) (∇XR)(Y, Z, W ) = 0 for X ∈ n+γ
α , Y ∈ n+β

α , Z ∈ n0
β.

(66) (∇XR)(Y, Z, W ) = 0 for X ∈ n+δ
α , Y ∈ n+γ

α , Z ∈ n±δ
β .

(67) (∇XR)(Y, Z, W ) = 0 for X ∈ n+δ
α , Y ∈ n+γ

α , Z ∈ n±γ
β .

(68) (∇XR)(Y, Z, W ) = 0 for X ∈ n+γ
α , Y ∈ n+β

α , Z ∈ n±δ
α .

(69) (∇XR)(Y, Z, W ) = 0 for X ∈ n+γ
α , Y ∈ n+β

α , Z ∈ n±γ
α .

(70) (∇XR)(Y, Z, W ) = 0 for X ∈ n+δ
α , Y ∈ n+β

α , Z ∈ n±γ
α .

(71) (∇XR)(Y, Z, W ) = 0 for X ∈ n+γ
α , Y ∈ n+β

α , Z ∈ n±β
α .

(72) (∇XR)(Y, Z, W ) = 0 for X ∈ n+δ
α , Y ∈ n+β

α , Z ∈ n0
α.

(73) (∇XR)(Y, Z, W ) = 0 for X ∈ n+β
α , Y ∈ n0

α, Z ∈ n0
γ.

(74) (∇XR)(Y, Z, W ) = 0 for X ∈ n+β
α , Y ∈ n0

α, Z ∈ n±γ
β .

(75) (∇XR)(Y, Z, W ) = 0 for X ∈ n+β
α , Y ∈ n0

α, Z ∈ n0
β.

(76) (∇XR)(Y, Z, W ) = 0 for X ∈ n+γ
α , Y ∈ n0

α, Z ∈ n±γ
β .

(77) (∇XR)(Y, Z, W ) = 0 for X ∈ n+γ
α , Y ∈ n0

α, Z ∈ n0
β.

(78) (∇XR)(Y, Z, W ) = 0 for X ∈ n+β
α , Y ∈ n0

α, Z ∈ n0
α.

(79) (∇XR)(Y, Z, W ) = 0 for X ∈ n+γ
β , Y ∈ n+δ

α , Z ∈ n±δ
γ .

(80) (∇XR)(Y, Z, W ) = 0 for X ∈ n+γ
β , Y ∈ n+δ

α , Z ∈ n±δ
β .

(81) (∇XR)(Y, Z, W ) = 0 for X ∈ n+γ
β , Y ∈ n+γ

α , Z ∈ n±δ
γ .

(82) (∇XR)(Y, Z, W ) = 0 for X ∈ n+γ
β , Y ∈ n+γ

α , Z ∈ n0
γ.

(83) (∇XR)(Y, Z, W ) = 0 for X ∈ n+δ
β , Y ∈ n+δ

α , Z ∈ n±δ
γ .

(84) (∇XR)(Y, Z, W ) = 0 for X ∈ n+γ
β , Y ∈ n+γ

α , Z ∈ n±δ
β .
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(85) (∇XR)(Y, Z, W ) = 0 for X ∈ n+γ
β , Y ∈ n+γ

α , Z ∈ n±γ
β .

(86) (∇XR)(Y, Z, W ) = 0 for X ∈ n+δ
β , Y ∈ n+δ

α , Z ∈ n±γ
β .

(87) (∇XR)(Y, Z, W ) = 0 for X ∈ n+δ
β , Y ∈ n+δ

α , Z ∈ n0
β.

(88) (∇XR)(Y, Z, W ) = 0 for X ∈ n+δ
γ , Y ∈ n+δ

α , Z ∈ n±δ
β .

(89) (∇XR)(Y, Z, W ) = 0 for X ∈ n+δ
γ , Y ∈ n+δ

α , Z ∈ n±γ
β .

(90) (∇XR)(Y, Z, W ) = 0 for X ∈ n+γ
β , Y ∈ n+γ

α , Z ∈ n±δ
α .

(91) (∇XR)(Y, Z, W ) = 0 for X ∈ n+γ
β , Y ∈ n+γ

α , Z ∈ n±γ
α .

(92) (∇XR)(Y, Z, W ) = 0 for X ∈ n+γ
β , Y ∈ n+γ

α , Z ∈ n0
α.

(93) (∇XR)(Y, Z, W ) = 0 for X ∈ n+δ
β , Y ∈ n+γ

α , Z ∈ n±δ
γ .

(94) (∇XR)(Y, Z, W ) = 0 for X ∈ n+δ
β , Y ∈ n+γ

α , Z ∈ n±γ
β .

(95) (∇XR)(Y, Z, W ) = 0 for X ∈ n+δ
β , Y ∈ n+γ

α , Z ∈ n±δ
α .

(96) (∇XR)(Y, Z, W ) = 0 for X ∈ n+γ
β , Y ∈ n+β

α , Z ∈ n±δ
γ .

(97) (∇XR)(Y, Z, W ) = 0 for X ∈ n+γ
β , Y ∈ n+β

α , Z ∈ n0
γ.

(98) (∇XR)(Y, Z, W ) = 0 for X ∈ n+δ
β , Y ∈ n+β

α , Z ∈ n±δ
γ .

(99) (∇XR)(Y, Z, W ) = 0 for X ∈ n+γ
β , Y ∈ n+β

α , Z ∈ n±δ
β .

(100) (∇XR)(Y, Z, W ) = 0 for X ∈ n+γ
β , Y ∈ n+β

α , Z ∈ n±γ
β .

(101) (∇XR)(Y, Z, W ) = 0 for X ∈ n+δ
β , Y ∈ n+β

α , Z ∈ n±γ
β .

(102) (∇XR)(Y, Z, W ) = 0 for X ∈ n+γ
β , Y ∈ n+β

α , Z ∈ n0
β.

(103) (∇XR)(Y, Z, W ) = 0 for X ∈ n+δ
γ , Y ∈ n+γ

α , Z ∈ n±δ
β .

(104) (∇XR)(Y, Z, W ) = 0 for X ∈ n+δ
γ , Y ∈ n+γ

α , Z ∈ n±γ
β .

(105) (∇XR)(Y, Z, W ) = 0 for X ∈ n+γ
β , Y ∈ n+β

α , Z ∈ n±δ
α .

(106) (∇XR)(Y, Z, W ) = 0 for X ∈ n+γ
β , Y ∈ n+β

α , Z ∈ n±γ
α .
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(107) (∇XR)(Y, Z, W ) = 0 for X ∈ n+δ
β , Y ∈ n+β

α , Z ∈ n±γ
α .

(108) (∇XR)(Y, Z, W ) = 0 for X ∈ n+γ
β , Y ∈ n+β

α , Z ∈ n±β
α .

(109) (∇XR)(Y, Z, W ) = 0 for X ∈ n+γ
β , Y ∈ n+β

α , Z ∈ n0
α.

(110) (∇XR)(Y, Z, W ) = 0 for X ∈ n+δ
γ , Y ∈ n+β

α , Z ∈ n±δ
β .

(111) (∇XR)(Y, Z, W ) = 0 for X ∈ n+δ
γ , Y ∈ n+β

α , Z ∈ n±δ
α .

(112) (∇XR)(Y, Z, W ) = 0 for X ∈ n+δ
γ , Y ∈ n+β

α , Z ∈ n±γ
α .

Let α, β ∈ Λai
such that α > β > 0. Also, let (γ, δ), (ε, ζ) ∈ L and suppose (γ, δ) ≥

(ε, ζ).

(113) If α 6= γ, δ, ε, ζ and β 6= γ, δ, ε, ζ, then (∇XR)(Y, Z, W ) = 0 for any X ∈ n+β
α , Y ∈

n+δ
γ and Z ∈ n±ζ

ε .

(114) If γ 6= α, β, ε, ζ and δ 6= α, β, ε, ζ, then (∇XR)(Y, Z, W ) = 0 for any X ∈ n+β
α , Y ∈

n+δ
γ and Z ∈ n±ζ

ε .

(115) If ε 6= α, β, γ, δ and f 6= α, β, γ, δ, then (∇XR)(Y, Z, W ) = 0 for any X ∈
n+β

α , Y ∈ n+δ
γ and Z ∈ n±ζ

ε .

Now, we are going to investigate each case as follows.

(1) It follows from Bianchi’s second identity combined with Claim 7.6 that

(∇XR)(A,B,W ) = −(∇AR)(B, X, W )− (∇BR)(X,A, W ) = 0

for any X,W ∈ g.

(2) Let X ∈ nβ
α and Z ∈ n±δ

γ . Then it is easy to see that ∇XZ = 0 and [X,Z] = 0.

This together with Remarks 6.2, 6.3 and Claim 7.5 implies that

(∇XR)(A,Z,W )

= ∇X(R(A,Z)W )−R(∇XA,Z)W −R(A,∇XZ)W −R(A,Z)∇XW

= −1

2
λ±δ

γ (A)∇X∇ZW +
1

2
λ+β

α (A)R(X,Z)W +
1

2
λ±δ

γ (A)∇Z∇XW

= −1

2
λ±δ

γ (A)R(X,Z)W +
1

2
λ+β

α (A)R(X,Z)W

=

(
1

2
λ±δ

γ (A)− 1

2
λ+β

α (A)

)
∇∇XZW
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= 0.

We now note that in the cases of (3), (6), (8), (9), (14), (16), (18) and (19), we also

have ∇XZ = 0 and [X,Z] = 0. Hence in these cases the proof goes in a quite similar

fashion to that of (2).

(4) Let X ∈ n+β
α and Z ∈ n±γ

β . It follows from Remark 6.3 and Claim 7.5 with

[X,Z] = 0 that

(∇XR)(A,Z,W )

= ∇X(R(A,Z)W )−R(∇XA,Z)W −R(A,∇XZ)W −R(A,Z)∇XW

= −1

2
λ±γ

β (A)∇X∇ZW +
1

2
λ+β

α (A)R(X,Z)W − 1

2
R(A, [JX, JZ])W

+
1

2
λ±γ

β (A)∇Z∇XW

= −1

2
λ±γ

β (A)R(X,Z)W +
1

2
λ+β

α (A)R(X,Z)W +
1

4
λ∓γ

α (A)∇[JX,JZ]W

=
1

2
λ∓γ

α (A)R(X,Z)W +
1

4
λ∓γ

α (A)∇[JX,JZ]W

= −1

2
λ∓γ

α (A)∇∇XZW +
1

2
λ∓γ

α (A)∇∇XZW

= 0.

Regarding the cases of (5), (10), (12) and (13), we still have [X,Z] = 0, so that the

proof of these cases goes similarly to that of (4). Hence we omit the proof.

(7) Let X ∈ n+γ
α . We first deal with the case where Z ∈ n+γ

β . Since we have

[X,Z] = 0, the proof of this case is similar to that of (4).

Next, let Z ∈ n−γ
β . It follows from Remarks 6.2 and 6.3 together with Claim 7.5

that

(∇XR)(A,Z,W )

= ∇X(R(A,Z)W )−R(∇XA,Z)W −R(A,∇XZ)W −R(A,Z)∇XW

=− 1

2
λ−γ

β (A)∇X∇ZW +
1

2
λ+γ

α R(X,Z)W − 1

2
R(A, [X,Z])W

+
1

2
λ−γ

β (A)∇Z∇XW

=− 1

2
λ−γ

β (A)R(X,Z)W − 1

2
λ−γ

β (A)∇[X,Z]W +
1

2
λ+γ

α R(X,Z)W

+
1

4
λ+β

α ∇[X,Z]W
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=
1

2
(λα − λβ + 2λγ) (A)R(X,Z)W +

1

4
(λα − λβ + 2λγ) (A)∇[X,Z]W

=− 1

2
(λα − λβ + 2λγ) (A)∇∇XZW +

1

2
(λα − λβ + 2λγ) (A)∇∇XZW

= 0.

The proof of (15) and (17) are similar to (7), since ∇XZ 6= 0 and [X,Z + JZ] 6= 0

in these cases. Hence we omit the proof.

(11) Let X ∈ n+β
α . We first prove the case where Z ∈ n+β

α . It follows from Remarks

6.2 and 6.3 that

(∇XR)(A,Z,W )

= ∇X(R(A,Z)W )−R(∇XA,Z)W −R(A,∇XZ)W −R(A,Z)∇XW

=− 1

2
λ+β

α (A)∇X∇ZW +
1

2
λ+β

α R(X,Z)W

−R

(
A,

λα(Hα)

2|Hα|2 〈X,Y 〉Hα +
λγ(Hβ)

2|Hβ|2 〈X,Y 〉Hβ

)
W +

1

2
λ+β

α (A)∇Z∇XW

=− 1

2
λ+β

α (A)R(X,Z)W +
1

2
λ+β

α R(X,Z)W

= 0.

Next, we prove the case where Z ∈ n−β
α . It follows from Remarks 6.2 and 6.3

together with Claim 7.5 that

(∇XR)(A,Z,W )

= ∇X(R(A,Z)W )−R(∇XA,Z)W −R(A,∇XZ)W −R(A,Z)∇XW

=− 1

2
λ−β

α (A)∇X∇ZW +
1

2
λ+β

α R(X,Z)W

−R

(
A,

λα(Hα)

2|Hα|2 〈JX, Y 〉JHα +
λβ(Hβ)

2|Hβ|2 〈JX, Y 〉JHβ

)
W

+
1

2
λ−β

α (A)∇Z∇XW

=− 1

2
λ−β

α (A)R(X,Z)W − 1

2
λ−β

α (A)∇[X,Z]W +
1

2
λ+β

α R(X,Z)W

+
λα(Hα)

2|Hα|2 λα(A)〈JX, Y 〉∇JHαW +
λβ(Hβ)

2|Hβ|2 λβ(A)〈JX, Y 〉∇JHβ
W

=− λβ(A)∇∇XZW − (λα − λβ)(A)
λα(Hα)

2|Hα|2 〈JX, Z〉∇JHαW
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+
λα(Hα)

2|Hα|2 λα(A)〈JX, Y 〉∇JHαW +
λβ(Hβ)

2|Hβ|2 λβ(A)〈JX, Y 〉∇JHβ
W

=− λβ(A)

(
λα(Hα)

2|Hα|2 〈JX, Z〉∇JHαW +
λβ(Hβ)

2|Hβ|2 〈JX, Z〉∇JHβ
W

)

+ λβ(A)
λα(Hα)

2|Hα|2 〈JX, Z〉∇JHαW +
λγ(Hβ)

2|Hβ|2 λβ(A)〈JX, Y 〉∇JHβ
W

= 0.

(20) It follows from Remarks 6.2 and 6.3 with X ∈ n+β
α that

(∇XR)(A, JHβ,W )

= ∇X(R(A, JHβ)W )−R(∇XA, JHβ)W

−R(A,∇XJHβ)W −R(A, JHβ)∇XW

=− λβ(A)∇X∇JHβ
W +

1

2
λ+β

α (A)R(X, JHβ)W

+
1

2
λβ(Hβ)R(A, JX)W + λβ(A)∇JHβ

∇XW

=− λβ(A)R(X, JHβ)W +
1

2
λ+β

α (A)R(X, JHβ)W − 1

4
λβ(Hβ)λ−β

α (A)∇JXW

=
1

2
λ−β

α (A)R(Hβ, JX)W − 1

4
λβ(Hβ)λ−β

a (A)∇JXW

=
1

4
λ−β

α (A)λβ(Hβ)∇JXW − 1

4
λβ(Hβ)λ−β

α (A)∇JXW

= 0.

The proof of (21) and (22) can be done in a quite similar manner to that of (20).

To prove (23) and (24), let X ∈ n+β
α and Y ∈ n+γ

β . If Z ∈ nγ, then it is easy to see

that ∇XZ = 0 and [X,∇Y Z] = 0. Then, making use of Remark 6.2 combined with

Claim 7.5, we have

(∇XR)(Y, Z, W )

= ∇X(R(Y, Z)W )−R(∇XY, Z)W −R(Y,∇XZ)W −R(Y, Z)∇XW

= −∇X∇∇Y ZW − 1

2
R([JX, JY ], Z)W +∇∇Y Z∇XW

= −1

2
∇X∇[JY,JZ]W − 1

2
R([JX, JY ], Z)W +

1

2
∇[JY,JZ]∇XW

= −1

2
R(X, [JY, JZ])W − 1

2
R(J [JX, JY ], JZ)W

=
1

2
∇∇X [JY,JZ]W +

1

2
∇∇J[JX,JY ]JZW
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=
1

4
∇[JX,J [JY,JZ]]W +

1

4
∇[J2[JX,JY ],J2Z]W

= −1

4
∇[JX,[JY,Z]]W +

1

4
∇[[JX,JY ],Z]W

= −1

4
∇[JX,[JY,Z]]W +

1

4
∇[JX,[JY,Z]]W

= 0.

We now note that in the cases of (24), (25), (29), (35), (37), (41), (42), (43),

(48), (62), (64), (65), (67), (73), (77), (90), (92), (105), (107) and (109), we also have

∇XZ = 0 and [X,∇Y Z] = 0. Hence the proof of these cases goes similarly to that of

(23).

(26) Let X ∈ n+β
α and Y ∈ n+γ

β . It follows from Remark 6.2 with Z ∈ n±δ
β that

[X,∇Y Z] = 0 and ∇X∇Y Z = 0.

In the case where Z ∈ n+δ
β , it follows from Claim 7.5 together with these formulas

that

(∇XR)(Y, Z, W )

= ∇X(R(Y, Z)W )−R(∇XY, Z)W −R(Y,∇XZ)W −R(Y, Z)∇XW

= −∇X∇∇Y ZW − 1

2
R([JX, JY ], Z)W − 1

2
R(Y, [JX, JZ])W +∇∇Y Z∇XW

= −R(X,∇Y Z)W − 1

2
R([JX, JY ], Z)W − 1

2
R(Y, [JX, JZ])W

= ∇∇X∇Y ZW − 1

2
R(J [JX, JY ], JZ)W +

1

2
R(J [JX, JZ], JY )W

=
1

2
∇∇J[JX,JY ]JZW − 1

2
∇∇J[JX,JZ]JY W

= 0.

The proof for the case of Z ∈ n−δ
β is quite similar to that for Z ∈ n+δ

β . Hence we omit

the detail.

In the cases of (28), (32), (33), (34), (50), (52), (68), (70), (72), (81), (82), (83),

(85), (88), (99), (101), (102) and (104), we also have [X,∇Y Z] = 0 and ∇X∇Y Z = 0,

so that the proof is quite similar to that of (26).

(27) Let X ∈ n+β
α and Y ∈ n+γ

β . In the case where Z ∈ n+γ
β , by a direct calculation

using Remark 6.2 and Claim 7.5, we see that (∇XR)(Y, Z, W ) = 0 for W ∈ n, except

the case where W belongs to n+γ
β or n+γ

α . To prove the case where W ∈ n+γ
β , let

{(E−γ
α )1, . . . , (E

−γ
α )sk

} be an orthonormal basis of n−γ
α with respect to 〈 , 〉. It follows
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from Remarks 6.2 and 6.5 together with Claim 7.5 that

(∇XR)(Y, Z, W )

= ∇X(R(Y, Z)W )−R(∇XY, Z)W −R(Y,∇XZ)W −R(Y, Z)∇XW

= ∇X

(
−λα(Hα)2

2|Hα|2 (〈Z, W 〉Y − 〈Y, W 〉Z)

)

− 1

2
R([JX, JY ], Z)W − 1

2
R(Y, [JX, JZ])W − 1

2
R(Y, Z)[JX, JW ]

=− λα(Hα)2

4|Hα|2 (〈Z, W 〉[JX, JY ]− 〈Y, W 〉[JX, JZ])

+
1

2
R([JX, Y ], JZ)W − 1

2
R([JX, Z], JY )W − 1

2
JR(Y, Z)[JX, W ]

=− λα(Hα)2

4|Hα|2 (〈Z, W 〉[JX, JY ]− 〈Y, W 〉[JX, JZ])

− 1

2
∇∇[JX,Y ]JZW +

1

2
∇∇[JX,Z]JY W

− 1

8
J [J [[JX, W ], JZ], Y ] +

1

8
J [J [[JX, W ], JY ], Z]

=− λα(Hα)2

4|Hα|2 (〈Z, W 〉[JX, JY ]− 〈Y, W 〉[JX, JZ])

− 1

4
∇[[JX,Y ],JZ]W +

1

4
∇[[JX,Z],JY ]W

− 1

8
(J [J [[JX, JZ],W ], Y ] + J [J [JX, [W,JZ]], Y ])

+
1

8
(J [J [[JX, JY ],W ], Z] + J [J [JX, [W,JY ]], Z])

=− λα(Hα)2

4|Hα|2 (〈Z, W 〉J [JX, Y ]− 〈Y, W 〉J [JX, Z])

− 1

8
[J [[JX, Y ], JZ], JW ] +

1

8
[J [[JX, Z], JY ], JW ]

− 1

8
J [J [[JX, JZ],W ], Y ] +

λβ(Hβ)2

8|Hβ|2 〈JW, JZ〉J [JX, Y ]

+
1

8
J [J [[JX, JY ],W ], Z]− λβ(Hβ)2

8|Hβ|2 〈JW, JY 〉J [JX, Z]

=− λα(Hα)2

8|Hα|2 (〈Z, W 〉J [JX, Y ]− 〈Y, W 〉J [JX, Z])

− 1

8

sk∑
p=1

〈[J [[JX, Y ], JZ], JW ], (E−γ
α )p〉(E−γ

α )p
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+
1

8

sk∑
p=1

〈[J [[JX, Z], JY ], JW ], (E−γ
α )p〉(E−γ

α )p

+
1

8

sk∑
p=1

〈[J [[JX, Z], JW ], JY ], (E−γ
α )p〉(E−γ

α )p

− 1

8

sk∑
p=1

〈[J [[JX, Y ], JW ], JZ], (E−γ
α )p〉(E−γ

α )p

=− λα(Hα)2

8|Hα|2 (〈Z, W 〉J [JX, Y ]− 〈Y, W 〉J [JX, Z])

+
1

8

sk∑
p=1

〈[JW, J(E−γ
α )p], [[JX, Y ], JZ]〉(E−γ

α )p

− 1

8

sk∑
p=1

〈[JW, J(E−γ
α )p], [[JX, Z], JY ]〉(E−γ

α )p

− 1

8

sk∑
p=1

〈[JY, J(E−γ
α )p], [[JX, Z], JW ]〉(E−γ

α )p

+
1

8

sk∑
p=1

〈[JZ, J(E−γ
α )p], [[JX, Y ], JW ]〉(E−γ

α )p

=− λα(Hα)2

8|Hα|2 (〈Z, W 〉J [JX, Y ]− 〈Y, W 〉J [JX, Z])

− λα(Hα)2

8|Hα|2
sk∑

p=1

〈JW, JZ〉〈J(E−γ
α )p, [JX, Y ]〉(E−γ

α )p

+
λα(Hα)2

8|Hα|2
sk∑

p=1

〈JW, JY 〉〈J(E−γ
α )p, [JX, Z]〉(E−γ

α )p

=− λα(Hα)2

8|Hα|2 (〈Z, W 〉J [JX, Y ]− 〈Y, W 〉J [JX, Z])

+
λα(Hα)2

8|Hα|2 〈W,Z〉J [JX, Y ]− λα(Hα)2

8|Hα|2 〈W,Y 〉J [JX, Z]

= 0.

Next, to prove the case where W ∈ n+γ
α , let {(E−γ

β )1, . . . , (E
−γ
β )sk

} be an orthonor-

mal basis of n−γ
β . By making use of Remarks 6.2 and 6.5 together with Claim 7.5, we

have

(∇XR)(Y, Z, W )
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= ∇X(R(Y, Z)W )−R(∇XY, Z)W −R(Y,∇XZ)W −R(Y, Z)∇XW

= ∇X

(
1

4
[J [W,JZ], Y ]− 1

4
[J [W,JY ], Z]

)

− 1

2
R([JX, JY ], Z)W − 1

2
R(Y, [JX, JZ])W

−R(Y, Z)

(
−1

2

sk∑
p=1

〈X, [W, (E−γ
β )p]〉(E−γ

β )p

)

=− 1

8

sk∑
p=1

〈X, [[J [W,JZ], Y ], (E−γ
β )p]〉(E−γ

β )p

+
1

8

sk∑
p=1

〈X, [[J [W,JY ], Z], (E−γ
β )p]〉(E−γ

β )p

− 1

2
R(J [JX, JY ], JZ)W +

1

2
R(J [JX, JZ], JY )W

− 1

2

sk∑
p=1

〈X, [W, (E−γ
β )p]〉JR(Y, Z)J(E−γ

β )p

=− 1

8

sk∑
p=1

〈X, [[J [W,JZ], (E−γ
β )p], Y ] + [J [W,JZ], [Y, (E−γ

β )p]]〉(E−γ
β )p

+
1

8

sk∑
p=1

〈X, [[J [W,JY ], (E−γ
β )p], Z] + [J [W,JY ], [Z, (E−γ

β )p]]〉(E−γ
β )p

+
1

2
∇∇J[JX,JY ]JZW − 1

2
∇∇J[JX,JZ]JY W

+
λβ(Hβ)2

4|Hβ|2
sk∑

p=1

〈X, [W, (E−γ
β )p]〉J

(〈Z, J(E−γ
β )p〉Y − 〈Y, J(E−γ

β )p〉Z
)

=− 1

8

sk∑
p=1

〈J [J [W,JZ], (E−γ
β )p], [Y, JX]〉(E−γ

β )p

− 1

8

sk∑
p=1

λβ(Hβ)2

|Hβ|2 〈JY, (E−γ
β )p〉〈X, J2[W,JZ]〉(E−γ

β )p

+
1

8

sk∑
p=1

〈J [J [W,JY ], (E−γ
β )p], [Z, JX]〉(E−γ

β )p

+
1

8

sk∑
p=1

λβ(Hβ)2

|Hβ|2 〈JZ, (E−γ
β )p〉〈X, J2[W,JY ]〉(E−γ

β )p
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+
1

4
∇[J [JX,JY ],JZ]W − 1

4
∇[J [JX,JZ],JY ]W

− λβ(Hβ)2

4|Hβ|2 〈X, [W,JZ]〉JY +
λβ(Hβ)2

4|Hβ|2 〈X, [W,JY ]〉JZ

=− 1

8

sk∑
p=1

〈[(E−γ
β )p, [Y, JX]], J2[W,JZ]〉(E−γ

β )p +
λβ(Hβ)2

8|Hβ|2 〈X, [W,JZ]〉JY

+
1

8

sk∑
p=1

〈[(E−γ
β )p, [Z, JX]], J2[W,JY ]〉(E−γ

β )p − λβ(Hβ)2

8|Hβ|2 〈X, [W,JY ]〉JZ

− 1

8

sk∑
p=1

〈[J [JX, JY ], JZ], [W, (E−γ
β )p]〉(E−γ

β )p

+
1

8

sk∑
p=1

〈[J [JX, JZ], JY ], [W, (E−γ
β )p]〉(E−γ

β )p

− λβ(Hβ)2

4|Hβ|2 〈X, [W,JZ]〉JY +
λβ(Hβ)2

4|Hβ|2 〈X, [W,JY ]〉JZ

=
1

8

sk∑
p=1

〈[[JX, Y ], (E−γ
β )p], [W,JZ]〉(E−γ

β )p

− 1

8

sk∑
p=1

〈[[JX, Z], (E−γ
β )p], [W,JY ]〉(E−γ

β )p

+
1

8

sk∑
p=1

〈[[JX, Y ], JZ], [W, (E−γ
β )p]〉(E−γ

β )p

− 1

8

sk∑
p=1

〈[[JX, Z], JY ], [W, (E−γ
β )p]〉(E−γ

β )p

− λβ(Hβ)2

8|Hβ|2 〈X, [W,JZ]〉JY +
λβ(Hβ)2

8|Hβ|2 〈X, [W,JY ]〉JZ

=
λβ(Hβ)2

8|Hβ|2
sk∑

p=1

〈[JX, Y ],W 〉〈(E−γ
β )p, JZ〉(E−γ

β )p

− λβ(Hβ)2

8|Hβ|2
sk∑

p=1

〈[JX, Z],W 〉〈(E−γ
β )p, JY 〉(E−γ

β )p

− λβ(Hβ)2

8|Hβ|2 〈JW, [JZ, JX]〉JY +
λβ(Hβ)2

8|Hβ|2 〈JW, [JY, JX]〉JZ

=
λβ(Hβ)2

8|Hβ|2 〈[JX, Y ],W 〉JZ − λβ(Hβ)2

8|Hβ|2 〈[JX, Z],W 〉JY
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+
λβ(Hβ)2

8|Hβ|2 〈W, [JX, Z]〉JY − λβ(Hβ)2

8|Hβ|2 〈W, [JX, Y ]〉JZ

= 0.

In the case where Z ∈ n−γ
β , a direct calculation using Claim 7.5 and Remark 6.2

shows that (∇XR)(Y, Z, W ) = 0 for any W ∈ g. This completes the proof of (27).

By a similar argument, we can also prove the cases of (36), (51), (91) and (108).

(30) Let X ∈ n+β
α and Y, Z ∈ n0

β. By a direct calculation making use of Remark

6.2 and Claim 7.5, we have (∇XR)(Y, Z, W ) = 0 for W ∈ g, except the case where W

belongs either to n0
β, or n+β

α or n0
α.

Now, to prove the case where W ∈ n0
β, let {(E0

α)1, . . . , (E
0
α)tk} be an orthonormal

basis of n0
α. It follows from Remarks 6.2 and 6.5 together with Claim 7.5 that

(∇XR)(Y, Z, W )

= ∇X(R(Y, Z)W )−R(∇XY, Z)W −R(Y,∇XZ)W −R(Y, Z)∇XW

=
λβ(Hβ)2

4|Hβ|2 ∇X (−〈Z, W 〉Y − 〈JZ,W 〉JY

+〈Y, W 〉Z + 〈JY, W 〉JZ + 2〈JY, Z〉JW )

− 1

2
R([JX, JY ], Z)W − 1

2
R(Y, [JX, JZ])W − 1

2
R(Y, Z)[JX, JW ]

=− λβ(Hβ)2

8|Hβ|2 〈Z, W 〉[JX, JY ] +
λβ(Hβ)2

8|Hβ|2 〈JZ, W 〉[JX, Y ]

+
λβ(Hβ)2

8|Hβ|2 〈Y, W 〉[JX, JZ]− λβ(Hβ)2

8|Hβ|2 〈JY, W 〉[JX, Z]

− λβ(Hβ)2

4|Hβ|2 〈JY, Z〉[JX, W ] +
1

2
∇∇[JX,JY ]ZW − 1

2
∇∇[JX,JZ]Y W

− 1

8
([J [Z, [JX, JW ]], JY ]− [Y, J [[JX, JW ], JZ]]

− [J [Y, [JX, JW ]], JZ] + [Z, J [[JX, JW ], JY ]])

=− λβ(Hβ)2

8|Hβ|2 〈Z, W 〉[JX, JY ] +
λβ(Hβ)2

8|Hβ|2 〈JZ, W 〉[JX, Y ]

+
λβ(Hβ)2

8|Hβ|2 〈Y, W 〉[JX, JZ]− λβ(Hβ)2

8|Hβ|2 〈JY, W 〉[JX, Z]

− λβ(Hβ)2

4|Hβ|2 〈JY, Z〉[JX, W ]

+
1

4
∇[[JX,JY ],Z]−J [[JX,JY ],JZ]W − 1

4
∇[[JX,JZ],Y ]−J [[JX,JZ],JY ]W
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− 1

8
([J [Z, [JX, JW ]], JY ]− [Y, J [[JX, JW ], JZ]]

− [J [Y, [JX, JW ]], JZ] + [Z, J [[JX, JW ], JY ]])

=− λβ(Hβ)2

8|Hβ|2 〈Z, W 〉[JX, JY ] +
λβ(Hβ)2

8|Hβ|2 〈JZ, W 〉[JX, Y ]

+
λβ(Hβ)2

8|Hβ|2 〈Y, W 〉[JX, JZ]− λβ(Hβ)2

8|Hβ|2 〈JY, W 〉[JX, Z]

− λβ(Hβ)2

4|Hβ|2 〈JY, Z〉[JX, W ]

+
1

8
[J [[JX, JY ], Z], JW ]− 1

8
[J [[JX, JY ], JZ],W ]

− 1

8
[J [[JX, JZ], Y ], JW ] +

1

8
[J [[JX, JZ], JY ],W ]

− 1

8
([J [Z, [JX, JW ]], JY ]− [Y, J [[JX, JW ], JZ]]

− [J [Y, [JX, JW ]], JZ] + [Z, J [[JX, JW ], JY ]])

=− λβ(Hβ)2

8|Hβ|2 〈Z, W 〉[JX, JY ] +
λβ(Hβ)2

8|Hβ|2 〈JZ, W 〉[JX, Y ]

+
λβ(Hβ)2

8|Hβ|2 〈Y, W 〉[JX, JZ]− λβ(Hβ)2

8|Hβ|2 〈JY, W 〉[JX, Z]

− λβ(Hβ)2

4|Hβ|2 〈JY, Z〉[JX, W ]

+
1

8

tk∑
p=1

〈
[J [[JX, JY ], Z], JW ], (E0

α)p

〉
(E0

α)p

− 1

8

tk∑
p=1

〈
[J [[JX, JY ], JZ],W ], (E0

α)p

〉
(E0

α)p

− 1

8

tk∑
p=1

〈
[J [[JX, JZ], Y ], JW ], (E0

α)p

〉
(E0

α)p

+
1

8

tk∑
p=1

〈
[J [[JX, JZ], JY ],W ], (E0

α)p

〉
(E0

α)p

− 1

8
[J [[Z, JX], JW ] + J [JX, [Z, JW ]], JY ]

+
1

8
[Y, J [[JX, JZ], JW ] + J [JX, [JW, JZ]]]

+
1

8
[J [[Y, JX], JW ] + J [JX, [Y, JW ]], JZ]
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− 1

8
[Z, J [[JX, JY ], JW ] + J [JX, [JW, JY ]]]

=− λβ(Hβ)2

8|Hβ|2 〈Z, W 〉[JX, JY ] +
λβ(Hβ)2

8|Hβ|2 〈JZ, W 〉[JX, Y ]

+
λβ(Hβ)2

8|Hβ|2 〈Y, W 〉[JX, JZ]− λβ(Hβ)2

8|Hβ|2 〈JY, W 〉[JX, Z]

− λβ(Hβ)2

4|Hβ|2 〈JY, Z〉[JX, W ]

− 1

8

tk∑
p=1

〈
[JW, J(E0

α)p], [[JX, JY ], Z]
〉
(E0

α)p

+
1

8

tk∑
p=1

〈
[W,J(E0

α)p], [[JX, JY ], JZ]
〉
(E0

α)p

+
1

8

tk∑
p=1

〈
[JW, J(E0

α)p], [[JX, JZ], Y ]
〉
(E0

α)p

− 1

8

tk∑
p=1

〈
[W,J(E0

α)p], [[JX, JZ], JY ]
〉
(E0

α)p

− 1

8

tk∑
p=1

〈[J [[Z, JX], JW ], JY ], (E0
α)p〉(E0

α)p +
λβ(Hβ)2

8|Hβ|2 〈Z, W 〉[JX, JY ]

− 1

8

tk∑
p=1

〈[J [[JX, JZ], JW ], Y ], (E0
α)p〉(E0

α)p +
λβ(Hβ)2

8|Hβ|2 〈W,JZ〉[Y, JX]

+
1

8

tk∑
p=1

〈[J [[Y, JX], JW ], JZ], (E0
α)p〉(E0

α)p − λβ(Hβ)2

8|Hβ|2 〈Y, W 〉[JX, JZ]

+
1

8

tk∑
p=1

〈[J [[JX, JY ], JW ], Z], (E0
α)p〉(E0

α)p − λβ(Hβ)2

8|Hβ|2 〈W,JY 〉[Z, JX]

=− λβ(Hβ)2

4|Hβ|2 〈JY, Z〉[JX, W ]

− 1

8

tk∑
p=1

〈
[JW, J(E0

α)p], [[JX, JY ], Z]
〉
(E0

α)p

+
1

8

tk∑
p=1

〈
[W,J(E0

α)p], [[JX, JY ], JZ]
〉
(E0

α)p
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+
1

8

tk∑
p=1

〈
[JW, J(E0

α)p], [[JX, JZ], Y ]
〉
(E0

α)p

− 1

8

tk∑
p=1

〈
[W,J(E0

α)p], [[JX, JZ], JY ]
〉
(E0

α)p

+
1

8

tk∑
p=1

〈[JY, J(E0
α)p], [[JX, JZ],W ]〉(E0

α)p

+
1

8

tk∑
p=1

〈[Y, J(E0
α)p], [[JX, JZ], JW ]]〉(E0

α)p

− 1

8

tk∑
p=1

〈[JZ, J(E0
α)p], [[JX, JY ],W ]〉(E0

α)p

− 1

8

tk∑
p=1

〈[Z, J(E0
α)p], [[JX, JY ], JW ]]〉(E0

α)p

=− λβ(Hβ)2

4|Hβ|2 〈JY, Z〉[JX, W ]

+
1

4

tk∑
p=1

〈
[W,J(E0

α)p], [[JX, JY ], JZ]
〉
(E0

α)p

− 1

4

tk∑
p=1

〈
[W,J(E0

α)p], [[JX, JZ], JY ]
〉
(E0

α)p

=− λβ(Hβ)2

4|Hβ|2 〈JY, Z〉[JX, W ] +
1

4

tk∑
p=1

〈
[W,J(E0

α)p], [JX, [JY, JZ]]
〉
(E0

α)p

=− λβ(Hβ)2

4|Hβ|2 〈JY, Z〉[JX, W ]− λβ(Hβ)2

4|Hβ|2 〈JY, Z〉
tk∑

p=1

〈
[W,J(E0

α)p], X
〉
(E0

α)p

=− λβ(Hβ)2

4|Hβ|2 〈JY, Z〉[JX, W ] +
λβ(Hβ)2

4|Hβ|2 〈JY, Z〉
tk∑

p=1

〈
[JX, W ], (E0

α)p

〉
(E0

α)p

= 0.

On the other hand, if W ∈ n+β
α , then Remark 6.2 and Claim 7.5 together with

Remark 6.5 implies that

(∇XR)(Y, Z, W )

= ∇X(R(Y, Z)W )−R(∇XY, Z)W −R(Y,∇XZ)W −R(Y, Z)∇XW

95



= ∇X

(
1

2
[[Y, JW ], JZ]− λβ(Hβ)2

4|Hβ|2 〈Y, Z〉W +
λβ(Hβ)2

4|Hβ|2 〈JY, Z〉JW

)

− 1

2
R([JX, JY ], Z)W − 1

2
R(Y, [JX, JZ])W

−R(Y, Z)

(
λα(Hα)

2|Hα|2 〈X,W 〉Hα +
λβ(Hβ)

2|Hβ|2 〈X,W 〉Hβ

)

=
λα(Hα)

4|Hα|2 〈X, [[Y, JW ], JZ]〉Hα +
λβ(Hβ)

4|Hβ|2 〈X, [[Y, JW ], JZ]〉Hβ

− λβ(Hβ)2

4|Hβ|2 〈Y, Z〉
(

λα(Hα)

2|Hα|2 〈X,W 〉Hα +
λβ(Hβ)

2|Hβ|2 〈X,W 〉Hβ

)

+
λβ(Hβ)2

4|Hβ|2 〈JY, Z〉
(

λα(Hα)

2|Hα|2 〈X,W 〉JHα +
λβ(Hβ)

2|Hβ|2 〈X,W 〉JHβ

)

+
1

4
∇[[JX,JY ],Z]−J [[JX,JY ],JZ]W − 1

4
∇[[JX,JZ],Y ]−J [[JX,JZ],JY ]W

+
λβ(Hβ)

2|Hβ|2 〈X,W 〉 (R(Z, Hβ)Y + R(Hβ, Y )Z)

=
λα(Hα)

4|Hα|2 〈X, [[Y, JW ], JZ]〉Hα +
λβ(Hβ)

4|Hβ|2 〈X, [[Y, JW ], JZ]〉Hβ

− λβ(Hβ)2

4|Hβ|2 〈Y, Z〉〈X,W 〉
(

λα(Hα)

2|Hα|2 Hα +
λβ(Hβ)

2|Hβ|2 Hβ

)

+
λβ(Hβ)2

4|Hβ|2 〈JY, Z〉〈X,W 〉
(

λα(Hα)

2|Hα|2 JHα +
λβ(Hβ)

2|Hβ|2 JHβ

)

+
λα(Hα)

8|Hα|2 〈[[JX, JY ], Z],W 〉Hα +
λβ(Hβ)

8|Hβ|2 〈[[JX, JY ], Z],W 〉Hβ

+
λα(Hα)

8|Hα|2 〈[[JX, JY ], JZ],W 〉JHα − λβ(Hβ)

8|Hβ|2 〈[[JX, JY ], JZ],W 〉JHβ

− λα(Hα)

8|Hα|2 〈[[JX, JZ], Y ],W 〉Hα − λβ(Hβ)

8|Hβ|2 〈[[JX, JZ], Y ],W 〉Hβ

− λα(Hα)

8|Hα|2 〈[[JX, JZ], JY ],W 〉JHα +
λβ(Hβ)

8|Hβ|2 〈[[JX, JZ], JY ],W 〉JHβ

+
λβ(Hβ)2

4|Hβ|2 〈X,W 〉∇ZY − λβ(Hβ)2

4|Hβ|2 〈X,W 〉∇Y Z

=
λα(Hα)

4|Hα|2 〈[JY, JW ], [JZ, JX]〉Hα +
λβ(Hβ)

4|Hβ|2 〈[JY, JW ], [JZ, JX]〉Hβ

− λβ(Hβ)2

4|Hβ|2 〈Y, Z〉〈X,W 〉
(

λα(Hα)

2|Hα|2 Hα +
λβ(Hβ)

2|Hβ|2 Hβ

)
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+
λβ(Hβ)2

4|Hβ|2 〈JY, Z〉〈X,W 〉
(

λα(Hα)

2|Hα|2 JHα +
λβ(Hβ)

2|Hβ|2 JHβ

)

− λα(Hα)

8|Hα|2 〈[JZ, JW ], [JX, JY ]〉Hα − λβ(Hβ)

8|Hβ|2 〈[JZ, JW ], [JX, JY ]〉Hβ

+
λα(Hα)

8|Hα|2 〈[JX, [JY, JZ]],W 〉JHα − λβ(Hβ)

8|Hβ|2 〈[JX, [JY, JZ]],W 〉JHβ

+
λα(Hα)

8|Hα|2 〈[JY, JW ], [JX, JZ]〉Hα +
λβ(Hβ)

8|Hβ|2 〈[JY, JW ], [JX, JZ]〉Hβ

− λβ(Hβ)2

4|Hβ|2 〈X,W 〉[Y, Z]

=
λα(Hα)

8|Hα|2 (〈[JY, JW ], [JZ, JX]〉+ 〈[JZ, JW ], [JY, JX]〉)Hα

+
λβ(Hβ)

8|Hβ|2 (〈[JY, JW ], [JZ, JX]〉+ 〈[JZ, JW ], [JY, JX]〉)Hβ

− λβ(Hβ)2

4|Hβ|2 〈Y, Z〉〈X,W 〉
(

λα(Hα)

2|Hα|2 Hα +
λβ(Hβ)

2|Hβ|2 Hβ

)

+
λβ(Hβ)2

4|Hβ|2 〈JY, Z〉〈X,W 〉
(

λα(Hα)

2|Hα|2 JHα +
λβ(Hβ)

2|Hβ|2 JHβ

)

− λα(Hα)

8|Hα|2
λβ(Hβ)2

|Hβ|2 〈JY, Z〉〈X,W 〉JHα +
λβ(Hβ)

8|Hβ|2
λβ(Hβ)2

|Hβ|2 〈JY, Z〉〈X,W 〉JHβ

− λβ(Hβ)2

4|Hβ|2
λβ(Hβ)

|Hβ|2 〈X,W 〉〈JY, Z〉JHβ

=
λα(Hα)

8|Hα|2
λβ(Hβ)2

|Hβ|2 〈JY, JZ〉〈JW, JX〉Hα

+
λβ(Hβ)

8|Hβ|2
λβ(Hβ)2

|Hβ|2 〈JY, JZ〉〈JW, JX〉)Hβ

− λβ(Hβ)2

4|Hβ|2 〈Y, Z〉〈X,W 〉
(

λα(Hα)

2|Hα|2 Hα +
λβ(Hβ)

2|Hβ|2 Hβ

)

= 0.

Finally, we remark that the proof for the case of W ∈ n0
α goes in a similar fashion

to that of W ∈ n0
β, so that we omit the detail. This completes the proof of (30).

In the same way as we proved (30), we can verify the case of (78).

(31) Let X ∈ n+γ
α and Y ∈ n+δ

β . It follows from Remark 6.2 that ∇XY = 0. We

first look at the case where Z ∈ n+δ
γ . By making use of Remark 6.2 and Claim 7.5, for
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any W ∈ g we have

(∇XR)(Y, Z, W )

= ∇X(R(Y, Z)W )−R(∇XY, Z)W −R(Y,∇XZ)W −R(Y, Z)∇XW

= −∇X∇∇Y ZW − 1

2
R(Y, [JX, JZ])W +∇∇Y Z∇XW

=
1

2
∇X∇J [Y,JZ]W +

1

2
R(J [JX, JZ], JY )W − 1

2
∇J [Y,JZ]∇XW

=
1

2
R(X, J [Y, JZ])W +

1

2
∇[X,J [Y,JZ]]W − 1

2
∇∇J[JX,JZ]JY W

= −1

2
∇∇XJ [Y,JZ]W +

1

2
∇[X,J [Y,JZ]]W − 1

4
∇[J [JX,JZ],JY ]W

= −1

4
∇[X,J [Y,JZ]]W +

1

2
∇[X,J [Y,JZ]]W − 1

4
∇[[JX,JZ],Y ]W

= −1

4
∇[JX,[Y,JZ]]W − 1

4
∇[JX,[JZ,Y ]]W

= 0.

Next, we prove the case where Z ∈ n−δ
γ . It follows from Remark 6.2 and Claim 7.5

that

(∇XR)(Y, Z, W )

= ∇X(R(Y, Z)W )−R(∇XY, Z)W −R(Y,∇XZ)W −R(Y, Z)∇XW

= −∇X∇∇Y ZW − 1

2
R(Y, [JX, JZ])W +∇∇Y Z∇XW

= −1

2
∇X∇[Y,Z]W +

1

2
R([JX, JZ], Y )W +

1

2
∇[Y,Z]∇XW

= −1

2
R(X, [Y, Z])W +

1

2
R([JX, JZ], Y )W

=
1

2
∇∇X [Y,Z]W − 1

2
∇∇[JX,JZ]Y W

= −1

4
∇J [X,J [Y,Z]]W +

1

4
∇J [[JX,JZ],JY ]W

=
1

4
∇J [JX,[JY,JZ]]W +

1

4
∇J [JX,[JZ,JY ]]W

= 0,

which completes the proof of (31).

(38), (39), (40), (79), (80), (93), (94), (95), (97), (98), (110), (111) and (112) are

proved in a similar way to the proof of (31). Hence we omit the detail.
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(44) Let X ∈ n+β
α and Y ∈ n+γ

α . If Z ∈ n±δ
β , then we have ∇Y Z = 0, and hence

R(Y, Z) = 0. Let {(E−γ
β )1, . . . , (E

−γ
β )sk

} be an orthonormal basis of n−γ
β .

First, we study the case where Z ∈ n+δ
β . Let {(E−δ

γ )1, . . . , (E
−δ
γ )sk

} be an orthonor-

mal basis of n−δ
γ . Then, using Remark 6.2 and Claim 7.5, we obtain

(∇XR)(Y, Z, W )

= ∇X(R(Y, Z)W )−R(∇XY, Z)W −R(Y,∇XZ)W −R(Y, Z)∇XW

=
1

2

sk∑
p=1

〈X, [Y, (E−γ
β )p]〉R((E−γ

β )p, Z)W − 1

2
R(Y, [JX, JZ])W

=
1

2

sk∑
p=1

〈X, [Y, (E−γ
β )p]〉R(J(E−γ

β )p, JZ)W − 1

2
R(Y, J [JX, Z])W

= −1

2

sk∑
p=1

〈X, [Y, (E−γ
β )p]〉∇∇

J(E
−γ
β

)p
JZW +

1

2
∇∇Y J [JX,Z]W

=
1

4

sk∑
p=1

sk∑
q=1

〈X, [Y, (E−γ
β )p]〉〈J(E−γ

β )p, [Z, (E−δ
γ )q]〉∇J(E−δ

γ )q
W

− 1

4

sk∑
p=1

〈Y, [[JX, Z], (E−δ
γ )p]〉∇J(E−δ

γ )p
W

=
1

4

sk∑
q=1

〈X, [JY, [Z, (E−δ
γ )q]]〉∇J(E−δ

γ )q
W

− 1

4

sk∑
p=1

〈Y, [JX, [Z, (E−δ
γ )p]]〉∇J(E−δ

γ )p
W

=
1

4

sk∑
q=1

〈J2Y, [[Z, (E−δ
γ )q], JX]〉∇J(E−δ

γ )q
W

− 1

4

sk∑
p=1

〈Y, [JX, [Z, (E−δ
γ )p]]〉∇J(E−δ

γ )p
W

= 0.

Similarly, the case of Z ∈ n−δ
γ is proved.

In the cases of (46), (47), (49), (59), (60), (61), (66), (74), (76), (84), (86), (87),

(89), (96) and (96), we have ∇Y Z = 0. Hence the proof for these cases goes similarly

to that of (44).

(45) Let X ∈ n+β
α and Y ∈ n+γ

α . First, to prove the case where Z ∈ n+γ
β , let
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{(E−γ
β )1, . . . , (E

−γ
β )sk

} be an orthonormal basis of n−γ
β . By making use of Remark 6.2

and Claim 7.5, we have

(∇XR)(Y, Z, W )

= ∇X(R(Y, Z)W )−R(∇XY, Z)W −R(Y,∇XZ)W −R(Y, Z)∇XW

=−∇X∇∇Y ZW +
1

2

sk∑
p=1

〈X, [Y, (E−γ
β )p]〉R((E−γ

β )p, Z)W

− 1

2
R(Y, [JX, JZ])W +∇∇Y Z∇XW

=
1

2
∇X∇J [Y,JZ]W − 1

2

sk∑
p=1

〈X, [Y, (E−γ
β )p]〉R(Z, (E−γ

β )p)W

− 1

2
R(Y, [JX, JZ])W − 1

2
∇J [Y,JZ]∇XW

=
1

2
R(X, J [Y, JZ])W +

1

2
∇[X,J [Y,JZ]]W +

1

2

sk∑
p=1

〈X, [Y, (E−γ
β )p]〉∇∇Z(E−γ

β )p
W

+
1

2
∇∇Y [JX,JZ]W

=− 1

2
∇∇XJ [Y,JZ]W +

λα(Hα)

2|Hα|2 〈JX, J [Y, JZ]〉∇JHαW

+
1

2

∑
p

〈X, [Y, (E−γ
β )p]〉〈JZ, (E−γ

β )p〉∇λβ(Hβ)

2|Hβ |2
JHβ+

λγ (Hγ )

2|Hγ |2
JHγ

W

+
1

4
〈JY, [JX, JZ]〉∇λα(Hα)

|Hα|2
JHα+

λγ (Hγ )

|Hγ |2
JHγ

W

=− 1

4
〈X, [Y, JZ]〉∇λα(Hα)

|Hα|2
JHα+

λβ(Hβ)

|Hβ |2
JHβ

W +
λα(Hα)

2|Hα|2 〈JX, J [Y, JZ]〉∇JHαW

+
1

4

∑
p

〈X, [Y, JZ]〉∇λβ(Hβ)

|Hβ |2
JHβ+

λγ (Hγ )

|Hγ |2
JHγ

W

+
1

4
〈JX, [JZ, Y ]〉∇λα(Hα)

|Hα|2
JHα+

λγ (Hγ )

|Hγ |2
JHγ

W

= 0.

One can prove the case of Z ∈ n−γ
β in a quite similar way to that of the case Z ∈ n+γ

β .

Hence we omit the proof.

Also, the proof of (63), (75) and (106) can be done in a similar way to that for (45).

(57) Let X,Y ∈ n+β
α . If Z ∈ n+β

α , by Bianchi’s second identity, we have

(∇XR)(Y, Z, W ) = 0 for W ∈ n, except the case where W ∈ n+β
α . Hence it follows
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from Remark 6.2 and Claim 7.5 that

(∇XR)(Y, Z, W )

= ∇X(R(Y, Z)W )−R(∇XY, Z)W −R(Y,∇XZ)W −R(Y, Z)∇XW

= ∇X

(
−λα(Hα)2

2|Hα|2 (〈Z, W 〉Y − 〈Y, W 〉Z)

)

−R

(
λα(Hα)

2|Hα|2 〈X,Y 〉Hα +
λβ(Hβ)

2|Hβ|2 〈X,Y 〉Hβ, Z

)
W

−R

(
Y,

λα(Hα)

2|Hα|2 〈X,Z〉Hα +
λβ(Hβ)

2|Hβ|2 〈X,Z〉Hβ

)
W

− (∇Y∇Z −∇Z∇Y −∇[Y,Z])

(
λα(Hα)

2|Hα|2 〈X,W 〉Hα +
λβ(Hβ)

2|Hβ|2 〈X,W 〉Hβ

)

=− λα(Hα)2

2|Hα|2 〈Z, W 〉
(

λα(Hα)

2|Hα|2 〈X,Y 〉Hα +
λβ(Hβ)

2|Hβ|2 〈X,Y 〉Hβ

)

− λα(Hα)2

2|Hα|2 〈Y, W 〉
(

λα(Hα)

2|Hα|2 〈X,Z〉Hα +
λβ(Hβ)

2|Hβ|2 〈X,Z〉Hβ

)

+
λα(Hα)2

4|Hα|2 〈X,Y 〉∇ZW +
λβ(Hβ)2

4|Hβ|2 〈X,Y 〉∇ZW

− λα(Hα)2

4|Hα|2 〈X,Z〉∇Y W − λβ(Hβ)2

4|Hβ|2 〈X,Z〉∇Y W

+
λα(Hα)2

4|Hα|2 〈X,W 〉∇Y Z − λα(Hα)2

4|Hα|2 〈X,W 〉∇ZY

+
λβ(Hβ)2

4|Hβ|2 〈X,W 〉∇Y Z − λβ(Hβ)2

4|Hβ|2 〈X,W 〉∇ZY

=− λα(Hα)2

2|Hα|2 〈X,Y 〉〈Z, W 〉
(

λα(Hα)

2|Hα|2 Hα +
λβ(Hβ)

2|Hβ|2 Hβ

)

− λα(Hα)2

2|Hα|2 〈X,Z〉〈Y, W 〉
(

λα(Hα)

2|Hα|2 Hα +
λβ(Hβ)

2|Hβ|2 Hβ

)

+
λα(Hα)2

2|Hα|2 〈X,Y 〉
(

λα(Hα)

2|Hα|2 〈Z, W 〉Hα +
λβ(Hβ)

2|Hβ|2 〈Z, W 〉Hβ

)

− λα(Hα)2

2|Hα|2 〈X,Z〉
(

λα(Hα)

2|Hα|2 〈Y, W 〉Hα +
λβ(Hβ)

2|Hβ|2 〈Y, W 〉Hβ

)

= 0.

On the other hand, in the case where Z ∈ n−β
α , it is immediate by a straightforward

computation that (∇XR)(Y, Z, W ) = 0 for W ∈ n.
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The proof of the case of (53), (54), (55), (56), (58) and (100) goes in a similar

fashion to that of (57), so that we omit the detail.

The proof of Claim 7.7 in now complete. ¤

By a similar argument, we can also prove the following, for which we omit the proof.

Claim 7.8. ∇XR = 0 for X ∈ n−β
α .

Claim 7.9. ∇XR = 0 for X ∈ n0
α.

Claim 7.10. ∇XR = 0 for A ∈ a.

Claim 7.7 through Claim 7.10 imply that ∇R = 0. This completes the proof of

Proposition 7.1 in the case where nak
6= {0} for 1 ≤ k ≤ n.

In the same way as we have proved just for the case where nak
6= {0} for 1 ≤ k ≤ n,

we can also prove ∇R = 0 for the case where nal
= {0} for n < l ≤ m.

This completes the proof of Proposition 7.1.

8 Proof of Theorem

Let M = (M,J, g) be a simply connected homogeneous Kähler Einstein manifold with

nonpositive curvature operator R̂ ≤ 0. Recall that, as mentioned in Remark 1.1, M

has nonpositive sectional curvature. By Theorem 3.1, M is identified with a simply

connected solvable Lie group G with a left invariant complex structure J and a left

invariant Kähler Einstein metric 〈 , 〉 on G. Moreover, the Lie algebra g of G admits

an endomorphism J and an inner product 〈 , 〉 on g satisfying Conditions (K1)–(K4)

in Section 2. The Levi-Civita connection ∇, the curvature tensor R and the sectional

curvature K of g is defined by the Levi-Civita connection ∇, the curvature tensor R

and the sectional curvature K of G, respectively.

Recall that if Ricci tensor Ric vanishes, then (g, 〈 , 〉) is flat. Hence it suffices to

see the case where (g, 〈 , 〉) is not Ricci flat, that is, (g, J, 〈 , 〉) satisfies the assumption

of Proposition 6.1.

Proposition 8.1. Let (g, J, 〈 , 〉) be as in Proposition 6.1. Assume that (g, 〈 , 〉) has

nonpositive curvature operator. Then, ∇R = 0.

Proof. Let n = [g, g] be the derived algebra of g, and a the orthogonal complement

of n with respect to 〈 , 〉. Recall that by a result of Azencott and Wilson [1], the
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nonpositivity of sectional curvature implies that a is abelian. Let DA and SA denote

the symmetric and skew-symmetric parts of ad A for A ∈ a. Moreover, recall that

{DA, SA | A ∈ a} is a commuting family of derivations of g, and that DA is a nonzero

operator vanishing on a for any A ∈ a.

It is proved in Proposition 6.1 that there exists an orthogonal basis {Ha}a∈Λ of a

with respect to 〈 , 〉 such that

[Ha, JHa] = λaJHa for some λa > 0,

[Hb, JHa] = 0 if a 6= b.

Moreover, setting H =
∑

a∈Λ Ha, we have 〈H, X〉 = tr ad X for any X ∈ g.

Define a linear function λa : a → R by λa(Hb) = δabλa for any b ∈ Λ. Let n±b
a and

n0
a be subspaces of n defined by

n±b
a =

{
X ∈ n

∣∣∣∣ DAX =
1

2
(λa(A)± λb(A)) X for any A ∈ a

}
,

n0
a =

{
X ∈ n

∣∣∣∣ DAX =
1

2
λa(A)X for any A ∈ a

}
,

where λb(H) < λa(H), and set

na =
⊕

λb(H)<λa(H)

(
n+b

a ⊕ n−b
a

)⊕ n0
a.

Then g is decomposed into a direct sum g =
⊕

aR{Ha} ⊕ na ⊕ R{JHa}.
We now remark the following identities.

Claim 8.1. (1) 〈R(A, JHa)JHa, A〉 = −λa(A)2|Ha|2 for A ∈ a.

(2) 〈R(A,X)X,A〉 = −1

4
(λa(A)± λb(A))2 |X|2 for A ∈ a and X ∈ n±b

a .

(3) 〈R(JX, X)X, JX〉 = −λa(Ha)
2

|Ha|2 |X|4 +
λb(Hb)

2

2|Hb|2 |X|
4 for any X ∈ n+b

a .

(4) 〈R(JX, X)X, JX〉 = −λa(Ha)
2

|Ha|2 |X|4 for any X ∈ n0
a.

(5) Ric(Ha, Ha) = −1

4
λa(Ha)

2

(
dim na + 4 +

∑

d∈Λa

2 dim n+a
d

)
.
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Proof. Since SA is a derivation of g for A ∈ a, we can apply Claim 6.3, to get

R(A,X)Y = −∇DAXY . Then we obtain the following.

(1) For any A ∈ a, we have

〈R(A, JHa)JHa, A〉 = −λa(A)〈∇JHaJHa, A〉
= λa(A)〈JHa,∇JHaA〉
= −λa(A)2|Ha|2.

(2) Similarly, for any X ∈ n+b
a , we have

〈R(A,X)X,A〉 =− 1

2
(λa(A) + λb(A))〈∇XX,A〉

=
1

2
(λa(A) + λb(A))〈X,∇XA〉

=− 1

4
(λa(A) + λb(A))2|X|2.

(3) Let X ∈ n+b
a . It follows from Remark 6.2 that

R(JX, X)X = ∇JX∇XX −∇X∇JXX −∇[JX,X]X

= ∇JX

(
λa(Ha)

2|Ha|2 |X|
2Ha +

λb(Hb)

2|Hb|2 |X|
2Hb

)

−∇X

(
−λa(Ha)

2|Ha|2 |X|
2JHa +

λb(Hb)

2|Hb|2 |X|
2JHb

)

+
λa(Ha)

|Ha|2 |X|
2∇JHaX

=− λa(Ha)
2

4|Ha|2 |X|
2JX +

λb(Hb)
2

4|Hb|2 |X|
2JX

− λa(Ha)
2

4|Ha|2 |X|
2JX +

λb(Hb)
2

4|Hb|2 |X|
2JX − λa(Ha)

2

2|Ha|2 |X|
2JX

=− λa(Ha)
2

|Ha|2 |X|2JX +
λb(Hb)

2

2|Hb|2 |X|
2JX.

Hence we have

〈R(JX, X)X, JX〉 = −λa(Ha)
2

|Ha|2 |X|4 +
λb(Hb)

2

2|Hb|2 |X|
4.

(4) Let X ∈ n0
a. By using Remark 6.2, we have

R(JX, X)X =∇JX∇XX −∇X∇JXX −∇[JX,X]X
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=∇JX

(
λa(Ha)

2|Ha|2 |X|
2Ha

)
+∇X

(
λa(Ha)

2|Ha|2 |X|
2JHa

)

+
λa(Ha)

|Ha|2 |X|
2∇JHaX

=− λa(Ha)
2

4|Ha|2 |X|
2JX − λa(Ha)

2

4|Ha|2 |X|
2JX − λa(Ha)

2

2|Ha|2 |X|
2JX

=− λa(Ha)
2

|Ha|2 |X|2JX,

so that

〈R(JX, X)X, JX〉 = −λa(Ha)
2

|Ha|2 |X|4.

(5) For a, b ∈ Λ, let t(a, b) = dim n+b
a , and s(a) = dim n0

a. Let {(E0
a)1, . . . , (E

0
a)s(a)} be

an orthonormal basis of n0
a, and let {(E±b

a )1, . . . , (E
±b
a )t(a,b)} be an orthonormal basis

of n±b
a with respect to 〈 , 〉, respectively. Applying (1) and (2), we have

Ric(Ha, Ha)

=
∑

b∈Λ

1

|Hb|2 〈R(Ha, Hb)Hb, Ha〉+
∑

b,c∈Λ

t(b,c)∑
p=1

〈R(Ha, (E
+c
b )p)(E

+c
b )p, Ha〉

+
∑

b,c∈Λ

t(b,c)∑
p=1

〈R(Ha, (E
−c
b )p)(E

−c
b )p, Ha〉+

∑

b∈Λ

s(b)∑
p=1

〈R(Ha, (E
0
b )p)(E

0
b )p, Ha〉

+
∑

b∈Λ

1

|Hb|2 〈R(Ha, JHb)JHb, Ha〉

=
∑
a∈Λc

t(a,c)∑
p=1

(
−1

4
λa(Ha)

2|(E+c
a )p|2

)
+

∑

b∈Λa

t(b,a)∑
p=1

(
−1

4
λa(Ha)

2|(E+a
b )p|2

)

+
∑
a∈Λc

t(a,c)∑
p=1

(
−1

4
λa(Ha)

2|(E−c
a )p|2

)
+

∑

b∈Λa

t(b,a)∑
p=1

(
−1

4
λa(Ha)

2|(E−a
b )p|2

)

+

s(a)∑
p=1

(
−1

4
λa(Ha)

2|(E0
a)p|2

)
− λa(Ha)

2|Ha|2 1

|Ha|2

= −1

4
λa(Ha)

2
∑
a∈Λc

dim n+c
a − 1

4
λa(Ha)

2
∑

b∈Λa

dim n+a
b − 1

4
λa(Ha)

2
∑
a∈Λc

dim n−c
a

− 1

4
λa(Ha)

2
∑

b∈Λa

dim n+a
b − 1

4
λa(Ha)

2 dim n0
a − λa(Ha)

2
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= −1

4
λa(Ha)

2
∑
a∈Λc

dim na − 1

4
λa(Ha)

2
∑

b∈Λa

2 dim n+a
b − λa(Ha)

2.

This completes the proof of Claim 8.1.

As defined in Proposition 6.1, for each c ∈ Λ, let Λc denote a subset {a ∈ Λ | n±c
a 6=

{0}} ∪ {c} of Λ. Then the following holds.

Claim 8.2. Let b and c be elements in Λ such that b 6∈ Λc and c 6∈ Λb. Then we have

Λc ∩ Λb = {0}.

Proof. Let b and c be elements in Λ such that b 6∈ Λc and c 6∈ Λb. Assume that

Λb ∩ Λc 6= {0}, and let a ∈ Λb ∩ Λc.

Let X ∈ n+b
a . For any d ∈ Λa, let Y ∈ n−a

d . By (iv) of Proposition 6.1, we have

[X,Y ] 6= 0. It follows from [X,Y ] ∈ n+b
d that d ∈ Λb. Since d ∈ Λa is arbitrary, Λb

contains Λa. Applying Remark 6.6 then yields

dim na +
∑

d∈Λa

2 dim n+a
d −

(
dim nb +

∑

d∈Λb

2 dim n+b
d

)

=
∑

λe<λa

2 dim n+e
a + dim n0

a +
∑

d∈Λa

2 dim n+a
d

−
∑

λe<λb

2 dim n+e
b − dim n0

b −
∑

d∈Λb

2 dim n+b
d

=
∑

λe<λb

2(dim n+e
a − dim n+e

b ) +
∑

λe=λb

2 dim n+e
a + 2 dim n+c

a

+
∑

d∈(Λb−Λa)

2(dim n+d
a − dim n+b

d ) + dim n0
a − dim n0

b

> 0,

where we set λp = λp(Hp) for any p. This implies that

dim na +
∑

d∈Λa

2 dim n+a
d > dim nb +

∑

d∈Λb

2 dim n+b
d . (1.14)

Since 〈 , 〉 is assumed Einstein, we have

1

|Ha|2 Ric(Ha, Ha) =
1

|Hb|2 Ric(Hb, Hb).
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Hence it follows from Claim 8.1 that

−λa(Ha)
2

4|Ha|2
(

dim na + 4 +
∑

d∈Λa

2 dim n+a
d

)
= −λb(Hb)

2

4|Hb|2
(

dim nb + 4 +
∑

d∈Λb

2 dim n+b
d

)
.

This combined with (1.14) implies that

λa(Ha)
2

|Ha|2 <
λb(Hb)

2

|Hb|2 .

Since n+b
a 6= {0}, we can apply Remark 6.4 to get

1

2

λb(Hb)
2

|Hb|2 ≤ λa(Ha)
2

|Ha|2 <
λb(Hb)

2

|Hb|2 .

By the same argument as above, we also have

1

2

λc(Hc)
2

|Hc|2 ≤ λa(Ha)
2

|Ha|2 <
λc(Hc)

2

|Hc|2 .

It follows from these inequalities that

1

2

λb(Hb)
2

|Hb|2 ≤ λa(Ha)
2

|Ha|2 <
λc(Hc)

2

|Hc|2 or
1

2

λc(Hc)
2

|Hc|2 ≤ λa(Ha)
2

|Ha|2 <
λb(Hb)

2

|Hb|2 . (1.15)

Now, let X ∈ n+b
a and Y ∈ n+c

a . Note that it follows from Claim 4.1 that ∇Y X =

∇JY X = 0. Then we define a quadratic function f : R→ R by

f(x) = 〈〈R̂(xX ∧ JX + Y ∧ JY ), xX ∧ JX + Y ∧ JY 〉〉.

By Remark 6.2 and Claim 8.1, f is represented as

f(x) = x2〈〈R̂(X ∧ JX), X ∧ JX〉〉+ 〈〈R̂(Y ∧ JY ), Y ∧ JY 〉〉+ 2x〈〈R̂(X ∧ JX), Y ∧ JY 〉〉
= x2〈R(X, JX)JX, JX〉+ 〈R(Y, JY )JY, Y 〉+ 2x〈R(Y, JY )JX, X〉

= x2

(
−λa(Ha)

|Ha|2 |X|
4 +

λb(Hb)

2|Hb|2 |X|
4

)
− λa(Ha)

2

|Ha|2 |Y |4 +
λc(Hc)

2

2|Hc|2 |Y |
4

+ 2x〈∇Y∇JY JX −∇JY∇Y JX −∇[Y,JY ]JX, X〉

= −x2

(
λa(Ha)

2

|Ha|2 − λb(Hb)
2

2|Hb|2
)
|X|4 −

(
λa(H

2
a)

|Ha|2 − λc(Hc)
2

2|Hc|2
)
|Y |4

− 2x
λa(Ha)

|Ha|2 |Y |
2〈∇JHaJX, X〉
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= −x2

(
λa(Ha)

2

|Ha|2 − λb(Hb)
2

2|Hb|2
)
|X|4 −

(
λa(H

2
a)

|Ha|2 − λc(Hc)
2

2|Hc|2
)
|Y |4

− x
λa(Ha)

2

|Ha|2 |Y |2|X|2.

We note that the discriminant D of f is given by

D =
λa(Ha)

4

|Ha|4 |Y |4|X|4 − 4

(
λa(Ha)

2

|Ha|2 − λb(Hb)
2

2|Hb|2
)
|X|4

(
λa(H

2
a)

|Ha|2 − λc(Hc)
2

2|Hc|2
)
|Y |4

= |X|4|Y |4
{

λa(Ha)
4

|Ha|4 − 4
λa(Ha)

4

|Ha|4

+2
λa(Ha)

2

|Ha|2
(

λb(Hb)
2

|Hb|2 +
λc(Hc)

2

|Hc|2
)
− λb(Hb)

2

|Hb|2
λc(Hc)

2

|Hc|2
}

= |X|4|Y |4
{
−3

λa(Ha)
4

|Ha|4 + 2
λa(Ha)

2

|Ha|2
(

λb(Hb)
2

|Hb|2 +
λc(Hc)

2

|Hc|2
)
− λb(Hb)

2

|Hb|2
λc(Hc)

2

|Hc|2
}

.

It is easy to see from (1.15) that D > 0. This implies that there exist different solutions

η1 < η2 of f . Then, f(x) > 0 holds for η1 < x < η2, contradicting the nonpositivity of

R̂. Hence Λb ∩ Λc = {0}. ¤

Claim 8.2 implies that there exists a subset {a1, . . . , am} of Λ such that Λa1 ∪ · · · ∪
Λam = Λ and Λai

∩ Λaj
= {0} for i 6= j. We set Λai

= {ai = i1, . . . , imi
} for each

i = 1, . . . , m. Without loss of generality, we may suppose λi1(H) < · · · < λimi
(H).

Then g can be written as

g =
m⊕

i=1

mi⊕
α=1

(R{Hiα} ⊕ niα ⊕ R{JHiα}) ,

where niα is given by

niα =
α−1⊕

β=1

(
n

+iβ
iα

⊕ n
−iβ
iα

)
⊕ n0

iα .

Claim 8.3. If ni1 = {0}, then n0
iα = {0} for all α = 1, . . . , mi.

Proof. Suppose that ni1 = {0}. It follows from Remark 6.6 that dim n0
imi

= 0 implies

that dim n0
iα = 0. Hence it suffices to show that n0

imi
= {0}.

Assume that n0
imi

6= {0}. Then, by Remark 6.6, we have

dim nimi
− 2

mi∑
α=2

dim n+i1
iα

= 2

mi−1∑
α=1

dim n+iα
imi

+ dim n0
imi
− 2

mi∑
α=2

dim n+i1
iα
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= 2

mi−1∑
α=2

(
dim n+iα

imi
− dim n+i1

iα

)
+ dim n0

imi

> 0,

which implies that

dim nimi
> 2

mi∑
α=2

dim n+i1
iα

. (1.16)

Since 〈 , 〉 is assumed Einstein, we have

1

|Himi
|2 Ric(Himi

, Himi
) =

1

|Hi1|2
Ric(Hi1 , Hi1).

Hence it follows from Claim 8.1 that

−λimi
(Himi

)2

4|Himi
|2

(
dim nimi

+ 4
)

= −λi1(Hi1)
2

4|Hi1|2
(

4 + 2

mi∑
α=2

dim n+i1
iα

)
.

This combined with (1.16) then implies that

λimi
(Himi

)2

|Himi
|2 <

λi1(Hi1)
2

|Hi1 |2
. (1.17)

Let X ∈ ni1
imi

and Y ∈ n0
imi

. Then it follows from Claim 4.2 that ∇XY = 0.

Now, we set

ω =
1

|Hi1 |2
Hi1 ∧ JHi1 +

1

|Himi
|2Himi

∧ JHimi
− 2X ∧ JX + Y ∧ JY.

Then, Remark 6.2 and Claim 8.1, we obtain

〈〈R̂(ω), ω〉〉 =
1

|Hi1 |4
〈〈R̂(Hi1 ∧ JHi1), Hi1 ∧ JHi1〉〉

+
1

|Himi
|4 〈〈R̂(Himi

∧ JHimi
), Himi

∧ JHimi
〉〉

+ 4〈〈R̂(X ∧ JX), X ∧ JX〉〉+ 〈〈R̂(Y ∧ JY ), Y ∧ JY 〉〉
+

2

|Hi1|2|Himi
|2 〈〈R̂(Hi1 ∧ JHi1), Himi

∧ JHimi
〉〉

− 4

|Hi1|2
〈〈R̂(Hi1 ∧ JHi1), X ∧ JX〉〉+

2

|Hi1|2
〈〈R̂(Hi1 ∧ JHi1), Y ∧ JY 〉〉

− 4

|Himi
|2 〈〈R̂(Himi

∧ JHimi
), X ∧ JX〉〉
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+
2

|Himi
|2 〈〈R̂(Himi

∧ JHimi
), Y ∧ JY 〉〉 − 4〈〈R̂(X ∧ JX), Y ∧ JY 〉〉

=
1

|Hi1 |4
〈R(Hi1 , JHi1)JHi1 , Hi1〉+

1

|Himi
|4 〈R(Himi

, JHimi
)JHimi

, Himi
〉

+ 4〈R(X, JX)JX, X〉+ 〈R(Y, JY )JY, Y 〉
+

2

|Hi1|2|Himi
|2 〈R(Himi

, JHimi
)JHi1 , Hi1〉

− 4

|Hi1|2
〈R(X, JX)JHi1 , Hi1〉+

2

|Hi1|2
〈R(Y, JY )JHi1 , Hi1〉

− 4

|Himi
|2 〈R(X, JX)JHimi

, Himi
〉

+
2

|Himi
|2 〈R(Y, JY )JHimi

, Himi
〉 − 4〈R(Y, JY )JX, X〉

= −λi1(Hi1)
2

|Hi1|4
|Hi1|2 −

λimi
(Himi

)2

|Himi
|4 |Himi

|2 + 4

(
−λimi

(Himi
)2

|Himi
|2 +

λi1(Hi1)
2

2|Hi1 |2
)

− λimi
(Himi

)2

|Himi
|2 + 4

λi1(Hi1)

|Hi1|2
〈∇JHi1

JX, X〉+ 4
λimi

(Himi
)

|Himi
|2 〈∇JHimi

JX, X〉

− 2
λimi

(Himi
)

|Himi
|2 〈∇JHimi

JY, Y 〉

− 4〈∇Y∇JY JX −∇JY∇Y JX −∇[Y,JY ]JX, X〉

=
λi1(Hi1)

2

|Hi1|2
− 6

λimi
(Himi

)2

|Himi
|4 + 2

λi1(Hi1)
2

|Hi1|2
+ 2

λimi
(Himi

)2

|Himi
|2

− λimi
(Himi

)2

|Himi
|2 + 4

λimi
(Himi

)

|Himi
|2 〈∇JHimi

JX, X〉

= 3
λii(Hi1)

2

|Hi1|4
|Hi1|2 − 5

λimi
(Himi

)2

|Himi
|4 |Himi

|2 + 2
λimi

(Himi
)2

|Himi
|2

= 3
λi1(Hi1)

2

|Hi1|2
− 3

λimi
(Himi

)2

|Himi
|2 .

The nonpositivity of R̂ then implies that 〈〈R̂(ω), ω〉〉 ≤ 0, that is,

λi1(Hi1)
2

|Hi1|4
|Hi1|2 ≤

λimi
(Himi

)2

|Himi
|4 |Himi

|2.

This contradicts (1.17), and hence n0
imi

= {0}. This completes the proof of Claim 8.3.
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Claim 8.4.
λimi

(Himi
)2

|Himi
|2 ≤ · · · ≤ λi1(Hi1)

2

|Hi1|2
for any i.

Proof. First we consider the case where ni1 6= {0}. Suppose α, β ∈ {1, . . . , mi} satisfy

λiα(H) > λiβ(H). It then follows from Remark 6.6 that

dim niα + 2

mi∑
γ=α+1

dim n+iα
iγ

− dim niβ − 2

mi∑

γ=β+1

dim n
+iβ
iγ

= 2
α−1∑
γ=1

dim n
+iγ
iα

+ dim n0
iα + 2

mi∑
γ=α+1

dim n+iα
iγ

− 2

β−1∑
γ=1

dim n
+iγ
iβ

− dim n0
iβ
− 2

mi∑

γ=β+1

dim n
+iβ
iγ

= 2

β−1∑
γ=1

(
dim n

+iγ
iα

− dim n
+iγ
iβ

)
+ dim n0

iα − dim n0
iβ

+ 2
α−1∑

γ=β+1

(
dim n

+iγ
iα

− dim n
+iβ
iγ

)

≥ 0,

which implies that

dim niα + 2

mi∑
γ=α+1

dim n+iα
iγ

≥ dim niβ + 2

mi∑

γ=β+1

dim n
+iβ
iγ

. (1.18)

Since 〈 , 〉 is Einstein, we have

1

|Hiα|2
Ric(Hiα , Hiα) =

1

|Hiβ |2
Ric(Hiβ , Hiβ).

Hence, by making use of Claim 8.1, we obtain

−λiα(Hiα)2

4|Hiα|2
(

dim niα + 4 + 2

mi∑
γ=α+1

dim n+iα
iγ

)

= −λiβ(Hiβ)2

4|Hiβ |2
(

dim niβ + 4 + 2

mi∑

γ=β+1

dim n
+iβ
iγ

)
.

This together with (1.18) then yields

λiα(Hiα)2

|Hiα|2
≤ λiβ(Hiβ)2

|Hiβ |2
.
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Consequently, recall that λi1(H) < · · · < λimi
(H), we have

λimi
(Himi

)2

|Himi
|2 ≤ · · · ≤ λi1(Hi1)

2

|Hi1|2
.

The proof for the case where ni1 = {0} can be done in a similar way to that of the

case where ni1 6= {0}. ¤

Claim 8.5.
λiα(Hiα)2

|Hiα|2
=

λiβ(Hiβ)2

|Hiβ |2
for α, β ∈ Λai

.

Proof. First, we consider the case where ni1 = 0 and dim n+i1
imi

= 1. Then Remark 6.6

shows that dim n
+iβ
imi

= dim n+i1
imi

= 1 for any β. Moreover, it follows from Remark 6.6

that

1 = dim n
+iβ
imi

≥ dim n
+iβ
iα

> 0,

which implies that dim n
+iβ
iα

= 1 for any α, β. Hence the Ricci curvatures in the

directions Hiα and Hiβ are given respectively by

Ric(Hiα , Hiα) = −1

4
λiα(Hiα)2

(
dim niα + 4 + 2

mi∑
γ=α+1

dim n+iα
iγ

)

= −1

4
λiα(Hiα)2

(
2

α−1∑
γ=1

dim n
+iγ
iα

+ 4 + 2

mi∑
γ=α+1

dim n+iα
iγ

)

= −1

4
λiα(Hiα)2 (2(α− 1) + 4 + 2(mi − α))

= −1

4
λiα(Hiα)2 (2mi + 2) ,

Ric(Hiβ , Hiβ) = −1

4
λiα(Hiα)2 (2mi + 2) .

Since 〈 , 〉 is Einstein, we have

−λiα(Hiα)2

4|Hiα|2
(2mi + 2) = −λiβ(Hiβ)2

4|Hiβ |2
(2mi + 2) ,

which implies that
λiα(Hiα)2

|Hiα|2
=

λiβ(Hiβ)2

|Hiβ |2
.
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Next, we consider the case that ni1 = {0} and dim nimi
≥ 2. Note that there exist

non-zero vectors X ∈ n+i1
imi

and Y ∈ n−i1
imi

satisfying 〈JX, Y 〉 = 0. Then it is easy to see

that [X,Y ] = 0 and ∇Y X = 0. This implies that

〈R(Y, X)X,Y 〉 = 〈∇Y∇XX −∇X∇Y X −∇[X,Y ]X,Y 〉

=

〈
∇Y

(
λimi

(Himi
)

2|Himi
|2 |X|2Himi

+
λi1(Hi1)

2|Hi1|2
|X|2Hi1

)
, Y

〉

=

〈
−λimi

(Himi
)2

4|Himi
|2 |X|2Y +

λi1(Hi1)
2

4|Hi1|2
|X|2Y, Y

〉

= −λimi
(Himi

)2

4|Himi
|2 |X|2|Y |2 +

λi1(Hi1)
2

4|Hi1 |2
|X|2|Y |2.

Then the nonpositivity of R̂ implies that

λi1(Hi1)
2

|Hi1|2
≤ λimi

(Himi
)2

|Himi
|2 .

This together with Claim 8.4 then yields

λimi
(Himi

)2

|Himi
|2 = · · · = λi1(Hi1)

2

|Hi1 |2
.

Finally, we consider the case that ni1 6= {0}. Let {(E0
i1
)1, . . . , (E

0
i1
)ti} be an or-

thonormal basis of n0
i1
. Let X ∈ n0

imi
and Y ∈ n+i1

imi
, and let Z ∈ ni1 . We now define a

quadratic function f : R→ R by

f(x) = 〈〈R̂(xX ∧ Y + Hi1 ∧ Z), xX ∧ Y + Hi1 ∧ Z〉〉.

Then, using Claim 4.2 and Remark 6.2, we see that f is represented as

f(x) = x2〈〈R̂(X ∧ Y ), X ∧ Y 〉〉+ 2x〈〈R̂(X ∧ Y ), Hi1 ∧ Z〉〉+ 〈〈R̂(Hi1 ∧ Z), Hi1 ∧ Z〉〉
= x2〈R(Y, X)X,Y 〉+ 2x〈R(Z, Hi1)Y, X〉+ 〈R(Z, Hi1)Hi1 , Z〉

= x2

(
|U(X,Y )|2 − 〈U(X,X), U(Y, Y )〉 − 3

4
|[X,Y ]|2

− 1

2
〈[X, [X,Y ]], Y 〉 − 1

2
〈[Y, [Y, X]], X〉

)

+ 2x〈R(Hi1 , Z)X,Y 〉+ 〈R(Hi1 , Z)Z, Hi1〉

= x2

(
ti∑

p=1

〈U(X,Y ), (E0
i1
)p〉2 − 1

|Himi
|2 〈U(X,X), Himi

〉〈U(Y, Y ), Himi
〉
)
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− x
1

2
λi1(Hi1)〈∇ZX,Y 〉 − 1

2
λi1(Hi1)〈∇ZZ, Hi1〉

= x2

(
1

4

ti∑
p=1

〈Y, [X, (E0
i1
)p]〉2 −

λimi
(Himi

)2

4|Himi
|2 |X|2|Y |2

)

− x
1

2
λi1(Hi1)〈Y, [Z, X]〉 − 1

4
λi1(Hi1)

2|Z|2.

The discriminant D of f is then given by

D =
1

4
λi1(Hi1)

2〈Y, [Z, X]〉2

+ 4

(
1

4

ti∑
p=1

〈Y, [X, (E0
i1
)p]〉2 −

λimi
(Himi

)2

4|Himi
|2 |X|2|Y |2

)
1

4
λi1(Hi1)

2|Z|2

=
1

4
λi1(Hi1)

2

(
〈Y, [Z, X]〉2 + |Z|2

ti∑
p=1

〈Y, [X, (E0
i1
)p]〉2 −

λimi
(Himi

)2

|Himi
|2 |X|2|Y |2|Z|2

)
.

We now set X = [JY, JZ]. Note that X does not vanish by (iv) of Proposition 6.1.

Setting ep = 1/|[J(E0
i1
)p, JY ]| [J(E0

i1
)p, JY ], it follows from (iv) of Proposition 6.1 that

e1, . . . , eti are perpendicular to each other in n0
imi

. Hence the subspace [n0
i1
, JY ] of n0

imi

is spanned by {e1, . . . , eti}.
It follows from Condition (K3) together with Claim 6.12 that

D =
1

4
λi1(Hi1)

2

(
〈Y, [Z, [JY, JZ]]〉2 + |Z|2

ti∑
p=1

〈Y, [[JY, JZ], (E0
i1
)p]〉2

−λimi
(Himi

)2

|Himi
|2 |[JY, JZ]|2|Y |2|Z|2

)

=
1

4
λi1(Hi1)

2

(
1

4
〈Y, [[Z, JZ], JY ]〉2 + |Z|2

ti∑
p=1

〈[JY, JZ], [J(E0
i1
)p, JY ]〉2

−λimi
(Himi

)2

|Himi
|2

λi1(Hi1)
2

2|Hi1|2
|Y |2|Z|2|Y |2|Z|2

)

=
1

4
λi1(Hi1)

2

(
1

4

λi1(Hi1)
2

|Hi1|4
|Z|4〈Y, [JHi1 , JY ]〉2

+ |Z|2
ti∑

p=1

|[J(E0
i1
)p, JY ]|2〈[JY, JZ], ep〉2

−λimi
(Himi

)2

|Himi
|2

λi1(Hi1)
2

2|Hi1|2
|Y |2|Z|2|Y |2|Z|2

)
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=
1

4
λi1(Hi1)

2

(
1

4

λi1(Hi1)
4

|Hi1 |4
|Z|4|Y |4 + |Z|2λi1(Hi1)

2

2|Hi1|2
|Y |2|[JY, JZ]|2

−λimi
(Himi

)2

|Himi
|2

λi1(Hi1)
2

2|Hi1|2
|Y |2|Z|2|Y |2|Z|2

)

=
λi1(Hi1)

4

4|Hi1|2
|Z|4|Y |4

(
λi1(Hi1)

2

4|Hi1|2
+

λi1(Hi1)
2

4|Hi1|2
− λimi

(Himi
)2

2|Himi
|2

)

=
λi1(Hi1)

4

4|Hi1|2
|Z|4|Y |4

(
λi1(Hi1)

2

2|Hi1|2
− λimi

(Himi
)2

2|Himi
|2

)
.

The nonpositivity of R̂ then implies that f(x) ≤ 0 for all x ∈ R. Hence the discriminant

D of f is nonpositive, that is,

λi1(Hi1)
2

2|Hi1|2
≤ λimi

(Himi
)2

2|Himi
|2 .

This combined with Claim 8.4 then shows that

λi1(Hi1)
2

2|Hi1|2
=

λimi
(Himi

)2

2|Himi
|2 .

This completes the proof of Claim 8.5.

Summing up the above argument, we obtain Proposition 8.1.

Proposition 8.1 shows that a connected, simply connected homogeneous Kähler

Einstein manifold M of nonpositive curvature operator is a Riemannian symmetric

space if it is not Ricci flat. On the other hand, if M is Ricci flat, then it is flat, and

hence is also a Riemannian symmetric space. In consequence, we obtain our Main

Theorem.
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Chapter 2

Examples

It is well-known that all irreducible symmetric Kähler manifolds of non-compact type

have nonpositive sectional curvature. In this chapter, we study the curvature operator

of the following classical type irreducible symmetric Kähler manifolds of noncompact

type.

1 Type Im,n

Let M be an open subset DI
m,n =

{
ζ ∈ M(m,n;C)

∣∣ In − tζζ > 0
}

of Cmn, where In

is the n × n identity matrix, tζ is the transpose of ζ ∈ M and ζ denotes the complex

conjugate of ζ ∈ M .

Let ζ = (zip) ∈ M with zip = xip +
√−1 yip, i = 1, . . . , m and p = 1, . . . , n be

the canonical complex coordinate system of M . Let Φ be a real-valued function in a

coordinate neighborhood U at the origin 0 of M defined by

Φ(ζ) = log det
(
In − tζ̄ζ

)−1

=
∑

|zip|2 +
1

2

∑
z̄ipziqz̄jqzjp + (higher order terms)

for any ζ ∈ U .

Unless otherwise stated, Greek indices α, β, . . . denote all subscripts appearing as

pairs {11, 12, . . . , mn}, while Latin capitals A,B, . . . denote {11, 12, . . . , mn, 11, . . . , mn}.
We set

Zα =
∂

∂zα

=
1

2

(
∂

∂xα

−√−1
∂

∂yα

)
,
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Zα =
∂

∂z̄α

=
1

2

(
∂

∂xα

+
√−1

∂

∂yα

)
.

The Kähler metric g of M is given, at the origin 0, by

gαβ =
∂2Φ

∂zα∂zβ

(0),

gαβ̄ =
∂2Φ

∂zα∂z̄β

(0)
(
= gβα

)
,

gαβ =
∂2Φ

∂z̄α∂z̄β

(0),

where gAB = g(ZA, ZB)(0). Note that we have

gip jq = gjq ip = δijδpq, gαβ = gαβ = 0.

Let R be the curvature tensor of the Kähler manifold (M, g), and define RABCD =

g(R(ZC , ZD)ZB, ZA)(0). Then we obtain

Rip jq kr ls =
∂4Φ

∂zip∂zjq∂zkr∂zls

(ζ)

∣∣∣∣
ζ=0

= δijδklδpsδqr + δilδjkδpqδrs.

By the symmetry properties of R, it is easy to see that RABCD = RCDAB = −RBACD

and RαβCD = RαβCD = 0.

Then it is immediate to see that the curvature operator R̂ of (M, g) is given by

R̂(Zip ∧ Zjq) = −δij

m∑

k=1

Zkp ∧ Zkq − δpq

n∑
r=1

Zir ∧ Zjr,

R̂(Zα ∧ Zβ) = R̂(Zα ∧ Zβ) = 0.

We divide our investigation into the following four cases: (1) m = n = 1; (2) m = n = 2;

(3) m = n ≥ 3; (4) m 6= n.

(1) In this case, R̂ has two eigenvalues 0 and −2, whose eigenvectors are the fol-

lowing:

0 ; Z11 ∧ Z11, Z11 ∧ Z11,

−2 ; Z11 ∧ Z11.
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(2) In this case, R̂ has three eigenvalues 0,−2 and −4, whose eigenvectors are given

as follows:

0 ; Z11 ∧ Z11 − Z12 ∧ Z12 − Z21 ∧ Z21 + Z22 ∧ Z22,

Z11 ∧ Z21 − Z12 ∧ Z22, Z21 ∧ Z11 − Z22 ∧ Z12,

Z11 ∧ Z12 − Z21 ∧ Z22, Z12 ∧ Z11 − Z22 ∧ Z21,

Z11 ∧ Z22, Z12 ∧ Z21, Z21 ∧ Z12, Z22 ∧ Z11,

Zα ∧ Zβ, Zα ∧ Zβ, for any α, β,

−2 ; Z11 ∧ Z11 − Z22 ∧ Z22, Z12 ∧ Z12 − Z21 ∧ Z21,

Z11 ∧ Z21 + Z12 ∧ Z22, Z21 ∧ Z11 + Z22 ∧ Z12,

Z11 ∧ Z12 + Z21 ∧ Z22, Z12 ∧ Z11 + Z22 ∧ Z21,

−4 ; Z11 ∧ Z11 + Z12 ∧ Z12 + Z21 ∧ Z21 + Z22 ∧ Z22.

(3) In this case, R̂ has three eigenvalues 0,−m and −2m, whose eigenvectors are

given respectively by

0 ; Zip ∧ Zip − Zim ∧ Zim − Zmp ∧ Zmp − Zmm ∧ Zmm for i, p 6= m,

Zkp ∧ Zkq − Zmp ∧ Zmq for k 6= m and p 6= q,

Zir ∧ Zjr − Zim ∧ Zjm for r 6= m and j 6= i,

Zip ∧ Zjq for i 6= j and p 6= q,

Zα ∧ Zβ, Zα ∧ Zβ for any α, β,

−m ;
m∑

r=1

Zir ∧ Zir −
1

m− 2

(
m−1∑

k=1

m−1∑
r=1

Zkr ∧ Zkr + Zmm ∧ Zmm

)
for i 6= m,

m∑

k=1

Zkp ∧ Zkp −
1

m− 2

(
m∑

k=1

m∑
r=1

Zkr ∧ Zkr + Zmm ∧ Zmm

)
for p 6= m,

m∑

k=1

Zkp ∧ Zkq for p 6= q,

m∑
r=1

Zir ∧ Zjr for i 6= j,
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−2m ;
m∑

i,p=1

Zip ∧ Zip.

(4) In this case, R̂ has four eigenvalues 0,−m,−n and −(m+n), whose eigenvectors

are given respectively by

0 ; Zip ∧ Zip − Zin ∧ Zin − Zmp ∧ Zmp + Zmn ∧ Zmn for i 6= m and p 6= n,

Zir ∧ Zjr − Zin ∧ Zjn for i 6= j and r 6= n,

Zkp ∧ Zkq − Zmp ∧ Zmq for k 6= m and p 6= q,

Zip ∧ Zjq for i 6= j and p 6= q,

Zα ∧ Zβ, Zα ∧ Zβ for any α, β,

−m ;
m∑

k=1

(
Zkp ∧ Zkp − Zkn ∧ Zkp

)
for p 6= n

m∑

k=1

Zkp ∧ Zkq for p 6= q,

−n ;
n∑

r=1

(Zir ∧ Zir − Zmr ∧ Zmr) for i 6= m,

n∑
r=1

Zir ∧ Zjr for i 6= j,

−(m + n) ;
∑
i,p

Zip ∧ Zip.

2 Type IIm

Let M be an open set DI
m,n = {ζ ∈ M(n;C) | tζ = −ζ, In− tζ̄ζ > 0} of Cn(n−1)/2, where

In is the n×n identity matrix, tζ is the transpose of ζ ∈ M and ζ̄ denotes the complex

conjugate of ζ ∈ M . Note that M is a subset of DI
n,m.

Denote by ζ = (zij) ∈ M with zij = xij +
√−1 yij, i, j = 1, . . . , n. Since ζ is a

skew-symmetric matrix for all ζ ∈ M , we have zij = −zji and hence the components
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zij for i < j is the canonical complex coordinate system of M . Let Φ be a real-valued

function in a coordinate neighborhood U at the origin 0 of M defined by

Φ(ζ) =
1

2
log det

(
In − tζ̄ζ

)−1

=
∑
i<j

|zij|2 +
1

4

∑
z̄ikzilz̄jlzjk + (higher order terms)

for any ζ ∈ U .

Now, Greek indices α, β, . . . denote all subscripts appearing as pairs {12, . . . , 1n, 23,

. . . , (n−1)n}, while Latin capitals A,B, . . . denote {12, . . . , (n−1)n, 12, . . . , (n− 1)n},
and we set

Zα =
∂

∂zα

=
1

2

(
∂

∂xα

−√−1
∂

∂yα

)
,

Zα =
∂

∂z̄α

=
1

2

(
∂

∂xα

+
√−1

∂

∂yα

)
.

Then the complexification of the tangent space T0M at the origin 0 of M is represented

as

TC0 M = spanC
{
Zij, Zij | 1 ≤ i < j ≤ n

}
.

The Kähler metric g of M is given, at the origin 0, by

gαβ =
∂2Φ

∂zα∂zβ

(0),

gαβ =
∂2Φ

∂zα∂z̄β

(0)
(
= gβα

)
,

gα β =
∂2Φ

∂z̄α∂z̄β

(0),

where gAB = g(ZA, ZB)(0). Thus we have

gij kl = gkl ij = δikδjl, gij kl = gij kl = 0.

Let R be the curvature tensor of the Kähler manifold (M, g), and define RABCD =

g(R(ZC , ZD)ZB, ZA)(0). Then we obtain

Rij kl pq rs =
∂4Φ

∂zij∂zkl∂zpq∂zrs

(ζ)

∣∣∣∣
ζ=0
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= δrl
pqδ

ks
ij − δrk

pq δ
ls
ij − δsl

pqδ
kr
ij + δsk

pqδ
lr
ij ,

where δkl
ij = ∂zkl/∂zij = δikδjl − δilδjk. By the symmetry properties of R, we also have

RABCD = RCDAB = −RBACD and RαβCD = RαβCD = 0.

Then it is immediate to see that the curvature operator R̂ of (M, g) is given by

R̂(Zij ∧ Zkl) =
∑

p,q,r,s

(−δrl
pqδ

ks
ij + δrk

pq δ
ls
ij + δsl

pqδ
kr
ij − δsk

pqδ
lr
ij

)
Zrs ∧ Zpq,

R̂(Zα ∧ Zβ) = R̂(Zα ∧ Zβ) = 0.

We divide our investigation into the following two cases: (1) n = 2; (2) n ≥ 3.

(1) In this case, R̂ has two eigenvalues 0 and −2, whose eigenvectors are the fol-

lowing:

0 ; Z12 ∧ Z12, Z12 ∧ Z12,

−2 ; Z12 ∧ Z12.

(2) In this case, R̂ has three eigenvalues 0,−(n−2) and−2(n−1), whose eigenvectors

are given respectively by

0 ; Zij ∧ Zij − Zin ∧ Zin

− Zjn ∧ Zjn − Z(n−2)(n−1) ∧ Z(n−2)(n−1)

+ Z(n−2)n ∧ Z(n−2)n + Z(n−1)n ∧ Z(n−1)n for 1 ≤ i < j ≤ n− 2,

Zi(n−1) ∧ Zi(n−1) − Z(n−1)n ∧ Z(n−1)n

− Zin ∧ Zin − Z(n−2)(n−1) ∧ Z(n−2)(n−1)

+ Z(n−1)n ∧ Z(n−1)n + Z(n−2)n ∧ Z(n−2)n for 1 ≤ i ≤ n− 3,

Zij ∧ Zik − Zjn ∧ Zkn for 1 ≤ i < j < k ≤ n− 1,

Zij ∧ Zjk + Zin ∧ Zkn for 1 ≤ i < j < k ≤ n− 1,

Zik ∧ Zjk − Zin ∧ Zjn for 1 ≤ i < j < k ≤ n− 1,

Zik ∧ Zij − Zkn ∧ Zjn for 1 ≤ i < j < k ≤ n− 1,

Zjk ∧ Zij + Zkn ∧ Zin for 1 ≤ i < j < k ≤ n− 1,

Zjk ∧ Zik − Zjn ∧ Zin for 1 ≤ i < j < k ≤ n− 1,

Zij ∧ Zin + Zj(n−1) ∧ Z(n−1)n for 1 ≤ i < j ≤ n− 2,

Zij ∧ Zjn − Zi(n−1) ∧ Z(n−1)n for 1 ≤ i < j ≤ n− 2,
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Zin ∧ Zij + Z(n−1)n ∧ Zj(n−1) for 1 ≤ i < j ≤ n− 2,

Zjn ∧ Zij − Z(n−1)n ∧ Zi(n−1) for 1 ≤ i < j ≤ n− 2,

Zi(n−1) ∧ Zin − Z(n−2)(n−1) ∧ Z(n−2)n for 1 ≤ i ≤ n− 3,

Zin ∧ Zi(n−1) − Z(n−2)n ∧ Z(n−2)(n−1) for 1 ≤ i ≤ n− 3,

Zij ∧ Zkl for i 6= k, l and j 6= k, l,

Zα ∧ Zβ, Zα ∧ Zβ for any α, β,

−(n− 2) ; − 2

n− 2

i−1∑
r=2

Zri ∧ Zri +
∑
r<i

Zri ∧ Zri +
∑
i<r

Zir ∧ Zir for 2 ≤ i ≤ n,

i−1∑
r=1

Zri ∧ Zrj −
j−1∑

r=i+1

Zir ∧ Zrj +
n∑

r=j+1

Zir ∧ Zjr for 1 ≤ i < j ≤ n,

i−1∑
r=1

Zrj ∧ Zri −
j−1∑

r=i+1

Zrj ∧ Zir +
n∑

r=j+1

Zjr ∧ Zir for 1 ≤ i < j ≤ n,

−2(n− 1) ;
∑
i<j

Zij ∧ Zij.

3 Type IIIm

Let M be an open subset DIII
n = {ζ ∈ M(n;C) | tζ = ζ, In − tζ̄ζ > 0} of Cn(n+1)/2,

where In is the n× n identity matrix, tζ is the transpose of ζ ∈ M and ζ̄ denotes the

complex conjugate of ζ ∈ M .

Denote by ζ = (zij) ∈ M with zij = xij +
√−1 yij, i, j = 1, . . . , n. Since ζ is a

symmetric matrix for all ζ ∈ M , we have zij = zji, so that the components zij for i ≤ j

is the canonical complex coordinate system of M . Let Φ be a real-valued function in

a coordinate neighborhood U at the origin 0 of M defined by

Φ(ζ) =
1

2
log det

(
In − tζ̄ζ

)−1

=
1

2

n∑
i,j=1

|zij|2 +
1

4

∑
z̄ikzilz̄jlzjk + (higher order terms)

for any ζ ∈ U .
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In this case, Greek indices α, β, . . . denote all subscripts appearing as pairs {11, 12,

. . . , nn}, while Latin capitals A,B, . . . denote {11, 12, . . . , mn, 11, . . . , nn}, and we set

Zα =
∂

∂zα

=
1

2

(
∂

∂xα

−√−1
∂

∂yα

)
,

Zα =
∂

∂z̄α

=
1

2

(
∂

∂xα

+
√−1

∂

∂yα

)
.

Then the complexfication of the tangent space T0M at the origin 0 of M is represented

as

TC0 M = spanC
{
Zij, Zji | 1 ≤ j ≤ j ≤ n

}
.

The Kähler metric g of M is given, at the origin 0, by

gij kl =
∂2Φ

∂zij∂zkl

(0),

gij kl =
∂2Φ

∂zij∂z̄kl

(0)
(
= gkl ij

)
,

gij kl =
∂2Φ

∂z̄ij∂z̄kl

(0),

where gAB = g(ZA, ZB)(0). Then we have

gij kl = gkl ij = ekl
ij for i 6= j, k 6= l,

gii kk = gii kk =
1

2
δik,

where ekl
ij = δikδjl + δjkδil.

Let R be the curvature tensor of the Kähler manifold (M, g), and define RABCD =

g(R(ZC , ZD)ZB, ZA)(0). Then we obtain

Rij kl pq rs =
∂4Φ

∂zij∂zkl∂zpq∂zrs

(ζ)

∣∣∣∣
ζ=0

so that

Rii kk pp rr = δrpδriδpkδki,

Rij kl pp rr = δrpδlpe
kr
ij + δrpδkpe

lr
ij,

Rij kk pq rr = ekr
ij ekr

pq ,

124



Rij kk pp rs = δikδpke
pj
rs + δjkδpke

pi
rs,

Rii kl pp rs = epi
rse

pi
kl,

Rii kl pq rs = eip
kle

iq
rs + eiq

kle
ip
rs,

Rij kk pq rs = ekr
pqe

ks
ij + eks

pqe
kr
ij ,

Rij kl pq rs = ekr
pqe

ls
ij + eks

pqe
lr
ij + elr

pqe
ks
ij + els

pqe
kr
ij ,

where i < j, k < l, p < q and r < s. By the symmetry properties of R, it is easy to

see that RABCD = RCDAB = −RBACD and RαβCD = RαβCD = 0.

It then is immediate to see that the curvature operator R̂ of (M, g) is given by

R̂(Zii ∧ Zkk) =− 4
∑
r,p

δrpδriδkpδikZrr ∧ Zpp −
∑

p,q,r,s

(
δikδise

kr
pq + δikδire

sk
pq

)
Zrs ∧ Zpq,

R̂(Zij ∧ Zkk) =− 2
∑
r,p,q

ekr
ij ekr

pqZrr ∧ Zpq − 2
∑
p,r,s

(
δikδpke

pj
rs + δjkδpke

pi
rs

)
Zrs ∧ Zpp

−
∑

p,q,r,s

(
ekr

pqe
ks
ij + eks

pqe
kr
ij

)
Zrs ∧ Zpq,

R̂(Zii ∧ Zkl) =− 2
∑
p,q,r

(
δprδire

iq
kl + δqrδire

ip
kl

)
Zrr ∧ Zpq − 2

∑
p,r,s

epi
rse

pi
klZrs ∧ Zpp

−
∑

p,q,r,s

(
eip

kle
iq
rs + eiq

kle
ip
rs

)
Zrs ∧ Zpq,

R̂(Zij ∧ Zkl) =− 4
∑
p,r

(
δrpδlpe

kr
ij + δrpδkpe

lr
ij

)
Zrr ∧ Zpp

− 2
∑
p,q,r

(
erk

ij erl
pq + erl

ije
rk
pq

)
Zrr ∧ Zpq

− 2
∑
p,r,s

(
epi

rse
pj
kl + epj

rse
pi
kl

)
Zrs ∧ Zpp

−
∑

p,q,r,s

(
ekr

pqe
ls
ij + eks

pqe
lr
ij + elr

pqe
ks
ij + els

pqe
kr
ij

)
Zrs ∧ Zpq.

Consequently, the curvature operator R̂ has three eigenvalues 0,−(n+2) and−2(n+

1), whose eigenvectors are given respectively by

0 ; Zij ∧ Zij − Zin ∧ Zin − Zjn ∧ Zjn + 2Znn ∧ Znn for 1 ≤ i < j ≤ n− 1,

Zii ∧ Zii − Zin ∧ Zin + Znn ∧ Znn for 1 ≤ i ≤ n− 1,

Zij ∧ Zik − Zjn ∧ Zkn for 1 ≤ i ≤ j < k ≤ n,

Zij ∧ Zjk − Zin ∧ Zkn for 1 ≤ i < j ≤ k ≤ n− 1,
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Zij ∧ Zjn − Zin ∧ Zjn for 1 ≤ i < j ≤ n− 1,

Zik ∧ Zjk − Zin ∧ Zjn for 1 ≤ i < j < k ≤ n− 1,

Zik ∧ Zij − Zkn ∧ Zjn for 1 ≤ i ≤ j < k ≤ n,

Zjk ∧ Zij − Zkn ∧ Zin for 1 ≤ i < j ≤ k ≤ n− 1,

Zjn ∧ Zij − Znn ∧ Zin for 1 ≤ i < j ≤ n− 1,

Zjk ∧ Zik − Zjn ∧ Zin for 1 ≤ i < j < k ≤ n− 1,

Zii ∧ Zkk for i 6= k,

Zij ∧ Zkk for i < j and i, j 6= k,

Zii ∧ Zkl for k < l and i 6= k, l,

Zij ∧ Zkl for i < j, k < l and i 6= k, l, j 6= k, l,

Zα ∧ Zβ, Zα ∧ Zβ for any α, β,

−(n + 2) ; Zii ∧ Zii +
1

4

n∑
r=i+1

Zir ∧ Zir +
1

4

i−1∑
r=1

Zri ∧ Zri

− Znn ∧ Znn − 1

4

n−1∑
r=1

Zrn ∧ Zrn for 1 ≤ i ≤ n− 1,

1

2

i−1∑
r=1

Zri ∧ Zrk + Zii ∧ Zik +
1

2

k−1∑
r=i+1

Zir ∧ Zrk + Zik ∧ Zkk

+
1

2

n∑

r=k+1

Zir ∧ Zkr for 1 ≤ i < k ≤ n,

1

2

k−1∑
p=1

Zpk ∧ Zpi + Zkk ∧ Zik +
1

2

i−1∑

p=k+1

Zkp ∧ Zpi + Zki ∧ Zii

+
1

2

n∑
p=i+1

Zkp ∧ Zip for 1 ≤ i < k ≤ n,

−2(n + 1) ; 2
n∑

r=1

Zrr ∧ Zrr +
∑
r<s

Zrs ∧ Zrs.
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4 Type IVm

Let M be an open subset DIV
n = {ζ ∈ M(n, 1);C) | 1+ |tζζ|2−2tζζ > 0, tζ̄ζ < 1} of Cn,

where tζ is the transpose of ζ ∈ M , and ζ̄ denotes the complex conjugate of ζ ∈ M .

Let ζ = t(z1, . . . , zn) with zi = xi +
√−1 yi, i = 1, . . . , n be the canonical complex

coordinate system of M . Let Φ be a real-valued function in a coordinate neighborhood

U at the origin 0 of M defined by

Φ(ζ) = log det
(
1− 2tζζ + |ζ|2)−1

= 2
n∑

α=1

|zα|2 +
∑

α,β

(zα)2(z̄β)2 + 2
∑

α,β

|zα|2|zβ|2 + (higher order terms)

for any ζ ∈ U .

Now, Greek indices α, β, . . . run from 1 to n, while Latin capitals A,B, . . . run

through 1, . . . , n, 1̄, . . . , n̄, and we set

Zα =
∂

∂zα

=
1

2

(
∂

∂xα

−√−1
∂

∂yα

)
,

Zα =
∂

∂z̄α

=
1

2

(
∂

∂xα

+
√−1

∂

∂yα

)
.

The Kähler metric g of M is given, at the origin 0, by

gαβ =
∂2Φ

∂zα∂zβ

(0),

gαβ =
∂2Φ

∂zα∂z̄β

(0),
(
= gβα

)

gαβ =
∂2Φ

∂z̄α∂z̄β

(0),

where gAB = g(ZA, ZB)(0). Then we have

gαβ(0) = gβα(0) = δijδαβ.

Let R be the curvature tensor of the Kähler manifold (M, g), and define RABCD =

g(R(ZC , ZD)ZB, ZA)(0). Then we have

Rαβγδ(0) =
∂4Φ

∂zα∂zβ∂zγ∂zδ

(ζ)

∣∣∣∣
ζ=0

= −4δαγδβδ + 4δγδδαβ + 4δαδδβγ ,
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and it is easy to see thatRABCD = RCDAB = −RBACD and RαβCD = RαβCD = 0.

Then it is immediate to see that the curvature operator R̂ of (M, g) is given by

R̂(Zα ∧ Zα) = −
n∑

γ=1

Zγ ∧ Zγ,

R̂(Zα ∧ Zβ) = Zβ ∧ Zα − Zα ∧ Zβ, for α 6= β.

Then R̂ has three eigenvalues 0,−2 and −n, whose eigenvectors are given respectively

by

0 ; Zα ∧ Zα − Zn ∧ Zn, for 1 ≤ α ≤ n− 1,

Zα ∧ Zβ + Zβ ∧ Zα for α 6= β,

−2 ; Zα ∧ Zβ − Zβ ∧ Zα, for α 6= β,

−n ;
n∑

α=1

Zα ∧ Zα.
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