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Abstract

This research is motivated by the program of Reverse Mathematics. We study real

and complex analysis in second order arithmetic. To develop analysis in second

order arithmetic, we adopt techniques of non-standard analysis, which enables us to

simplify many proofs.

In Chapters 3 and 4, we introduce some suitable notions for differential and

integral calculus and develop basic real and complex analysis within RCA0. Then,

we present some results on Reverse Mathematics for real and complex analysis such

as the following: the inverse function theorem and Taylor’s theorem for holomorphic

functions are proved in RCA0, L2-convergence of Fourier series and Cauchy’s integral

theorem is equivalent to WKL0 over RCA0.

In Chapter 5, we introduce some model-theoretic arguments of non-standard

analysis for WKL0 and ACA0 using Tanaka’s self-embedding theorem for a model

of WKL0 and Gaifman’s conservative extension for a model of PA. Then, applying

these techniques, we show that the Jordan curve theorem is equivalent to WKL0 over

RCA0 and that the Riemann mapping theorem is equivalent to ACA0 over WKL0.

In Chapter 6, we introduce systems of non-standard second order arithmetic

ns-ACA0 and ns-WKL0 and formalize the non-standard arguments introduced in

Chapter 5. Then, we obtain some effective methods to transform non-standard

proofs in ns-ACA0 or ns-WKL0 into standard proofs in ACA0 or WKL0 and show that

ns-ACA0 and ns-WKL0 are conservative extensions of ACA0 and WKL0 respectively

without using a model-theoretic method.
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1 Introduction

This thesis is a contribution to the foundations of mathematics. The main objectives

of this thesis are mathematics in second order arithmetic, especially arguments of

non-standard analysis for second order arithmetic and Reverse Mathematics.

Most or all ordinary mathematics can be developed within a system of axiomatic

set theory such as ZFC. On the other hand, some parts of basic analysis or linear

algebra can be developed using elementary methods such as computable methods.

For example, it is difficult to find a fixed point of a continuous function from the unit

disk to itself (Brouwer’s fixed point theorem). However, if a function is a contraction

mapping, one can find a fixed point computably (actually, 0, f(0), f(f(0)), . . . con-

verges to a fixed point of a contraction mapping f). Then, which parts of ordinary

mathematics can be formalized in weak systems? (In this setting, we are especially

concerned with the core of ordinary mathematics such as calculus, real and com-

plex analysis, abstract algebra, and geometry, which are learned by undergraduates.)

Motivated by this question, we develop some parts of ordinary mathematics (mainly

analysis) within some sufficiently weak subsystems of second order arithmetic (in-

troduced in the following section), which consist of axioms to treat computable sets

and other plain sets.1 This development is the first subject of this thesis. The sys-

tems we adopt have few axioms to treat infinite sets. For that reason, we encounter

many difficulties in developing analysis. Consequently, we require some suitable

methods to treat limit, differentiation, integration, and so on. We adopt techniques

of non-standard analysis to develop mathematics more richly in these systems.

When a theory of ordinary mathematics is provable by weak axioms, then are

these axioms exactly necessary to prove it? For example, the fixed point theorem

for contraction mappings requires less axioms than Brouwer’s theorem.2 The second

subject of this thesis is to answer the previous question. Friedman[11] revealed the

following theme: very often, if a theorem τ of ordinary mathematics is proved from

the “right” axioms, then τ is equivalent to those axioms over some weaker system in

which itself is not provable. This theme is known as Reverse Mathematics. Following

this theme, we determine which axioms are necessary to prove some theorems of real

and complex analysis in second order arithmetic.3

1There are many other studies to formalize ordinary mathematics in weak systems from various

standpoints such as recursive mathematics[23], constructive mathematics[4] and so on.
2See Shioji/Tanaka[27].
3Aside from the viewpoint of second order arithmetic, Constructive Reverse Mathematics (see,
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1.1 Second order arithmetic and Reverse Mathematics

The formal system Z2 of second order arithmetic is a system in which one can

deal with natural numbers and sets of natural numbers. Its language is a two-

sorted language, i.e., there are two distinct sorts of variables which are intended

to range over two different kinds of objects, natural numbers and sets of natural

numbers. Its axioms consist of basic axioms of arithmetic such as ordered semiring,

an induction axiom and a comprehension axiom which expresses that, for any second

order formula ϕ(n), there exists a set of all n such that ϕ(n) holds. Second order

arithmetic is adequate to develop the core of ordinary mathematics. Actually, most

or all concepts of ‘classical’ mathematics can be developed within second order

arithmetic.

Friedman pointed out that the study of subsystems of second order arithmetic

is necessary and important to answer the theme of Reverse Mathematics. Actu-

ally, we can determine the right axioms for many theorems of ordinary mathematics

and classify theorems by the strength of axioms they require in second order arith-

metic. For this reason, we study ordinary mathematics in subsystems of second order

arithmetic. Reverse Mathematics in second order arithmetic is carried forward by

Friedman, Simpson, Tanaka, and others. Many theorems of ordinary mathemat-

ics are provable within a subsystem of second order arithmetic RCA0, or equivalent

over RCA0 to one of the following subsystems: WKL0, ACA0, ATR0, and Π1
1-CA0. We

usually consider these five subsystems of second order arithmetic when we study

Reverse Mathematics.

RCA0 is a system of recursive comprehension that guarantees the existence of

recursively definable sets. This system is the weakest system that we will consider;

it is the basis of Reverse Mathematics. However, it is sufficiently strong to prove

some basic theorems of continuous functions, algebra, and so on. For example, the

mean value theorem and fixed point theorem for contraction mapping is provable in

RCA0 [14, 27].

WKL0 consists of RCA0 and a particular set existence axiom called weak König’s

lemma, which asserts that every infinite tree of sequences of 0’s and 1’s has an infinite

path. Although the first order part of WKL0 is the same as that of RCA0, many

important theorems, such as the Heine-Borel theorem, Brouwer’s fixed point theorem

and the uniform continuity of continuous functions on the closed unit interval cannot

e.g. [18]) is also known.
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be proved in RCA0 but can be proved in WKL0. Since the consistency strength of

WKL0 is equivalent to that of PRA (Primitive Recursive Arithmetic), mathematics in

WKL0 present important implications for the foundations of mathematics, especially

in relation to Hilbert’s program [29, page 382].

The system ACA0 consists of RCA0 and arithmetical comprehension axiom, which

guarantees the existence of arithmetically definable sets. The first order part of ACA0

is just PA (Peano Arithmetic). ACA0 is stronger than WKL0 in the sense of consis-

tency, and it proves many theorems related to convergence, e.g., the convergence of

a bounded monotone real sequence.

ATR0 is a system of arithmetical transfinite recursion, which says that arithmeti-

cal comprehension can be iterated along any countable well ordering. Π1
1-CA0 is a

system of Π1
1 comprehension, which guarantees the existence of Π1

1 definable sets.

Both ATR0 and Π1
1-CA0 present numerous mathematical consequences in the realms

of algebra, analysis, classical descriptive set theory, and countable combinatorics.

For this thesis, we mainly consider RCA0, WKL0, ACA0 and another system,

WWKL0, which is introduced by Simpson/Yu[39]. For mathematics in ATR0 and

Π1
1-CA0, see [29, Chapters V, VI].

1.2 Non-standard analysis and second order arithmetic

Non-standard analysis is a noteworthy application of model theory to mathematics.

It is a method to handle infinitely large and small numbers and develop analysis as

follows. First, fix a model V including N and R to carry out mathematics, which

is called the standard model. Then, construct an elementary extension ∗V Â V .4

In ∗V , one can find infinitely large natural numbers and infinitely large or small

real numbers from the standpoint of V . Then, one can carry out mathematics with

infinitely small and large numbers. By elementarity, consequences in ∗V return to

V .

Non-standard analysis was initiated by Robinson[24] and carried forward by

many people. It provides a suitable framework for the development of differential

and integral calculus using intuitive definitions of limits, derivatives and so on using

infinitely small and large numbers. Using non-standard analysis, one can substan-

tially simplify many proofs of analysis.

As described earlier, we encounter some difficulties in dealing with various ‘in-

4Sometimes, an elementary extension with some saturation is needed.
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finities’ such as limit, continuity and integration when we study analysis in weak

systems of second order arithmetic. Consequently, within these systems, it would

be extremely convenient to handle ‘infinities’ if techniques of non-standard analysis

were completely available and ‘infinities’ were expressed by ‘hyper finite concepts’,

i.e., as expressed by finite concepts with infinitely small or large numbers. Unfor-

tunately, second order arithmetic is not sufficiently strong to use full techniques of

non-standard analysis. Actually, Henson, Kaufmann and Keisler[15] and Henson

and Keisler[16] showed that some systems of non-standard analysis deduce some

properties which cannot be proved in Z2. Therefore, some restriction exists in using

arguments of non-standard analysis in subsystems of second order arithmetic. Non-

standard analysis is based on constructions of a non-standard model. For that rea-

son, some model theoretic consideration is needed to use techniques of non-standard

analysis in second order arithmetic.

In [34], Tanaka introduced some arguments of restricted non-standard analysis

for a system WKL0 using self-embedding theorem for countable non-standard models

of WKL0. On the other hand, many constructions of non-standard models of arith-

metic are known. In this thesis, we introduce non-standard arguments for ACA0

using Gaifman’s model constructions. Then, we apply these arguments to some

theorems of standard analysis.

According to the model theoretic arguments presented above, we can show that

some theorems are provable in second order arithmetic. However, we cannot find

the steps of proofs in which some essential axioms are needed. In fact, we need a

precise formal proof for Reverse Mathematics. We seek to reconstruct a formal proof

of second order arithmetic from a model theoretic non-standard proof. For that

reason, we formalize non-standard arguments and transform non-standard proofs

into formal proofs of second order arithmetic.

1.3 Outline of this thesis

A main topic of this thesis is non-standard arguments for second order arithmetic

and its applications to Reverse Mathematics, which we argue in Chapters 5 and 6.

The other is Reverse Mathematics for real and complex analysis related to differen-

tiability and integrability, as described in Chapters 3 and 4. Arguments presented

in Chapters 3 and 4 are used to prove the Riemann mapping theorem and the Jor-

dan curve theorem as applications of non-standard arguments in Chapter 5, but the
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other parts of Chapters 5 and 6 are independent from Chapters 3 and 4.

Chapter 2 is devoted to define the systems RCA0, WWKL0, WKL0, and ACA0.

We introduce the real number system in RCA0. In addition, we study the strength

of compactness and convergence for Euclidean space within RCA0.

In Chapters 3 and 4, we develop basic real and complex analysis within RCA0

and show some results for Reverse Mathematics. Analysis in second order arithmetic

has been developed well, e.g. in [29]. However, some difficulty remains in dealing

with derivatives within RCA0 because we might not construct the derivative f ′ in

RCA0 even if f is continuously differentiable (see Theorem 3.8). We introduce a

suitable definition and a useful expression of derivatives for RCA0. Then, we prove

some basic theorems such as the inverse function theorem in RCA0 and present some

results on Reverse Mathematics for Fourier expansions. For complex analysis, we

show some results for Reverse Mathematics, which are mainly related to Cauchy’s

integral theorem presented in Chapter 4.

In Chapter 5, we introduce some non-standard arguments for WKL0 and ACA0.

We also prove the Riemann mapping theorem in ACA0 and the Jordan curve theorem

in WKL0. Using Tanaka’s self-embedding theorem for a model of WKL0, some proofs

of non-standard analysis are available within WKL0 [33, 32]. Applying this, we show

that the Jordan curve theorem is provable in WKL0. We also introduce non-standard

arguments for ACA0 by Gaifman’s conservative extension, by which non-standard

analysis for sequential compactness is available in ACA0. Subsequently, we apply

them for the Riemann mapping theorem within ACA0. We eventually show that

the Riemann mapping theorem is provable in ACA0; moreover, we show that the

Riemann mapping theorem is equivalent to ACA0 over WKL0.

In Chapter 6, we seek some effective methods to convert non-standard proofs

introduced in Chapter 5 into proofs in ACA0 or WKL0. Professor Sakae Fuchino in-

spired this research. We introduce systems ns-ACA0 and ns-WKL0, corresponding to

ACA0 and WKL0, following the non-standard arithmetic introduced by Keisler [21].

In these systems, we can formalize non-standard arguments introduced in Chapter 5

such as proofs of the Jordan curve theorem and the Riemann mapping theorem. As

stated earlier, although we can find that ns-ACA0 and ns-WKL0 are conservative ex-

tensions of ACA0 and WKL0 respectively by model theoretic considerations, we seek

to obtain sharper and more effective conservation results without model theoretic

considerations. For this reason, we interpret ns-ACA0 and ns-WKL0 within ACA0

and WKL0 and show the conservativities as corollaries, as with the formalization of

5



Harrington’s conservation theorem by Avigad[2]. Thereby, we can find methods to

transform non-standard proofs into proofs in WKL0 or ACA0.

The works presented in Chapters 4 and 5 appeared respectively in [37] and

[38, 25]. Other works in this thesis have been presented at several workshops and

as preprints.
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2 Preliminaries

In this chapter, we first define four subsystems of second order arithmetic RCA0,

WWKL0, WKL0 and ACA0. Then we introduce the real number system and Euclidean

space in RCA0 and study the strength of compactness and convergence in Euclidean

space within RCA0.

2.1 Subsystems of second order arithmetic

The language L2 of second order arithmetic is a two-sorted language with num-

ber variables x, y, z, . . . and set variables X, Y, Z, . . .. Numerical terms are built up

from numerical variables and constant symbols 0, 1 by means of binary operations

+ and ·. Atomic formulas are s = t, s < t and s ∈ X, where s and t are numer-

ical terms. Bounded (Σ0
0 or Π0

0) formulas are constructed from atomic formulas by

propositional connectives and bounded numerical quantifiers (∀x < t) and (∃x < t),

where t does not contain x. A Σ0
n formula is of the form ∃x1∀x2 . . . xnθ with θ

bounded, and a Π0
n formula is of the form ∀x1∃x2 . . . xnθ with θ bounded. All the

Σ0
n and Π0

n formulas are the arithmetical (Σ1
0 or Π1

0) formulas. A Σ1
n formula is

of the form ∃X1∀X2 . . . Xnϕ with ϕ arithmetical, and a Π1
n formula is of the form

∀X1∃X2 . . . Xnϕ with ϕ arithmetical.

The semantics of L2 are given by the following definition.

Definition 2.1. An L2-structure is an ordered 7-tuple

(M, S, +M , ·M , 0M , 1M , <M),

where M is a set which serves as the range of the number variables, S is a set of

subsets of M serving as the range of set variables, +M and ·M are binary operations

on M , 0M and 1M are distinguished elements of M , and <M is a binary relation

on M . We always assume that the sets M and S are disjoint and nonempty. The

structure (M, S, +M , ·M , 0M , 1M , <M) is simply denoted by (M, S). Formulas of L2

are interpreted in (M, S) in the obvious way.

We also write M for an L1-structure (M, +M , ·M , 0M , 1M , <M). If M is the set

(or structure) of standard natural numbers ω, an L2-structure (M, S) is called an

ω-structure or an ω-model.

We first define RCA0.

7



Definition 2.2. The system of RCA0 consists of

(1) the discrete ordered semiring axioms for (ω, +, ·, 0, 1, <),

(2) ∆0
1-CA (RCA):

∀x(ϕ(x) ↔ ψ(x)) → ∃X∀x(x ∈ X ↔ ϕ(x)),

where ϕ(x) is Σ0
1, ψ(x) is Π0

1, and X does not occur freely in ϕ(x),

(3) Σ0
1 induction scheme:

ϕ(0) ∧ ∀x(ϕ(x) → ϕ(x + 1)) → ∀xϕ(x),

where ϕ(x) is a Σ0
1 formula.

The acronym RCA stands for recursive comprehension axiom. Roughly speaking,

the set existence axioms of RCA0 are strong enough to prove the existence of recursive

sets.

If X and Y are set variables, we use X ⊆ Y and X = Y as abbreviations for

the formulas ∀n(n ∈ X → n ∈ Y ) and ∀n(n ∈ X ↔ n ∈ Y ). We define N to be the

unique set X such that ∀n(n ∈ X).

Within RCA0, we define a pairing map (m,n) = (m + n)2 + m. We can prove

within RCA0 that for any m, n, i, j in N, (m, n) = (i, j) if and only if m = i and

n = j. Moreover, using ∆0
1-CA, we can prove that for any X and Y , there exists a

set X × Y ⊆ N such that

∀n(n ∈ X × Y ↔ ∃x ≤ n∃y ≤ n(x ∈ X ∧ y ∈ Y ∧ (x, y) = n)).

We can encode a finite sequence of natural numbers in RCA0 using the method by

Shoenfield [28, page 115]. We define N<N to be the set of (codes for) finite sequences

of elements of N. A sequence of sets of natural numbers is defined to be a set

X ⊆ N × N. By ∆0
1 comprehension, we define Xk as m ∈ Xk ↔ (k, m) ∈ X and

write X = {Xk}k∈N or X = 〈Xk | k ∈ N〉. Let {Ak}k<n be a sequence of sets. Then,

by ∆0
1 comprehension, we define a direct product

∏
k<n Ak as

∏

k<n

Ak = {σ ∈ N<N | lh(σ) = n ∧ ∀i < n σ(i) ∈ Ai}

where lh(σ) denotes the length of σ. We write An for
∏

k<n A. A set X is said to

be finite if there exists a monotone increasing finite sequence σ such that ∀x(x ∈
X ↔ ∃i σ(i) = x). If a finite set X is denoted by σ, define |X| (the cardinality

8



of X) as |X| = lh(σ). For X and Y , a function f : X → Y is defined to be

a set f ⊆ X × Y such that ∀x∀y0∀y1((x, y0) ∈ f ∧ (x, y1) ∈ f → y0 = y1) and

∀x ∈ X∃y ∈ Y (x, y) ∈ f . We write f(x) = y for (x, y) ∈ f .

Within RCA0, the universe of functions is closed under composition, primitive

recursion (i.e., given f : X → Y and g : N × X × Y → Y , there exists a unique

h : N×X → Y defined by h(0,m) = f(m), h(n + 1,m) = g(n,m, h(n,m)) and the

least number operator (i.e., given f : N × X → N such that for any m ∈ X there

exists n ∈ N such that f(n,m) = 1, there exists a unique g : X → N defined by

g(m) =the least n such that f(n,m) = 1). Especially, if (M, S) is an ω-model of

RCA0, then (M,S) contains all recursive functions on ω.

Theorem 2.1. The following is provable in RCA0. If ϕ(x, y) is Σ0
1 and ∀n∃mϕ(n,m)

holds, then there exists a function from N to N such that ∀nϕ(n, f(n)) holds.

Proof. We reason within RCA0. Write

ϕ(x, y) ≡ ∃zθ(x, y, z)

where θ is Σ0
0. By ∆0

1 comprehension, we define projection functions p1 and p2 as

follows: pi((n1, n2)) = ni for all n1, n2 ∈ N. Again using ∆0
1 comprehension, there

exists a function g from N2 to N such that

θ(n, p1(m), p2(m)) ↔ g(n,m) = 1.

Then ∀n∃mg(n,m) = 1, hence by the least number operator there exists a function h

from N to N such that g(n, h(n)) = 1. Define a function f as f(n) = p1(g(n, h(n))),

then ∀nϕ(n, f(n)) holds. This completes the proof.

Next, we define WKL0. Within RCA0, we define 2<N to be the set of (codes for)

finite sequences of 0’s and 1’s. A set T ⊆ 2<N is said to be a tree (or precisely 0-1 tree)

if any initial segment of a sequence in T is also in T . A path through T is a function

f : N → {0, 1} such that for each n, the sequence f [n] = 〈f(0), f(1), . . . , f(n − 1)〉
belongs to T .

Definition 2.3. WKL0 is the system which consists of RCA0 plus weak König’s

lemma: every infinite 0-1 tree T has a path.

In particular, ω-models of WKL0 are known as Scott systems and extensively

studied by e.g. Kaye [20]. The first-order part of WKL0 is the same as that of RCA0.

9



Furthermore, WKL0 is conservative over Primitive Recursive Arithmetic (PRA) with

respect to Π0
2 sentences. On the other hand, WKL0 is strong enough to prove many

theorems of ordinary mathematics, for example, Heine-Borel covering theorem, max-

imum principle for continuous functions on [0,1], Brouwer’s fixed point theorem and

so on.

We next introduce a weaker version of weak König’s lemma called weak weak

König’s lemma: if a 0-1 tree T has no path, then

lim
n→∞

|{σ ∈ T | lh(σ) = n}|
2n

= 0.

Definition 2.4. WWKL0 is the system which consists of RCA0 plus weak weak

König’s lemma.

WWKL0 is introduced by Simpson/Yu[39]. WWKL0 is properly weaker than

WKL0 and properly stronger than RCA0. WWKL0 permits a theory of Lebesgue

measurability.

Finally, we define ACA0.

Definition 2.5. ACA0 is the system which consists of RCA0 plus ACA (arithmetical

comprehension axioms) :

∃X∀n(n ∈ X ↔ ϕ(n)),

where ϕ(x) is arithmetical and X does not occur freely in ϕ(x).

ACA0 permits a smooth theory of sequential convergence. For any sentence σ of

the language of Peano Arithmetic (PA), σ is a theorem of ACA0 if and only if σ is

a theorem of PA. ACA0 is finitely axiomatizable although PA is not. The following

theorem will be useful in showing that ACA is needed in order to prove various

theorems of ordinary mathematics.

Theorem 2.2 ([29] Theorem III.1.3). The following assertions are pairwise equiv-

alent over RCA0.

1. For any one-to-one function f from N to N, there exists a set X ⊆ N such

that X is the range of f .

2. Σ0
1-CA: ∃X∀n(n ∈ X ↔ ϕ(n)) restricted to Σ0

1 formulas ϕ(x) in which X does

not occur freely in ϕ(x).

3. ACA0.

For details of the definitions of these four subsystems, see [29].
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2.2 Real number system and Euclidean space

Next, we construct the real number system. We first define Z and Q. Define an

equivalence relation =Z on N2 as (m,n) =Z (p, q) ↔ m+ q = n+ p, and by ∆0
1 com-

prehension, define Z, a set of integers, as (m,n) ∈ Z↔ ∀k < (m, n) (p1(k), p2(k)) 6=Z
(m,n), i.e., Z is a set of least number elements of equivalence classes of =Z. We define

+Z : Z×Z→ Z as (l1, l2) +Z (m1,m2) = (n1, n2) where (n1, n2) is a unique element

in Z which satisfies (l1+m1, l2+m2) =Z (n1, n2). We define ·Z similarly. We can also

define | · |Z and ≤Z (norm and order in Z) naturally. Similarly, we define a relation

=Q on Z×Z+ (Z+ is a set of positive integers) as (m,n) =Q (p, q) ↔ m ·Z q =Z n ·Z p,

and define Q as (m,n) ∈ Q↔ ∀k < (m,n) (p1(k), p2(k)) 6=Q (m,n). We also define

+Q, ·Q, | · |Q and ≤Q as in Z, and then the system (Q; 0, 1, +Q, ·Q;≤Q) is an ordered

field.

Definition 2.6 (Real number system). The following definitions are made in RCA0.

A real number is an infinite sequence of rational numbers α = {qn}n∈N (i.e. a

function from N to Q) which satisfies |qk− ql|Q ≤Q 2−k for all l ≥ k. Here, each qn is

said to be n-th approximation of α. Define {pn}n∈N =R {qn}n∈N as ∀k |pk− qk|Q ≤Q
2−k+1. We can also define +R, ·R, | · |R and ≤R naturally. We usually write α ∈ R if

α is a real number. For details of the definition of the real number system, see [29,

Chapter II].

We usually omit the subscript Z, Q or R.

Imitating the definition of R, we define Euclidean space Rn. We define the

addition and the scalar multiplication naturally, and see Qn as a (countable) vector

space. We also define ‖ · ‖Qn as

‖q‖Qn =
√

q1
2 + · · ·+ qn

2

where q = (q1, . . . , qn).

Definition 2.7 (Euclidean space). The following definitions are made in RCA0. An

element of Rn is an infinite sequence of elements of Qn a = {qk}k∈N which satisfies

‖qk − ql‖ ≤ 2−k for all l ≥ k. Then, each ai = {qki}k∈N is a real number. (Here,

qk = (qk1, . . . , qkn).) We define ‖ · ‖Rn , the norm of Rn as the following:

‖a‖Rn =
√

a1
2 + · · ·+ an

2.

Here, of course the real number field R is the 1-dimensional Euclidean space R1.
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Remark 2.3. In this thesis, to avoid too many subscripts, we use the intuitive

expression such as q = (q1, . . . , qn) even if the dimension of Euclidean space n may

be nonstandard.

Let X = {Xk}k∈N be a sequence of sets. If Xk = ak ∈ Rn, i.e., each Xk is formed

an element of Rn, then X = {ak}k∈N is said to be a sequence of points of Rn. We

say that a sequence {ak}k∈N converges to b, written b = limk→∞ ak, if

∀m ∃k ∀i ‖b− ak+i‖ < 2−m.

Note that b = limk→∞ ak is expressed by a Π0
3 formula. The next theorem shows

that Rn is ‘weakly’ complete.

Theorem 2.4. The following is provable in RCA0. Let {ak}k∈N be a sequence of

points of Rn. If there exists a sequence of real numbers {rk}k∈N such that limk→∞ rk =

0 and ∀k∀i ‖ak − ak+i‖ < rk, then {ak}k∈N is convergent, i.e., there exists b such

that b = limk→∞ ak.

Proof. This theorem is a generalization of nested interval completeness [29, Theorem

II.4.8], and modifying its proof, we can easily prove this theorem.

Note that we can prove Theorem 2.4 effectively, i.e., we can effectively find the

limit limk→∞ ak in Theorem 2.4.5 Thus, a sequential version of Theorem 2.4 holds.

The next theorem shows that the ‘strong’ completeness of Rn is not provable in

RCA0.

Theorem 2.5. The following assertions are pairwise equivalent over RCA0.

1. ACA0.

2. Every Cauchy sequence in Rn is convergent. (A sequence {ak}k∈N in Rn is

said to be Cauchy if ∀ε > 0 ∃m ∀n(n > m → ‖an − am‖ < ε.)

Proof. This theorem is an easy generalization of [29, Theorem III.2.2].

5In this thesis, ‘we can effectively find a set X (using a parameter Y )’ means ‘a set X is

directly constructed by RCA (∆0
1 comprehension) with parameter Y ’. In this situation, given

a sequence of sets {Yn}n∈N, we can find a sequence {Xn}n∈N such that each Xn is constructed

from Yn. For example, ‘Theorem 2.4 is effectively provable’ means that there exist a Σ0
1 formula

ϕ(n,X, Y ) and a Π0
1 formula ψ(n,X, Y ) such that ‘for any {ak}k∈N and {rk}k∈N as in Theorem 2.4,

Z = {n | ϕ(n, {ak}k∈N, {rk}k∈N)} = {n | ψ(n, {ak}k∈N, {rk}k∈N)} is the limit of {ak}k∈N’ is

provable in RCA0.
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Next, we define an open or closed set. It is coded by the countable open basis

of Rn.

Definition 2.8 (open and closed sets). The following definitions are made in RCA0.

1. A (code for an) open set U in Rn is a set U ⊆ N×Qn×Q. A point x ∈ Rn is

said to belong to U (abbreviated x ∈ U) if

∃n ∃a ∃r (‖x− a‖ < r ∧ (n, a, r) ∈ U).

2. A (code for a) closed set C in Rn is a set C ⊆ N×Qn×Q. A point x ∈ Rn is

said to belong to C (abbreviated x ∈ C) if

∀n ∀a ∀r ((n, a, r) ∈ C → ‖x− a‖ ≥ r).

The following lemma is very useful to construct open or closed sets.

Lemma 2.6 ([29] Lemma II.5.7). For any Σ0
1 (or Π0

1) formula ϕ(X), the following

is provable in RCA0. Assume that for all x,y ∈ Rn, x = y and ϕ(x) imply ϕ(y).

Then there exists an open (or closed) set U ⊆ Rn such that for all x ∈ Rn, x ∈ U if

and only if ϕ(x).

Finally, we consider some versions of Heine-Borel theorem.

Theorem 2.7. The following assertions are pairwise equivalent over RCA0.

1. WKL0.

2. Heine-Borel theorem for bounded closed rectangles: if C ⊆ Rn is a bounded

closed rectangle, i.e., C is a products of bounded closed intervals, and {Uk}k∈N
be a sequence of open subsets of Rn which covers C, then there exists m such

that {Uk}k<m covers C.

3. A sequential version of 2: if {Cl}l∈N is a sequence of bounded closed rectangles

in Rn and 〈{Ulk}k∈N | l ∈ N〉 be a sequence of sequences of open subsets of Rn

such that each {Ulk}k∈N covers Cl, then there exists a sequence {ml}l∈N such

that {Ulk}k<ml
covers Cl.

Proof. This theorem is a generalization of [29, Theorem IV.1.2], and we can imitate

its proof.
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Theorem 2.8. The following assertions are pairwise equivalent over RCA0.

1. WWKL0.

2. If C ⊆ Rn is a bounded closed rectangle and {Uk}k∈N be a sequence of open

subsets of Rn which covers C, then there exists a sequence of finite sequences

of rectangles 〈{Vij}j<li〉 | i ∈ N〉 such that {Uk}k<i ∪ {Vij}j<li covers C for all

i ∈ N and

lim
i→∞

∑

j<li

λ(Vij) = 0.

Here, λ(V ) denotes the volume of V , i.e., λ(V ) = (b1−a1)(b2−a2) · · · (bn−an)

where V = [a1, b1]× [a2, b2]× · · · × [an, bn].

3. A sequential version of 2 as in Theorem 2.7.

Proof. This theorem is a generalization of a weak form of Heine-Borel compactness

appeared in [39], and we can imitate arguments in [39].

A bounded closed rectangle is called a ‘totally bounded (or compact)’ and ‘sepa-

rably closed’ closed set in the theory of complete separable metric spaces6 in RCA0,

and the above Heine-Borel theorem can be generalized for complete separable metric

spaces.

6For the theory of complete separable metric spaces, see e.g. [7, 6, 12].
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3 Basic analysis in second order arithmetic

In this chapter, we introduce a means to deal with differentiability and integrability

within RCA0, and then, develop basic real analysis. Subsequently, we present some

results on Reverse Mathematics for fundamental real analysis.

3.1 Differentiability and integrability

In this section, we define continuous functions, C1-functions and Riemann integrabil-

ity. To deal with C1-functions within RCA0, we introduce a differentiable condition

function for a C1-function. To consider Riemann integrability of continuous func-

tions, we introduce a modulus of integrability for a continuous function. These are

powerful tools to develop differential and integral calculus within RCA0.

3.1.1 Continuous functions

In this subsection, we define a continuous function and show some basic results for

continuous functions. We define continuous functions as a certain code given by the

countable open basis of Rn.

Definition 3.1 (continuous functions). The following definition is made in RCA0.

A (code for a) continuous partial function f from Rn to R is a set of quintuples

F ⊆ N × Qn × Q+ × Q × Q+ which satisfies the following properties. We write

(a, r)F (b, s) as an abbreviation for ∃m((m, a, r, b, s) ∈ F ). The properties which we

require are:

1. if (a, r)F (b, s) and (a, r)F (b′, s′), then |b− b′| ≤ s + s′;

2. if (a, r)F (b, s) and ‖a′ − a‖+ r′ < r, then (a′, r′)F (b, s);

3. if (a, r)F (b, s) and |b− b′|+ s < s′, then (a, r)F (b′, s′).

A point x ∈ Rn is said to belong to the domain of f , abbreviated x ∈ dom(f), if

and only if for any ε > 0 there exists (a, r)F (b, s) such that ‖x− a‖ < r and s < ε.

If x ∈ dom(f), we define the value f(x) to be the unique y ∈ R such that |y− b| < s

for all (a, r)F (b, s) with ‖x− a‖ < r. The existence of f(x) is provable in RCA0.

Let U , V be an open or closed subset of Rn, R, respectively. Then f is said to

be a continuous function from U to V if and only if for any x ∈ U , x ∈ dom(f) and

f(x) ∈ V .
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Definition 3.2. The following definitions are made in RCA0. A continuous partial

function from Rn to Rm is a (code for a) finite sequence of continuous partial func-

tions f = (f1, . . . , fm) such that f1, . . . , fm are continuous partial functions from Rn

to R.

Let U , V be an open or closed subset of Rn, Rm, respectively. Then f is said

to be a continuous function from U to V if and only if for any x ∈ U and for any

1 ≤ i ≤ m, x ∈ dom(fi) and y = (f1(x) . . . fm(x)) ∈ V .

Remark 3.1. Imitating definition 3.1, we can define another code for a continuous

partial function from Rn to Rm. A (code for a) continuous partial function f from

Rn to Rm is a set of quintuples F̂ ⊆ N×Qn ×Q+ ×Qm ×Q+ which is required to

satisfy:

1. if (a, r)F̂ (b, s) and (a, r)F̂ (b′, s′), then ‖b− b′‖ ≤ s + s′;

2. if (a, r)F̂ (b, s) and ‖a′ − a‖+ r′ < r, then (a′, r′)F̂ (b, s);

3. if (a, r)F̂ (b, s) and ‖b− b′‖+ s < s′, then (a, r)F̂ (b′, s′).

We can easily and effectively find a code for f from codes for f1, . . . , fm. Conversely

we can easily and effectively find codes for f1, . . . , fm from a code for f .

First, there exist a code for an identity function, a constant function, a norm

function, and so on. We can construct other elementary continuous functions by

next theorem.

Theorem 3.2 (Theorems [29] II.6.3 and II.6.4.). The following is provable in RCA0.

There exists a (code for a) continuous function of a sum, a product and quotient

of two R-valued continuous functions. Also there exists a (code for a) continuous

function of a composite of two continuous functions.7

The next two theorems show the basic properties of continuous functions.

Theorem 3.3. The following assertions are provable in RCA0.

1. Let U be an open subset of Rn, V be an open subset of Rm and f be a continuous

function from U to Rm. Then there exists an open set W = f−1(V ) ∩ U , the

inverse image of V .

7‘There exists a composite of n continuous functions for all n ∈ N’ cannot be proved in RCA0.

See [10].
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2. Let C be a closed subset of Rn, V be an open subset of Rm and f be a continuous

function from C to Rm. Then there exists an open set W ⊆ Rn such that

W ∩ C = f−1(V ) ∩ C.

We write such W as W = f̃−1(V ).

Proof. Immediate from Lemma 2.6.

We can prove Theorems 3.2 and 3.3 effectively, and thus, sequential versions of

these theorems hold.

Theorem 3.4 (intermediate value theorem: [29] Theorem II.6.6). The following is

provable in RCA0. If f is a continuous function from [0, 1] to R such that f(0) <

0 < f(1), then there exists c such that 0 < c < 1 and f(c) = 0.

Note that a sequential version of the intermediate value theorem is not provable

in RCA0. Actually, it is equivalent to WKL0 over RCA0 (see [29, Section IV]).

Next, we consider some behavior of continuous functions on a bounded closed

set, such as uniform continuity and boundedness.

Definition 3.3 (modulus of uniform continuity). The following definition is made

in RCA0. Let U be an open or closed subset of Rn, and let f be a continuous function

from U to Rm. A modulus of uniform continuity on U for f is a function h from

N to N such that for any n ∈ N and for any x,y ∈ U , if ‖x − y‖ < 2−h(n), then

‖f(x)− f(y)‖ < 2−n.

A modulus of uniform continuity for f guarantees stronger uniform continuity of f

than that in the usual sense. In fact, in RCA0, f may not have a modulus of uniform

continuity even if f is uniformly continuous. See [29, Exercise IV.2.9].

Theorem 3.5. The following assertions are pairwise equivalent over RCA0.

1. WKL0.

2. Every continuous function on a bounded closed set is bounded.

3. Every continuous function on a bounded closed set has a modulus of uniform

continuity.

4. A sequential version of 2: if {Ck}k∈N is a sequence of bounded closed sets in

Rm and {fk}k∈N is a sequence of continuous functions such that each fk is from

Ck to Rn, then, there exists a sequence of rational numbers {Mk}k∈N such that

each fk is from Ck to B(0; Mk) = {x | ‖x‖ < Mk}.

17



5. A sequential version of 3: if {Ck}k∈N is a sequence of bounded closed sets in

Rm and {fk}k∈N is a sequence of continuous functions on Ck, then, there exists

a sequence of functions {hk}k∈N such that each hk is a modulus of uniform

continuity for fk on Ck.

Here, a bounded closed set is a closed set which is included in some bounded closed

rectangle.

Proof. Easy generalization of [29, Theorem VI.2.2 and VI.2.3].

Remark 3.6. Boundedness cannot always provide the maximum value principle.

In fact, the property ‘every continuous function on some bounded closed rectangle

attains a maximum value’ is equivalent to WKL0 over RCA0, but ‘every continuous

function on some bounded closed set attains a maximum value’ is equivalent to ACA0

over RCA0. For details, see [29, IV].

The next theorem is very useful to show that constructing some continuous

functions requires ACA0.

Theorem 3.7. The following assertions are pairwise equivalent over RCA0.

1. ACA0.

2. If f is a continuous function from (0, 1) to R such that limx→+0 f(x) = 0, then

there exists a (code for a) continuous function f̄ from [0, 1) to R such that

f̄(x) =

{
f(x) if x ∈ (0, 1),

0 if x = 0.

The following proof of 2 → 1 is due to Tanaka.

Proof. We reason within RCA0. We first prove 1 → 2. By arithmetical comprehen-

sion, define F̄ as

(n, a, r, b, s) ∈ F̄ ↔ a ∈ Q ∩ [0, 1) ∧ b ∈ Q ∧ s, r ∈ Q+ ∧ n = (a, r, b, s)

∧ ∀p ∈ Q ∩ (0, 1) |a− p| < r → |b− f(p)| ≤ s.

Let f̄ be a continuous function coded by F̄ . Then clearly (0, 1) ⊆ dom(f̄) and

f̄ |(0,1) = f . limx→+0 f(x) = 0 implies for any ε > 0 there exist r, s ∈ Q+ such that

∀p ∈ Q ∩ (0, 1) |0 − p| < r → |0 − f(p)| ≤ s and s < ε. Hence 0 ∈ dom(f̄) and

f̄(0) = 0.
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Next we show 2 → 1. By Theorem 2.2, we show that for any one-to-one function

h from N to N, there exists a set X such that X is the range of h. Let h be a

one-to-one function from N to N. Then limn→∞ h(n) = ∞. Define {an}n∈N as

an :=

1
h(n)+1

− 1
h(n+1)+1

1
n+1

− 1
n+2

.

Then we define a continuous function f from (0, 1) to R such that

f(x) = an

(
x− 1

n + 1

)
+

1

(h(n) + 1)

for each n and x ∈ [
1

n+2
, 1

n+1

]
. Then, f(1/(n+1)) = 1/(h(n)+ 1) for all n ∈ N, and

limx→0 f(x) = 0. Hence by 2, we can expand f into f̄ such that

f̄(x) =

{
f(x) if x ∈ (0, 1),

0 if x = 0.

Now we construct the range of h. Let F̄ be a code for f̄ , and let ϕ(k, l) be

a Σ0
1 formula which expresses that there exists (a, r, b, s) such that (a, r)F̄ (b, s),

|a| + 1/(l + 1) < r and |b| + s < 1/(k + 1). Then by conditions of a code for a

continuous function, ∀k∃lϕ(k, l) holds. Hence, there exists a function h0 from N to

N such that ∀kϕ(k, h0(k)) holds. This implies

∀m ∈ N m ≥ h0(n) → n < h(m).

By ∆0
1 comprehension, define a set X ⊆ N as n ∈ X ↔ ∃m < h0(n) n = h(m).

Then clearly, X is the range of h. This completes the proof of 2 → 1.

3.1.2 C1-functions

We first define differentiability and continuous differentiability.

Definition 3.4 (differentiablity). The following definition is made in RCA0. Let U

be an open subset of R, and let f be a continuous function from U to R. Then f is

said to be differentiable if

∀x ∈ U ∃αx ∈ R αx = lim
u→x

f(u)− f(x)

u− x
.

A differentiable function f is said to be continuously differentiable if

∀x ∈ U ∀ε > 0 ∃δ > 0 ∀y ∈ U |x− y| < δ → |αx − αy| < ε.
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Though we can deal with continuous functions within RCA0, the above defini-

tion of continuous differentiability cannot work to construct derivatives in RCA0.

Actually, the next theorem shows that the existence of derivatives of continuously

differentiable functions requires ACA0.

Theorem 3.8. The following assertions are pairwise equivalent over RCA0.

1. ACA0.

2. If f is a continuously differentiable function from (−1, 1) to R, then there

exists a (code for a) continuous function f ′ which is the derivative of f .

Proof. We reason within RCA0. We can prove 1 → 2 by arithmetical comprehension

as in the proof of Theorem 3.7. For the converse, we assume 2. By Theorem 2.2,

we show that for any one-to-one function h from N to N, there exists a set X such

that X is the range of h. Let h be a one-to-one function from N to N. Then

limn→∞ h(n) = ∞. Define {an}n∈N and {bn}n∈N such that

an :=

1
h(n)+1

− 1
h(n+1)+1

1
n+1

− 1
n+2

;

bn :=
1

2

(
1

h(n) + 1
+

1

h(n + 1) + 1

)(
1

n + 1
− 1

n + 2

)
.

Then bn ≤ 1/(n + 1) − 1/(n + 2), hence by Theorem 3.26.1,
∑∞

k=n bk is convergent

for all n ∈ N. Using these, we define a continuously differentiable function from

(−1, 1) to R. Define a continuous function f0 from (−1, 0) ∪ (0, 1) such that

f0(x) =

{
−an

2

(
x− 1

n+1

)2
+ x(n+1)+1

(n+1)(h(n)+1)
−∑∞

k=n bk if x ∈ [ −1
n+1

, −1
n+2

]
,

an

2

(
x− 1

n+1

)2
+ x(n+1)−1

(n+1)(h(n)+1)
+

∑∞
k=n bk if x ∈ [

1
n+2

, 1
n+1

]

for each n. Here, if |x| < 1/(n + 1), then |f0(x)| < 1/(n + 1). Hence, we can extend

f0 into f from (−1, 1) to R such that

f(x) =

{
f0(x) if x 6= 0,

0 if x = 0.

To extend f0 into f , we need to construct a code for f . Let F0 be a code for f0 and

let ϕ(a, r, b, s) be a Σ0
1 formula which expresses (a, r)F0(b, s) ∨ ∃m ∈ N |a| + r <

1/(m + 1) < s− |b|. Write

ϕ(a, r, b, s) ≡ ∃mθ(m, a, r, b, s)
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where θ is Σ0
0. By ∆0

1 comprehension, define F as (m, a, r, b, s) ∈ F ↔ θ(m, a, r, b, s).

Then clearly f is coded by F .

Next, we show that f is continuously differentiable. Define αx as above, then

αx =





−an

(
x− 1

n+1

)
+ 1

(h(n)+1)
if x ∈ [ −1

n+1
, −1

n+2

]
,

0 if x = 0,

an

(
x− 1

n+1

)
+ 1

(h(n)+1)
if x ∈ [

1
n+2

, 1
n+1

]
.

We can easily check the condition of continuously differentiability for f . By 2, there

exists a continuous function g from (−1, 1) to R such that g(x) = αx. Note that

this continuous function g is similar to the continuous function we constructed in

the proof of Theorem 3.7. Hence, we can construct the range of h as in the proof of

Theorem 3.7. This completes the proof of 2 → 1.

Theorem 3.8 pointed out the difficulty of constructing the derivative. To avoid

this difficulty, we mainly consider the following C1-functions to develop differential

calculus.

Remark 3.9. There is another difficulty in dealing with differentiable functions

within RCA0. Actually, the following assertions are pairwise equivalent over RCA0.

1. ACA0.

2. If f is a differentiable function from (−1, 1) to R and {xn}n∈N is a real sequence

in (−1, 1), then there exists a real sequence {αn}n∈N such that

∀n ∈ N αn = lim
u→xn

f(u)− f(xn)

u− xn

.

3. If f is a continuously differentiable function from (−1, 1) to R and {xn}n∈N is

a real sequence in (−1, 1), then there exists a real sequence {αn}n∈N such that

∀n ∈ N αn = lim
u→xn

f(u)− f(xn)

u− xn

.

We first define C1-functions in R, and similarly we define Cr and C∞-functions

in R.

Definition 3.5 (C1-, Cr- and C∞-functions). The following definitions are made in

RCA0.
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1. Let U be an open subset of R, and let f , f ′ be continuous functions from U

to R. Then a pair (f, f ′) is said to be of C1 if and only if

∀x ∈ U lim
u→x

f(u)− f(x)

u− x
= f ′(x).

2. Let U be an open subset of R, and let {f (n)}n≤r be a finite sequence of con-

tinuous functions from U to R. Then {f (n)}n≤r is said to be of Cr if and only

if for any n less than r, (f (n), f (n+1)) is of C1.

3. Let U be an open subset of R, and let {f (n)}n∈N be an infinite sequence of

continuous functions from U to R. Then {f (n)}n∈N is said to be of C∞ if and

only if for any r ∈ N, {f (n)}n≤r is of Cr.

We usually write f for f (0) when {f (n)}n≤r is of Cr or {f (n)}n∈N is of C∞. If (f, f ′)

is of C1, {f (n)}n≤r is of Cr or {f (n)}n∈N is of C∞, f is said to be of C1, Cr or C∞,

respectively.

The next lemma shows that the uniqueness of the derivative is provable in RCA0.

Lemma 3.10. The following is provable in RCA0. Let U be an open subset of R,

and let f, g be Cr- or C∞-functions from U to R. If ∀x ∈ U f(x) = g(x), then for

any k ≤ r or k ∈ N ∀x ∈ U f (k)(x) = g(k)(x), respectively.

Proof. We reason within RCA0. It is sufficient to prove only the C∞ case. By

definition of continuous functions, the following equivalence is easily derived:

∀x ∈ R (x ∈ U → f (k)(x) = g(k)(x))

↔ ∀q ∈ Q (q ∈ U → f (k)(q) = g(k)(q)).

Write

ϕ(k) ≡ ∀q ∈ Q (q ∈ U → f (k)(q) = g(k)(q)).

Then ϕ(k) is Π0
1 and ϕ(0) holds. If ϕ(k) holds, then for any x ∈ U ,

f (k+1)(x) = lim
u→x

f (k)(u)− f (k)(x)

u− x

= lim
u→x

g(k)(u)− g(k)(x)

u− x

= g(k+1)(x).

Hence ϕ(k + 1) holds. Then by Π0
1-induction, ∀kϕ(k) holds and this completes the

proof.
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To develop differential calculus, we have to begin with the mean value theorem.

Fortunately, the mean value theorem for C1-functions is easily provable in RCA0

using the intermediate value theorem.

Lemma 3.11 ([29] Exercise II.6.10). The following is provable in RCA0. Let U be

an open subset of R, and let f be a C1-function from U to R. Let K be a positive

real number. If [a, b] ⊆ U and for all x ∈ [a, b] |f ′(x)| ≤ K, then

∣∣∣∣
f(b)− f(a)

b− a

∣∣∣∣ ≤ K.

Theorem 3.12 (mean value theorem). The following is provable in RCA0. Let [a, b]

be an interval of R and let f be a continuous function from [a, b] to R. If f is of C1

on (a, b), i.e. there exists a continuous function f ′ from (a, b) to R such that (f, f ′)

is of C1, then there exists c ∈ (a, b) such that

f(b)− f(a)

b− a
= f ′(c).

Proof. The proof is easy from Lemma 3.11 and Theorem 3.4.

Note that a sequential version of Theorem 3.12 is not provable in RCA0. Actually,

it is equivalent to WKL0 (due to Yamazaki).

Remark 3.13. We can prove a stronger version of Theorem 3.12. In fact, the

mean value theorem for a differentiable function can be proved in RCA0. See

Hardin/Velleman[14]. However, we do not know whether a sequential version of

the mean value theorem for a differentiable function is provable in WKL0.

Next, we define Cr- or C∞-function in Rn.

Definition 3.6 (Cr- and C∞-functions from U ⊆ Rn to Rm). The following def-

initions are made in RCA0. Let U be an open subset of Rn. The notation α =

(a1, . . . , an) ∈ Nn is a multi-index and |α| = a1 + · · ·+ an.

1. A Cr-function from U to R is a finite sequence of continuous functions {fα}|α|≤r

from U to R which satisfies the following: for any α = (a1, . . . , an) such that

|α| ≤ r − 1, (f(a1,...,ai,...,an), f(a1,...,ai+1,...,an)) is of C1 as a function of xi, i.e.,

∀x ∈ U f(a1,...,ai+1,...,an)(x) = lim
t→0

f(a1,...,ai,...,an)(x + tei)− f(a1,...,ai,...,an)(x)

t

where ei is the unit vector along xi.
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2. A C∞-function from U to R is an infinite sequence of continuous functions

{fα}α∈Nn from U to R such that for any r ∈ N, {fα}|α|≤r is a Cr-function.

3. A Cr- or C∞-function from U to Rm is a finite sequence of Cr- or C∞-functions

f = (f1, . . . , fm) from U to R, respectively.

If {fα}|α|≤r is of Cr or {fα}α∈Nn is of C∞, then f is said to be of Cr or C∞. As

usual, we write

f(a1,...,an) =
∂a1+···+anf

∂a1x1 . . . ∂anxn

.

Theorem 3.14. The following assertions are provable in RCA0.

1. Let U be an open subset of Rn, and let f be a C1-function from U to R. If

its derivatives fxi
= ∂f/∂xi and fxj

= ∂f/∂xj are also of C1, i.e., there exist

finite sequences {(fxi
)α}|α|≤1 and {(fxj

)α}|α|≤1 which satisfy the condition for

C1, then
∂fxi

∂xj

=
∂fxj

∂xi

.

2. Let U be an open subset of Rn, and let f be a C1-function from U to R. If each

derivative fxi
is also of C1, then we can expand f into a C2-function, i.e., we

can construct a finite sequences {fα}|α|≤2 which satisfies the condition for C2.

Proof. We can prove 1 imitating the usual proof, and 2 is immediate from 1.

Remark 3.15. Theorem 3.14.1 can be strengthened for a continuously differentiable

version, i.e., the derivative along xj of fxi
is equal to the derivative along xi of fxj

at each point if fxi
and fxj

are continuously differentiable. To prove this, we use the

mean value theorem for differentiable functions (Remark 3.13).

To prove basic properties of C1-functions in RCA0, we construct differentiable

condition functions. A differentiable condition function for a C1-function f expresses

a condition of differentiability at each point of dom(f). It also expresses a continuity

of the derivative f ′. Hence using a differentiable condition function, we can easily

prove basic properties of C1-functions in RCA0.

Theorem 3.16. The following is provable in RCA0.
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1. Let U be an open subset of Rn, and let f be a C1-function from U to R. Then,

there exists a continuous function ef from U × U to R such that

∀x ∈ U ef (x,x) = 0;(1)

∀x,y ∈ U f(y)− f(x) =
n∑

i=1

fxi
(x)(yi − xi) + ef (x,y)‖y − x‖.(2)

(Here, fxi
= ∂f/∂xi.)

2. Let U be an open subset of R, and let f be a C1-function from U to R. Then,

there exists a continuous function ef from U × U to R such that

∀x ∈ U ef (x, x) = 0;(3)

∀x, y ∈ U f(y)− f(x) = (y − x)(f ′(x) + ef (x, y)).(4)

We call this ef a differentiable condition function for f .

Note that we can effectively find a differentiable condition function for a C1-

function. Thus, a sequential version of Theorem 3.16 holds.

Remark 3.17. Theorem 3.16 is not trivial. Actually, for 3.16.2, we want to define

ef as

ef (x, y) =

{
f(y)−f(x)

y−x
− f ′(x) if x 6= y,

0 if x = y,
(5)

and of course this ef is a continuous function in the usual sense. However, Theorem

3.7 points out that RCA0 cannot guarantee the existence of a code for a continuous

function which is defined like as above, hence it is not easy to construct (a code for)

ef .

Proof of Theorem 3.16. We reason within RCA0. To prove 1, define a (code for a)

closed set ∆ ⊆ R2n as ∆ = {(x,x) |x ∈ U}. By Theorem 3.2, we can construct a

continuous function g from U to R and a continuous function e0
f from U ×U \∆ to

R such that

g(x) =
n∑

i=1

|fxi
(x)|;

e0
f (x,y) =

f(y)− f(x)−∑n
i=1 fxi

(x)(yi − xi)

‖y − x‖ .

Let E0
f be a code for e0

f , and let G be a code for g. Let ϕ(a, r, b, s) be a Σ0
1 formula

which expresses the following (i) or (ii) holds:
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(i) (a, r)E0
f (b, s);

(ii) b = 0 and there exists (m0, a0, r0, b0, s0) ∈ G such that ‖a− (a0, a0)‖+ r < r0

and s > 2ns0.

Write

ϕ(a, r, b, s) ≡ ∃mθ(m, a, r, b, s)

where θ is Σ0
0. By ∆0

1 comprehension, define Ef as (m, a, r, b, s) ∈ Ef ↔ θ(m, a, r, b, s),

i.e., (a, r)Ef (b, s) holds if and only if (i) or (ii) holds. Then Ef is a code for

a continuous (partial) function. To show this, we have to check the conditions

of a code for a continuous function. It is clear that Ef satisfies conditions 2

and 3 of definition 3.1. We must check condition 1. Assume (a, r)Ef (b, s) and

(a, r)Ef (b
′, s′). If (a, r, b, s) and (a, r, b′, s′) satisfy (i), then clearly condition 1 holds.

If (a, r, b, s) and (a, r, b′, s′) satisfy (ii), then we can show condition 1 holds easily

by G satisfying condition 1. Now we consider the case (a, r, b, s) satisfies (i) and

(a, r, b′, s′) satisfies (ii). By condition 2, it is sufficient that we only check the case

{(x′,y′) | ‖(x′,y′)−a‖ < r} ⊆ U×U \∆ holds. Let (m0, a0, r0, b0, s0) be an element

of G such that ‖a − (a0, a0)‖ + r < r0 and s′ > 2ns0. Here, (m0, a0, r0, b0, s0) ∈ G

implies

∀z ∈ U ‖z− a0‖ < r0 →
∣∣∣∣∣

n∑
i=1

|fxi
(x)| − b0

∣∣∣∣∣ ≤ s0.(6)

Write

a = (ax, ay)(∈ Rn × Rn);

ax = (ax
1 , . . . , a

x
n);

ay = (ay
1, . . . , a

y
n);

zi = (ay
1, . . . , a

y
i , a

x
i+1, . . . , a

x
n).

Here ax 6= ay, z0 = ax, zn = ay and each zi satisfies ‖zi − a0‖ < r0. Then,

|e0
f (a)− b| ≤ s;(7)

|e0
f (a)− b′| = |e0

f ((a
x, ay))|(8)

≤
n∑

i=1

|f(zi)− f(zi−1)− fxi
(ax)(ay

i − ax
i )|

‖ay − ax‖ .
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On the other hand, using Theorem 3.12, for any 1 ≤ i ≤ n, if ax
i 6= ay

i , there exists

0 < θ < 1 such that

f(zi)− f(zi−1)

ay
i − ax

i

= fxi
(zi−1 + θ(zi − zi−1)).

(Here, ‖(zi−1 + θ(zi − zi−1))− a0‖ < r0.) Then,

|f(zi)− f(zi−1)− fxi
(ax)(ay

i − ax
i )|

‖ay − ax‖(9)

≤ |f(zi)− f(zi−1)

ay
i − ax

i

− fxi
(ax)|

= |fxi
(zi−1 + θ(zi − zi−1))− fxi

(ax)|
≤ |fxi

(zi−1 + θ(zi − zi−1))− b0|+ |fxi
(ax)− b0|.

Hence by (6) and (9), for all 1 ≤ i ≤ n,

|f(zi)− f(zi−1)− fxi
(ax)(ay

i − ax
i )|

‖ay − ax‖ ≤ 2s0.(10)

(If ax
i = ay

i , then clearly (47) holds.) From (46) and (47),

|e0
f (a)− b′| ≤

n∑
i=1

|f(zi)− f(zi−1)− fxi
(ax)(ay

i − ax
i )|

‖ay − ax‖(11)

≤
n∑

i=1

2s0

≤ s′.

By (45) and (11), |b− b′| ≤ s + s′ holds. This means Ef satisfies condition 1.

Let ef be a continuous function which is coded by Ef . Then, (i) provides U ×
U \∆ ⊆ dom(ef ) and (ii) provides ∆ ⊆ dom(ef ), hence U × U ⊆ dom(ef ). Clearly

ef satisfies (1) and (2), and this completes the proof of 1.

We can prove 2 similarly.

Remark 3.18. If U is an open subset of Rn and f = (f1, . . . , fm) is a C1-function

from U to Rm, then we define the differentiable condition function for f as ef =

(ef1 , . . . , efm). Then

∀x ∈ U ef (x,x) = 0;

∀x,y ∈ U f(y)− f(x) =
n∑

i=1

fxi
(x)(yi − xi) + ef (x,y)‖y − x‖.

(Here, fxi
= (f1 xi

, . . . fm xi
).)
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Remark 3.19. Conversely, let U be an open subset of Rn, f, f ′ be continuous

function from U to R and ef be a continuous function from U × U to R. If f, f ′, ef

satisfy (1) and (2), then clearly (f, f ′) is of C1.

Corollary 3.20. The following assertions are provable in RCA0.

1. Let U be an open subset of R and let k be a real number. If f and g are Cr-

or C∞-functions from U to R, then kf, f + g, fg are all Cr- or C∞-functions

from U to R. Moreover, (kf)′ = kf ′, (f + g)′ = f ′ + g′ and (fg)′ = f ′g + fg′

hold.

2. Let U be an open subset of R, and let f be a Cr- or C∞-functions from U

to R. If f 6= 0 in U , then 1/f is a Cr- or C∞-function from U to R, and

(1/f)′ = −f ′/(f 2) holds.

3. (chain rule) Let U be an open subset of Rn and let V be an open subset of Rm.

If f = (f1, . . . , fm) is a continuous function from U to V , g is a continuous

function from V to R and both f and g are of Cr or C∞, then g ◦ f is a Cr-

or C∞-function from U to R and satisfies

∂(g ◦ f)

∂xi

(x) =
m∑

j=1

∂g

∂yj

(f(x))
∂fj

∂xi

(x).

Proof. We reason within RCA0. We only prove 3. (We can prove 1 and 2 easily.)

For any x ∈ U , 1 ≤ i ≤ n and ∆x ∈ R \ {0}, define ∆yj (1 ≤ j ≤ m) as

∆yj := fj(x + ∆xei)− fj(x)

= ∆x
∂fj

∂xi

(x) + |∆x|efj
(x,x + ∆xei).

where ei is the unit vector along xi and each efj
is the differentiable condition

function for fj. Then

‖∆y‖ :=

√√√√
m∑

j=1

(∆yj)2

= |∆x|
√√√√

m∑
j=1

(
∆x

|∆x|
∂fj

∂xi

(x) + efj
(x,x + ∆xei)

)2

.
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Define ei
g◦f as

ei
g◦f (∆x) :=

m∑
j=1

∂g

∂yj

(f(x))efj
(x,x + ∆xei)

+eg(f(x), f(x + ∆xei))

√√√√
m∑

j=1

(
∆x

|∆x|
∂fj

∂xi

(x) + efj
(x,x + ∆xei)

)2

where eg is the differentiable condition function for g. Then

lim
∆x→0

ei
g◦f (∆x) = 0,(12)

g ◦ f(x + ∆xei)− g ◦ f(x) =
m∑

j=1

∆yj
∂g

∂yj

(f(x)) + ‖∆y‖eg(f(x), f(x + ∆xei))(13)

= ∆x

m∑
j=1

∂g

∂yj

(f(x))
∂fj

∂xi

(x) + |∆x|ei
g◦f (∆x).

(12) and (13) show that
∑m

j=1(∂g/∂yj)(∂fj/∂xi) is the first derivative of g ◦ f along

xi, and this completes the proof.

3.1.3 Riemann integration

In this subsection, we define Riemann integrability and study some conditions to

integrate continuous functions within RCA0.

Definition 3.7 (Riemann integral: [29] Lemma IV.2.6). The following definition is

made in RCA0. Let f be a continuous function from [a, b] to R. Then, define the

Riemann integral
∫ b

a
f(x) dx as

∫ b

a

f(x) dx = lim
|∆|→0

S∆
[a,b](f)

if this limit exists. Here, ∆ is a partition of [a, b], i.e. ∆ = {a = x0 ≤ ξ1 ≤ x1 ≤
· · · ≤ ξn ≤ xn = b}, S∆

[a,b](f) is defined as

S∆
[a,b](f) =

n∑

k=1

f(ξk)(xk − xk−1)

and |∆| = max{xk − xk−1 | 1 ≤ k ≤ n}.

To integrate continuous functions effectively, we introduce a modulus of integra-

bility.
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Definition 3.8 (modulus of integrability). The following definition is made in RCA0.

Let f be a continuous function from [a, b] to R. A modulus of integrability on [a, b]

for f is a function h from N to N such that for any n ∈ N and for any partitions

∆1, ∆2 of [a, b],

|∆1| < 2−h(n)

b− a
∧ |∆2| < 2−h(n)

b− a
→ |S∆1

[a,b](f)− S∆2

[a,b](f)| < 2−n+1.

Within RCA0, we can easily show that if h is a modulus of integrability for f ,

then h is a modulus of integrability for |f |.

Lemma 3.21. The following is provable in RCA0. Let f be a continuous function

from [a, b] to R, and let h be a modulus of uniform continuity for f . Then, h is a

modulus of integrability on [a, b] for f .

Proof. We reason within RCA0. Let ∆1, ∆2 be partitions of [a, b] such that |∆1| <

2−h(n)/(b − a) and |∆2| < 2−h(n)/(b − a). Take a common refinement ∆̄ of ∆1 and

∆2. Then,

|S∆1

[a,b](f)− S∆̄
[a,b](f)| < 2−n

and

|S∆2

[a,b](f)− S∆̄
[a,b](f)| < 2−n.

Thus,

|S∆1

[a,b](f)− S∆2

[a,b](f)| < 2−n+1.

The next lemma show that if f has a modulus of integrability on [a, b], then we

can integrate f effectively.

Lemma 3.22. The following is provable in RCA0. Let f be a continuous function

from [a, b] to R, let c, d ∈ [a, b], and let h be a modulus of integrability for f . Take

a natural number K > b − a and define t(n) as t(n) = min{k | 1/k < 2−h(n)−2/K}.
Define Sn as

Sn(f ; c, d) =

t(n)∑
i=1

d− c

t(n)
f

(
i

t(n)
(d− c) + c

)
.

Then,
∫ d

c
f(x) dx exists and

∫ d

c

f(x) dx = lim
n→∞

Sn(f ; c, d).
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Moreover, for all n ∈ N,
∣∣∣∣
∫ d

c

f(x) dx− Sn(f)

∣∣∣∣ < 2−n.

Proof. Obvious from the definition of a modulus of integrability.

We call Sn(f ; c, d) in above lemma n-th approximation of
∫ d

c
f(x) dx. We often

say that a continuous function f is effectively integrable on [a, b] if f has a modulus

of integrability on [a, b].

Lemma 3.23 (indefinite integral). The following is provable in RCA0. Let f be

a continuous function from [a, b] to R, let c ∈ [a, b], and let h be a modulus of

integrability for f . Then, there exists a continuous function g from [a, b] to R such

that

g(x) =

∫ x

a

f(x) dx.

Proof. We reason within RCA0. We construct a code G for the desired continuous

function g. Let ϕ(p, r, q, s) be a Σ0
1 formula which expresses the following:

∃m1,m2 ∈ N |Sm1(f ; c, p)− q|+ Sm2(|f |; p1, p2) + 2−m1 + 2−m2 < s

where Sm is m-th approximation, p1 = max{a, p − r} and p2 = min{p + r, b}. As

in the proof of Theorem 3.16, define G ⊆ N×Q×Q+ ×Q×Q+ as (p, r)G(q, s) ↔
ϕ(p, r, q, s). Then, (p, r)G(q, s) if and only if

∀x ∈ [a, b] |x− a| < r →
∣∣∣∣
∫ x

c

f(x)dx− q

∣∣∣∣ < s.

Hence, we can easily show that G satisfies the conditions for a code for a continuous

function and g is the desired continuous function.

The next theorem shows that the integrability of continuous functions requires

WKL0.

Theorem 3.24. The following assertions are pairwise equivalent over RCA0.

1. WKL0.

2. Every continuous function on [a, b] is Riemann integrable.

3. Every continuous function on [a, b] has a modulus of integrability.

4. A sequential version of 3 as in Theorem 3.5.5.
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Proof. By Theorem 3.5, Lemmas 3.21 and 3.22, 1 → 4 → 3 → 2 holds. See [29,

Theorem IV.2.7] for 2 → 1.

To integrate bounded function, we only need WWKL0.

Theorem 3.25. The following assertions are pairwise equivalent over RCA0.

1. WWKL0.

2. Every bounded continuous function on [a, b] is Riemann integrable.

3. Every bounded continuous function on [a, b] has a modulus of integrability.

4. A sequential version of 3 as in Theorem 3.5.5.

Proof. We first show 1 → 3. We reason within WWKL0. Let f be a bounded

continuous function on [a, b]. Without loss of generality, we can assume [a, b] = [0, 1]

and f(x) ∈ [−1, 1] for all x ∈ [0, 1]. Let F ⊆ N × Q × Q+ × Q × Q+ be a code for

f . Define Σ0
1 formula ϕ(n, a, r) as

ϕ(n, a, r) ↔ a ∈ Q ∧ r ∈ Q+ ∧ ∃b ∈ Q ∃s ∈ Q+ (a, 2r)F (b, s) ∧ s < 2−n−2.

By ∆0
1 comprehension, take a sequence {(ank, rnk)}k∈N,n∈N such that

∀n∀a∀r(ϕ(n, a, r) ↔ ∃k(a, r) = (ank, rnk)).

Note that [0, 1] ⊆ ⋃
k∈NB(ank, rnk) for all n ∈ N. Thus, by Theorem 2.8, there exists

a double sequence of finite sequences of open intervals 〈{(cnij, dnij)}j≤lni
| n ∈ N, i ∈

N〉 such that for any n ∈ N,

[0, 1] ⊆
⋃

k<i

B(ank, rnk) ∪
⋃

j≤lni

(cnij, dnij),

lim
i→∞

∑

j≤lni

|dnij − cnij| = 0.

Take a sequence {̂in}n∈N such that
∑

j≤lnîn
|dnînj − cnînj| < 2−n−2 and define l̂n :=

lnîn
.

Define a function h as

h(n) := min{q ∈ N | 2−q < min{rnk | k ≤ l̂n}}.
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We show that this h is a modulus of integrability for f . Let ∆1, ∆2 be partitions of

[0, 1] such that |∆1| < 2−h(n), |∆2| < 2−h(n). Let ∆ = {0 = x0 < x1 < · · · < xN+1 =

1} be a common refinement of ∆1, ∆2, and let δm := [xm, xm+1]. To show

|S∆1

[0,1](f)− S∆2

[0,1](f)| < 2−n+1,

we only need to show that for any {ξm}m≤N , {ξ′m}m≤N such that ξm, ξ′m ∈ δm,

N∑
m=0

|f(ξm)− f(ξ′m)|(xm+1 − xm) < 2−n.

Define I ⊆ {0, · · ·N} as

I =: {m ≤ N | δm ∩
⋃

k<în

B(ank, rnk) = ∅}.

Then,

[0, 1] ⊆
⋃

k<în

B(ank, rnk)
⋃
m∈I

δm,

∑
m∈I

(xm+1 − xm) ≤
∑

j≤l̂n

|dnînj − cnînj|.

If m ∈ I, then, by definition of h, ξm, ξ′m ∈ δm ⊆ B(ank, 2rnk). Thus, |f(ξm) −
f(ξ′m)| < 2−n−1 for all m ∈ I. Therefore,

N∑
m=0

|f(ξm)− f(ξ′m)|(xm+1 − xm)

≤
∑
m∈I

2(xm+1 − xm) +
∑

m6∈I

2−n−1(xm+1 − xm)

≤ 2
∑

j≤lnîn

|dnînj − cnînj|+ 2−n−1

< 2−n.

This completes the proof of 1 → 3.

We can show 1 → 4 similarly. The implications 4 → 3 and 3 → 2 are trivial.

To show 2 → 1, we define the following notation. For a tree T ⊆ 2<N, define a

set ST ⊆ 2<N and λT
n ∈ N as

ST := {σ ∈ 2<N | σ /∈ T ∧ ∀τ ⊆ σ(τ 6= σ → τ ∈ T )};
λT

n := |{σ ∈ T | lh(σ) = n}|.
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For a finite sequence σ ∈ 2<N, define aσ, bσ ∈ Q as

aσ :=
∑

i<lh(σ)

σ(i)

2i+1
;

bσ := aσ +
1

2lh(σ)
.

Thus, if σ, τ ∈ ST , then, bτ ≤ aσ or bσ ≤ aτ . Note that a tree T has a path if and

only if [0, 1] 6⊆ ⋃
σ∈ST

[aσ, bσ].

Now, we show ¬1 → ¬2. We reason within RCA0. Assume ¬WWKL. Then,

there exist q > 0 and a tree T which has no path such that

∀n ∈ N λT
n

2n
> q.

Since [0, 1] ⊆ ⋃
σ∈ST

[aσ, bσ], we can define a continuous function f from [0, 1] to [0, 1]

as

f(x) :=





x−aσ

cσ−aσ
x ∈ [aσ, cσ] ∧ σ ∈ ST ,

bσ−x
bσ−cσ

x ∈ [cσ, bσ] ∧ σ ∈ ST

where cσ := (bσ + aσ)/2.

We show that this f is not Riemann integrable. Define partitions ∆k of [0, 1] as

∆k :=
{

0 ≤ 1

2k
≤ 2

2k
≤ · · · ≤ 2k − 1

2k
≤ 1

}
= {[aη, bη] | η ∈ 2<N ∧ lh(η) = k}.

Note that we can easily take Mσ := max{f(x) | x ∈ [aσ, bσ]} and mσ := min{f(x) |
x ∈ [aσ, bσ]}. We show that for any k ∈ N,

∑

η∈2<N∧lh(η)=k

(Mη −mη)2
−k > q.

If η ∈ T , then, there exists σ ∈ ST such that σ ⊇ η, thus, [aη, bη] ⊇ [aσ, bσ].

Therefore, η ∈ T implies Mη −mη = 1. Hence, for any k ∈ N,

∑

η∈2<N∧lh(η)=k

(Mη −mη)2
−k

≥
∑

η∈T∧lh(η)=k

2−k

≥ λT
n2−n

> q.

This completes the proof of 2 → 1.
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3.2 Series

In this section, we construct some C∞-functions by series in RCA0. Especially, we

construct power series, which are elementary examples of analytic functions. We

also prove the termwise differentiation and integration theorems. They are very

important in this thesis.

The next theorem is the core of this section.

Theorem 3.26. Let {αn}n∈N be a sequence of nonnegative real numbers whose series∑∞
n=0 αn is convergent. Then the following assertions are provable in RCA0.

1. If a sequence of real numbers {an}n∈N which satisfies |an| ≤ αn for all n ∈ N,

then the series
∑∞

n=0 an is convergent.

2. ([29, Lemma II.6.5]) Let U be an open subset of Rl, and let {fn}n∈N be a

(code for a) sequence of continuous functions from U to R which satisfies the

following:

∀x ∈ U ∀n ∈ N |fn(x)| ≤ αn.

Then there exists a (code for a) continuous function f from U to R such that

∀x ∈ U f(x) =
∞∑

n=0

fn(x).

Proof. The proof of 2 is in [29, Lemma II.6.5], and 1 is immediate from 2.

Corollary 3.27. The following assertions are provable in RCA0.

1. Absolutely convergent series are convergent.

2. Let
∑∞

n=0 an be an absolutely convergent series, and let h is a bijective function

from N to N. Then
∑∞

n=0 ah(n) is convergent and

∞∑
n=0

ah(n) =
∞∑

n=0

an.

3. If
∑∞

n=0 an and
∑∞

n=0 bn are absolutely convergent series, then their Cauchy

product
∑∞

n=0

∑
k+l=n akbl is absolutely convergent and

∞∑
n=0

∑

k+l=n

akbl =
∞∑

n=0

an

∞∑
n=0

bn.
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Proof. Immediate from Theorem 3.26.1.

Theorem 3.28. The following is provable in RCA0. Let
∑∞

n=0 αn be a nonnegative

convergent series, and let {fn}n∈N be a sequence of continuous functions from [a, b]

to R which satisfies the following:

∀x ∈ [a, b] ∀n ∈ N |fn(x)| ≤ αn.

By Theorem 3.26.2, we define f =
∑∞

n=0 fn. Let {hn}n∈N be a sequence of functions

such that each hn is a modulus of uniform continuity for fn. Then, f has a modulus

of uniform continuity.

Proof. We reason within RCA0. Let hn be a modulus of uniform continuity for fn.

Let
∑∞

n=0 αn = α. Define k(n) as the following:

k(n) = min

{
k

∣∣∣∣∣

(
α−

k∑
i=0

αi

)

k

< 2−n−2 − 2−k+1

}
.

(Here, (α)k is the k-th approximation of α.) Then

∞∑

i=k(n)+1

αi < 2−n−2.(14)

Now define h as

h(n) = max{hi(n + 2 + i) | i ≤ k(n)}.
Then for any x, y ∈ [a, b], |x− y| < 2−h(n) implies

∀i ≤ k(n) |fi(x)− fi(y)| < 2−n−2−i.(15)

Hence by (14) and (15), for any n ∈ N, if |x− y| < 2−h(n), then,

|f(x)− f(y)| ≤
∞∑

i=k(n)+1

(|fi(x)|+ |fi(y)|) +

k(n)∑
i=0

|fi(x)− fi(y)|

≤
∞∑

i=k(n)+1

2ai +

k(n)∑
i=0

2−n−2−i

< 2 · 2−n−2 + 2−n−1

= 2−n.

This means h is a modulus of uniform continuity for f .
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Next, we prove the termwise differentiation theorem, and construct a power

series.

Theorem 3.29 (termwise differentiation). The following is provable in RCA0. Let

U be an open interval of R, and let
∑∞

n=0 an and
∑∞

n=0 bn be nonnegative convergent

series. Let {(fn, f
′
n)}n∈N be a sequence of C1-functions from U to R which satisfies

the following conditions:

∀x ∈ U ∀n ∈ N |fn(x)| ≤ an,

∀x ∈ U ∀n ∈ N |f ′n(x)| ≤ bn.

Then there exists a C1-function (f, f ′) from U to R such that

f =
∞∑

n=0

fn, f ′ =
∞∑

n=0

f ′n.

Proof. We reason within RCA0. By Theorem 3.26.2, there exist continuous functions

f and f ′ from U to R which satisfy the following condition:

f =
∞∑

n=0

fn, f ′ =
∞∑

n=0

f ′n.

Let efn be a differentiable condition function for (fn, f ′n). By Theorem 3.12, for any

n and for any x 6= y in U , there exists z ∈ U such that

fn(y)− fn(x)

y − x
= f ′n(z).

Hence, for any n ∈ N, if x 6= y, then there exists z and

|efn(x, y)| =

∣∣∣∣
fn(y)− fn(x)

y − x
− f ′n(x)

∣∣∣∣
= |f ′n(z)− f ′n(x)|.

Then for any n ∈ N,

|efn(x, y)| ≤ 2bn.(16)

(Clearly, (16) holds if x = y.) Then by Theorem 3.26.2, ef =
∑∞

n=0 efn exists and

ef satisfies

∀x ∈ U ef (x, x) = 0;

∀x, y ∈ U f(y)− f(x) = (y − x)(f ′(x) + ef (x, y)),

which means (f, f ′) is of C1. This completes the proof.

37



Let {an}n∈N be a sequence of real numbers, and let r be a positive real number.

If the series
∑∞

n=0 |an|rn is convergent, then for any a ∈ R and for any x such that

|x − a| < r,
∑∞

n=0 an(x − a)n is absolutely convergent and |an(x − a)n| < |an|rn.

Define an open set U and a sequence of continuous functions {fn}n∈N from U to R
as U = {x | |x − a| < r} and fn(x) = an(x − a)n. Then by Theorem 3.26.2 there

exists a continuous function f from U to R such that

f(x) =
∞∑

n=0

fn(x)

=
∞∑

n=0

an(x− a)n.

Corollary 3.30. The following is provable in RCA0. Let {an}n∈N be a sequence

of real numbers, and let r be a positive real number which satisfies
∑∞

n=0 |an|rn is

convergent. Let U = {x | |x− a| < r}. Define a continuous function f from U to R
as f(x) =

∑∞
n=0 an(x − a)n. Then, there exists a sequence of continuous functions

{f (n)}n∈N,i.e., f is a C∞-function.

Proof. We reason within RCA0. Define a function p from N2 to N as

p(n, k) =

{
n!

(n−k)!
if k ≤ n,

0 if k > n.

(Here 0! = 1.) Define a
(k)
n = p(n, k)an and f

(k)
n (x) = a

(k)
n xn−k. Then each f

(k)
n is a

continuous function from U to R, and for all n, k ∈ N a pair (f
(k)
n , f

(k+1)
n ) is of C1.

Moreover, we can easily show that
∑∞

n=0 |a(k)
n |rn is convergent because

∑∞
n=0 |an|rn

is convergent. Since the construction of functional series in Theorem 3.29 is effective,

f (k) =
∑∞

n=0 f
(k)
n exists and (f (k), f (k+1)) is of C1 for all k ∈ N. Then {f (n)}n∈N is of

C∞ and this completes the proof.

The next lemma is very useful to construct continuous, Cr- or C∞-functions.

Lemma 3.31. The following is provable in RCA0. Let {Un}n∈N be a (code for

a) sequence of open subsets of Rl, and let {fn}n∈N be a (code for a) sequence of

continuous, Cr- or C∞-functions. Here, each fn is from Un to R. If {fn}n∈N satisfies

∀x ∈ Rl ∀i, j ∈ N (x ∈ Ui ∩ Uj → fi(x) = fj(x)),

then there exists a continuous, Cr- or C∞-function f from U =
⋃∞

n=0 Un to R such

that

∀x ∈ U ∀n ∈ N (x ∈ Un → fn(x) = f(x)).
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(We usually write f =
⋃∞

n=0 fn.)

Proof. We reason within RCA0. We first treat the case of continuous functions. Let

Fn be a code for fn. Let ϕ(a, r, b, s) be a Σ0
1 formula which express there exists n

such that ∃(m′, a′, r′) ∈ Un ‖a− a′‖+ r < r′ and (a, r)Fn(b, s) holds. Write

ϕ(a, r, b, s) ≡ ∃mθ(m, a, r, b, s)

where θ is Σ0
0. By ∆0

1 comprehension, define F as (m, a, r, b, s) ∈ F ↔ θ(m, a, r, b, s).

Then clearly F is a code for a continuous (partial) function and f is from U to R
which satisfies

∀x ∈ U ∀n ∈ N (x ∈ Un → fn(x) = f(x)).

This completes the proof of the continuous case.

To prove the Cr or C∞ case, by Lemma 3.10, for any α = (a1, . . . , an),

∀x ∈ Rl ∀i, j ∈ N
(
x ∈ Ui ∩ Uj → ∂a1+···+anfi

∂a1x1 . . . ∂anxn

(x) =
∂a1+···+anfj

∂a1x1 . . . ∂anxn

(x)
)
.

Then we can use the continuousness case to construct

∂a1+···+anf

∂a1x1 . . . ∂anxn

=
∞⋃

n=0

∂a1+···+anfn

∂a1x1 . . . ∂anxn

.

We can easily check the condition for Cr or C∞.

Example 3.9. The following analytic functions can be constructed in RCA0.

1. Define s(n) as

s(n) =

{
(−1)

n
2 if n is even,

0 if n is odd

and define {an}n∈N, {bn}n∈N and {cn}n∈N as

an =
1

n!
, bn =

s(n + 3)

n!
, cn =

s(n)

n!
.

Then for any m ∈ N,
∑∞

n=0 |an|mn,
∑∞

n=0 |bn|mn and
∑∞

n=0 |cn|mn are conver-

gent. Define Um = {x | |x| < m}. On Um, define expm(x) =
∑∞

n=0 anx
n,

sinm(x) =
∑∞

n=0 bnxn and cosm(x) =
∑∞

n=0 cnx
n. By Lemma 3.31, C∞-

functions exp =
⋃

m∈N expm, sin =
⋃

m∈N sinm and cos =
⋃

m∈N cosm from

R to R can be constructed.
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2. Define {dn}n∈N as dn = n·(−1)n+1 and define t(m) as t(m) = 1−1/m. Then for

any m ∈ N,
∑∞

n=0 |dn|t(m)n is convergent. Define Um = {x | |x− 1| < t(m)}.
On Um, define logm(x) =

∑∞
n=0 an(x − 1)n. By Lemma 3.31, a C∞-function

log =
⋃

m∈N logm from (0, 2) to R can be constructed.

Next, we show the termwise integration theorem.

Theorem 3.32 (termwise integration). The following is provable in RCA0. Let∑∞
n=0 αn be nonnegative convergent series, and let {fn}n∈N be a sequence of effec-

tively integrable continuous functions from [a, b] to R which satisfies the following:8

∀x ∈ [a, b] ∀n ∈ N |fn(x)| ≤ αn.

By Theorem 3.26.2, we define f =
∑∞

n=0 fn. Then, f is effectively integrable and

∫ b

a

f(x) dx =
∞∑

n=0

∫ b

a

fn(x) dx.(17)

Proof. We reason within RCA0. Let hn be a modulus of integrability for fn. Let∑∞
n=0 αn = α. Define k(n) as

k(n) = min

{
k

∣∣∣∣∣

(
α−

k∑
i=0

αi

)

k

< 2−n−2 − 2−k+1

}
.

and define h as

h(n) = max{hi(n + 2 + i) | i ≤ k(n)}.
Then, similarly to the proof of Theorem 3.28, we can check that h is a modulus of

integrability for f . To prove (17), for any n ∈ N,

∣∣∣∣∣∣

∫ b

a

f(x) dx−
k(n)∑
i=0

∫ b

a

fi(x) dx

∣∣∣∣∣∣

≤
∫ b

a

∞∑

i=k(n)+1

αi(x) dx

≤ |b− a|2−n−2,

which implies (17). This completes the proof.

8We loosely say that {fn}n∈N is a sequence of effectively integrable continuous functions if there

exists a sequence of functions {hn}n∈N such that each hn is a modulus of integrability for fn.
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Note that we can effectively prove Theorems 3.26, 3.28, 3.29, 3.32, Corollary 3.30

and Lemma 3.31, thus, sequential versions of these theorems, corollary and lemma

hold.

Finally, we argue about the commutativity of limits and integrals when a se-

quence of functions does not uniformly converge. The next theorem is a Riemann

integral version of the monotone convergence theorem in [40].

Theorem 3.33. The following assertions are pairwise equivalent over RCA0.

1. WWKL0.

2. If a uniformly bounded monotone sequence of effectively integrable continuous

functions {fn}n∈N on [a, b] converges to an effectively integrable continuous

function f pointwise, then,

lim
n→∞

∫ b

a

fn(x) dx =

∫ b

a

f(x) dx.

(a sequence of continuous functions {fn}n∈N on [a, b] is said to be uniformly

bounded if there exists a natural number K such that |fn(x)| ≤ K for all n ∈ N
and for all x ∈ [a, b].)

3. If a uniformly bounded monotone sequence of continuous functions {fn}n∈N on

[a, b] converges to a continuous function f pointwise, then, each of fn and f

is integrable and

lim
n→∞

∫ b

a

fn(x) dx =

∫ b

a

f(x) dx.

Proof. We reason within RCA0. We show 1 → 3. Let K ∈ Q and let {fn}n∈N be a

monotone sequence of continuous functions on [a, b] such that |fn| < K and {fn}n∈N
converges to a continuous function f pointwise. By Theorem 3.25, each of fn and

f is effectively integrable. Let ε > 0. We show that | ∫ b

a
fn(x) dx − ∫ b

a
f(x) dx| < ε

for some n ∈ N. By Lemma 2.6, define open sets Un as Un = {x | |f(x)− fn(x)| <
ε/2(b − a) ∨ x 6∈ [a, b]}. Since {fn}n∈N is monotone and converges to f pointwise,

{Un}n∈N is a monotone open covering of [a, b]. By Theorem 2.8, there exist n ∈ N
and {[ci, di]}i<l such that [a, b] ⊆ Un ∪

⋃
i<l[ci, di] and

∑
i<l(di − ci) < ε/2K. Then,

∣∣∣∣
∫ b

a

fn(x) dx−
∫ b

a

f(x) dx

∣∣∣∣ <
ε

2(b− a)
(b− a) + K

∑

i<l

(di − ci) < ε.

3 → 2 is trivial. Modifying the proof of 2 → 1 of Theorem 3.25, we can prove 2

→ 1 easily.
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3.3 Inverse function theorem and implicit function theorem

In this section, we prove the inverse function theorem and the implicit function

theorem in RCA0. A differentiable condition function again plays a key role.

Theorem 3.34 (inverse function theorem and implicit function theorem). The fol-

lowing assertions are provable in RCA0.

1. Let U be an open subset of Rn, and let f be a Cr- (r ≥ 1) or C∞-function

from U to Rn. Let a be a point of U such that |f ′(a)| 6= 0. Then, there exist

open subsets of Rn V , W and a Cr- or C∞-function g from W to V such that

a ∈ V , f(a) ∈ W and

∀x ∈ V g(f(x)) = x,

∀y ∈ W f(g(y)) = y.

2. Let U be an open subset of Rn × Rm, and let F be a Cr- (r ≥ 1) or C∞-

function from U to Rm. Let a = (a1, a2) be a point of U such that F(a) = 0

and |Fxn+1...xn+m(a)| 6= 0. Then there exist open subsets V ⊆ Rn, W ⊆ Rm

and a Cr- or C∞-function f from W to V such that a1 ∈ V , a2 ∈ W and

f(a1) = a2,

∀v ∈ V F(v, f(v)) = 0.

Here, |f ′(a)| and |Fxn+1...xn+m(a)| are the Jacobians, i.e.,

|f ′(a)| = det

(
∂fi

∂xj

)

1≤i,j≤n

,

|Fxn+1...xn+m(a)| = det

(
∂Fi

∂xn+j

)

1≤i,j≤m

.

Proof. We reason within RCA0. We first prove 1. By Theorem 3.3 and Corollary

3.20, we may assume the following condition:

a = f(a) = 0;

∀x ∈ U |f ′(x)| > 0;

∂fi

∂xj

=

{
1 if i = j,

0 if i 6= j.
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Define u from U to Rn as u(x) = x− f(x). Then u is of C1, hence we can construct

the differentiable condition function eu for u. Then for any x,y ∈ U ,

u(y)− u(x) =
n∑

i=1

uxi
(x)(yi − xi) + eu(x,y)‖y − x‖.

Hence

‖u(y)− u(x)‖ ≤
(

n∑
i=1

‖uxi
(x)‖+ ‖eu(x,y)‖

)
‖y − x‖.

Here,
∑n

i=1 ‖uxi
(0)‖ = 0 and ‖eu(0,0)‖ = 0. Hence by continuity of

∑n
i=1 ‖uxi

‖
and ‖eu‖, we can get ε > 0 such that

W0 := {x ∈ Rn | ‖x− 0‖ < ε} ⊆ U,

∀x ∈ W0

n∑
i=1

‖uxi
(x)‖ <

1

4
,

∀x,y ∈ W0 ‖euxi
(x,y)‖ <

1

4
.

Then for any x,x ∈ W0,

‖u(y)− u(x)‖ ≤ 1

2
‖y − x‖;(18)

‖y − x‖ = ‖u(y) + f(y)− u(x)− f(x)‖(19)

≤ ‖f(y)− f(x)‖+ ‖u(y)− u(x)‖
≤ ‖f(y)− f(x)‖+

1

2
‖y − x‖.

Hence

‖y − x‖ ≤ 2‖f(y)− f(x)‖.(20)

Define open sets V and W as

W :=
{
x ∈ Rn

∣∣∣ ‖x− 0‖ <
ε

2

}
,

V := f−1(W ) ∩W0.

Claim 3.34.1. For any y ∈ W , there exists a unique x ∈ V such that f(x) = y.

To prove this claim, let y be a point of W . Define vy from W0 to Rn as vy(x) =

y + u(x). Then by (18), for any x′,x′′ ∈ W0,

‖vy(x′′)− vy(x′)‖ ≤ 1

2
‖x′′ − x′‖.(21)
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Especially,

‖vy(x′)− y‖ = ‖vy(x′)− vy(0)‖ ≤ 1

2
‖x′‖ <

ε

2
.(22)

On the other hand, y ∈ W implies ‖y‖ < ε/2. Hence by (22),

∀x′ ∈ W0 ‖vy(x′)‖ < ε.(23)

(21) and (23) mean that hy is a contraction map from W0 to W0. Hence by con-

traction mapping theorem (particular version of [29] Theorem IV.8.3), there exists

a unique x ∈ W0 such that hy(x) = x. This implies f(x) = y and then x ∈ V . This

completes the proof of the claim.

Next, we construct a code for the local inverse function. Let F be a code for f .

Let ϕ(b, s, a, r) be a Σ0
1 formula which expresses that ‖b‖+s < ε/2 and there exists

(m′, a′, r′,b′, s′) ∈ F such that ‖b− b′‖+ s < s′ and ‖a− a′‖+ 4s′ < r. Write

ϕ(b, s, a, r) ≡ ∃mθ(m,b, s, a, r)

where θ is Σ0
0. By ∆0

1 comprehension, define G as (m,b, s, a, r) ∈ G ↔ θ(m,b, s, a, r).

Claim 3.34.2. G is a code for a continuous (partial) function (in the sense of

remark 3.1).

We can easily check that the condition 2 and 3 holds. We must check the

condition 1. Assume (b, s)G(a1, r1) and (b, s)G(a2, r2). By the previous claim, we

can take a unique a0 ∈ V such that f(a0) = b. By the definition of G, there

exist (a′i, r′i,b
′
i, s

′
i) (i = 1, 2) such that (a′i, r′i)F (b′i, s′i), ‖b − b′i‖ + s < s′i and

‖ai − a′i‖+ 4s′i < ri (i = 1, 2). Then

‖f(a0)− f(a′i)‖ = ‖b− f(a′i)‖ ≤ ‖b− b′i‖+ |b′i − f(a′i)‖ < 2s′i.

Hence by (20),

‖a0 − a′i‖ < 4s′i.

This implies ‖a0 − ai‖ < ri (i = 1, 2) and then ‖a1 − a2‖ < r1 + r2. This completes

the proof of the claim.

Claim 3.34.3. Let g be the continuous function coded by G. Then for any y ∈ W ,

y ∈ dom(g).
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For any y ∈ W and for any δ > 0, we need to show that there exists (b, s, a, r)

such that (b, s)G(a, r), ‖b − y‖ < s and r < δ. Take x ∈ V such that f(x) = y.

Then there exists (a′, r′,b′, s′) such that (a′, r′)F (b′, s′), ‖a′−x‖ < r′ and ‖b′−y‖ <

s′ < δ/8. Then, there exists n such that the following conditions hold:

‖yn − b′‖+ 2−n+1 < s′;

‖yn‖+ 2−n+1 <
ε

2
.

Here, yn is an n-th approximation of y. These conditions can be expressed by a Σ0
1

formula, hence we can take n = n0 which satisfies them. Define (b, s, a, r) as

b := yn0 ;

s := 2−n0+1;

a := a′;

r := 5s′.

Then ‖a−a′‖+4s′ < r, hence (b, s)G(a, r). Also ‖b−y‖ < s and r < δ hold. This

completes the proof of the claim.

Claim 3.34.4. g is the local inverse of f , i.e.,

∀x ∈ V g(f(x)) = x,(24)

∀y ∈ W f(g(y)) = y.(25)

We first show (24). Let x ∈ V and y = f(x). To prove x = g(y), we need to

show that (b, s)G(a, r) and ‖y − b‖ < s imply ‖x − a‖ < r. Assume (b, s)G(a, r)

and ‖y − b‖ < s. Then by the definition of G, there exists (a′, r′,b′, s′) such that

(a′, r′)F (b′, s′), ‖b− b′‖+ s < s′ and ‖a− a′‖+ 4s′ < r. Then

‖f(x)− f(a′)‖ = ‖y − f(a′)‖
≤ ‖y − b‖+ ‖b− b′‖+ ‖b′ − f(a′)‖
< 2s′.

Hence by (20),

‖x− a′‖ < 4s′.

Therefore

‖x− a‖ ≤ ‖x− a′‖+ ‖a′ − a‖ < r.
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(25) is immediate from (24) since f is bijective on V . This completes the proof

of the claim.

Now we expand g into a Cr- or C∞-function. We can easily define the derivatives

of g. For example, define the first derivatives as

(
∂gi

∂xj

)

1≤i,j≤n

=

((
∂fi

∂xj

)

1≤i,j≤n

)−1

.

It remains to prove that g and their derivatives surely satisfy the conditions for Cr

or C∞. Using the differentiable condition function for f , this can be achieved as

usual. This completes the proof of 1.

We can imitate the usual proof to show the implication 1 → 2.

Mathematics in RCA0 is concerned with constructive mathematics. The construc-

tive proof of implicit function theorem is in Bridges, Calude, Pavlov and Ştefănescu

[5]. For details of constructive mathematics, see Bishop and Bridges [4].

3.4 Fourier expansion

In this section, we show some results of Reverse Mathematics for some basic theories

of Fourier expansion.

Remark 3.35 (definition of π). RCA0 proves that a continuous real function sin x is

monotonous on [2, 4] and there exists a unique a ∈ [2, 4] such that sin a = 0. Then,

we can set π := a in RCA0.

Using this definition, we can prove basic properties of π concerning sin x and

cos x in RCA0.

Here, sin x and cos x are trigonometric functions defined in Example 3.9. Note

that sin x, cos x and their sum and product have a modulus of continuity, thus, they

are effectively integrable. Note also that sum and product of effectively integrable

functions are effectively integrable.

We write f ∈ P2π if f is a continuous periodic function with period 2π. Let

{ak}k∈N, {bk}k∈N be real sequences. Then, define Sn as

Sn[{ak}{bk}](x) =
a0

2
+

n∑

k=1

(ak cos kx + bk sin kx).

46



If f ∈ P2π is effectively integrable, then, define

Sn[f ](x) = Sn[{ak}{bk}](x)

where ak and bk are Fourier coefficients, i.e.,

ak =
1

π

∫ π

−π

f(x) cos kxdx;

bk =
1

π

∫ π

−π

f(x) sin kxdx.

The next lemma is an easy modification of Theorems 3.5 and 3.24

Lemma 3.36. The following assertions are pairwise equivalent over RCA0.

1. WKL0.

2. Every periodic C1-function has a modulus of uniform continuity on R.

3. Every periodic C1-function is Riemann integrable on any closed intervals.

4. Every periodic C1-function has a modulus of integrability on any closed inter-

vals.

We first show some basic lemmas.

Lemma 3.37 (Bessel inequality). The following is provable in RCA0. Let f ∈ P2π

be effectively integrable and let ak and bk be Fourier coefficients of f . Then,

2π
n∑

i=0

(|ai|2 + |bi|2) ≤
∫ π

−π

f(x)2dx

for all n ∈ N.

Proof. Straightforward imitation of the usual proof.

Lemma 3.38. The following is provable in RCA0. Let f ∈ P2π be effectively inte-

grable. If

∫ π

−π

f(x) cos kxdx = 0;

∫ π

−π

f(x) sin kxdx = 0

for all n ∈ N, then, f ≡ 0.
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Proof. Straightforward imitation of the usual proof.

Lemma 3.39. The following is provable in RCA0. Let f ∈ P2π be a C1-function

and let f and f ′ are effectively integrable. Then, the Fourier series Sn[f ] uniformly

converges to f .

Proof. We reason within RCA0. Let ak and bk be Fourier coefficients of f , let a′k and

b′k be Fourier coefficients of f ′ and let

K =

∫ π

−π

f ′(x)2dx.

Then,

πak =

∫ π

−π

f(x) cos kxdx

=
1

k

∫ π

−π

f ′(x) sin kxdx =
πb′k
k

.

πbk =
πa′k
k

.

By Schwarz’s inequality and Lemma 3.37,

m∑

k=n

(|ak|+ |bk|)

≤
√√√√2

m∑

k=n

1

k2

√√√√
m∑

k=n

(|b′k|2 + |a′k|2)

≤ K

√√√√2
m∑

k=n

1

k2
.

Thus, by Theorem 2.4,
∑∞

k=0(|ak| + |bk|) converges. Then, by Theorem 3.26, there

exists g ∈ P2π such that

g(x) = lim
n→∞

Sn[f ](x)

=
a0

2
+

∞∑

k=1

(ak cos kx + bk sin kx).

Let f̄ = g−f . Then, by Lemma 3.38, f̄ ≡ 0. This means Sn[f ] uniformly converges

to f .

The first theorem is concerned with the uniform convergence of Fourier series.
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Theorem 3.40. The following assertions are pairwise equivalent over RCA0.

1. WKL0.

2. If f ∈ P2π is a C1-function, then, there exist real sequences {ak}k∈N and

{bk}k∈N such that Sn[{ak}{bk}] uniformly converges to f .

Proof. By Lemmas 3.36 and 3.39, 1 → 2 holds. For the converse, we assume 2. By

Lemma 3.36, we only need to show that every periodic C1-function (with period 2π)

has a modulus of uniform continuity. Let f ∈ P2π be a C1-function. Then, there

exist {ak}k∈N and {bk}k∈N such that Sn[{ak}{bk}] uniformly converges to f . Since

sin x and cos x has a modulus of uniform continuity, f has a modulus of uniform

continuity by Theorem 3.28. This completes the proof.

Next, we argue about L2-convergence of Fourier series.

Definition 3.10 (L2-convergence). The following definition is made in RCA0. Let

{fn}n∈N be a sequence of functions in P2π. Then, we say that {fn}n∈N L2-converges

to f if for any i ∈ N there exists k ∈ N such that for any m ≥ k there exists a

continuous function g such that g2 is effectively continuous and

|fm(x)− f(x)| ≤ g(x),∫ π

−π

g(x)2dx < 2−i.

Lemma 3.41. The following is provable in RCA0. Let f ∈ P2π be effectively inte-

grable. Then, the Fourier series Sn[f ] L2-converges to f .

Proof. We reason within RCA0. Let h : N → N be a modulus of integrability for f

on [−π, π]. We can construct a sequence of continuous functions on [−π, π] {f̃i}i∈N
(by means of piecewise parabolic functions) which satisfies the following:

• f̃i is of C1 and f̃i and f̃i
′
are effectively integrable;

• f̃i(tij) = f(tij);

• f̃i is monotone on [tj, tj+1]
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where tij = −π + 2πj/2h(i) (j ≤ 2h(i)). Then, {f̃i}i∈N L2-converges to f . By

Lemma 3.37,

∫ π

−π

(f(x)− Sn[f ](x))2dx

≤
∫ π

−π

(f(x)− f̃i(x))2dx +

∫ π

−π

(f̃i(x)− Sn[f̃i](x))2dx +

∫ π

−π

(Sn[f̃i](x)− Sn[f ](x))2dx

≤ 2

∫ π

−π

(f(x)− f̃i(x))2dx +

∫ π

−π

(f̃i(x)− Sn[f̃i](x))2dx.

Since {f̃i}i∈N L2-converges to f ,

lim
i→∞

∫ π

−π

(f(x)− f̃i(x))2dx = 0.

By Lemma 3.39, {Sn[f̃i]}n∈N uniformly converges to f̃i. Thus,

lim
n→∞

∫ π

−π

(f̃i(x)− Sn[f̃i](x))2dx = 0.

Hence,

lim
n→∞

∫ π

−π

(f(x)− Sn[f ](x))2dx = 0,

and this completes the proof.

Theorem 3.42. The following assertions are pairwise equivalent over RCA0.

1. WKL0.

2. If f ∈ P2π, then, there exist real sequences {ak}k∈N and {bk}k∈N such that

Sn[{ak}{bk}] L2-converges to f .

Proof. We reason within RCA0. By Theorem 3.24 and Lemma 3.41, 1 → 2 holds.

For the converse, we show ¬1 → ¬2. Let ¬WKL0. Then, by Theorem 3.5, there

exists an unbounded function f ∈ P2π. Thus, for any real sequences {ak}k∈N and

{bk}k∈N, |Sn[{ak}{bk}]−f | is unbounded. Therefore, if |Sn[{ak}{bk}]−f | ≤ g, then,

g2 is not integrable, which means that ¬2. This completes the proof of 2 → 1.

Theorem 3.43. The following assertions are pairwise equivalent over RCA0.

1. WWKL0.

2. If f ∈ P2π and |f | ≤ K for some K ∈ Q, then, there exist real sequences

{ak}k∈N and {bk}k∈N such that Sn[{ak}{bk}] L2-converges to f .
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Proof. We reason within RCA0. By Theorem 3.25 and Lemma 3.41, 1 → 2 holds.

For the converse, we show ¬1 → ¬2. We use the notation ST and λT
n defined in the

proof of Theorem 3.25. Let ¬WWKL0. Then, there exist q > 0 and a tree T which

has no path such that

∀n ∈ N λT
n

2n
> q.

For a finite sequence σ ∈ 2<N, define aσ, bσ ∈ R as

aσ := −π + 2π
∑

i<lh(σ)

σ(i)

2i+1
;

bσ := aσ +
2π

2lh(σ)
.

Since T has no path, [−π, π] =
⋃

σ∈ST
[aσ, bσ]. Define a function f ∈ P2π as

f(x) :=





8(x−aσ)
bσ−aσ

x ∈ [aσ, cσ] ∧ σ ∈ ST ,

−8{x−(aσ+bσ)/2}
bσ−aσ

x ∈ [cσ, dσ] ∧ σ ∈ ST ,

8(x−bσ)
bσ−aσ

x ∈ [dσ, bσ] ∧ σ ∈ ST

where cσ := (bσ + 3aσ)/4 and dσ := (3bσ + aσ)/4. Then, f(cσ) = 2, f(dσ) = −2 for

any σ ∈ ST and |f | ≤ 2.

Now, we show that for any real sequences {ak}k∈N and {bk}k∈N and for any

n ∈ N, if |Sn[{ak}{bk}] − f | ≤ g, then,
∫ π

−π
g(x)2dx > πq. Let {ak}k∈N and

{bk}k∈N be real sequences, let n ∈ N and let g be a continuous function such

that g2 is effectively integrable and |Sn[{ak}{bk}] − f | ≤ g. Take M0 ∈ Q such

that M0 ≥ max{|a0|, . . . , |an|, |b0|, . . . , |bn|} and define M := (n + 1)2M0. Then,

|Sn[{ak}{bk}]′(x)| ≤ M for any x ∈ [−π, π]. Thus, if σ ∈ ST and 2π/2lh(σ) ≤ 1/M ,

then, |Sn[{ak}{bk}](x)| < 1 for all x ∈ [aσ, bσ] or |Sn[{ak}{bk}](x)| > −1 for

all x ∈ [aσ, bσ]. Therefore, g(cσ) > 1 or g(dσ) > 1 for any σ ∈ ST such that

2π/2lh(σ) ≤ 1/M . Let h be a modulus of integrability for g2 on [−π, π]. Take N ∈ N
such that 2π/2N ≤ 1/M and 2−N < 2−h(i)/2π where i = min{j ∈ N | 2−j+2 < πq}.
As in the proof of Theorem 3.25, if η ∈ T and lh(η) = N , then, there exists

x ∈ [aη, bη] such that g(x)2 > 1. Take 〈αη ∈ [aη, bη] | η ∈ 2<N∧ lh(η) = N〉 such that
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g(αη) > 1 if η ∈ T . Then, as in the proof of Theorem 3.25,

∫ π

−π

g(x)2dx ≥
∑

η∈2<N∧lh(η)=N

g(αη)
2(bη − aη)− 2−i+2

≥
∑

η∈T∧lh(η)=N

(bη − aη)− 2−i+2

≥ 2πλT
N

2N
− πq

> πq,

which means that ¬2. This completes the proof of 2 → 1.

Imitating the usual arguments for Fourier expansions in RCA0, we can show the

following theorems.

Theorem 3.44 (Perseval equality). The following is provable in RCA0. Let f ∈ P2π

be effectively integrable, and let ak and bk be Fourier coefficients of f . Then,

2π
∞∑
i=0

(|ai|2 + |bi|2) =

∫ π

−π

f(x)2dx.

Theorem 3.45 (Riemann-Lebesgue lemma). The following is provable in RCA0.

Let f be an effectively integrable continuous function on R. Then, for any a, b ∈ R,

lim
n→∞

∫ b

a

f(x) cos nxdx = 0.

Theorem 3.46 (pointwise convergence). The following is provable in RCA0. Let f ∈
P2π be bounded variation on [−π, π], i.e., there exist monotone increasing functions

g0, g1 such that f = g0 − g1. Then, f is effectively integrable and Sn[f ] pointwise

converges to f .

Theorem 3.47. Let f1, f2 ∈ P2π be effectively integrable and let x0 ∈ R. Let

f1 ≡ f2 on some neighborhood of x0. Then, Sn[f1](x0) converges if and only if

Sn[f2](x0) converges. Moreover, if Sn[f1](x0) converges, then,

lim
n→∞

Sn[f1](x0) = lim
n→∞

Sn[f2](x0).

Finally, we argue about local approximation for continuous functions by trigono-

metric functions.

Theorem 3.48. The following assertions are pairwise equivalent over RCA0.
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1. WWKL0.

2. If f is a continuous function on R and x0 ∈ R, then, there exist real se-

quences {ak}k∈N and {bk}k∈N such that Sn[{ak}{bk}] L2-converges to f on a

neighborhood of x0.

Proof. 1 → 2 is a straightforward direction from Theorems 3.43 and 3.47. For the

converse, we show ¬1 → ¬2. We reason within RCA0. By ¬WWKL0, define a

continuous function f on [−π, π] as in the proof of 2 → 1 of Theorem 3.43. Then,

define continuous functions fi on [0, π/2i] as fi(x) = 2−if(2i+1x − π). Note that

|fi| ≤ 2−i+1. Thus, we can define a continuous function f̄ on [−π, π] as

f̄(x) :=





fi+1(x + π
2i ) x ∈ [−π

2i , −π
2i+1 ],

fi+1(x− π
2i+1 ) x ∈ [ π

2i+1 ,
π
2i ],

0 x = 0.

Let U be a neighborhood of 0. Then, there exists i ∈ N such that [ π
2i+1 ,

π
2i ] ⊆ U .

As in the proof of Theorem 3.43, there is no real sequences {ak}k∈N and {bk}k∈N
such that Sn[{ak}{bk}] L2-converges to f̄ on [ π

2i+1 ,
π
2i ], which means that ¬2. This

completes the proof of 2 → 1.
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4 Complex analysis in second order arithmetic

In this chapter, we develop complex analysis related mainly to Cauchy’s integral

theorem within RCA0. In RCA0, Cauchy’s integral theorem holds on a good neigh-

borhood of each point, but Cauchy’s integral theorem itself is equivalent to WKL0

over RCA0. For that reason, some ‘local’ properties of holomorphic functions are

provable in RCA0, but ‘global’ properties are not.

4.1 Complex differentiability and integrability

In this section, we prove basic properties of holomorphic functions on the complex

plane within RCA0. Most of the following results are easy modifications of those in

Chapter 3.

We first define the complex numbers and holomorphic functions.

Definition 4.1 (the complex number system). The following definitions are made

in RCA0. We identify a complex number, an element of C, as an element of R2, and

we define +C, ·C and | · |C by:

(x1, y1) +C (x2, y2) = (x1 + x2, y1 + y2);

(x1, y1) ·C (x2, y2) = (x1x2 − y1y2, x1y2 + x2y1);

|(x, y)|C = ‖(x, y)‖R2 =
√

x2 + y2.

We write (0, 1) = i and (x, y) = x + iy where x, y ∈ R. We usually leave out the

subscript C. A continuous (partial) function from C to C is a continuous (partial)

function from R2 to R2.

Definition 4.2 (holomorphic functions). The following definition is made in RCA0.

Let D be an open subset of C, and let f , f ′ be continuous functions from D to C.

Then a pair (f, f ′) is said to be holomorphic if

∀z ∈ D lim
w→z

f(w)− f(z)

w − z
= f ′(z).

Informally, we write f for a holomorphic function (f, f ′).

Let f be a continuous function. We are safe to say that f is holomorphic when

we can effectively find a (code for a) continuous function f ′ which is the derivative

of f .

Similarly to C1-functions, we give another expression of holomorphic functions

without using limits.
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Theorem 4.1. The following is provable in RCA0. Let D be an open subset of C,

and let f be a holomorphic function from D to C. Then, there exists a (code for a)

continuous function ef from D ×D to C such that

∀z ∈ D ef (z, z) = 0;(26)

∀z1 ∈ D, ∀z2 ∈ D f(z2)− f(z1) = (z2 − z1)(f
′(z1) + ef (z1, z2)).(27)

Such an ef is called the differentiable condition function for f .

Proof. Easy modification of Theorem 3.16.

Clearly, if f , f ′ and ef satisfy (26) and (27), then (f, f ′) is a holomorphic function.

Using differentiable condition functions, we can easily prove in RCA0 that sum,

product, quotient and composite of holomorphic functions are holomorphic.

Let a be an element of C and let r be a positive real number. Then we define

B(a; r) := {z | |z − a| < r},
B(a; r) := {z | |z − a| ≤ r}.

The next lemma is a complex version of Lemma 3.11.

Lemma 4.2. The following is provable in RCA0. Let D be an open subset of C, and

let f be a holomorphic function from D to C. Let a ∈ D and r,K > 0 be such that

B(a; r) ⊆ D and for all z ∈ B(a; r), |f ′(z)| ≤ K. Then for all z, w ∈ B(a; r),

|f(w)− f(z)| ≤ 4K|w − z|.

Proof. We reason within RCA0. Suppose f = f1 + if2, z = x0 + iy0 and w = x1 + iy1.

Define C1-functions g1, g2 from R to R as

gj(t) = fj(z + (w − z)t) (j = 1, 2).

Then

g′j(t) =
∂fj

∂x
(z + (w − z)t)(x1 − x0) +

∂fj

∂y
(z + (w − z)t)(y1 − y0) (j = 1, 2).

Hence

|g′j(t)| ≤ 2K|w − z| (j = 1, 2).

By Lemma 3.11,

|gj(1)− gj(0)| ≤ 2K|w − z|(1− 0) ≤ 2K|w − z| (j = 1, 2).
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Hence

|f(w)− f(z)| ≤ |f1(w)− f1(z)|+ |f2(w)− f2(z)|
= |g1(1)− g1(0)|+ |g2(1)− g2(0)|
≤ 4K|w − z|.

This completes the proof.

Next, we define analytic functions. We will show in Section 4.3 that a holomor-

phic function is an analytic function in RCA0.

Definition 4.3 (analytic functions). The following definition is made in RCA0.

Let D be an open subset of C. An analytic function on D is defined to be a

triple (f, {an, rn}n∈N, {αnk}n∈N,k∈N), where f is a continuous function from D to C,

an, αnk ∈ C and rn ∈ R+, satisfying the following conditions:

1.
⋃

n∈NB(an; rn) = D;

2. ∀z ∈ B(an; rn) f(z) =
∑

k∈N αnkz
k for all n ∈ N.

Informally, we write f for an analytic function (f, {an, rn}n∈N, {αnk}n∈N,k∈N).

As holomorphic functions, we are justified in saying that a continuous function

f is analytic when we can effectively find {an, rn}n∈N and {αnk}n∈N,k∈N such that

(f, {an, rn}n∈N, {αnk}n∈N,k∈N) is an analytic function.

Next, we present complex versions of Theorems 3.26.2, 3.29, Corollary3.30 and

Lemma 3.31.

Theorem 4.3. The following is provable in RCA0. Let {αn}n∈N be a (code for a)

sequence of nonnegative real numbers whose series
∑∞

n=0 αn is convergent. Let D

be an open subset of C, and let {fn}n∈N be a (code for a) sequence of continuous

functions from D to C such that

∀n ∈ N ∀z ∈ D |fn(z)| ≤ αn.

Then there exists a (code for a) continuous function f from D to C such that

∀z ∈ D f(z) =
∞∑

n=0

fn(z).
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Theorem 4.4 (termwise differentiation). The following is provable in RCA0. Let

D be an open subset of C, and let
∑∞

n=0 an and
∑∞

n=0 bn be nonnegative convergent

series. Let {(fn, f
′
n)}n∈N be a sequence of holomorphic functions from D to C which

satisfies the following:

∀n ∈ N ∀z ∈ D |fn(z)| ≤ an,

∀n ∈ N ∀z ∈ D |f ′n(z)| ≤ bn.

Then, there exists a holomorphic function (f, f ′) from D to C such that

f =
∞∑

n=0

fn, f ′ =
∞∑

n=0

f ′n.

Theorem 4.5. The following is provable in RCA0. Let {an}n∈N be a sequence of com-

plex numbers, and let r be a positive real number such that
∑∞

n=0 |an|rn is convergent.

Let a be a complex number, and define an open set D ⊆ C as D = {z | |z− a| < r}.
Define a continuous function f from D to C as a complex power series on D, i.e.,

f(z) =
∞∑

n=0

an(z − a)n.

Then, there exists a sequence of continuous functions {f (n)}n∈N.

Lemma 4.6. The following is provable in RCA0. Let {Dn}n∈N be a (code for a) se-

quence of open subsets of C, and let {fn}n∈N be a (code for a) sequence of continuous

or holomorphic functions where each fn is from Dn to C. If {fn}n∈N satisfies

∀z ∈ C ∀i, j ∈ N (z ∈ Di ∩Dj → fi(z) = fj(z)),

then there exists a continuous or holomorphic function f from D =
⋃∞

n=0 Dn to C
such that

∀n ∈ N ∀z ∈ D (z ∈ Dn → fn(z) = f(z)).

Proofs of Theorems 4.3, 4.4, 4.5 and Lemma 4.6 are similar to those of Theorems

3.26.2, 3.29, Corollary 3.30 and Lemma 3.31 respectively.

We can also construct exp(z), sin(z) and cos(z) as analytic functions in the same

way as in Example 3.9.1.

Let f be an analytic function. Then by Theorem 4.5 and Lemma 4.6, we can

easily construct its n-th derivative f (n) in RCA0. Clearly, for each n, f (n) is holo-

morphic and analytic.
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Next, we define line integral. Let a, b, c be elements of C and let r be a positive

real number. Then we define the following:

[a, b] := {a + (b− a)x | 0 ≤ x ≤ 1},
∆abc := {ax1 + bx2 + cx3 |x1 + x2 + x3 = 1, 0 ≤ x1, x2, x3 ≤ 1},

S(a; r) := {a + (x + iy) | − r ≤ x, y ≤ r},
∂∆abc := [a, b] ∪ [b, c] ∪ [c, a],

∂S(a; r) := [a + (−r − ir), a + (r − ir)] ∪ [a + (r − ir), a + (r + ir)]

∪ [a + (r + ir), a + (−r + ir)] ∪ [a + (−r + ir), a + (−r − ir)].

Definition 4.4 (line integral). Let D be an open or closed subset of C, and let f

be a continuous function from D to C. Then the following definitions are made in

RCA0.

1. Let γ be a continuous function from [0, 1] to D. Then, we define
∫

γ
f(z) dz,

the line integral of f along γ, as
∫

γ

f(z) dz = lim
|∆|→0

S∆
γ (f)

if this limit exists. Here, ∆ is a partition of [0, 1], i.e. ∆ = {0 = x0 ≤ ξ1 ≤
x1 ≤ · · · ≤ ξn ≤ xn = 1}, S∆

γ (f) =
∑n

k=1 f(γ(ξk))(γ(xk) − γ(xk−1)) and

|∆| = max{xk − xk−1 | 1 ≤ k ≤ n}.

2. If [a, b] ⊆ D, we define γ(t) = a + (b− a)t and define
∫
[a,b]

f(z) dz as

∫

[a,b]

f(z) dz =

∫

γ

f(z) dz.

3. If ∂∆abc ⊆ D and ∂S(a; r) ⊆ D, we define
∫

∂∆abc
f(z) dz and

∫
∂S(a;r)

f(z) dz,

respectively as
∫

∂∆abc

f(z) dz =

∫

[a,b]

f(z) dz +

∫

[b,c]

f(z) dz +

∫

[c,a]

f(z) dz,

∫

∂S(a;r)

f(z) dz =

∫

[a+(−r−ir),a+(r−ir)]

f(z) dz +

∫

[a+(r−ir),a+(r+ir)]

f(z) dz

+

∫

[a+(r+ir),a+(−r+ir)]

f(z) dz +

∫

[a+(−r+ir),a+(−r−ir)]

f(z) dz.

Let f be a continuous function from D ⊆ C to C, and let [a, b] ⊆ D. A modulus

of integrability along [a, b] for f is a function h[a,b] from N to N such that for any
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n ∈ N and for any partitions ∆1, ∆2 of [0, 1] ⊆ R, if |∆1|, |∆2| < 2−h[a,b](n) then

|S∆1

[a,b](f)− S∆2

[a,b](f)| < 2−n+1. We say that f is effectively integrable on D when for

every [a, b] ⊆ D, we can find a modulus of integrability along [a, b].

We can show that if f has a modulus of uniform continuity on D, then f is

effectively integrable on D as in the proof of Lemma 3.21. Let f be an effectively

integrable continuous function on D. Let h[a,b] be a modulus of integrability on for

f and let K be a rational number such that |f(z)| < K for all z ∈ [a, b]. As in

Lemma 3.22, define n-approximation Sn(f ; [a, b]) of
∫

[a,b]
f(z) dz as

Sn(f ; [a, b]) =

s(n)∑
i=1

b− a

s(n)
f

(
i

s(n)
(b− a) + a

)

where s(n) = min{k | 1/k < 2−h[a,b](n)−2/K}. Then,

∣∣∣∣
∫

[a,b]

f(x) dx− Sn(f ; [a, b])

∣∣∣∣ < 2−n.

The next theorem is a line integral version of Theorem 3.32.

Theorem 4.7 (termwise integration). The following is provable in RCA0. Let∑∞
n=0 an be a convergent series of nonnegative real numbers, and let {fn}n∈N be

a sequence of effectively integrable continuous functions from D ⊆ C to C which

satisfies the following:

∀n ∈ N ∀z ∈ D |fn(z)| ≤ an.

Then, f =
∑∞

n=0 fn is effectively integrable and for all [a, b] ⊆ D,

∫

[a,b]

f(z) dz =
∞∑

n=0

∫

[a,b]

fn(z) dz.

Proof. Similar to the proof of Theorem 3.32.

The next lemma is some basic properties of line integral.

Lemma 4.8. The following assertions are provable in RCA0.

1. For any a, b, c ∈ C,
∫

∂∆abc
1 dz and

∫
∂∆abc

z dz exist and

∫

∂∆abc

1 dz = 0,

∫

∂∆abc

z dz = 0.
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2. Let D be an open or closed subset of C, and let f be a continuous function

from D to C. If [a, b] ⊆ D and there exists a modulus of uniform continuity

on [a, b] for f , then
∫
[a,b]

f(z) dz and
∫
[b,a]

f(z) dz exist and

∫

[a,b]

f(z) dz +

∫

[b,a]

f(z) dz = 0.

Proof. Obvious.

Note that we can effectively prove Theorems 4.1, 4.3, 4.4, 4.5, 4.7 and Lemma 4.6,

and thus, sequential versions of these theorems and lemma hold as in Chapter 3.

4.2 Cauchy’s integral theorem

To prove Cauchy’s integral theorem in RCA0, we need to integrate holomorphic

(hence analytic) functions effectively. Actually, we can prove Cauchy’s integral

theorem for power series in RCA0 since power series are always effectively integrable.

However, we cannot prove Cauchy’s integral theorem in RCA0 because there might

exist a holomorphic (analytic) function which cannot be integrated.

The next theorem is an RCA0 version of Cauchy’s integral theorem.

Theorem 4.9. The following is provable in RCA0. Let D be an open subset of C,

and let f be a holomorphic function from D to C. If f is effectively integrable on D

then, for any a, b, c ∈ D such that ∆abc ⊆ D,
∫

∂∆abc

f(z) dz = 0.

Proof. We reason within RCA0. We imitate the usual proof of Cauchy’s integral

theorem (c.f. [1, page 109]) for triangles (or rectangles) in RCA0. The existence of∫
∂∆abc

f(z) dz is given by the modulus of uniform continuity on D. Define L as the

length of ∂∆abc, i.e., L = |b− a|+ |c− b|+ |a− c|. Assume

∣∣∣∣
∫

∂∆abc

f(z) dz

∣∣∣∣ > 0,

then there exists a positive rational number q such that

(28)

∣∣∣∣
∫

∂∆abc

f(z) dz

∣∣∣∣ > q > 0.
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Now by primitive recursion, we construct a sequence {(an, bn, cn)}n∈N such that

(a0, b0, c0) = (a, b, c);

∆an+1bn+1cn+1 ⊆ ∆anbncn;

|bn+1 − an+1| =
|bn − an|

2
;

|cn+1 − bn+1| =
|cn − bn|

2
;

|an+1 − cn+1| =
|an − cn|

2
;

∣∣∣∣
∫

∂∆anbncn

f(z) dz

∣∣∣∣ >
q

4n
.

Let (an, bn, cn) be already defined. Define {(ai
n+1, b

i
n+1, c

i
n+1)}1≤i≤4 as a1

n+1 = an,

b1
n+1 = a2

n+1 = c4
n+1 = (an + bn)/2, b2

n+1 = bn, c2
n+1 = b3

n+1 = a4
n+1 = (bn + cn)/2,

c3
n+1 = cn and c1

n+1 = a3
n+1 = b4

n+1 = (cn + an)/2. Then

4∑
i=1

∣∣∣∣∣
∫

∂∆ai
n+1bi

n+1ci
n+1

f(z) dz

∣∣∣∣∣

≥
∣∣∣∣∣

4∑
i=1

∫

∂∆ai
n+1bi

n+1ci
n+1

f(z) dz

∣∣∣∣∣

=

∣∣∣∣
∫

∂∆anbncn

f(z) dz

∣∣∣∣
>

q

4n
.

Hence,

∃k ∈ N ∣∣Sk(f ; ∂∆ai
n+1b

i
n+1c

i
n+1)

∣∣ >
q

4n+1
+

3

2k
(29)

for some 1 ≤ i ≤ 4 where

Sk(f ; ∂∆ai
n+1b

i
n+1c

i
n+1) = Sk(f ; [ai

n+1, b
i
n+1])+Sk(f ; [bi

n+1, c
i
n+1])+Sk(f ; [ci

n+1, a
i
n+1]).

Since (29) is expressed by a Σ0
1 formula, a function H exists such that H(an, bn, cn) =

(ai
n+1, b

i
n+1, c

i
n+1) where (ai

n+1, b
i
n+1, c

i
n+1) satisfies (29). Then, by primitive recursion,

define {(an, bn, cn)}n∈N as (a0, b0, c0) = (a, b, c) and (an+1, bn+1, cn+1) = H((an, bn, cn)).

Clearly, |an+1 − an| ≤ L/2n holds for all n ∈ N. Hence by theorem 2.4, there

exists z0 = limn→∞ an. Then clearly, for all n ∈ N, z0 ∈ ∆anbncn. Let ef be the

differentiable condition function for f and let Ef be a code for ef . Let ϕ(k) be a

Σ0
1 formula which express there exists (m′, a′, r′, b′, s′) ∈ Ef such that ‖(z0, z0) −
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a′‖ + 2−k < r′ and |b′| + s′ < q/2L2. Then ef (z0, z0) = 0 implies ∃pϕ(p). Hence

there exists k0 ∈ N such that ϕ(k0) holds. Take n0 such that L2−n0−1 < 2−k0 , then

∆an0bn0cn0 ⊆ B(z0; 2
−k0). Define a continuous function g from D to C as

g(z) = f(z0) + (z − z0)f
′(z0)

= f(z)− ef (z0, z)(z − z0).

Then for any z ∈ ∆an0bn0cn0 ⊆ B(z0; 2
−k0),

|f(z)− g(z)| = |ef (z0, z)(z − z0)|
≤ q

2L2
· L

2n0

=
q

L2n0+1
.

Hence
∣∣∣∣∣
∫

∂∆an0bn0cn0

f(z)− g(z) dz

∣∣∣∣∣ ≤ L

2n0
· q

L2n0+1
(30)

=
q

2 · 4n0
.

On the other hand, by Lemma 4.8,
∫

∂∆an0bn0cn0

g(z) dz = 0.

Hence
∣∣∣∣∣
∫

∂∆an0bn0cn0

f(z)− g(z) dz

∣∣∣∣∣

=

∣∣∣∣∣
∫

∂∆an0bn0cn0

f(z) dz

∣∣∣∣∣
>

q

4n0
,

which contradicts (30). This completes the proof.

By this theorem, if f is a effectively integrable holomorphic function on D =

B(a; r), then, there exists a continuous function F on D such that

F (x) =

∫

[a,x]

f(x) dx

as in Lemma 3.23. Clearly, (F, f) forms a holomorphic function.

We show that Cauchy’s integral theorem is equivalent to WKL0 over RCA0.

62



Theorem 4.10. The following assertions are pairwise equivalent over RCA0.

1. If f is a holomorphic function on an open set D ⊆ C, for any ∆abc ⊆ D, f

is bounded on ∆abc.

2. If f is a holomorphic function on an open set D ⊆ C, for any ∆abc ⊆ D,

there exists a modulus of uniform continuity on ∆abc for f .

3. Cauchy’s integral theorem for triangles: if f is a holomorphic function on an

open set D ⊆ C, then for any ∆abc ⊆ D,
∫

∂∆abc
f(z) dz exists and

∫

∂∆abc

f(z) dz = 0.

4. WKL0.

Proof. We reason within RCA0. The implications 4 → 1 and 4 → 2 are immediate

from Theorem 3.5. The implication 2 → 3 is immediate from Theorem 4.9.

To prove 1 → 4 and 3 → 4, we show that ¬WKL0 implies ¬1 and ¬3. Let

T be an infinite tree with no path, i.e., T is an infinite subset of 2<N and for

any function h from N to {0, 1}, there exists n ∈ N such that h[n] /∈ T . By ∆0
1

comprehension, define T̃ as σ ∈ T̃ ↔ σ ∈ 2<N \ T ∧ ∀k < lh(σ) σ[k] ∈ T . Let

{σn}n∈N be an enumeration of T̃ which satisfies for any n ∈ N, lh(σn) ≤ lh(σn+1).

Define cσ, dσ ∈ [0, 1] for each σ ∈ 2<N as c〈〉 = 0, d〈〉 = 1, cσ_〈0〉 = cσ, dσ_〈1〉 = dσ

and cσ_〈1〉 = dσ_〈0〉 = (cσ + dσ)/2. Then define natural numbers sn, real numbers

an and open intervals In as follows:

sn = lh(σn) + 1;

an =
cσn + dσn

2
;

In = (cσn , dσn) = (an − 2−sn , an + 2−sn).

Note that for any p, q ∈ N Ip ∩ Iq = ∅.
Next, by ∆0

1 comprehension, define X as

X = { (σ, τ) ∈ T̃ × T̃ | dσ = cτ} ∪ { (〈2〉, τ) | τ ∈ T̃ ∧ cτ = 0}
∪ { (σ, 〈2〉) |σ ∈ T̃ ∧ dσ = 1}.

Let {(σ̂n, τ̂n)}n∈N be an enumeration of X. Then define natural numbers tn, real
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numbers bn and open intervals Jn as follows:

tn = max{lh(σ̂n), lh(τ̂n)}+ 1;

bn = dσ̂n = cτ̂n ;

Jn = (bn − 2−tn , bn + 2−tn).

(Here, d〈2〉 = 0, c〈2〉 = 1 and lh(〈2〉) = 1.) Then for any n ∈ N, there exist at

most two k’s such that Jn ∩ Ik 6= ∅, and for any n, k ∈ N, ak /∈ Jn. Moreover,

{In}n∈N, {Jn}n∈N cover [0, 1], i.e.,

∞⋃
n=0

In ∪
∞⋃

n=0

Jn ⊇ [0, 1].

Now, define an open cover of C as follows:

An = {x + iy |x ∈ In, y ∈ R};
Bn = {x + iy |x ∈ Jn, y ∈ R};
C = {x + iy |x < 0 ∨ x > 1, y ∈ R}.

Then

∞⋃
n=0

An ∪
∞⋃

n=0

Bn ∪ C = C.

Define a sequence of complex numbers {ζn}n∈N as

ζn = an + i · 2−sn−2 ∈ An,

and consider each an as a complex number, i.e., redefine an as

an = an + i · 0 ∈ An.

Then for any p, q ∈ N, Ap ∩Aq = ∅ and for any n ∈ N, an and ζn are not in each Bk

and C. Moreover, for any n ∈ N,

∀z /∈ An |z − ζn| ≥ 2−sn .(31)

Define a sequence of holomorphic functions {fn}n∈N as

fn(z) =

(
2−sn

z − ζn

· 1

2i

)n+sn

· 2−sn ;

f ′n(z) = −
(

2−sn

z − ζn

· 1

2i

)n+sn+1

· 2i(n + sn + 1).
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(Here, each fn is from C \ {ζn} to C.) Then

fn(an) =

(
2−sn

−i · 2−sn−2
· 1

2i

)n+sn

· 2−sn = 2n.(32)

Define {αn}n∈N and {βn}n∈N as αn = 2−n and βn = (n + 1)2−n−1. Then their series∑∞
n=0 αn and

∑∞
n=0 βn are convergent. By (31), for any n ∈ N,

∀z /∈ An |fn(z)| =

(
2−sn

|z − ζn| ·
1

2

)n+sn

· 2−sn(33)

≤
(

1

2

)n+sn

· 2−sn

≤ αn,

∀z /∈ An |f ′n(z)| =

(
2−sn

|z − ζn| ·
1

2

)n+sn+1

· 2(n + sn + 1)(34)

≤
(

1

2

)n+sn+1

· 2(n + sn + 1)

≤ βn.

Define {mn}n∈N as

mn = min{k | tn < sk}.

Then for any n ∈ N

∀k ≥ mn Ak ∩Bn = ∅, .(35)

Let k > n. Then by (33) and (34), |fk(z)| ≤ αk and |f ′k(z)| ≤ βk for all z ∈ An.

Hence by Theorem 4.4, for each n ∈ N, we can construct holomorphic functions fAn

from An \ {ζn} to C as

fAn(z) =
n∑

k=0

fk(z) +
∞∑

k=n+1

fk(z).

Similarly, by (35), we can construct holomorphic functions fBn from Bn to C and a

holomorphic function fC from C to C as

fBn(z) =
mn∑

k=0

fk(z) +
∞∑

k=mn+1

fk(z),

fC(z) =
∞∑

k=0

fk(z).
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Then by Lemma 4.6, we can construct a holomorphic function f =
⋃∞

n=0 fAn ∪⋃∞
n=0 fBn ∪ fC from

⋃∞
n=0(An \ {ζn}) ∪

⋃∞
n=0 Bn ∪ C = C \ {ζn}n∈N to C. Here, for

any n ∈ N,

f(an) = fn(an) +
∑

k 6=n

fk(an)

= 2n +
∑

k 6=n

fk(an),

∣∣∣∣∣
∑

k 6=n

fk(an)

∣∣∣∣∣ ≤
∞∑

k=0

αk ≤ 2.

Hence, the real part of f(z) cannot be bounded in [0, 1], and then,
∫

∂∆(−i)01
f(z) dz

cannot exist although ∆(−i)01 ⊆ C\{ζn}n∈N, which means that 1 and 3 are denied.

This completes the proofs of 1 → 4 and 3 → 4.

We can generalize the above version of Cauchy’s integral theorem. Let us regard

a C1-function from [0, 1] to R2 as a C1-function from [0, 1] to C. (At end points, we

consider one-side derivative.) A piecewise C1-Jordan curve γ on an open set D ⊆ C
is a finite sequence of one-to-one C1-functions {γj}1≤j≤n from [0, 1] to C which have

no common points except γj(1) = γj+1(0), γn(1) = γ1(0). (We just write γj for

C1-function (γj, γ
′
j).) Given a continuous function from D to C, we define a line

integral along γ as ∫

γ

f(z) dz =
n∑

j=1

∫

γj

f(z) dz.

Remark 4.11. Let γ is a piecewise C1-Jordan curve on C. If γ([0, 1]) is a closed

set and its complement is divided into two arcwise connected open sets U0 and U1

such that U0 is bounded, then U0 is said to be the interior of γ. However, we cannot

prove the existence of the interior of a piecewise C1-Jordan curve. In fact, we show

that the Jordan curve theorem is equivalent to WKL0 over RCA0 in Chapter 5. See

also [25].

In WKL0, we can find a broken-line approximation of a piecewise C1-Jordan

curve. Thus, in WKL0, we can prove Cauchy’s integral theorem for piecewise C1-

Jordan curves by Theorem 4.10.

Theorem 4.12. The following assertions are pairwise equivalent over RCA0.
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1. Cauchy’s integral theorem: if f is a holomorphic function on an open set

D ⊆ C, γ is a piecewise C1-Jordan curve on D such that its interior exists

and is included in D, then
∫

γ
f(z) dz exists and

∫

γ

f(z) dz = 0.

2. WKL0.

4.3 Taylor’s theorem

In this section, we show the Taylor theorem for holomorphic functions within RCA0,

i.e., we show that a holomorphic function can be expanded into a power series

on some neighborhood of each point. This means that ‘holomorphic functions are

analytic’ in RCA0. Holomorphic functions are uniformly continuous and effectively

integrable on some neighborhood of each point. Thus, to show the Taylor theorem,

we only need Cauchy’s integral theorem for effectively integrable functions, which is

provable in RCA0.

Let f be a continuous (partial) function from C to C, and let B(a; r) ⊆ dom(f).

Let h be a modulus of uniform continuity on B(a; r) for f . Then we call a pair

(B(a; r), h) (or just B(a; r)) uniformly continuous neighborhood (u.c.-neighborhood)

for f .

Lemma 4.13. The following is provable in RCA0. Let D be an open subset of C,

and let f be a holomorphic function from D to C. Given a positive real number K

such that |f ′| ≤ K on B(a; r) ⊆ D, then there exists a modulus of continuity for f

on B(a; r), i.e., B(a; r) is a u.c.-neighborhood.

Proof. We reason within RCA0. Without loss of generality, we may assume K is a

positive rational. Define h from N to N by:

h(n) = min

{
k

∣∣∣∣∣ 2−k <
2−n

4K

}
.

Then by Lemma 4.2, h is a modulus of uniform continuity for f on B(a; r), which

completes the proof.

Let f be a holomorphic function from an open set D to C. By the continuity of f ′,

for each z0 ∈ D there exists a positive rational number r such that f ′ is bounded on
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B(z0; r). Then B(z0; r) is a u.c.-neighborhood. By Theorem 4.9, Cauchy’s integral

theorem holds on B(z0; r). Roughly speaking, Cauchy’s integral theorem holds

locally in RCA0. Using this, we can show that ‘holomorphic functions are analytic’

in RCA0.

Lemma 4.14. The following is provable in RCA0. Let D be an open subset of C,

and let f be a holomorphic function from D to C. Let a0 ∈ D and r0, K > 0 be such

that B(a0; r0) ⊆ D and for all z ∈ B(a0; r0), |f ′(z)| ≤ K. Take z0 ∈ B(a0; r0) and

define a continuous function gz0 from D to C as the following:

gz0(z) = ef (z0, z) + f ′(z0).

=

{
f(z)−f(z0)

z−z0
if z 6= z0,

f ′(z0) if z = z0.

(Here ef is the differentiable condition function for f .) Then, the following hold.

1. If gz0 is holomorphic on D \ {z0}, then, there exists a modulus of uniform

continuity on B(a0; r0) for gz0.

2. For any a, b, c ∈ B(a0; r0),
∫

∂∆abc
gz0(z) dz exist and

∫

∂∆abc

gz0(z) dz = 0.

Proof. We reason within RCA0. We first prove 1. Clearly gz0 is holomorphic on

D \ {z0}. We only need to find a modulus of uniform continuity on B(a0; r0) for gz0

effectively. By Lemma 4.13, we can effectively find a modulus of uniform continuity

h0 on B(a0; r0) for f . Let Gz0 be a code for gz0 and let ϕ(n,m) be a Σ0
1 formula

which expresses that there exists (m̂, â, r̂, b̂, ŝ) ∈ Gz0 such that |z0 − â| + 2−m < r̂

and |gz0(z0) − b̂| + ŝ < 2−n−2. Since z0 ∈ dom(gz0) implies ∀n∃mϕ(n,m), we can

find a function l from N to N such that ∀nϕ(n, l(n)) holds. Thus for any n ∈ N,

∀w1, w2 ∈ B(z0; 2−l(n)−1)(36)

|gz0(w1)− gz0(w2)| ≤ |gz0(w1)− gz0(z0)|+ |gz0(w2)− gz0(z0)|
< 2−n−1.

Now, take m0 ∈ N such that |f(a0)| + 4Kr0 < 2m0 . By Lemma 4.2, for all w ∈
B(a0; r0), we have |f(w)| < 2m0 . Define a function h from N to N as

h(n) = max{h0(l(n) + n + 3), 2l(n) + m0 + 5}.
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The proof will be completed if we show that h is a modulus of uniform continuity

on B(a0; r0) for gz0 . To show this, we need to check the following three cases:

(i) w1, w2 ∈ B(z0; 2−l(n)−1) and |w1 − w2| < h(n);

(ii) w1, w2 ∈ B(a0; r0) \B(z0; 2
−l(n)−1) and |w1 − w2| < h(n);

(iii) w1 ∈ B(z0; 2−l(n)−1), w2 ∈ B(a0; r0) \B(z0; 2
−l(n)−1) and |w1 − w2| < h(n).

If (w1, w2) satisfies (i), then by (36),

|gz0(w1)− gz0(w2)| < 2−n−1.

If (w1, w2) satisfies (ii), then

|gz0(w1)− gz0(w2)| =

∣∣∣∣
f(w1)− f(z0)

w1 − z0

− f(w2)− f(z0)

w2 − z0

∣∣∣∣

=

∣∣∣∣
f(w1)− f(w2)

w2 − z0

+
(f(w2) + f(z0))(w2 − w1)

(w2 − z0)(w1 − z0)

∣∣∣∣

≤ 1

2−l(n)−1
|f(w1)− f(w2)|+ 2 · 2m0

2−l(n)−1 · 2−l(n)−1
|w2 − w1|

< 2l(n)+1 · 2−l(n)−n−3 + 2m0+2l(n)+3 · 2−m0−2l(n)−n−5

= 2−n−1.

Assume (w1, w2) satisfies (iii). Let w3 be an intersection point of [w1, w2] and

{w | |w−z0| = 2−l(n)−1}. Then (w1, w3) satisfies (i) and (w2, w3) satisfies (ii). Hence

|gz0(w1)− gz0(w2)| ≤ |gz0(w1)− gz0(w3)|+ |gz0(w2)− gz0(w3)|
< 2−n−1 + 2−n−1

= 2−n.

Hence for any n ∈ N, if w1, w2 ∈ B(a0; r0) and |w1−w2| < h(n), then |gz0(w1)−
gz0(w2)| < 2−n. This completes the proof of 1.

By 1 and Theorem 4.9, we can prove 2 as usual (c.f. [1, page 111]).

Since we can effectively prove Lemmas 4.13 and 4.14, sequential versions of these

lemmas hold.

Now, we are ready to prove the main theorem of this section.

Theorem 4.15 (Taylor’s theorem). The following is provable in RCA0. Let (f, f ′) be

a holomorphic function from an open set D ⊆ C to C, then, there exist {an, rn}n∈N
and {αnk}n∈N,k∈N such that (f, {an, rn}n∈N, {αnk}n∈N,k∈N) forms an analytic function

from D to C.
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We can prove this theorem effectively and thus a sequential version of this the-

orem also holds. This theorem shows that a holomorphic function is an analytic

function. Particularly, the derivative of a holomorphic function is a holomorphic

function.

Proof. We reason within RCA0. We first decompose D into u.c.-neighborhoods. Let

F ′ be a code for f ′, and let (mn, an, rn, bn, sn) be an enumeration of all elements

(m, a, r, b, s) of F ′ which satisfy ∃(m̂, â, r̂) ∈ D |a − â| + r < r̂. Define r̃n = rn/2,

Kn = |f ′(an)| + sn and Mn = 4Knsn|f(an)|. Then by the definition of continuous

functions and D ⊆ dom(f ′),

∀z ∈ B(an; rn) |f ′(z)| ≤ Kn,(37)
∞⋃

n=0

B(an; r̃n) = D.(38)

By Lemma 4.13, we can find a modulus of uniform continuity on B(an; rn) for f for

each n.

Next, we expand f into a power series on each B(an; r̃n). For any n ∈ N and for

any z ∈ B(an; r̃n), define gz as

gz(w) = ef (z, w) + f ′(z)

=

{
f(w)−f(z)

w−z
if w 6= z,

f ′(z) if w = z.

Here, ef is the differentiable condition function for f . Then by Lemma 4.14,
∫

∂S(an; 2
3
rn)

gz(w) dw = 0.

This means

f(z)

∫

∂S(an; 2
3
rn)

dw

w − z
=

∫

∂S(an; 2
3
rn)

f(w)

w − z
dw(39)

if these two integrals exist.

Claim 4.15.1. For any n ∈ N and for any z ∈ B(an; r̃n) the following integrals

exist and,
∫

∂S(an; 2
3
rn)

dw

w − z
=

∫

∂S(0;1)

dw

w
.(40)

Moreover,

4 <

∣∣∣∣
∫

∂S(0;1)

dw

w

∣∣∣∣ < 8.(41)
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We can find a modulus of uniform continuity on ∂S(an; 2rn/3) for 1/(w− z) and

a modulus of uniform continuity on ∂S(0; 1) for 1/w easily. Hence the integrals in

(40) exist. The equality (40) is obvious. The estimation (41) can be proved by an

approximation which is produced by a modulus of integrability. This completes the

proof of this claim.

Claim 4.15.2. For any n ∈ N and for any z ∈ B(an; r̃n) the following integrals

exist and,

∫

∂S(an; 2
3
rn)

f(w)

w − z
dw(42)

=
∞∑

j=0

(z − an)j

∫

∂S(an; 2
3
rn)

f(w)

(w − an)j+1
dw.

To prove this claim, define a sequence of continuous functions {pj}j∈N as

pj(w) = (z − an)j f(w)

(w − an)j+1
.

For all w ∈ ∂S(an; 2rn/3),

|f(w)|
∣∣∣∣

(z − an)j

(w − an)j+1

∣∣∣∣ < Mn
(r̃n)j

(2
3
rn)j+1

<

(
3

4

)j

· Mn

2rn

.(43)

Hence by Lemma 4.3,
∑∞

j=0 pj(w) is convergent and,

∞∑
j=0

pj(w) =
f(w)

w − z
.

Using a modulus of uniform continuity for f , we can construct a modulus of uniform

continuity on ∂S(an; 2rn/3) for each pj. Then by Theorem 4.7, (42) holds. This

completes the proof of this claim.

Define αnj as

αnj =

∫
∂S(an; 2

3
rn)

f(w)
(w−an)j+1 dw

∫
∂S(0;1)

dw
w

.

Then, by (41) and (43), for any n ∈ N

∀j ∈ N ∀z ∈ B(an; r̃n) |αnj(z − an)j| ≤ 1

4
· 8

3
rn ·

(
3

4

)j

· Mn

2rn

=

(
3

4

)j

· Mn

3
.

71



Hence by (39) and Lemma 4.3,

∀z ∈ B(an; r̃n) f(z) =
∞∑

j=0

αnj(z − an)j

for all n ∈ N. This means (f, {an, r̃n}n∈N, {αnj}n∈Nj∈N) is an analytic function, which

completes the proof.

Let f be a continuous function from [a, b] ⊆ R to C, we define
∫ b

a
f(t) dt as

∫ b

a

f(t) dt =

∫ b

a

f1(t) dt + i

∫ b

a

f2(t) dt

where, f = f1 + if2. The next corollaries are straightforward from the Taylor

theorem.

Corollary 4.16 (mean value principle on some u.c.-neighborhood). The following

is provable in RCA0. Let D be an open subset of C, f be a holomorphic function

from D to C and z0 ∈ D. Let z0 ∈ B(a; r) be a u.c.-neighborhood for f . For any

positive real number r̃, if B(z0; r̃) ⊆ B(a; r), then the following integral exists and

∫ 2π

0

f(z0 + r̃ exp(iθ)) dθ = 2πf(z0).

Corollary 4.17 (maximal value principle on some u.c.-neighborhood). The follow-

ing is provable in RCA0. Let D be an open subset of C, f is a holomorphic function

from D to C and z0 ∈ D. Let z0 ∈ B(a; r) be a u.c.-neighborhood for f . If |f(z)|
attains a maximal value at z0, then f is constant on B(z0; r).

4.4 Some other results

In this section, we show some other results for Reverse Mathematics for complex

analysis.

Using differentiable condition functions, we can prove the basic theorem for the

Cauchy-Riemann equation.

Theorem 4.18. Let D be an open subset of C(= R2) and let f = f1 + if2 be a

continuous function from D to C(= R2), i.e., f1, f2 are continuous functions from

D to R such that f(z) = f1(z) + if2(z). (If f is a continuous function from Rn

to Rm, then we can effectively find (codes for) continuous functions f1, . . . , fm from

Rn to R such that f(x) = (f1(x), . . . , fm(x)).) Then the following assertions are

provable in RCA0.
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1. Given the continuous derivative of f , we can find continuous partial derivatives

of f1 and f2 which satisfy the following Cauchy-Riemann equation:

∂f1

∂x
=

∂f2

∂y
,

∂f2

∂x
= −∂f1

∂y
.(44)

2. Given continuous partial derivatives of f1 and f2 which satisfy (44), then

∂f1/∂x + i∂f1/∂y is the continuous derivative of f .

Proof. We reason within RCA0. We can easily prove 1. To prove 2, let f = (f1, f2)

be a C1-function which satisfies the Cauchy-Riemann equation. Let ef1 and ef2 be

differentiable condition functions for f1 and f2, and let f ′ = ∂f1/∂x + i∂f1/∂y. Let

∆ be a closed set such that ∆ = {(w,w) |w ∈ D}. Define a continuous function e0
f

from D ×D \∆ to C as

e0
f (z, w) =

w − z

|w − z|(ef1(z, w) + i(ef2(z, w)),

where efj
is a differentiable condition function for fj. Then,

∀z ∈ D lim
w→z

e0
f (z, w) = 0,

∀(z, w) ∈ D ×D \∆ f(w)− f(z) = (w − z)(f ′(z) + e0
f (z, w)).

These imply

∀z ∈ D lim
w→z

f(w)− f(z)

w − z
= f ′(z),

which completes the proof.9

Theorem 4.19 (Morera’s theorem). The following is provable in RCA0. Let D be an

open subset of C, and let f be a continuous function from D to C. If f is effectively

integrable on D and for all ∆abc ⊆ D,
∫

∂∆abc
f(z) dz = 0, then, f is a holomorphic

function.

Proof. We reason within RCA0. By the definition of open set, write D =
⋃

n∈NB(an; rn).

Using moduli of integrability for f , we can easily construct continuous functions Fn

from B(an; rn) to C such that

Fn(z) =

∫

[an,z]

f(w) dw.

Then, clearly (Fn, f) is holomorphic on B(an; rn). By theorem 4.15, Fn is analytic.

Hence f |B(an;rn) is a holomorphic function on B(an; rn) for all n ∈ N. Thus, f is

holomorphic on D. This completes the proof.
9Actually, we can expand e0

f into the differentiable condition function for f .
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A continuous function from an open set D to C is said to be complex differentiable

if

∀z ∈ D ∃α ∈ C lim
w→z

f(w)− f(z)

w − z
= α.

Theorem 4.9 holds for complex differentiable functions in place of holomorphic func-

tions. Now, the question is ‘a complex differentiable function is a holomorphic func-

tion?’ i.e., can we find the derivative of a complex differentiable function? To answer

this, we need to use the complex differentiable version of Theorem 4.9.

Theorem 4.20. The following is provable in WWKL0. Let D be an open subset of

C, and let f be a continuous function from D to C. If f is complex differentiable,

then f is analytic. Particularly, complex differentiable functions are holomorphic.

Proof. We reason within WWKL0. By Theorem 3.25, all bounded continuous func-

tions are effectively integrable. Let F be a code for f , and let (mn, an, rn, bn, sn)

be an enumeration of all elements (m, a, r, b, s) of F which satisfy ∃(m̂, â, r̂) ∈
D |a − â| + r < r̂. Then D =

⋃
n∈NB(an; rn) and f is bounded on each B(an; rn).

Hence f is effectively integrable on each B(an; rn). By the complex differentiable

version of Theorem 4.9, for all ∆abc ⊆ B(an; rn),
∫

∂∆abc
f(z) dz = 0. Then by Theo-

rem 4.19, f is analytic on each B(an; rn). Thus, f is analytic on D. This completes

the proof.

Remark that for real differentiable functions, the situation is quite different.

We showed that the existence of the derivative of a real continuously differentiable

function requires ACA0 in Theorem 3.8. We can find the derivative of a complex

differentiable function within a weaker system. We do not know whether RCA0

proves that complex differentiable functions are holomorphic, but we get a complex

differentiable version of Cauchy’s integral theorem.

Theorem 4.21. The following assertions are pairwise equivalent over RCA0.

1. If f is a complex differentiable function on an open set D ⊆ C, γ is a piecewise

C1-Jordan curve on D such that its interior exists and included in D, then∫
γ
f(z) dz exists and ∫

γ

f(z) dz = 0.

2. WKL0.
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5 Non-standard arguments for WKL0 and ACA0

In this chapter, we introduce non-standard arguments and prove the Riemann map-

ping theorem in ACA0 and the Jordan curve theorem in WKL0. Arguments of non-

standard analysis in second order arithmetic were first introduced by Tanaka as a

corollary to his self-embedding theorem for WKL0 [34]. He showed that some pop-

ular arguments of non-standard analysis can be carried out in WKL0 [33]. Using

that method, Tanaka and Yamazaki[32] constructed the Haar measure in WKL0.

However, arguments of non-standard analysis in WKL0 are insufficiently strong to

carry out some popular applications of non-standard analysis. We carry out some

popular methods of non-standard analysis for sequential compactness in ACA0. For

non-standard analysis in ACA0, we use the construction of models of ACA0 (cf. [9]).

Applying non-standard arguments, we study standard analysis in WKL0 and ACA0.

5.1 Model construction for non-standard analysis

In this section, we introduce some model construction to carry out non-standard

analysis in WKL0 and ACA0.

To carry out arguments of non-standard analysis in WKL0, we use an extension

of a non-standard model of WKL0 provided by Tanaka’s self-embedding theorem.

Theorem 5.1. Let V = (M,S) be a countable non-standard model of WKL0. Then,

there exists a countable model of WKL0
∗V = (∗M, ∗S) which satisfies the following:

1. ∗M is a proper end extension of M ;

2. S = {X ∩M | X ∈ ∗S};

3. ∃ ∗ : V −→ ∗V s.t. ∗ |M = idM and ∗ is a Σ0
0 elementary embedding.

Proof. Easy from the self embedding theorem for WKL0 [34, Main Theorem 2.7].

A careful examination of arguments of non-standard analysis in WKL0 shows

that the above three conditions are essential. These conditions correspond to the

techniques of ordinary non-standard analysis. By the first condition, we can find a

‘non-standard’ element, i.e., we can take an infinite element from the viewpoint of

V . Since ∗V is again a model of WKL0, we can use the ‘overspill principle’. The

second condition allows us to construct ‘standard parts’. By the third one, we can

use the ‘transfer principle’ for Σ0
0-sentences. Using these, we can apply methods of
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non-standard analysis for some theorems such as the maximal value principle for

continuous functions.

Although the conditions described above provide us with some useful popular

arguments of non-standard analysis, they are not sufficiently strong to prove some

other popular theorems. Actually, the transfer principle for Σ0
0-sentences are not

sufficiently strong to carry out methods of non-standard analysis for sequential com-

pactness or others. Therefore, we strengthen the third condition. The next theorem

asserts that we can strengthen the third condition for a model of ACA0. Using this

theorem, we can carry out some more popular arguments of non-standard analysis

in ACA0.

Theorem 5.2. Let V = (M, S) be a countable model of ACA0. Thereby, a countable

model of ACA0
∗V = (∗M, ∗S) exists which satisfies the following:

1. ∗M is a proper end extension of M ;

2. S = {X ∩M | X ∈ ∗S};

3. ∃ ∗ : V −→ ∗V s.t. ∗ |M = idM and ∗ is a Σ1
1 elementary embedding.

The third condition corresponds to the ‘transfer principle’ for Σ1
1 sentences; we call

the third condition Σ1
1 transfer principle.

This theorem is an easy consequence of the following Gaifman’s theorem [20,

Theorem 8.8]. Let R be a countable set of unary relation symbols, and let L̄ =

LPA ∪R. Define PA(L̄) as PA− plus induction axioms for L̄-formulas.

Lemma 5.3 (Gaifmann). Every model of PA(L̄) has a proper conservative extension:

if M is a model of PA(L̄), there exists a proper elementary extension ∗M which

satisfies the following:

for any L̄-formula ϕ(x, ~y) and ~d ∈ ∗M , there exists a L̄-formula ψ(x, ~z) and ~c ∈ M

such that

{a ∈ ∗M | ∗M |= ϕ(a, ~d)} ∩M = {a ∈ M | M |= ψ(a,~c)}.

Enayat mentioned in [9] that they can construct the extension of a model of

ACA0 which has the transfer principle for arithmetical sentences using the Gaifman

theorem. By a little consideration, we can strengthen the transfer principle. The

transfer principle for Σ1
1 sentences is due to Tanaka.
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Proof of Theorem 5.2. Let (M, S) be a countable model of ACA0. We identify each

element of S as a unary relation on M and regard M as an L̄ = LPA∪RS-structure.

Here, RS is a countable set of unary relation symbols that correspond to S. Since

(M,S) satisfies induction axioms for arithmetical formulas, M is a model of PA(L̄).

Hence, by the previous lemma, there exists an L̄-structure ∗M which is a proper

conservative extension of M .

Now we construct a second order part for ∗M . Define ∗S as

∗S = { {a ∈ ∗M | ∗M |= ϕ(a)} | ϕ(x) ∈ L̄∗M(x)}.

Here, L̄∗M(x) is the set of all L̄∪ ∗M -formulas with only one free variable x. Clearly,

(∗M, ∗S) is a model of ACA0.

For each X ∈ S, define ∗X ∈ ∗S as ∗X = {a ∈ ∗M | ∗M |= X(a)}. Because ∗M is

an end extension of M as an L̄-structure, we can define a map ∗ : (M,S) → (∗M, ∗S)

as ∗(a) := a for each a ∈ M and ∗(X) := ∗X for each X ∈ S. Also, because ∗M is

an elementary extension of M , a map ∗ is a Σ1
0 elementary embedding.

Next, we show that ∗V = (∗M, ∗S) satisfies the second condition. By the defi-

nition of ∗S, a subset Z of ∗M is definable in ∗M if and only if Z ∈ ∗S. For that

reason, if X ∈ ∗S, then X ∩ M is definable in M because ∗M is a conservative

extension of M . Because of that fact, X ∩M is arithmetically definable in (M,S).

Then, X ∩M ∈ S since (M, S) |= ACA0. Therefore, S = {X ∩M | X ∈ ∗S}.
To show the third condition, let ψ(X, ~Y , ~x) be an arithmetical L2-formula with

no free variables other than X, ~Y , ~x and let ~A ∈ S and ~a ∈ M . Clearly, V |=
∃Xψ(X, ~A,~a) implies ∗V |= ∃Xψ(X, ~∗A,~a). We show the converse. Let ∗V |=
∃Xψ(X, ~∗A,~a). Then, there exists X0 ∈ ∗S such that ∗V |= ψ(X0, ~∗A,~a). By the

definition of ∗S, there exist ~b ∈ ∗M and an arithmetical L̄-formula θ(z, ~y) such that
∗V |= ∀z(z ∈ X0 ↔ θ(z,~b)). Let ψ(θ(~y), ~Y , ~x) be a formula obtained by replacing

all subformulas of the form z ∈ X that appears in ψ(X, ~Y , ~x) with θ(z, ~y). Clearly,
∗V |= ψ(θ(~b), ~∗A,~a). Hence, ∗V |= ∃~yψ(θ(~y), ~∗A,~a). Note that ∃~yψ(θ(~y), ~A,~a) is an

L̄-sentence. Thus, V |= ∃~yψ(θ(~y), ~A,~a). Then, there exists ~c ∈ M such that V |=
ψ(θ(~c), ~A,~a). By arithmetical comprehension in V there exists X1 ∈ S such that

V |= ∀z(z ∈ X1 ↔ θ(z,~c)). Then, V |= ψ(X1, ~A,~a),i.e., V |= ∃Xψ(X, ~A,~a).

5.2 Non-standard arguments for WKL0 and ACA0

In this section, we give some examples of applying non-standard arguments to math-

ematics in second order arithmetic. We prove Heine-Borel covering theorem using

77



methods of non-standard analysis for WKL0 and we prove the Bolzano Weierstraß

theorem and the Ascoli lemma using methods of non-standard analysis for ACA0.

The original proofs of these three theorems using ordinary non-standard analysis

are in [24].

The following lemma is a basic tool for non-standard arguments.

Lemma 5.4 (overspill, underspill). Let V = (M, S) be a countable model of WKL0

and let ∗V = (∗M, ∗S) be an extension of V that satisfies the three conditions pre-

sented in Theorem 5.1, and let ~a ∈ ∗M and ~A ∈ ∗S. Let ∗V |= IΣ0
n. Then, for all

Σ0
n formula ϕ(x, ~y, ~X), the following hold:

1. overspill: if ∀m ∈ M∃n ∈ M n ≥ m ∧ ∗V |= ϕ(n,~a, ~A), then, ∃b ∈ ∗M \
M ∗V |= ϕ(b,~a, ~A).

2. underspill: if ∀b ∈ ∗M \ M∃c ∈ ∗M c ≤ b ∧ ∗V |= ϕ(c,~a, ~A), then, ∃n ∈
M ∗V |= ϕ(n,~a, ~A).

Proof. To prove 1, let ψ(x, ~y, ~X) ≡ ∃z ≤ xϕ(z, ~y, ~X). Assume 1 does not hold,

then, ∗V |= ψ(0,~a, ~A) ∧ ∀x(ψ(x,~a, ~A) → ψ(x + 1,~a, ~A) and ∗V 6|= ∀xψ(x,~a, ~A), but

it contradicts V |= IΣ0
n. We can prove 2 similarly.

Example 5.1 (Heine-Borel covering theorem). The following is provable in WKL0.

If {Uk}k∈N be a sequence of open subsets of R which covers [0, 1], then there exists

m such that {Uk}k≤m covers [0, 1].

Proof. Let V = (M, S) be a countable model of WKL0 and let ∗V = (∗M, ∗S) be

an extension of V that satisfies the three conditions presented in Theorem 5.1. Let⋃∞
k=0 Uk ⊇ [0, 1] in V . Without loss of generality, we can assume Un = B(f(n), g(n))

where f and g are sequences of rational numbers (i.e., f, g : N → Q) and ∀n ∈
N ∃m > n B(f(n), g(n)) ⊂ B(f(m), g(m)), thus, we need to show that there exists

K ∈ N such that
K⋃

n=0

B(f(n), g(n)) ⊇ [0, 1].

By overspill, there exists a ∈ ∗M \M such that ∗(f)|≤a and ∗(g)|≤a are sequences

of rational numbers in ∗V .

Claim 5.4.1. Let ϕ(r) be a Σ0
1 formula, and let ω ∈ ∗M \M . Then, there exists a

real number α ∈ [0, 1] such that V |= ϕ(α) if and only if there exists c ∈ ∗M such

that ∗V |= c ≤ ω ∧ ϕ(c/ω).
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This claim is easily proved by overspill (cf. [33]).

Take ω ∈ ∗M \M . By the previous claim, for any b ∈ ∗M \M such that b ≤ a,

∗V |= ∀x ≤ ω
x

ω
∈

b⋃
n=0

B(∗(f)(n), ∗(g)(n)).

Thus, by underspill, there exists K ∈ M such that

∗V |= ∀x ≤ ω
x

ω
∈

K⋃
n=0

B(∗(f)(n), ∗(g)(n)).

Then, by the claim,
K⋃

n=0

B(f(n), g(n)) ⊇ [0, 1].

Let V = (M, S) be a countable model of ACA0 and let ∗V = (∗M, ∗S) be an

extension of V which satisfies the three conditions in Theorem 5.2. Then, by Σ1
1

transfer principle, ∗(NV ) = N∗V , ∗(ZV ) = Z∗V and ∗(QV ) = Q∗V . Here, NV , ZV ,

QV are N, Z, Q defined in V and N∗V , Z∗V , Q∗V are those defined in ∗V . We usually

write N, Z, Q for NV , ZV , QV and ∗N, ∗Z, ∗Q for N∗V , Z∗V , Q∗V . If X ∈ S, we write
∗X for ∗(X)(∈ ∗S). Note that if q ∈ Q, then, ∗(q) ∈ ∗Q by Σ1

1 transfer principle.

Note also that if q ∈ Q, then, q = ∗(q) since Q ⊆ M .

Remark 5.5. Let X ∈ S, and let Xn = {a ∈ M | (n, a) ∈ X}. (X is a sequence of

sets {Xn}n∈N in V .) Then, for any n ∈ N and for any b ∈ ∗M , b ∈ ∗(Xn) ↔ (n, b) ∈
∗(X) ↔ b ∈ (∗(X))n, i.e., ∗(Xn) = (∗X)n in ∗V . Thus, we do not distinct ∗(Xn)

and (∗X)n and we write ∗Xn for (∗X)n. Then, ∗X is a sequence of sets {∗Xn}n∈∗N
in ∗V .

By Σ1
1 transfer principle, if α = {qn}n∈N is a real number in V , ∗α = {qn}n∈∗N is

a real number in ∗V .

A real number α = {qn}n∈N is said to be normally expressed if each qn is a form

of i/2n+1 for some i ∈ Z. Within RCA0, if α = {qn}n∈N is a real number, we can find

a normally expressed real number α′ = {q′n}n∈N such that α′ =R α. If β = {qn}n∈∗N
is a normally expressed real number in ∗V and |β| ≤ K for some K ∈ N, then,

β ∩M(∈ S) is a real number in V . We write β ∩M = β|M and β|M is said to be

the standard part of β.
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Example 5.2 (Bolzano-Weierstraß theorem). The following is provable in ACA0.

Let {αn}n∈N be a sequence of real numbers such that 0 ≤ αn ≤ 1 for all n ∈ N.

Then, there exists a convergent subsequence {αnk
}k∈N, n0 < n1 < · · · < nk < · · · .

Proof. Let V = (M,S) be a countable model of ACA0 and let ∗V = (∗M, ∗S) be

an extension of V that satisfies the three conditions presented in Theorem 5.2. Let

A = {αn}n∈N ∈ S be a sequence of real numbers such that 0 ≤ αn ≤ 1 for all n ∈ N.

Without loss of generality, we can assume that each αn is normally expressed. Then,

by Σ1
1 transfer principle, ∗A ∈ ∗S is a sequence of real numbers ∗A = {∗αn}n∈∗N,

where each ∗αn is normally expressed and 0 ≤ ∗αn ≤ 1 for all n ∈ ∗N in ∗V .

Take ω ∈ ∗N\N. Because ∗αω is expressed normally, γ = ∗αω|M is a real number

in V . Then ∗γ∩M = ∗αω∩M . Consequently, for all n,m ∈ N, ∗V |= ∃y > m |∗αy−
∗γ| < 2−n (take y = ω). Then, by Σ1

1 transfer principle, V |= ∃y > m |αy−γ| < 2−n

for all n, m ∈ N. Therefore, we can easily find a subsequence of A which converges

to γ in V . According to the completeness theorem, ACA0 proves the existence of a

convergent subsequence of {αn}n∈N.

Next, we show the Ascoli lemma in ACA0 using non-standard analysis. For the

convenience, we redefine continuous functions. We use this definition only in this

section.

Definition 5.3 (normally expressed continuous functions). The following definition

is made in ACA0. A code for a continuous (partial) function f is a set of quadruples

F ⊆ Q×Q+ ×Q×Q+ that satisfies the following:

1. if (a, r, b, s) ∈ F and (a, r, b′, s′) ∈ F , then |b− b′| ≤ s + s′;

2. if (a, r, b, s) ∈ F and |a′ − a|+ r′ < r, then (a′, r′, b, s) ∈ F ; and

3. if (a, r, b, s) ∈ F and |b− b′|+ s < s′, then (a, r, b′, s′) ∈ F .

As in the definition in Chapter 3, a point x ∈ R is said to belong to the domain of

f , abbreviated x ∈ dom(f) if and only if for any m ∈ N there exists (a, r, b, s) ∈ F

such that |x − a| < r and s ≤ 2−m. If x ∈ dom(f), we define the value of f(x) to

be the unique y ∈ R such that |y − b| < s for all (a, r, b, s) ∈ F with |x− a| < r.

A code F for a continuous function f from [c, d] to [c′, d′] is said to be normally

expressed if F satisfies the following:

F ⊆ Qc,d ×Q+ ×Qc′,d′ ×Q+,(45)

ϕ(F, a, r, b, s) → (a, r, b, s) ∈ F(46)
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where, Qα,β = {q ∈ Q | α ≤ q ≤ β} and ϕ(F, a, r, b, s) ≡ ∀q ∈ Qc,d |q − a| < r →
∃(a′, r′, b′, s′) ∈ F (|q − a′| < r′ ∧ |b− b′|+ s′ < s).

This definition is equivalent to the definition in Chapter 3 over ACA0.

Remark 5.6. The formula ϕ(F, a, r, b, s) expresses f(B(a; r)) ⊆ B(b, s). Therefore,

a normally expressed code F for f contains all (a, r, b, s) with f(B(a; r)) ⊆ B(b, s),

i.e., F is the maximal code. Moreover, given a code F0 for a continuous function

f from [c, d] to [c′, d′], we can construct a normally expressed code F for f as

(a, r, b, s) ∈ F ↔ ϕ(F0, a, r, b, s).

Remark 5.7. Let V = (M, S) be a countable model of ACA0 and let ∗V = (∗M, ∗S)

be an extension of V that satisfies the three conditions in Theorem 5.2. Let F be

a normally expressed code for a continuous function from [c, d] to [c′, d′]. Then, by

Σ1
1 transfer principle, ∗F satisfies (45), (46) and the three conditions for codes for

continuous functions in ∗V .

Example 5.4 (the Ascoli lemma). The following is provable in ACA0. Let {fn}n∈N
be a sequence of continuous functions from [0, 1] to [0, 1]. If {fn}n∈N is equicontin-

uous, then, there exists a uniformly convergent subsequence {fnk
}k∈N, n0 < n1 <

· · · < nk < · · · .
Proof. Let V = (M,S) be a countable model of ACA0 and let ∗V = (∗M, ∗S) be

an extension of V that satisfies the three conditions in Theorem 5.2. Let F =

{Fn}n∈N ∈ S be a sequence of codes for an equicontinuous sequence of continuous

functions {fn}n∈N ∈ S from [0, 1] to [0, 1]. Without loss of generality, we might

assume that each Fn is expressed normally. Then, by Σ1
1 transfer principle, ∗F ∈ ∗S

is a sequence of sets ∗F = {∗Fn}n∈∗N. Each ∗Fn satisfies (45), (46), and the three

conditions for a code for a continuous function in Definition 5.3.

We first show the following:

∀m ∈ N ∀α ∈ [0, 1](α ∈ S) ∃l ∈ N(47)

∗V |= ∀n ∈ ∗N ∃a, b ∈ ∗Q0,1 |∗α− a| < 2−l−2 ∧ (a, 2−l, b, 2−m) ∈ ∗Fn.

By equicontinuity, for any m ∈ N and α ∈ [0, 1], there exists l ∈ N such that

∀n ∈ N fn(B(α; 2−l)) ⊆ B(fn(α); 2−m). Thus, for each n ∈ N, we can find a, b ∈ Q0,1

such that |α− a| < 2−l−3 and |fn(α)− b| < 2−m. Because Fn is normally expressed,

(a, 2−l−1, b, 2−m+1) ∈ Fn. Eventually,

∀m ∈ N ∀α ∈ [0, 1](α ∈ S) ∃l ∈ N
V |= ∀n ∈ N ∃a, b ∈ Q0,1 |α− a| < 2−l−2 ∧ (a, 2−l, b, 2−m) ∈ Fn.
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According to Σ1
1 transfer principle, we obtain (47).

Take ω ∈ ∗N \N and define G ∈ S as G = ∗Fω ∩M . Then, G satisfies the three

conditions for a code for a continuous function. Let g be a (partial) continuous

function coded by G. We show that dom(g) = [0, 1]. Let α ∈ [0, 1], and let

m ∈ N. By (47), there exists l ∈ N and a, b ∈ ∗Q0,1 such that |∗α − a| < 2−l−2

and (a, 2−l, b, 2−m−1) ∈ ∗Fω. In ∗V , we can find i, j ∈ ∗N with |i/2l+2 − a| <

2−l−2 and |j/2m+1 − a| < 2−m−1. Then (i/2l+2, 2−l−1, j/2m+1, 2−m) ∈ ∗Fω. Because

i ≤ 2l+2 and j ≤ 2m+1, both i and j are standard, i.e., i, j ∈ N. Consequently,

(i/2l+2, 2−l−1, j/2m+1, 2−m) ∈ M∩∗Fω = G. On the other hand, ∗V |= |∗α−i/2l+2| <
2−l−1 because |∗α− a| < 2−l−2 and |i/2l+2 − a| < 2−l−2 in ∗V . Then, by Σ1

1 transfer

principle, V |= |α − i/2l+2| < 2−l−1. Eventually, ∀α ∈ [0, 1] ∀m ∈ N ∃(a, r, b, s) ∈
G |α− a| < r ∧ s ≤ 2−m, i.e., dom(g) = [0, 1] in V .

Next, we construct a subsequence of F that converges to g uniformly. Let β ∈ ∗S

be a normally expressed real number in ∗V with ∗V |= β ∈ [0, 1]. Then, γ := β|M is

a real number in V and γ ∈ dom(g). Since ∗γ∩M = β∩M = γ, ∗V |= |∗γ−β| < 2−k

for all k ∈ N. Thus, V |= |γ − a| < r implies ∗V |= |β − a| < r. Therefore, for

any β ∈ [0, 1] in ∗V and for any m ∈ N, there exists (a, r, b, s) ∈ G such that
∗V |= |β − a| < r ∧ s ≤ 2−m. Because G ⊆ ∗G and G ⊆ ∗Fω,

∀m ∈ N ∗V |= ∀q ∈ ∗Q0,1 ∃(a, r, b, s) ∈ ∗Fω ∩ ∗G |q − a| < r ∧ s ≤ 2−m.

Then,

∀m ∈ N ∀l ∈ N
∗V |= ∃y > l ∀q ∈ ∗Q0,1 ∃(a, r, b, s) ∈ ∗Fy ∩ ∗G |q − a| < r ∧ s ≤ 2−m.

According to Σ1
1 transfer principle,

∀m ∈ N ∀l ∈ N
V |= ∃y > l ∀q ∈ Q0,1 ∃(a, r, b, s) ∈ Fy ∩G |q − a| < r ∧ s ≤ 2−m.

This implies that V |= ∃y > l ‖fy − g‖ < 2−m for all m, l ∈ N. Thereby, we can

easily find a subsequence of F that converges to g uniformly in V .

Using the completeness theorem, ACA0 proves the existence of a uniformly con-

vergent subsequence of {fn}n∈N.

Remark 5.8. The Bolzano-Weierstraß theorem and the Ascoli lemma are equivalent

to ACA0 over RCA0. See [29].
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5.3 Application 1: the Riemann mapping theorem

In this section, we prove the Riemann mapping theorem in ACA0 by using arguments

of non-standard analysis. It becomes easy to treat a space of conformal maps if we

use methods of non-standard analysis. Then, we show that the Riemann mapping

theorem is equivalent to ACA0 over WKL0.

We first develop some parts of complex analysis within RCA0 and WKL0. We

define the following notation:

Q̄ := {q1 + iq2 | q1, q2 ∈ Q}
B := {(a, r) | a ∈ Q̄, r ∈ Q, r > 0}

In this section, we denote open sets using B as follows: A code for an open set U in

C is a sequence of elements of B U = {(an, rn)}n∈N. A point z ∈ C is said to belong

to U (abbreviated z ∈ U) if

∃n |z − an| < rn.

Note that the assertion that a closed ball B(a; r) is included in an open set U (i.e.,

B(a; r) ⊆ U) is expressible by a Σ0
1 formula in WKL0. We also redefine holomorphic

functions by a suitable code to apply non-standard arguments.

Definition 5.5 (holomorphic functions). The following definition is made in RCA0.

Let D be an open subset of C. A holomorphic function on D is defined to be a pair

of sequences f = ({(an, rn)}n∈N, {αnk}n∈N,k∈N) such that αnk ∈ C and (an, rn) ∈ B,

which satisfies the following conditions:

1.
⋃

n∈NB(an; rn) = D;

2. for all n ∈ N,
∑

k∈N |αnk|rn
k converges;

3. for all n,m ∈ N and for all z ∈ B(an; rn) ∩B(am; rm),

∑

k∈N
αnk(z − an)k =

∑

k∈N
αmk(z − am)k.

We define f(z), f ′(z), . . . , f (l)(z), . . . as

f (l)(z) =
∞∑

k=l

k!

(k − l)!
· αnk(z − an)k−l if z ∈ B(an; rn).
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By Theorem 4.15, the above definition is equivalent to the definition in Chapter

4 in RCA0. Let {Dn}n∈N be a sequence of open subsets of C; also let {fn}n∈N be a

sequence of holomorphic functions where fn is from Dn to C. If {fn}n∈N satisfies

∀z ∈ C ∀p, q ∈ N (z ∈ Dp ∩Dq → fp(z) = fq(z)),

then, we can construct a holomorphic function f from D =
⋃∞

n=0 Dn to C such that

∀n ∈ N ∀z ∈ D (z ∈ Dn → fn(z) = f(z)).

We write this f as f =
⋃{fn}.

We first define some concepts on the complex plane in RCA0.

Definition 5.6. The following definitions are made in RCA0. Let D be an open

subset of C, and let α, β ∈ D.

1. A path γ from α to β in D is a broken line in D which connects α and β,

i.e., γ is a finite sequence 〈γ(0), . . . , γ(m)〉 of points in D such that γ(0) = α,

γ(m) = β and [γ(k), γ(k + 1)] ⊆ D.

2. A circuit in D is a broken line in D with its two end points are common, i.e.,

a broken line γ = 〈γ(0), . . . , γ(m)〉 in D with γ(0) = γ(m).

Lemma 5.9. The following is provable in RCA0. Let γ be a circuit in C. Thereby,

there exist two open sets called exterior and interior of γ and a closed set called the

image of γ.

Proof. Let ϕ(z) (or ψ(z)) be a Σ0
1 formula that expresses the following:

• z /∈ [γ(k), γ(k + 1)] for all 0 ≤ k < m;

• there exist a 0 < θ < π/2, θ ∈ Q such that the half-line l(z, θ) = {w ∈ C |
arg(w − z) = θ} does not contain each γ(k) and the cardinality of {0 ≤ k <

m | l(z, θ) ∩ [γ(k), γ(k + 1)] 6= ∅} is even (or odd).

Then, by Lemma 2.6, we can find open sets U1, U2 such that z ∈ U1 ↔ ϕ(z) and

z ∈ U2 ↔ ψ(z). U1 is said to be the exterior of γ and U2 is said to be the interior

of γ. The image of γ is a closed set C \ (U1 ∪ U2).

Definition 5.7. The following definitions are made in RCA0. Let D be an open

subset of C.
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1. D is said to be path connected if there exists a path from α to β in D for all

α, β ∈ D.

2. D is said to be simply connected if D is path connected and for all circuit γ in

D, the interior of γ is included in D.

Next, we prepare some lemmas. As in the usual complex analysis, Cauchy’s

integral theorem (Theorem 4.10) and Taylor’s theorem (Theorem 4.15) play central

roles. See [1] for usual proofs of the following lemmas.

Lemma 5.10 (local inverse function). The following is provable in RCA0. Let D

be an open subset of C, and let f be a holomorphic function from D to C. Let

z0 ∈ D such that f ′(z0) 6= 0 and r ∈ R, r > 0. If |f ′(z0) − f ′(z)| ≤ |f ′(z0)|/8 for

all z ∈ B(z0; r), then B(f(z0); |f ′(z0)|r/2) ⊆ f(B(z0; r)). Moreover, a local inverse

holomorphic function f−1 exists from B(f(z0); |f ′(z0)|r/2) to B(z0; r).

Proof. Let w ∈ B(f(z0); |f ′(z0)|r/2). Define a holomorphic function h as

h(ζ) :=
w − f(z0)

f ′(z0)
+

f(z0)− f(ζ) + f ′(z0)(ζ − z0)

f ′(z0)
+ z0

=
w − f(ζ)

f ′(z0)
+ ζ.

Then, |h′(ζ)| ≤ 1/8 for all ζ ∈ B(z0; r) and |h(z0) − z0| ≤ r/2. Hence, by Lemma

4.2, h(B(z0; r)) ⊆ B(z0; r) and |h(ζ1) − h(ζ2)| ≤ |ζ1 − ζ2|/2 for all ζ1, ζ2 ∈ B(z0; r).

Therefore, by the contraction mapping theorem, there exists z ∈ B(z0; r) such that

h(z) = z. Consequently, f(z) = w. (Note that the contraction mapping theorem is

provable in RCA0.)

For construction of the local inverse function, we can imitate the proof of the

inverse function theorem for C1-functions. See Theorem 3.34.

Lemma 5.11 (maximal value principle). The following is provable in WKL0. Let f

be a holomorphic function on an open subset D ⊆ C, and let B(a; r) ⊆ D. Then,

sup{|f(z)| | z ∈ B(a; r)} = sup{|f(z)| | |z − a| = r}.

Proof. We can imitate the usual proof using Theorem 4.10.

Lemma 5.12. The following is provable in WKL0. Let D be an open subset of C,

and let f be a holomorphic function on D. Let B(a; r) ⊆ D, and let M ∈ R such

that ∀z ∈ B(a; r) |f(z)| < M . Then,

∀z ∈ B(a; r) |f (n)(z)| < M

rn
.
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Particularly, if f and g are holomorphic functions on B(a; r) with ∀z ∈ B(a, r) |f(z)−
g(z)| < ε, then ∀z ∈ B(a, r/2) |f ′(z)− g′(z)| < 2ε/r.

Proof. We can imitate the usual proof using Lemma 5.11.

Lemma 5.13 (Schwarz’s lemma). The following is provable in WKL0. Let f be a

holomorphic function from B(0; 1) to B(0; 1) such that f(0) = 0. Then, f satisfies

either of the following:

1. |f(z)| < |z| and |f ′(0)| < 1.

2. There exists λ ∈ C such that |λ| = 1 and f(z) = λz.

Proof. We can imitate the usual proof using Theorem 4.15 and Lemma 5.11.

Let D be an open subset of C, and let f be a holomorphic function from D to

C. Let γ = 〈γ(0), . . . , γ(m)〉 be a path in D. Then, we define
∫

γ
f(z) dz, the line

integral of f along γ, as

∫

γ

f(z) dz =
m−1∑

k=0

∫

[γ(k),γ(k+1)]

f(z) dz.

In WKL0, if f is a holomorphic function on B(a; r), then, by Cauchy’s integral

theorem, we can easily construct a holomorphic function F on B(a; r) such that

F (z) =

∫

[a,z]

f(ζ)dζ

since f has a modulus of integrability.

Lemma 5.14. The following is provable in WKL0. Let D be a simply connected

open subset of C, and let f be an holomorphic function on C. If ∀z ∈ D f(z) 6= 0,

then a holomorphic function g exists such that f(z) = g(z)2.

Proof. Write D =
⋃

k∈NB(ak; rk) and let γk be a path from a0 to ak. Define holo-

morphic functions Fk : B(ak; rk) → C as

Fk(z) :=

∫

γk_〈z〉

f ′(ζ)

f(ζ)
dζ =

∫

γk

f ′(ζ)

f(ζ)
dζ +

∫

[ak,z]

f ′(ζ)

f(ζ)
dζ.

By Theorem 4.10, if B(ak; rk) ∩ B(al; rl) 6= ∅, then Fk(z) = Fl(z) on B(ak; rk) ∩
B(al; rl). Hence we can construct the holomorphic function F =

⋃
k∈N Fk on D.

Then,
d

dz
(f(z) · exp(−F (z))) = 0.
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Thus, we write f as

f(z) = f(a0) exp(F (z)).

Take α such that α2 = f(a0), and define a holomorphic function g as

g(z) := α exp

(
F (z)

2

)
.

Then g(z)2 = f(z).

Lemma 5.15. The following is provable in WKL0. Let f be a non-constant holo-

morphic function from B(a; r) to C such that f ′(a) = 0. Then, z1, z2 ∈ B(a; r) exist

such that z1 6= z2, f ′(z1) 6= 0, f ′(z2) 6= 0 and f(z1) = f(z2).

Proof. We can imitate the usual proof using Lemmas 5.10 and 5.11.

Note that we can easily show that sequential versions of Lemmas 5.9, 5.10 and

5.14 also hold.

Definition 5.8 (conformal map). The following definition is made in RCA0. Let

D1 and D2 be open subsets of C. A conformal map from D1 to D2 is a pair of

holomorphic functions (h, h−1) such that h : D1 → D2, h−1 : D2 → D1, and

h−1 ◦ h = idD1 ∧h ◦ h−1 = idD2 .

Now, we are prepared to prove the Riemann mapping theorem.

Theorem 5.16 (the Riemann mapping theorem). The following is provable in

ACA0. Let D0 be a simply connected open subset of C such that D0 6= C, and

let z0 ∈ D0. Then, there exists a conformal map (f, f−1) from D0 to B(0; 1) such

that f(z0) = 0. Moreover, if (f, f−1) and (g, g−1) are conformal maps from D0 to

B(0; 1) such that f(z0) = g(z0) = 0, then there exists λ ∈ C such that |λ| = 1 and

f = λg.

Proof. To prove this theorem, we show the following four sublemmas.

Sublemma 1. If D0 is a simply connected open subset of C such that D0 6= C and

z0 ∈ D0, then there exists an open subset 0 ∈ D ⊆ B(0; 1) and a conformal map

(h0, h
−1
0 ) from D0 to D such that h0(z0) = 0.

Sublemma 2. If D is a simply connected open set such that 0 ∈ D ⊆ B(0; 1),

then there exists a conformal map (h, h−1) from D to an open set 0 ∈ E ⊆ B(0; 1)

such that h(0) = 0 and its derivative at the origin is maximal, i.e., if (h̃, h̃−1) is a

conformal map from D to an open set 0 ∈ Ẽ ⊆ B(0; 1) such that h̃(0) = 0, then

|h̃′(0)| ≤ |h′(0)|.
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Sublemma 3. If 0 ∈ D ⊆ B(0; 1) is a simply connected open set and (h, h−1) is a

conformal map from D to an open set 0 ∈ E ⊆ B(0; 1) such that h(0) = 0 and its

derivative at the origin is maximal, then E = B(0; 1).

Sublemma 4. If (f, f−1) and (g, g−1) are conformal maps from an open set z0 ∈
D0 6= C to B(0; 1) such that f(z0) = g(z0) = 0, then there are λ ∈ C such that

|λ| = 1 and f = λg.

Imitating the usual proof, we can readily prove Sublemmas 1 and 3 in WKL0

using Lemma 5.14. Sublemma 4 is a straightforward direction from Lemma 5.13.

We show Sublemma 2 using non-standard arguments.

Let U be a open subset of B(0; 1), and let Seql be the set of all complex rational

sequences with length l ∈ N. We define the following notation:

Q(m) := {q02
−m ∈ Q | q0 ∈ Z};

Q̄(m) := {q1 + iq2 ∈ C | q1, q2 ∈ Q(m)};
Q(U ; m) := {q ∈ Q̄(m) | B(q; 2−m+2) ⊆ U};

N(U ; m) :=
m⋃

k=0

{(q, 2−k+2) | q ∈ Q(U ; k)};

Seq(l; m) := {σ ∈ Seql | ∀k < l σ(k) ∈ Q̄(m + k + 3)}.

Note that N(U ; m) is a finite set and it can be coded by a natural number. In

addition, note that
⋃{B(a, r/2) | ∃m ∈ N (a, r) ∈ N(U ; m)} = U .

We first construct an approximation of a conformal map from D ⊆ B(0; 1) to

E ⊆ B(0; 1) coded by a finite set. Let D be an open subset of B(0; 1). We define

an m-approximation polynomial on D as follows. An m-approximation polynomial

P on D is a pair of finite sets P = (P, Q). Here, P is a function from N(D; m) to

Seq(lP ; m) (lP ∈ N) and Q is a function from EP ⊆ N(B(0; 1); m) to Seq(lP ; m).

If (a, r) ∈ N(D; m) and P (a, r) = σ, we define a polynomial Pa,r as Pa,r(z) =∑lP
j=0 σ(j)zj. We define Qb,s ((b, s) ∈ EP) similarly. P , Q and EP satisfy the

following conditions.

1. ∀z ∈ B(a1; r1)∩B(a2; r2) |Pa1,r1(z)−Pa2,r2(z)| < 2−m for all (a1, r1), (a2, r2) ∈
N(D; m).

2. ∀w ∈ B(b1; s1)∩B(b2; s2) |Qb1,s1(w)−Qb2,s2(w)| < 2−m for all (b1, s1), (b2, s2) ∈
EP .
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3. For all (b, s) ∈ N(B(0; 1); m), then (b, s) ∈ EP if (a0, r0) ∈ N(D; m) and

(a, δ) ∈ B exist which satisfy the following:

(a) B(a; δ) ⊆ B(a0, r0/2);

(b) ∀z ∈ B(a; δ) ∩ Q̄ (|P ′
a0,r0

(a)− P ′
a0,r0

(z)| ≤ |P ′
a0,r0

(a)|/8− 3 · 2−m/r0); and

(c) B(b; s) ⊆ B(Pa0,r0(a); |P ′
a0,r0

(a)|δ/2− 2−m).

4. For all (a, r) ∈ N(B(0; 1); m), then (a, r) ∈ N(D; m) if there exist (b0, s0) ∈ EP
and (b, δ) ∈ B which satisfy the following:

(a) B(b; δ) ⊆ B(b0, s0/2);

(b) ∀w ∈ B(b; δ)∩ Q̄ (|Q′
b0,s0

(b)−Q′
b0,s0

(w)| ≤ |P ′
b0,s0

(b)|/8− 3 · 2−m/s0); and

(c) B(a; r) ⊆ B(Qb0,s0(b); |Q′
b0,s0

(b)|δ/2− 2−m).

5. For all (a, r) ∈ N(D; m), there exist (b, s) ∈ EP and w ∈ B(b, s)∩ Q̄ such that

|Pa,r(a)− w| < 2−m+1 and |a−Qb,s(w)| < 2−m+1.

6. For all (b, s) ∈ EP , there exist (a, r) ∈ N(D; m) and z ∈ B(a, r)∩ Q̄ such that

|Qb,s(b)− z| < 2−m+1 and |b− Pa,r(z)| < 2−m+1.

Intuitively, P is an approximation of a holomorphic function from D to C, and

Q is an approximation of a holomorphic function from EP =
⋃

(b,s)∈EP B(b; s) to

C. Conditions 1 and 2 mean that P and Q are well-defined. Condition 3 means

that if P ′(z) 6= 0, then P (z) ∈ dom(Q). More precisely, we can find a (sufficiently

large) neighborhood U ⊆ EP such that P (z) ∈ U and Q can be the local inverse

holomorphic function of P on U based on Lemma 5.10. Similarly, condition 4 means

that Q′(w) 6= 0 implies Q(w) ∈ dom(P ). Conditions 5 and 6 mean that Q is the

inverse function of P if P (D) ⊆ EP and Q(EP) ⊆ D.

We write P(z) ∼ α if |Pa,r(z) − α| < 2−m for all (a, r) ∈ N(D; m) with z ∈
B(a; r). We write |P ′(z)| & K (K ∈ R) if |P ′

a,r(z)| > K − 2−m/r for all (a, r) ∈
N(D; m) with z ∈ B(a; r/2).

Let (h, h−1) be a conformal map from D to an open set E ⊆ B(0; 1). An m-

approximation polynomial P = (P, Q) is said to be an m-approximation of (h, h−1)

if |h(z)− Pa,r(z)| < 2−m−1 for all z ∈ D and for all (a, r) ∈ N(D; m).

Claim 5.16.1. If (h, h−1) is a conformal map from D to an open set E ⊆ B(0; 1),

then an m-approximation of (h, h−1) exists for all m ∈ N. Moreover, if P is an
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m-approximation of (h, h−1), then h(0) = 0 implies P(0) ∼ 0; also, |h′(0)| ≥ K

(K ∈ Q) implies |P ′(0)| & K.

To show this claim, we construct an m-approximation polynomial using (h, h−1).

We define EP as EP = N(E; m). Then, by Theorem 4.15, we define lP as the least

l which satisfies the following:

∀(a, r) ∈ N(D; m) ∀z ∈ B(a, r)

∣∣∣∣∣
l∑

j=0

h(j)(a)

j!
(z − a)j − h(z)

∣∣∣∣∣ < 2−m−2; and

∀(b, s) ∈ N(E; m) ∀w ∈ B(b, s)

∣∣∣∣∣
l∑

j=0

h−1(j)(a)

j!
(w − b)j − h−1(w)

∣∣∣∣∣ < 2−m−2.

For each (a, r) ∈ N(d; m) and (b, s) ∈ N(E; m), take σa,r and τb,s such that |h(k)(a)/k!−
σa,r(k)| < 2−m−k−3, |h−1(k)(b)/k! − τb,s(k)| < 2−m−k−3 and σa,r(k), τb,s(k) ∈ Q̄(m +

k + 3). Define P (a, r) := σa,r, Q(b, s) := τb,s and P = (P, Q). Then, clearly,

|h(z) − Pa,r(z)| < 2−m−1 for all (a, r) ∈ N(D; m), z ∈ B(a, r), and |h−1(w) −
Qb,s(w)| < 2−m−1 for all (b, s) ∈ EP , w ∈ B(b, s). Consequently, we can readily verify

that conditions 1, 2, 5 and 6 hold. We show that condition 3 also holds. By Lemma

5.12, |h(z)−Pa0,r0(z)| < 2−m−1 for all z ∈ B(a0, r0) and B(a; δ) ⊆ B(a0, r0/2) implies

|h′(z)−P ′
a0,r0

(z)| < 2−m/r0 for all z ∈ B(a0, r0). Therefore, (b) implies ∀z ∈ B(a; δ)

|h′(a)− h′(z)| ≤ |h′(a)|/8, and (c) implies B(b; s) ⊆ B(h(a); |h′(a)|δ/2). Therefore,

by Lemma 5.10, B(b; s) ⊆ h(B(a; δ)) ⊆ E, which means that (b, s) ∈ N(E; m) = EP .

We can show that condition 4 holds similarly.

It is readily apparent that h(0) = 0 implies P(0) ∼ 0. By Lemma 5.12, |h′(0)| ≥
K (K ∈ Q) implies |P ′(0)| & K. This completes the proof of the claim.

From now on, we use arguments of non-standard analysis. Let V = (M, S) be a

countable model of ACA0 and let ∗V = (∗M, ∗S) be an extension of V which satisfies

the three conditions in Theorem 5.2. Let a, b ∈ ∗C; then we use the notation a ≈ b

if ∀p ∈ N ∗V |= |a− b| < 2−p.

Let D be an open subset of B(0; 1) in V . Take ω ∈ ∗N \ N. Let P =

(P,Q) be an ω-approximation polynomial on ∗D in ∗V . (Actually, we should write

‘∗approximation polynomial’ for approximation polynomial in ∗V , but we usually

omit ∗.) We define the standard part of P as follows. Let 〈(an, rn)〉n≤|N(∗D;ω)| be

an enumeration (in ∗V ) of all elements of N(∗D; ω) such that rp > rq → p < q.

Because |N(∗D; m)| < 4m+3 and N(D; m) = N(∗D; m) for all m ∈ N, if n ∈ N, then

(an, rn) ∈ N(D; m) for some m ∈ N. Let P (an, rn) = σn. Take qn,k,p ∈ Q̄(p+1) such
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that |qn,k,p − σn(k)| (in ∗V ). By Lemma 5.12, qn,k,p < 1 + 1/rn
k. Consequently, if

n, k, p ∈ N, then qn,k,p ∈ M . Hence, if n, k ∈ N, {qn,k,p}p∈N ∈ S is a complex number

in V . (Actually, {qn,k,p}p∈N is a standard part of σn(k), i.e., σn(k)|M = {qn,k,p}p∈N.)

Let r̂n := rn/2 and αn,k := {qn,k,p}p∈N. We define P |M ∈ S, the standard part of P ,

as P |M = ({(an, r̂n)}n∈N, {αnk}n∈N,k∈N). (If necessary, we can redefine a code for an

approximation polynomial so that a code of the standard part of P is exactly the

set P ∩M .) Similarly, we define Q|M = ({(bn, ŝn)}n∈N, {βnk}n∈N,k∈N), the standard

part of Q, using an enumeration 〈(bn, sn)〉n≤|EP | of all elements of EP . We define the

standard part of EP =
⋃

(b,s)∈EP B(b; s) as EP |M =
⋃

n∈NB(bn, ŝn) ∈ S. Next, we

show that P |M and Q|M are holomorphic functions.

Claim 5.16.2. Let ω ∈ ∗N\N, and let P = (P,Q) be an ω-approximation polynomial

on ∗D with |P ′(0)| & 1. Define the standard parts of P , Q and EP as above. Let

f := P |M , g := Q|M and Ef := EP |M . Then, f and g are holomorphic functions

and (f, g) is a conformal map from D to Ef in V . Moreover, f(0) = 0 if P(0) ∼ 0;

also, |f ′(0)| ≥ K|M if |P ′(0)| & K (K ∈ ∗R and K ≤ K0 for some K0 ∈ N).

We first show that f is a holomorphic function on D. Clearly,
⋃

n∈NB(an; r̂n) =

D. Let n ∈ N. By condition 5, |Pan,rn(z)| ≤ 1+2−ω+1 in ∗V . Hence, by Lemma 5.12,

|P (k)
an,rn(an)| ≤ (1 + 2−ω+1)/rn

k for all k ∈ N. Then, |∗αn,k|r̂n
k ≈ |P (k)

an,rn(an)|r̂n
k ≤

(1+2−ω+1)2−k < 2−k+1. Consequently, |αn,k|r̂n
k < 2−k+1 for all k ∈ N and the series∑

k∈N |αn,k|r̂n
k converges. If z ∈ B(ap; r̂p) ∩B(aq; r̂q) (p, q ∈ N) in V , then, in ∗V ,

∑

k∈∗N

∗αp,k(
∗z − ap)

k ≈
lP∑

k=0

∗αp,k(
∗z − ap)

k

≈ Pap,rp(
∗z)

≈ Paq ,rq(
∗z)

≈
lP∑

k=0

∗αq,k(
∗z − aq)

k

≈
∑

k∈∗N

∗αq,k(
∗z − aq)

k.

Hence, in V ,
∑

k∈N
αp,k(z − ap)

k =
∑

k∈N
αq,k(z − aq)

k.

Thus, f is a holomorphic function on D. We can similarly show that g is a holo-

morphic function on Ef . It is also apparent that f(0) = 0 if P(0) ∼ 0. Be-

cause |∗f(z) − Pan,rn(z)| ≈ 0 for all z ∈ B(an; rn) in ∗V , we can show readily that
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|f ′(0)| ≥ K|M if |P ′(0)| & K (K ∈ ∗R and K ≤ K0 for some K0 ∈ N) using Lemma

5.12.

Next, we show that f(z) ∈ Ef and g(f(z)) = z for all z ∈ D with f ′(z) 6= 0.

Note that |P ′(0)| & 1 implies that f is not a constant. Let z1 ∈ D with f ′(z1) 6= 0.

Then, in V , there exists (a, δ) ∈ B with z1 ∈ B(a; δ/2) which satisfies the following:

• |f ′(a)| > 0 and |f ′(z)− f ′(a)| ≤ |f ′(a)|/16 for all z ∈ B(a; δ);

• there exists n ∈ N such that B(a; δ) ⊆ B(an; r̂n).

In ∗V , by Lemma 5.12, |∗f ′(z)−P ′
an,rn

(z)| ≈ 0 for all z ∈ B(an; r̂n) because |∗f(z)−
Pan,rn(z)| ≈ 0 for all z ∈ B(an; rn). Then, in ∗V , for all z ∈ B(a; δ),

|P ′
an,rn

(z)− P ′
an,rn

(a)| ≤ |∗f ′(a)|
16

+ |∗f(z)− Pan,rn(z)|

+ |∗f(a)− Pan,rn(a)|

≤ |P ′
an,rn

(a)|
8

− 3 · 2−ω

rn

−
( |∗f ′(a)|

16
− 3 · 2−ω

rn

− 9

8
|∗f(a)− Pan,rn(a)| − |∗f(z)− Pan,rn(z)|

)

≤ |P ′
an,rn

(a)|
8

− 3 · 2−ω

rn

.

On the other hand, ∗f(∗z1) ∈ B(∗f(a); |∗f ′(a)|δ/8) and B(∗f(a); |∗f ′(a)|δ/4) ⊆
B(Pan,rn(a); |P ′

an,rn
(a)|δ/2 − 2−ω) in ∗V . Then, because δ/8 6≈ 0, there exists

p ∈ N and there exists (b, s) ∈ N(B(0; 1); p) such that ∗f(∗z1) ∈ B(b, s/4) and

B(b, s) ⊆ B(Pan,rn(a); |P ′
an,rn

(a)|δ/2− 2−ω) in ∗V . By condition 3, (b, s) ∈ EP . For

that reason, there exists p ∈ N such that (b, s) = (bp, sp) and f(z1) ∈ B(bp; ŝp)

in V , i.e., f(z1) ∈ Ef . Moreover, by condition 5, w̌1 ≈ ∗f(∗z1) exists such that

w̌1 ∈ B(b; s) and Qb,s(w̌1) ≈ ∗z1 in ∗V . Hence, in V , f(z1) = w̌1|M and g(w̌1|M) = z1,

i.e., g(f(z1)) = z1.

Next, we show that f ′(z) 6= 0 for all z ∈ D. Then, f(z) ∈ Ef and g(f(z)) = z for

all z ∈ D. Assume that there exists z1 ∈ D such that f ′(z1) = 0. By Lemma 5.15,

there exist z2, z3 ∈ D such that z2 6= z3, f ′(z2) 6= 0, f ′(z3) 6= 0 and f(z2) = f(z3).

Thereby, z2 = g(f(z2)) = g(f(z3)) = z3, which contradicts z2 6= z3.

Similarly, we can show that g(w) ∈ D and f(g(w)) = w for all w ∈ Ef . This

completes the proof of this claim.

Now, we are ready to prove Sublemma 2. Take ω ∈ ∗N \N. In ∗V , we define the

set Ω as Ω := {q ∈ Q(ω) | 1 ≤ q and there exists an ω-approximation polynomial
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P on ∗D such that EP ⊆ B(0; 1), P(0) ∼ 0 and |P ′(0)| & q.}. (The condition

q ∈ Ω is expressible by an arithmetical formula.) Then, Ω is not empty because

there exists an ω-approximation polynomial PI = (PI .QI) of identity map (I, I−1)

from D to D. By Lemma 5.12, Ω is finite; therefore, max Ω exists. Take an ω-

approximation polynomial P such that P(0) ∼ 0 and |P ′(0)| & max Ω, and define

f := P |M , g := Q|M , Ef := EP |M and K := (max Ω)|M . Then, by Claim 2,

(f, g) ∈ S is a conformal map from D to Ef with f(0) = 0 and |f ′(0)| ≥ K. We

show that (f, g) meets the requirements of Sublemma 2 in V . If not, there exists a

conformal map (f̃ , g̃) ∈ S from D to an open set Ẽ ⊆ B(0; 1) such that f̃(0) = 0

and f̃ ′(0) > f ′(0) ≥ K. Then, there exists m ∈ N such that |f̃ ′(0)| > K + 2−m.

In ∗V , because |∗f̃ ′(0)| > ∗K + 2−m, an ω-approximation polynomial P̃ exists on
∗D such that P̃(0) ∼ 0 and |P̃ ′(0)| & ∗K + 2−m by Claim 1. Therefore, |P̃ ′(0)| &
2−ω + max Ω because ∗K ≈ max Ω ≈ 2−ω + max Ω. However, that would mean

that 2−ω + max Ω ∈ Ω (contradiction). Therefore, Sublemma 2 holds in V . By

the completeness theorem, Sublemma 2 can be proven in ACA0. This completes the

proof of this theorem.

Theorem 5.17 (reversal). The following assertions are pairwise equivalent over

WKL0.

1. ACA0.

2. If D ⊆ C is a simply connected open set and D 6= C, then there exists a

conformal map f : D → B(0; 1).

Proof. The implication 1 → 2 is already proven in Theorem 5.16.

To prove 2 → 1, we show the convergence of bounded increasing real positive

Cauchy sequences because this convergence is equivalent to ACA0 over RCA0 (see

[29]). Let {an}n∈N be an increasing real positive Cauchy sequence such that 0 <

an < 1. Define an open set U ⊆ C as

U :=
⋃

n∈N
B(0; an).

Clearly, 0 ∈ U , U 6= C and U is simply connected. Thus, there exists a conformal

map h : U → B(0; 1) such that h(0) = 0.

By h(0) = 0 and Taylor expansion, there exists a holomorphic function g1 : U →
C such that h(z) = zg1(z). Then,

∀n ∈ N ∀z ∈ ∂B(0; an) |g1(z)| = |h(z)|
|z| ≤ 1

an

.
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By the maximal value principle,

∀n ∈ N ∀z ∈ B(0; an) |g1(z)| ≤ 1

an

.

Thus, by the increasingness of {an}n∈N,

∀n ∈ N ∀z ∈ U |g1(z)| ≤ 1

an

.(48)

Similarly, by h−1(0) = 0 and Taylor expansion, there exists a holomorphic func-

tion g2 : B(0; 1) → C such that h−1(w) = zg2(w). If K, r are positive real numbers

such that ∀n ∈ N an ≤ K and r < 1,

∀n ∈ N ∀w ∈ ∂B(0; r) |g2(w)| = |h−1(w)|
|w| ≤ K

r
.

Hence, by the maximal value principle,

∀n ∈ N an ≤ K → ∀z ∈ B(0; 1) |g2(w)| ≤ K.(49)

Let z0 ∈ U \ {0} and w0 = h(z0). Let ε be an arbitrary positive real number.

Then, by Cauchyness of {an}n∈N, there exists N ∈ N such that ∀n ≥ N aN ≤ an ≤
aN + ε. By (48),

aN ≤ |z0|
|h(z0)| .

By (49),
|z0|
|h(z0)| =

|h−1(w0)|
|w0| ≤ aN + ε.

Hence,

∀n ≥ N

∣∣∣∣
|z0|
|h(z0)| − an

∣∣∣∣ ≤ ε.

Consequently, {an}n∈N converges to |z0|/|h(z0)|.

5.4 Application 2: the Jordan curve theorem

In this section, we prove Jordan curve theorem within WKL0 using non-standard

arguments. This is a joint work with Nobuyuki Sakamoto. To prove the Jordan curve

theorem, we need to show that the interior of a given Jordan curve is non-empty.

To show this, we usually use assertions which require ACA0 such as the leftmost

maximal value principle (appears in [22]) or the Bolzano/Weierstraß theorem. Our

main tool to prove the Jordan curve theorem within WKL0 is an argument of non-

standard analysis. By using non-standard arguments appropriately, Jordan curves

can be treated as polygons.
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5.4.1 Preparations

In this subsection, we prepare some notions and technical lemmas for the Jordan

curve theorem.

In this section, we write di
R (or just d for simplicity) for the metric in Ri, i.e.,

di
R(x, x′) = ‖x − x′‖ where x, x′ ∈ Ri. For (a, r), (a′, r′) ∈ Qi × Q+, we write

(a, r) < (a′, r′) as an abbreviation for d(a, a′) + r < r′.

Theorem 5.18 (Simpson[29] Theorem IV.2.3). The following assertions are pair-

wise equivalent over RCA0.

1. WKL0.

2. Every continuous function from [0, 1] to R has a modulus of uniform continuity

and a supremum, and attains the supremum.

3. Every continuous function from [0, 1] to R which has a supremum, attains it.

We can strengthen the equivalence of 1 and 3 as follows:

Theorem 5.19. The following is provable in WKL0. Let 〈φi : i ∈ N〉 be a sequence

of continuous functions φi : [0, 1] → R. Then, there exists a sequence 〈xi : i ∈ N〉
such that φi(xi) = maxy∈[0,1] φi(y).

Proof. We reason within WKL0. Let 〈φi : i ∈ N〉 be a sequence of continuous

functions φi : [0, 1] → R. Let ϕ(i, x) be a Π0
1-formula which expresses ∀q ∈ Q ∩

[0, 1](φi(x) ≥ φi(q)). By Theorem 5.18, there exists x ∈ [0, 1] such that φi(x) =

maxy∈[0,1] φi(y) for each i. Then, we have ∀i∃x ∈ [0, 1]ϕ(i, x). By Π0
1-AC0, which is

provable within WKL0 [29, Lemma VIII.2.5], there exists a sequence {xi : i ∈ R}
such that φ(xi) ≥ φi(q) for all q ∈ Q ∩ [0, 1] and all i ∈ N. This means that

φi(xi) = maxy∈[0,1] φi(y) for each i.

Let U ⊆ R2 be an open set. An arc A in U is a continuous function from

[0, 1] to U . By Theorem 5.18, within WKL0, we can define the metric d(A, a) =

minx∈[0,1] d(A(x), a) between an arc A and a point a ∈ R2. Let σ = 〈aj ∈ R2 :

j < n〉 be a finite real sequence. A broken-line B[σ] is an arc defined by putting

B[σ](x + i/n) = nxσ(i + 1) + (1 − nx)σ(i) for each i = 0, . . . , n − 1 and a polygon

P [σ] is an arc defined as P [σ] = B[σa〈σ(0)〉]. We sometimes put σ(lh(σ)) := σ(0)

so that edges of P [σ] can be written as {B[〈σ(j), σ(j + 1)〉] : j < lh(σ)}. Note that

we can define the metric d(B, a) = minx∈[0,1] d(B(x), a) between a broken-line B and
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a point a ∈ R2 within RCA0. A Jordan curve J in U is an arc in U with J(0) = J(1)

and ∀x, y ∈ [0, 1](J(x) = J(y) → (x = y ∨ |x − y| = 1)). A polygon is said to be

simple if it is also a Jordan curve.

Lemma 5.20. The following is provable in WKL0. Let U be an open set in R2 and

A be an arc in U . Let k ∈ N. Then there exists a finite sequence 〈(mi, bi, si) : i < c〉
such that

1. A is an arc in the open set
⋃

i<c B(bi; si);

2. d(b0, A(0)) < s0 and d(bc−1, A(1)) < sc−1;

3. d(bi, bi+1) < si + si+1 for all i < c− 1;

4. si < 2−k for all i < c;

5. ∀i < c ∃(n, b, s) ∈ U (bi, si) < (b, s).

Here, B(a; r) := {x ∈ R2 : d(a, x) < r}.

Proof. We reason within WKL0. Let ΦA be a code for A. Fix k ∈ N. Define Ψ ⊆
N×Q×Q+×Q2×Q+ as ∃m′(m′, a′, r′, b′, s′) ∈ Ψ ↔ ∃(n̄, b̄, s̄) ∈ U ∃(m, a, r, b, s) ∈
ΦA (a′, r′) < (a, r) ∧ (b, s) < (b′, s′) ∧ (b′, s′) < (b̄, s̄).

Because A is defined entirely on [0, 1], by Theorem 2.7, we can find a finite

sequence 〈(mi, ai, ri, bi, si) : i < c〉 from Ψ such that d(a0, 0) < r0, d(ac−1, 1) < rc−1,

∀i < c − 1(d(ai, ai+1) < ri + ri+1) and ∀i < c(si < 2−k). Then the sequence

〈(mi, bi, si) : i < c〉 satisfies the desired property.

The following theorem establishes the equivalence of arcwise connectedness and

broken-line-wise connectedness within WKL0.

Theorem 5.21. The following is provable in WKL0. Let U be an open set in R2

and A be an arc in U . Let k ∈ N. Then there exists a broken-line B in R2 such

that B(0) = A(0), B(1) = A(1), ∀x ∈ [0, 1]∃y ∈ [0, 1] d(B(x), A(y)) < 2−k and

∀y ∈ [0, 1]∃x ∈ [0, 1] d(B(x), A(y)) < 2−k.

Proof. We reason within WKL0. By Lemma 5.20, let 〈(mi, bi, si) : i < c〉 be a

finite sequence from U that satisfies Clauses 1, 2, 3, 4, 5 in Lemma 5.20. Then the

broken-line B[〈A(0), b0, . . . , bc−1, A(1)〉] satisfies the desired property.
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We define a locus LA of an arc A as a closed set such that ∀u ∈ R2(u ∈ LA ↔
∃x ∈ [0, 1] A(x) = u). We can show the existence of the locus of any given arc

within WKL0

Lemma 5.22. WKL0 proves that every arc in R2 has a locus.

Proof. We reason in WKL0. Let A be an arc in R2. By Theorem 5.19, let 〈rq : q ∈ Q2〉
be a sequence of reals such that rq = minx∈[0,1] d(q, A(x)). By Σ0

0 comprehension, we

can take a (code for an) open set U such that ∃n (n, b, s) ∈ U if and only if rb > s.

Then LA := U c is the desired locus.

We define a new notion for the Jordan curve theorem. A pair of open sets (V,W )

is said to be a partition of an open set U if V ∪W = U , V ∩W = ∅.
The Jordan curve theorem for simple polygons are provable within RCA0.

Theorem 5.23 (The Jordan curve theorem for simple polygons). The following is

provable in RCA0. Let P be a simple polygon. Then, we can find the locus LP and

a partition (U0, U1) of LP
c such that

1. U0 is bounded, i.e., there exists r ∈ Q+ such that d(u, (0, 0)) < r for all u ∈ U0;

2. U0 and U1 are broken-line connected, i.e., for any u, v ∈ Ui, there exists a

broken-lines Bi in Ui such that Bi(0) = u,Bi(1) = v for i = 0, 1;

3. For each w ∈ LP and each r ∈ Q+, there exist points u ∈ U0, v ∈ U1 such that

d(w, u) < r and d(w, v) < r;

4. Every arc connecting a point in U0 and a point in U1 meets P ;

hold.

In this situation, U0 and U1 are said to be the interior and exterior of P respectively,

and U1
c = U0 ∪ LP is said to be a Jordan region.

Proof. Within RCA0, we can find the locus of a given polygon P as in the proof of

Lemma 5.9. Thus, we can imitate a usual proof, e.g., lemma 1 in [35] in RCA0.

Lemma 5.24. The following assertion is provable in WKL0. Let J be a Jordan

curve. Then there exists a function H : N→ N such that

1. ∀n∃m∀l > m H(l) > n,
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2. ∀x, y ∈ [0, 1] ∀n(min(|x− y|, 1− |x− y|) > 2−H(n) → d(J(x), J(y)) > 2−n).

Proof. We reason within WKL0. Let J be a Jordan curve. By Theorem 5.18, let h

be a modulus of uniform continuity for J . We can assume that h(n + 1) > h(n) for

all n. Put hn = 2h(n+2). Define H by putting

H(n) = the greatest l ≤ n such that

∀i, j ≤ hn(min(|i/hn − j/hn|, 1− |i/hn − j/hn|)
> 2−l−1 → d(J(i/hn), J(j/hn))n+1 > 2−n+2),

where d(J(i/hn), J(j/hn))n+1 is the n + 1-st approximation of d(J(i/hn), J(j/hn)).

We shall prove that H satisfies Clause 2 in the lemma. Let x, y ∈ [0, 1] and

n ∈ N. Assume min(|x − y|, 1 − |x − y|) > 2−H(n). Let i be the least i′ such that

i′/hn ≥ x and j be the least j′ such that j′/hn ≥ y. Then

|i/hn − j/hn|
> |x− y| − |x− i/hn| − |y − j/hn|
≥ |x− y| − 2−n−1

≥ 2−H(n) − 2−H(n)−1

= 2−H(n)−1.

Similarly, 1−|i/hn−j/hn| > 2−H(n)−1. Thus by the definition of H, d(J(i/hn), J(j/hn)) >

2−n+1. Hence

d(J(x), J(y))

≥ d(J(i/hn), J(j/hn))− d(J(x), J(i/hn))− d(J(y), J(j/hn))

> 2−n+1 − 2−n−1

> 2−n.

This implies that H satisfies Clause 2 in the lemma.

It remains to be shown that H satisfies Clause 1 in the lemma. Assume that

∀m ∃l > m H(l) ≤ N for some N ∈ N. Let 〈(n, (an, bn), rn) ∈ N×(Q∩ [0, 1])2×Q+ :

n ∈ N〉 be an enumeration of all ((a, b), r) ∈ (Q ∩ [0, 1])2 ×Q+ such that

min(|a− b|, 1− |a− b|) ≤ 2−N−2 − r

∨ ∃m(d(J(a), J(b)) > 2−m+3 ∧ r < h(m + 1)).
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Fix s ∈ N. We shall show that the open set {(n, (an, bn), rn) : n ≤ s} does not

cover [0, 1]× [0, 1]. Take a sequence m0, . . . , ms such that

min(|an − bn|, 1− |an − bn|) ≤ 2−N−2 − r

∨ ((d(J(an), J(bn)) > 2−mn+3 ∧ r < h(mn + 1))

for all n ≤ s. Choose t so that t > m0, . . . , ms, N and H(t) ≤ N . By the definition

of H, take i, j ≤ ht such that min(|i/ht − j/ht|, 1 − |i/ht − j/ht|) > 2−H(t)−2, and

d(J(i/ht), J(j/ht))t+1 ≤ 2−t+2. Then, min(|i/ht − j/ht|, 1− |i/ht − j/ht|) > 2−N−2,

since H(t) ≤ N . Moreover, for any n ≤ s, if |an− i/ht|, |bn−j/ht| < 2−h(mn+1), then

d(J(an), J(bn))

≤ d(J(an), J(i/ht)) + d(J(i/ht), J(j/ht)) + d(J(j/ht), J(bn))

< 2−mn−1 + 2−t+2 + 2−mn−1 ≤ 2−mn+3.

This means that d((i/ht, j/ht), (an, bn)) < h(mn + 1) → d(J(an), J(bn)) < 2−mn+3.

Therefore, the point (i/ht, j/ht) does not belong to the open set {(n, (an, bn), rn) :

n ≤ s}.
By Theorem 2.7, we can find (x, y) ∈ [0, 1]2 such that (x, y) does not belong to

the open set {(n, (an, bn), rn) : n ∈ N}. Then, by the construction of this open set,

min(|x − y|, 1 − |x − y|) > 2−N−2 and ∀m ∈ N∀a, b ∈ Q ∩ [0, 1](|a − x| + |b − y| <

h(m + 1) → d(J(a), J(b)) ≤ 2−m+3. Thus, |x − y| 6= 0, 1 and J(x) = J(y), which

contradicts the assumption that J is a Jordan curve. This completes the proof for

Clause 1 in the lemma.

5.4.2 Non-standard proof for the Jordan curve theorem

In this subsection, we prove the Jordan curve theorem using arguments of non-

standard analysis within WKL0.

Theorem 5.25 (The Jordan curve theorem). The following is provable in WKL0.

For each Jordan curve J , we can find the locus LJ of J and a partition (U0, U1) of

(LJ)c such that

1. U0 is bounded, i.e., there exists r ∈ Q+ such that d(u, (0, 0)) < r for all u ∈ U0;

2. For each w ∈ LJ and each r ∈ Q+, there exists a point a ∈ U0 ∩Q2 such that

d(w, a) < r;
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3. Let N0 ∈ N and let u, v ∈ U0 ∩ Q2. Let x, y ∈ [0, 1] with d(u, J) = d(u, J(x))

and d(v, J) = d(v, J(y)) respectively. Without loss of generality, we assume

x ≤ y. Then, there exist broken lines B0, B1 such that B0(0) = B1(0) =

u,B0(1) = B1(1) = v and d(Ji, Bi(z)) ≤ max(d(Ji, u), d(Ji, v)) + 2−N0 for

i = 0, 1 and for all 0 ≤ z ≤ 1. Here, J0 is the arc defined by J0(z) =

J(zy + (1− z)x), and J1 is the arc defined by

J1(z) =





J((1− 2z)x) if 0 ≤ z ≤ 1/2

J((2z − 1)y + 2− 2z) if 1/2 ≤ z ≤ 1;

hold.

In this situation, U0 and U1 are said to denote the interior and exterior of J ,

respectively. Our proof is a reformulation of a non-standard proof of the Jordan

curve theorem [19].

Proof. Fix a countable non-standard model V = (M, S) of WKL0 and fix a Jordan

curve J (in V ). By Theorem 5.1, V has an extension ∗V = (∗M, ∗S) such that

S = {X ∩M : X ∈ ∗S}. Using both V and ∗V , we will show that the Jordan curve

theorem holds within V . Then, by the completeness theorem, the Jordan curve

theorem is provable in WKL0.

Let ΦJ ∈ S be a code for J . Then, by the definition of continuous functions and

Theorem 2.7, ΦJ ∈ V satisfies the following: for any k ∈ M , there exists K ∈ M

such that

(Ci) there exists a finite sequence σk := 〈(ni, ai, ri, bi, si) ∈ ΦJ |≤K : i < lk〉 such

that si < 2−k and [0, 1] ⊆ ⋃
i≤lk

B(ai; ri);

(Cii) if (n, a, r, b, s) ∈ ΦJ |≤K and (n, a, r, b′, s′) ∈ ΦJ |≤K , then d(b, b′) ≤ s + s′;

(Ciii) if (n, a, r, b, s) ∈ ΦJ |≤K , (n′, a′, r′, b, s) ≤ K and (a′, r′) < (a, r), then

(n′, a′, r′, b, s) ∈ ΦJ |≤K ;

(Civ) if (n, a, r, b, s) ∈ ΦJ |≤K , (n′, a, r, b′, s′) ≤ K and (b, s) < (b′, s′), then

(n′, a, r, b′, s′) ∈ ΦJ |≤K ;

hold in V . (Here, Φj|≤K := {m ∈ Φj : m ≤ K}.)
Note that the above four conditions are expressed by Σ0

0 formulas. Take a set
∗ΦJ ∈ ∗S such that ∗ΦJ ∩M = ΦJ . Then, by overspill, there exists ω ∈ ∗M \M

which satisfies the following: for any k ≤ ω, there exists K ∈ ∗M such that
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(∗Ci) there exists a finite sequence σk := 〈(ni, ai, ri, bi, si) ∈ ∗ΦJ |≤K : i < lk〉 such

that si < 2−k and [0, 1] ⊆ ⋃
i<lk

B(ai; ri);

(∗Cii) if (n, a, r, b, s) ∈ ∗ΦJ |≤K and (n, a, r, b′, s′) ∈ ∗ΦJ |≤K , then d(b, b′) ≤ s + s′;

(∗Ciii) if (n, a, r, b, s) ∈ ∗ΦJ |≤K , (n′, a′, r′, b, s) ≤ K and (a′, r′) < (a, r), then

(n′, a′, r′, b, s) ∈ ∗ΦJ |≤K ;

(∗Civ) if (n, a, r, b, s) ∈ ∗ΦJ |≤K , (n′, a, r, b′, s′) ≤ K and (b, s) < (b′, s′), then

(n′, a, r, b′, s′) ∈ ∗ΦJ |≤K ;

hold in ∗V . Let σk be a finite sequence taken in (∗Ci). Let τk := 〈b0, . . . , blk−1〉 if

σk = 〈(ni, ai, ri, bi, si) : i < lk〉. Hereafter, we define τ(lh(τ)) := τ(0). Note that if

k ∈ M , we can find σk in V . Then, τk ∈ M and d(J, P [τk]) < 2−k in V . Hence we

call P [τk] a k-th approximation of J .

Put P = P [τω]. In ∗V , let ϕ0(x) (or ψ0(x)) be a Σ0
1 formula which expresses that

x ∈ R2, x /∈ LP and there exists q ∈ Q such that the half-line l(x, q) = {(x1 + t, x2 +

qt) ∈ R2 : t ∈ R, t ≥ 0} dose not contain each τω(i) and the cardinality of l(x, q)∩LP

is an odd number (or even number). Then, by Lemma 2.6, we can effectively find

the open sets W0,W1 such that x ∈ W0 ↔ ϕ0(x) and x ∈ W1 ↔ ψ0(x). We can

easily show the following:

(Wi) W0 ∩W1 = ∅ and W0 ∪W1 = LP
c;

(Wii) W0 is bounded;

(Wiii) if x1 ∈ Wj (j=0,1), x2 ∈ LP
c and the segment B[〈x1x2〉] intersects LP odd

number of times, then x2 ∈ W1−j;

(Wiv) if x1 ∈ Wj (j=0,1), x2 ∈ LP
c and the segment B[〈x1x2〉] intersects LP even

number of times, then x2 ∈ Wj.

Define formulas ϕ(a, r), ϕ̃(a, r), ψ(a, r) and ψ̃(a, r) as

ϕ(a, r) ≡ a ∈ Q2 ∧ a ∈ W0 ∧ d(a, P ) > r;

ϕ̃(a, r) ≡ a ∈ Q2 ∧ a /∈ W1 ∧ d(a, P ) > r;

ψ(a, r) ≡ a ∈ Q2 ∧ a ∈ W1 ∧ d(a, P ) > r;

ψ̃(a, r) ≡ a ∈ Q2 ∧ a /∈ W0 ∧ d(a, P ) > r.
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Note that d(a, P ) > 0 can be expressed by Σ0
0 formula. Hence, ϕ and ψ are Σ0

1

formulas and ϕ̃ and ψ̃ are Π0
1 formulas. Clearly, ϕ(a, r) ↔ ϕ̃(a, r) and ψ(a, r) ↔

ψ̃(a, r). Then, by ∆0
1 comprehension, define ∗U0 and ∗U1 as:

(n, a, r) ∈ ∗U0 ↔ ϕ(a, r) ∧ n = (a, r),

(n, a, r) ∈ ∗U1 ↔ ψ(a, r) ∧ n = (a, r).

Put ∗U0 ∩M = U0 ∈ S and ∗U1 ∩M = U1 ∈ S. Then, in V , it is readily apparent

that U0 ∪ U1 is the complement of the locus of J and U0 is bounded, i.e., Clause 1

in the theorem holds.

Hereafter, we prove Clause 2 in the theorem. Assume r ∈ Q+ and w ∈ LJ

in V . Without loss of generality, we let w = J(1/2). Put z = J(0) = J(1).

Take εw, ε, εz such that 0 < εw < ε < r/2, 0 < εz and d(w, z) >
√

2(ε + εz).

Then, there exist p0, p1, q0, q1 ∈ Q such that 0 < p0 < q0 < 1/2 < q1 < p1 < 1,

J([0, p0]) ∪ J([p1, 1]) ⊆ Box(z; εz) and J([q0, q1]) ⊆ Box(w; εw). Here, Box(a; r) :=

{(x1, x2) ∈ R2 : a1 − r < x1 < a1 + r, a2 − r < x2 < a2 + r}. Put J1 = J |[p0,q0] and

J2 = J |[q1,p1]. Since J is injective, we can take δ ∈ Q such that d(J1, J2) > δ > 0,

δ < ε− εw and δ < r −√2ε.

In ∗V , put P1 = P |[p0,q0] and P2 = P |[q1,p1]. Let C : [0, 1] → R2 be a simple

polygon such that LC is the boundary of Box(z; ε), i.e., C draws the square which

is a boundary of Box(z; ε). Without loss of generality, we may assume LP ∩ LC is

finite. Since P (p0), P (p1) /∈ Box(z; ε) and P (q0), P (q1) ∈ Box(z; ε), C intersects LPj

odd number of times (j = 1, 2). Let b0, . . . , bm+1 ∈ [0, 1] such that 0 ≤ b0 < b1 <

· · · < bm ≤ 1, bm+1 = b0 and C({b0, . . . , bm}) = LP ∩ LC . Then, there exist at least

two k’s such that

(†) (C(bk) ∈ LP1 ∧ C(bk+1) ∈ LP2) ∨ (C(bk) ∈ LP2 ∧ C(bk+1) ∈ LP1)

holds. Moreover, there exist k, l such that k and l satisfy (†) and |k − l| is an

odd number. Hence, C((bk, bk+1)) ⊆ W0 or C((bl, bl+1)) ⊆ W0. Without loss of

generality, we may assume C(bk) ∈ LP1 , C(bk+1) ∈ LP2 and C((bk, bk+1)) ⊆ W0.

Define M : [bk, bk+1] → R as M(t) = d(P1, C(t)) − d(P2, C(t)). Then, M(bk) <

−δ < 0 and M(bk+1) > δ > 0. By the intermediate value theorem (provable in

RCA0), there exists bk < t0 < bk+1 such that M(t0) = 0. Thus, d(P1, C(t0)) =

d(P2, C(t0)) > δ/2. Then, B(C(to); δ/2) ⊆ W0. Hence, there exist n, a, r ∈ M

such that n = (a, r), a ∈ Q2, r ∈ Q+ and B(a; r) ⊆ B(C(to); δ/2) in ∗V . Then,

(n, a, r) ∈ U0 and d(a, w) <
√

2ε + δ < r in V . This means a ∈ U0 and d(w, a) < r

in V and Clause 2 in the theorem holds.
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Clause 3 in the theorem remains to be proven. Let H0 : N→ N be a modulus of

uniform continuity for J , i.e., for all x, y ∈ [0, 1], min(|x− y|, 1− |x− y|) < 2−H(n)

implies d(J(x), J(y)) < 2−n, and let H1 : N → N be a function which satisfies the

two conditions in Lemma 5.24. Note that the existence of a modulus of uniform

continuity is provable in WKL0 (see Theorem 3.5). Define a function H : N → N
as H(n) := min{m : H0(n) < H1(m)}. Then, for all x, y ∈ [0, 1] with x ≤ y,

d(J(x), J(y)) < 2−H(n) implies ∀z ∈ [x, y] d(J(x), J(z)) < 2−n or ∀z ∈ [0, x] ∪
[y, 1] d(J(x), J(z)) < 2−n. Thus, if σk := 〈(ni, ai, ri, bi, si) : i < lk〉 taken in (∗Ci)

satisfies d(bi, bj) + si + sj < 2−H(n) and i ≤ j, then, d(bi, B[τk|≤i,j≥]) < 2−n + 2−k+1

or d(bi, B[τk|i≤j]) < 2−n + 2−k+1. Here, τk|≤i,j≥ := 〈bt : j ≤ t < lk〉a〈bt : 0 ≤ t ≤ i〉
and τk|i≤j := 〈bt : j ≤ i ≤ t ≤ j〉.

Take n0 such that 2−n0 < min(d(u, J), d(v, J))/2 and take N such that 2−N <

min{2−n0−2, 2−N0−1, 2−H(n0+1)−2} in V .

Next, we define a sequence ρ. For each side B[〈τω(i), τω(i + 1)〉] of P [τω], we

draw a rectangle of size (d(τω(i), τω(i + 1)) + 2 · 2−N−1) × 2 · 2−N−1 such that the

side B[〈τω(i), τω(i + 1)〉] lies in the rectangle at equal distance 2−N−1 from each of

the four sides of the rectangle. The parts of the rectangles that lie within W0 (since

W0 is the ‘interior’ of P ) decompose W0 into some polygonal domains. Let R be the

domain constructed above containing u. Next take the sequence ρ such that P [ρ]

is the boundary of R. Then, LP [τω ] ∩ LP [ρ] = ∅ and d(P [τω], q) < 2−N < 2−N0−1 for

all q ∈ LP [ρ]. (If LP [τω ] ∩ LP [ρ] 6= ∅, then LP [ρ] is contained in one rectangle, but

it contradicts d(u, LP [τω ]) > 2−N − 2−ω.) Then, by underspill, we can easily find a

finite sequence 〈an, rn : n < l〉 ∈ M which satisfies the following:

(Bi) rn < d(an, J) < 2−N0−1 and B(an; rn) ∩B(an+1, rn+1) 6= ∅ for all n < l in V ;

(Bii) LP [ρ] ⊆
⋃

n<l B(an; rn) in ∗V .

If both u and v are contained in R, segments B[〈u, x〉] and B[〈v, y〉] intersect with⋃
n<l B(an; rn). Therefore, we can easily find the desired broken-lines B0, B1 within

U0. So, we will show v ∈ R.

P [τ̂ ] is said to be a refinement of P [τ ] if LP [τ ] = LP [τ̂ ] and {τ(i) : i < lh(τ)} ⊆
{τ̂(i) : i < lh(τ̂)}. Take refinements P [τ̂ ] and P [ρ̂] of P [τω] and P [ρ] which satisfy

the following:

(Ri) ∀i < lh(ρ̂) d(ρ̂(i), ρ̂(i + 1)) < 2−N ;
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(Rii) there exists a map ν : lh(ρ̂ + 1) → lh(τ̂) + 1 such that ν(0) = 0, ν(lh(ρ̂)) =

lh(τ̂), ν(i) ≤ ν(i + 1) for all i < lh(ρ̂) and d(ρ̂(i), τ̂(ν(i))) < 2−N for all

i ≤ lh(ρ̂).

To show v ∈ R, we show d(ρ̂(i), B[τ̂ |ν(i)≤ν(i+1)]) < 2−n0 for all i < lh(ρ̂). By the

above conditions, d(τ̂(ν(i)), τ̂(ν(i + 1)) < 3 · 2−N < 2−H(n0+1). Then,

d(τ̂(ν(i)), B[τ̂ |≤ν(i),ν(i+1)≥]) < 2−n0−1 + 2−ω+1

or

d(τ̂(ν(i)), B[τ̂ |ν(i)≤ν(i+1)]) < 2−n0−1 + 2−ω+1.

If d(τ̂(ν(i)), B[τ̂ |≤ν(i),ν(i+1)≥]) < 2−n0−1 + 2−ω+1, then

d(ρ̂(i), P [ρ̂]) < d(τ̂(ν(i)), B[τ̂ |≤ν(i),ν(i+1)≥]) + 2−N < 2−n0

but it contradicts u ∈ R. Hence d(τ̂(ν(i)), B[τ̂ |ν(i)≤ν(i+1)]) < 2−n0−1 + 2−ω+1. Thus,

d(ρ̂(i), B[τ̂ |ν(i)≤ν(i+1)]) < d(τ̂(ν(i)), B[τ̂ |ν(i)≤ν(i+1)]) + 2−N < 2−n0 .

Therefore,

∀q ∈ LP [τ̂ ] d(q, P [ρ̂]) < 2−n0 .

If v ∈ ∗U0 \R, then d(v, P ) = d(v, P [τ̂ ]) < 2−n0 , which contradicts 2−n0 < d(v, J)/2.

Hence v ∈ R. This completes the proof for Theorem 5.25.

5.4.3 Some more results

In this subsection, we summarize some more results. For the proofs of theorems in

this subsection, see [25].

Let D,E be open or closed sets in R or R2. Let φ : D → E be a continuous

function. A continuous inverse function of φ is a continuous function ψ : E → D

such that ψ(φ(u)) = u for all u ∈ D and φ(ψ(v)) = v for all v ∈ E. The continuous

inverse function of φ (if it exists) is written as φ−1. A pair of continuous functions

(φ, ψ) is said to be a homeomorphism if ψ is the continuous inverse function of φ.

For the simplicity, we write φ for a homeomorphism (φ, φ−1). By the Jordan curve

theorem 5.25, we can show the following Schönflies theorem.

Theorem 5.26 (The Schönflies theorem, first form). The following is provable in

WKL0. Let J be a Jordan curve and let K be the Jordan region of J . Put Q =

P [〈(1, 1), (−1, 1), (−1,−1), (1,−1)〉]. Let L be the Jordan region of Q. Then, there

exists a homeomorphism φ : K → L such that φ(J(x)) = Q(x). Moreover, φ and

φ−1 have moduli of uniform continuities.
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Theorem 5.27 (The Schönflies theorem, second form). The following is provable

in WKL0. Let J be a Jordan curve and let Q be interpreted as in Theorem 5.26.

Consequently, there exists a homeomorphism φ : R2 → R2 such that φ(J(x)) = Q(x)

for all x ∈ [0, 1].

Then, a strong version of the Jordan curve theorem immediately follows from

above theorems.

Theorem 5.28 (The Jordan curve theorem). The following is provable in WKL0.

For each Jordan curve J , we can find the locus LJ of J and a partition (U0, U1) of

(LJ)c such that all of the following hold:

1. U0 is bounded, i.e., there exists q ∈ Q+ such that d(u, (0, 0)) < q for all u ∈ U0;

2. U0 and U1 are broken-line connected, i.e., for all u, v ∈ Ui, there exists a

broken-lines Bi in Ui such that Bi(0) = u,Bi(1) = v for i = 0, 1;

3. For each w ∈ LJ and each q ∈ Q+, there exist points u ∈ U0, v ∈ U1 such that

d(w, u) < q and d(w, v) < q;

4. Every arc connecting a point in U0 and a point in U1 meets J .

Theorem 5.27 extends the result in Shioji/Tanaka [27].

Corollary 5.29 (The Brouwer fixed point theorem for Jordan regions). The fol-

lowing is provable in WKL0. Let J be a Jordan curve and let U1 be the exterior of

J . Let ψ be a continuous function from U c
1 to itself. Then, ψ has a fixed point, i.e.,

there exists u ∈ U c
1 with ψ(u) = u.

Proof. Immediate from Theorem 5.27 and the fact that the Brouwer fixed point

theorem for convex hulls in Rn is provable within WKL0 ([27]).

Finally, we show that the Jordan curve theorem and The Schönflies theorem are

equivalent to WKL0 over RCA0.

Theorem 5.30 (reversal). The following assertions are pairwise equivalent over

RCA0.

1. WKL0.

2. Every Jordan curve has a locus.
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3. The Jordan curve theorem.

4. For every Jordan curve J and non-empty open set U,U0, U1, if U c is a locus

of J and (U0, U1) is a partition of U , then U0 or U1 is bounded.

5. For every Jordan curve J and non-empty open set U,U0, U1, if U c is a locus of

J , (U0, U1) is a partition of U and U0 is bounded, then, U0 and U1 are broken

line connected.

6. The Schönflies theorem, second form.

7. The Schönflies theorem, first form.
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6 Formalizing non-standard arguments

In the previous chapter, we introduced model theoretic arguments to do non-standard

analysis for ACA0 or WKL0 and applied them to demonstrate that some theorems

are provable in ACA0 or WKL0. Then, can we canonically reconstruct formal proofs

within ACA0 or WKL0 from such non-standard arguments? Professor Sakae Fuchino

posed this question. In this chapter, we introduce systems of non-standard second

order arithmetic ns-ACA0 and ns-WKL0 corresponding to ACA0 and WKL0. In these

systems, we can formalize the above non-standard arguments. By model construc-

tions appearing in the previous chapter, we can show that ns-ACA0 is a conservative

extension of ACA0 and ns-WKL0 is a conservative extension of WKL0. However, we

need some canonical transformations that do not depend on semantics because we

want to analyze non-standard techniques in second order arithmetic. To transform

non-standard proofs directly into standard proofs, we interpret ns-ACA0 in ACA0 and

interpret ns-WKL0 in WKL0, as for the formalization of Harrington’s conservation

theorem by Avigad[2]. The technical ideas of these interpretations are attributed

to [9] and [34]. In addition, systems of non-standard second order arithmetic we

introduce are the expansions of non-standard arithmetic introduced in [21].

We first introduce the language of non-standard second order arithmetic.

Definition 6.1. The language of non-standard second order arithmetic L∗2 is defined

by the following:

• standard number variables: xs, ys, . . .,

• non-standard number variables: x∗, y∗, . . .,

• standard set variables: Xs, Y s, . . .,

• non-standard set variables: X∗, Y ∗, . . .,

• function and relation symbols: 0s, 1s, =s, +s, ·s, <s,∈s, 0∗, 1∗, =∗, +∗, ·∗, <∗,∈∗
,
√

.

Here, 0s, 1s, =s, +s, ·s, <s,∈s denote “the standard structure” of second order

arithmetic, 0∗, 1∗, =∗, +∗, ·∗, <∗,∈∗ denote “the non-standard structure” of second

order arithmetic and
√

denote an embedding from the standard structure to the

non-standard structure.
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In this chapter, we consider +, · ∈ L2 as ternary relations. Similarly, we consider

+s, ·s, +∗, ·∗ ∈ L∗2 as ternary relations.

The terms and formulas of the language of non-standard second order arith-

metic are as follows. Standard numerical terms are standard number variables and

the constant symbols 0s and 1s and non-standard numerical terms are non-standard

number variables, the constant symbols 0∗ and 1∗ and
√

(ts) whenever ts is a nu-

merical term. Standard set terms are standard set variables and non-standard set

terms are non-standard set variables and
√

(Xs) whenever Xs is a standard set

term. Atomic formulas are ts1 =s ts2, +s(ts1, t
s
2, t

s
3), ·s(ts1, ts2, ts3), ts1 <s ts2, ts1 ∈s Xs,

t∗1 =∗ t∗2, +∗(t∗1, t
∗
2, t

∗
3), ·∗(t∗1, t∗2, t∗3), t∗1 <∗ t∗2 and t∗1 ∈∗ X∗ where ts1, t

s
2, t

s
3 are standard

numerical terms, t∗1, t
∗
2, t

∗
3 are non-standard numerical terms, Xs is a standard set

term and X∗ is a non-standard set term. Formulas are built up from atomic formu-

las by means of propositional connectives ∧, ¬ and quantifiers ∃xs, ∃x∗, ∃Xs, ∃X∗.

Other connectives ∨, →, ↔ and quantifiers ∀xs, ∀x∗, ∀Xs, ∀X∗ are introduced by a

combination of some of ∧, ¬, ∃xs, ∃x∗, ∃Xs, ∃X∗ as usual. A sentence is a formula

without free variables.

Let ϕ be an L2-formula. We write ϕs for the L∗2 formula constructed by adding
s to all occurrences of bounded variables and relations of ϕ. Similarly, we write ϕ∗

for the L∗2 formula constructed by adding ∗. We usually omit s and ∗ of relations.

We write ťs for
√

(ts) and X̌s for
√

(Xs).

In this chapter, we use M to indicate the range of number variables and S to

indicate the range of set variables in the system of second order arithmetic. We

are not going to describe the semantics of the system by these M and S but these

symbols are introduced just to make the argument more accessible. Similarly, in the

system of non-standard second order arithmetic, we use M s to indicate the range

of standard number variables, M∗ to indicate the range of non-standard number

variables, Ss to indicate the range of standard set variables and S∗ to indicate the

range of non-standard set variables. Moreover, we use V s = (M s, Ss) to indicate the

range of standard variables and V ∗ = (M∗, S∗) to indicate the range of non-standard

variables.

6.1 The system ns-ACA0

In this section, we introduce the system ns-ACA0. Then, we interpret ns-ACA0 in

ACA0 by forcing notion. For this, we use the forcing relation for generic ultra filters.
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Definition 6.2 (the system ns-ACA0). The axioms of ns-ACA0 are the following:

1. (ACA0)
s, (ACA0)

∗.

2.
√

: V s → V ∗ is an injective homomorphism.

3. end extension:

∀x∗∀ys(x∗ < y̌s → ∃zs(x∗ = žs)).

4. standard part:

∀X∗∃Y s∀xs(xs ∈ Y s ↔ x̌s ∈ X∗).

5. Σ1
1 transfer principle:

∀xs∀Xs(ϕ(xs, Xs)s ↔ ϕ(x̌s, X̌s)∗)

for any Σ1
1 formula ϕ.

6. Σ1
0 overspill:

∀x∗∀X∗(∀ys∃zs(zs ≥ ys∧ϕ(žs, x∗, X∗)∗) → ∃y∗(∀ws(y∗ > w̌s)∧ϕ(y∗, x∗, X∗)∗))

for any Σ1
0 formula ϕ.

In fact, the axiom “end extension” is deduced from other axioms. Note that we

can check that ns-ACA0 is an expansion of ACA∗0 which is introduced by Keisler[21].

Now, we interpret ns-ACA0 in ACA0 and show that ns-ACA0 is a conservative

extension of ACA0. We argue in ACA0. A set X is said to be bounded if ∃x ∀y ∈
X y ≤ x. We write X ⊆al Y if X \ Y is bounded.

Definition 6.3 (in ACA0). Let M̄ s = M , M̄∗ = {f | f : M → M}, S̄s = S and

S̄∗ = {X | X ⊆ M × M}. Here, M̄ s, M̄∗, S̄s, S̄∗ denote the sets of (names of)

standard numbers, non-standard numbers, standard sets and non-standard sets in

non-standard second order arithmetic. Define 0s, 1s ∈ M̄ s as 0s = 0, 1s = 1. Define

0∗, 1∗ ∈ M̄∗ as 0∗(i) = 0 and 1∗(i) = 1. Let P = {X | X is unbounded} and

X ≤ Y ⇔ X ⊆ Y . For A∗ ∈ S̄∗, we write A∗(i) for {x | (x, i) ∈ A∗}.
We inductively define X ° ψ for any L∗2∪M̄ s∪M̄∗∪S̄s∪S̄∗ sentence ψ as follows.

For as ∈ M̄ s and As ∈ S̄s, we define (as)
√ ∈ M̄∗ and (As)

√ ∈ S̄∗ as (as)
√
(i) = as

and (As)
√

= {(x, i) | x ∈ As ∧ i ∈ M}. Let X ∈ P , as, bs, cs ∈ M , a∗, b∗, c∗ ∈ M̄∗,

As ∈ S, A∗ ∈ S̄∗.
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• X ° as =s bs ⇔ as = bs.

• X ° +s(as, bs, cs) ⇔ +(as, bs, cs).

• X ° ·s(as, bs, cs) ⇔ ·(as, bs, cs).

• X ° as <s bs ⇔ as < bs.

• X ° as ∈s As ⇔ as ∈ As.

• X ° a∗ =∗ b∗ ⇔ {i | a∗(i) = b∗(i)} ⊇al X.

• X ° +∗(a∗, b∗, c∗) ⇔ {i | +(a∗(i), b∗(i), c∗(i))} ⊇al X.

• X ° ·∗(a∗, b∗, c∗) ⇔ {i | ·(a∗(i), b∗(i), c∗(i))} ⊇al X.

• X ° a∗ <∗ b∗ ⇔ {i | a∗(i) < b∗(i)} ⊇al X.

• X ° a∗ ∈∗ A∗ ⇔ {i | a∗(i) ∈ A∗(i)} ⊇al X.

• X ° ψ(ǎs, b∗, Ǎs, B∗) ⇔ X ° ψ((as)
√
, b∗, (As)

√
, B∗) where ψ is a non-standard

atomic formula.

• X ° ϕ ∧ ψ ⇔ X ° ϕ ∧X ° ψ.

• X ° ¬ψ ⇔ ∀Y ≤ X ¬Y ° ψ.

• X ° ∃xsψ(xs) ⇔ {Y | ∃as ∈ M̄ s Y ° ψ(as)} is dense below X.

• X ° ∃x∗ψ(x∗) ⇔ {Y | ∃a∗ ∈ M̄∗ Y ° ψ(a∗)} is dense below X.

• X ° ∃Xsψ(Xs) ⇔ {Y | ∃As ∈ S̄s Y ° ψ(A)} is dense below X.

• X ° ∃X∗ψ(X∗) ⇔ {Y | ∃A∗ ∈ S̄∗ Y ° ψ(A∗)} is dense below X.

Define ° ψ as X ° ψ for any X ∈ P .

The next two lemmas are easily proved in usual ways.

Lemma 6.1 (in ACA0). The following are equivalent.

1. X ° ϕ

2. {Y | Y ° ϕ} is dense below X.

3. ∀Y ≤ X Y ° ϕ.
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Lemma 6.2 (in ACA0). Let ψ be an L∗2 sentence. Then, the following are equivalent.

1. X ° ψ for some X ∈ P .

2. X ° ψ for all X ∈ P .

Lemma 6.3 (in ACA0). Let X be an unbounded set, and let A be an arbitrary set.

Let Aa = {i | (a, i) ∈ A}. Then, there exist an unbounded set Y ⊆ X such that

(Y ⊆al Aa) ∨ (Y ⊆al Ac
a) for all a ∈ M .

Proof. This lemma is an easy consequence of [20, Lemma 8.7]. This lemma is also

showed in [9, Theorem 3.2].

Lemma 6.4 (in ACA0).

X ° ϕ( ~̌as, ~a∗, ~̌As, ~A∗)∗ ↔ {i | ϕ(~as, ~a∗(i), ~As, ~A∗(i))} ⊇al X(50)

for any Σ1
0 formula ϕ and for any ~as ∈ M̄ s, ~a∗ ∈ M̄∗, ~As ∈ S̄s, ~A∗ ∈ S̄∗.

Proof. We show this by induction on the complexity of formulas. Atomic formulas

satisfy (50) by the definition of °. We can easily check that ϕ ∧ ψ and ¬ϕ satisfy

(50) if both ϕ and ψ satisfy (50). Let ψ ≡ ∃xϕ(x) (ψ may have parameters from

M̄ s∪ S̄s∪M̄∗∪ S̄∗). If {i | ψ} 6⊇al X, then {i | ψ}∩X ≤ X and {i | ψ}∩X ° ¬ϕ(a∗)

for all a∗ ∈ M̄∗. Thus, X ° ψ → {i | ψ} ⊇al X. For the converse, we define a∗ ∈ M̄∗

as

a∗(i) =





min{a | ϕ(a)} if ∃xϕ(x),

0 if ¬∃xϕ(x).

Then, {i | ψ} ⊇al X implies {i | ϕ(a∗(i))} ⊇al X. Hence, {i | ψ} ⊇al X → X °
ψ.

Lemma 6.5 (in ACA0). Let ϕ be an L2 formula and let ~as ∈ M̄ s, ~As ∈ S̄s. Then,

the following are equivalent.

1. ϕ(~as, ~As).

2. X ° ϕ(~as, ~As)s for some X ∈ P .

3. X ° ϕ(~as, ~As)s for any X ∈ P .

Proof. We can easily check this by induction on the complexity of ϕ.

111



Lemma 6.6 (in ACA0).

(X ° ϕ(~as, ~As)s) ↔ ϕ(~as, ~As)

for any L2 formula ϕ and for any X ∈ P , ~as ∈ M̄ s, ~As ∈ S̄s.

Proof. Obvious from Lemma 6.5.

Lemma 6.7.

ACA0 `° ns-ACA0.

Proof. We show ° ns-ACA0 in ACA0. We can easily check that ° “
√

is an injective

homomorphism” (Definition 6.2.2). We first show that ° “Σ1
1 transfer principle”

(Definition 6.2.5). Let ψ be Σ1
0 and ° (∃Xψ(X, ǎs, Ǎs))∗. Then, for any X ∈ P ,

there exist Y ≤ X and A∗ ∈ S̄∗ such that Y ° ψ(A∗, ǎs, Ǎs)∗. By Lemma 6.4, there

exist j ∈ Y ∩{i | ψ(A∗(i), as, As)}. Then, ψ(A∗(j), as, As) and Y ° ψ(A∗(j), as, As)s.

Hence ° (∃Xψ(X, as, As))s. Conversely, let ° (∃Xψ(X, as, As))s. By Lemma 6.6,

∃Xψ(X, as, As). Hence, there exist Bs ∈ S̄s such that ψ(Bs, as, As). By Lemma 6.4,

° ψ(B̌s, ǎs, Ǎs). Thus, ° (∃Xψ(X, ǎs, Ǎs))∗.

Next, we show ° (ACA0)
s ∧ (ACA0)

∗ (Definition 6.2.1). By Lemma 6.6 and

° “Σ1
1 transfer principle”, we get ° (ACA0)

s and ° (IΣ0
1)
∗. We show ° (ACA)∗.

Let ψ be Σ1
0 and let a∗ ∈ M̄∗, A∗ ∈ S̄∗. We need to show ° (∃X∀x(x ∈ X ↔

ψ(x, a∗, A∗)))∗. Define Bs ∈ S̄s as (x, i) ∈ Bs ↔ ψ(x, a∗(i), A∗(i)). Then, ° (x ∈
Bs∗ ↔ ψ(x, a∗, A∗))∗. Thus ° (ACA)∗.

To show ° “standard part” (Definition 6.2.4), we use Lemma 6.3. For any A∗ ∈
S̄∗ and for any X ∈ P , there exist Y ≤ X such that (Y ⊆al A∗

b)∨(Y ⊆al (A∗
b)

c) for all

b ∈ M . Define Bs ∈ S̄s as b ∈ Bs ↔ Y ⊆al A∗
b . Then, Y ° ∀xs(xs ∈ Bs ↔ x̌s ∈ A∗).

Thus, ° ∃Xs∀xs(xs ∈ Xs ↔ x̌s ∈ A∗).

Finally, we show ° “Σ1
0 overspill” (Definition 6.2.6). Let ϕ be Σ1

0 formula and

a∗ ∈ M̄∗, A∗ ∈ S̄∗. Let ° ∀ys∃zs(zs ≥ ys ∧ ϕ(žs, a∗, A∗)∗). This implies that there

exist cofinitely many i ∈ M such that ∃x(x > j ∧ ϕ(x, a∗(i), A∗(i))) for all j ∈ M .

Define b∗ ∈ M̄∗ as

b∗(i) =





min{b | b > i ∧ ϕ(b, a∗(i), A∗(i))} if ∃x(x > i ∧ ϕ(x, a∗(i), A∗(i))),

0 if ¬∃x(x > i ∧ ϕ(x, a∗(i), A∗(i))).

Then, ° (b∗ > čs) ∧ ϕ(b∗, a∗, A∗)∗ for any cs ∈ M̄ s. Thus, ° ∃y∗(∀ws(y∗ > w̌s) ∧
ϕ(y∗, a∗, A∗)∗).
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Theorem 6.8.

ns-ACA0 ` ψ ⇒ ACA0 `° ψ

for any L∗2 sentence ψ. Moreover, we can transform a proof of ns-ACA0 ` ψ into a

proof of ACA0 `° ψ.

Proof. We can easily check that ° is closed under inference rules. Thus, by Lemma

6.7, we can transform a proof of ns-ACA0 ` ψ into a proof of ACA0 `° ψ effectively.

Corollary 6.9.

ns-ACA0 ` ϕs ⇒ ACA0 ` ϕ

for any L2 sentence ϕ. Moreover, we can transform a proof of ns-ACA0 ` ϕs into a

proof of ACA0 ` ϕ.

Proof. By Theorem 6.8, we can transform a proof of ns-ACA0 ` ϕs into a proof of

ACA0 `° ϕs. Then, as in the proof of Lemma 6.6, we can get a proof of ACA0 ` ϕ

effectively.

6.2 The system ns-WKL0

In this section, we introduce the system ns-WKL0 and interpret ns-WKL0 in (a con-

servative expansion of) WKL0. For this, we introduce another relation °w. We treat

the universe V = (M, S) of second order arithmetic as the non-standard universe

of non-standard second order arithmetic. Then, we construct the standard universe

within V by forcing.

Definition 6.4 (the system ns-WKL0). The axioms of ns-WKL0 are the following:

1. (WKL0)
s, (WKL0)

∗.

2.
√

: V s → V ∗ is an injective homomorphism.

3. end extension:

∀x∗∀ys(x∗ < y̌s → ∃zs(x∗ = žs)).

4. standard part:

∀X∗∃Y s∀xs(xs ∈ Y s ↔ x̌s ∈ X∗).
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5. Σ0
0 transfer principle:

∀xs∀Xs(ϕ(xs, Xs)s ↔ ϕ(x̌s, X̌s)∗)

for any Σ0
0 formula ϕ.

6. Σ0
1 overspill:

∀x∗∀X∗(∀ys∃zs(zs ≥ ys∧ϕ(žs, x∗, X∗)∗) → ∃y∗(∀ws(y∗ > w̌s)∧ϕ(y∗, x∗, X∗)∗))

for any Σ0
1 formula ϕ.

In fact, the axiom “Σ0
0 transfer principle” is deduced from other axioms. Note

that we can check that ns-WKL0 is an expansion of WKL∗0 which is introduced by

Keisler[21].

To interpret ns-WKL0, we expand WKL0.

Definition 6.5. 1. Let c be a new constant symbol. Define the system WKL0
′

as

WKL0
′ := WKL0 + {c > n | n ∈ ω}.

2. Let I(·) be a new unary relation symbol. Define the system WKL0
′′ as

WKL0
′′ := WKL0

′+{I(0)∧∀x(I(x) → I(x+1))∧∀x∀y < x(I(x) → I(y))∧¬I(c)}.

Note that for any L2 sentence ϕ, if we get a proof of WKL0
′′ ` ϕ, we can easily

get a proof of WKL0
′ ` ϕ and a proof of WKL0 ` ϕ.

Next, we prepare generalized Σ0
1 satisfaction relation and partial embeddings to

interpret ns-WKL0.

Definition 6.6 (in WKL0:Definition 2.1 of [34]). We define the set of (Gödel numbers

of) L2 formulas Ge as the following:

• G0 = {ϕ | ϕ is an atomic formula or the negation of an atomic formula},

• G1
e = {∃xϕ | ϕ is a finite conjunction of Ge formulas},

• G2
e = {∀x < yϕ | ϕ is a finite disjunction of Ge formulas},

• G3
e = {∀Xϕ | ϕ is a finite disjunction of Ge formulas},

• Ge+1 = Ge ∪G1
e ∪G2

e ∪G3
e,
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where x and y denote arbitrary distinct number variables, and X an arbitrary set

variable. Then, we define G =
⋃

e∈M Ge.

Within WKL0, we can show that each formula in G is equivalent to a Σ0
1 formula.

We next define a satisfaction relation for G as in [34]. For a Σ0
1 satisfaction relation,

see also [13]. For p ∈ M , let Mp = {a | a < p}, Sp = {X ∩ Mp | X ∈ S} and

Vp = (Mp, Sp). We can define the full satisfaction predicate Trp(z, ξ) for Vp as a ∆0
1

relation, where z ∈ G and ξ is a finite mapping to evaluate the free variables in z

by elements of Mp∪Sp. If z is a Gödel number of ϕ(~x, ~X) (ϕ has only free variables

denoted) and if ξ(~x) = ~a ∈ Mp and ξ( ~X) = ~A ∈ Sp, then Trp(z, ξ) ⇔ VP |= ϕ(~a, ~A).

Moreover, we may assume that Trp satisfies the Tarski clauses for all formulas (Note

that there exists a non-standard formula in WKL0
′).

Definition 6.7 (in WKL0:Definition 2.2 of [34]). Define the satisfaction relation Tr

for G as

Tr(z, ξ) ↔ ∃p(p > ξ ∧ Trp(z, ξ ¹ Vp)).

Here, p > ξ means that p is greater than any ξ(x) and ξ ¹ Vp is defined as ξ ¹
Vp(x) = ξ(x) and ξ ¹ Vp(X) = ξ(X) ∩Mp.

Lemma 6.10 (in WKL0:Lemmas 2.3 and 2.4 of [34]).

1. Tr satisfies the Tarski clauses for G.

2. For any e ∈ M and for any evaluation ξ, there exists a natural number p ∈ M

such that Tr(z, ξ) ↔ Trp(z, ξ) for any formula z ∈ Ge with only the free

variables associated with ξ.

From now on, we argue in WKL0
′′. We fix p as p = min{q | Tr(z, ∅) ↔ Trq(z, ∅)

for any sentence z ∈ Gc}. Note that for any (standard) L2 formula ϕ such that

[ϕ] ∈ G, [ϕ] ∈ Gc−a if I(a). Here, [ϕ] denotes the Gödel number of ϕ.

Definition 6.8 (in WKL0
′). Let ξ and ξ′ be two evaluation mappings with the same

domain. Then the pair η = (ξ, ξ′) is said to be a partial embedding (p.e., for short)

if p > ξ′, |η| ≤ c and Tr(z, ξ) → Trp(z, ξ′ ¹ Vp) for any z ∈ Gp−|η| with only the free

variables associated with ξ. Here, |η| = | dom(ξ)|.
We write a ∈ dom(η) (A ∈ dom(η)) if a = ξ(x) for some number variable x (A =

ξ(X) for some set variable X), and η(a) = b (η(A) = B) if ξ(x) = a ∧ (ξ(x′) = a →
[x] ≤ [x′])∧ξ′(x) = b for some x (ξ(X) = A∧(ξ(X ′) = A → [X] ≤ [X ′])∧ξ′(X) = B

for some X). (Here, [x] ≤ [x′] means that the Gödel number of x′ is grater than

that of x.)
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We now define the forcing notion. Let P = {η | η is a p.e. and I(|η|)}. Let

η = (ξ, ξ′) and ι = (ζ, ζ ′) be p.e.’s. Then, we define ι ≤ η as ξ ⊆ ζ ∧ ξ′ ⊆ ζ ′ and we

define ι ≤1 η as ι ≤ η ∧ |ι| ≤ |η|+ 1. Note that ι ∈ P if η ∈ P ∧ ι ≤1 η.

The following lemma is an easy modification of Lemma 2.6 of [34].

Lemma 6.11 (in WKL0
′′). Let η ∈ P . Then the following hold.

1. ∀a ∃a′ < p ∃ι ≤1 η a ∈ dom(ι) ∧ ι(a) = a′.

2. ∀a′ < η(a0) ∃a < a0 ∃ι ≤1 η a ∈ dom(ι) ∧ ι(a) = a′ for any a0 ∈ dom(η).

3. ∀A ∃A′ ∃ι ≤1 η A ∈ dom(ι) ∧ ι(A) = A′.

4. ∀A′ ∃A ∃ι ≤1 η A ∈ dom(ι) ∧ ∀ι′ ≤ ι ∀a ∈ dom(ι′) (a ∈ A ↔ ι′(a) ∈ A′).

Proof. 1, 2 and 3 are straight forward directions from Lemma 2.6 of [34]. We show

4. Let A′ be an arbitary set and η = (ξ, ξ′) ∈ P . Then, there exists a set A such

that Tr(z, ξ ∪{(Y,A)}) → Trp(z, ξ′ ∪{(Y, A′)}) for any Gc−|η|−1 formula z with only

the free variables associated with ξ ∪ {(Y,A)}, where Y is a set variable not in the

domain of ξ. Define a p.e. ι ≤1 η as ι = (ξ ∪ {(Y,A)}, ξ′ ∪ {(Y, A′)}). We show

∀ι′ ≤ ι ∀a ∈ dom(ι′) (a ∈ A ↔ ι′(a) ∈ A′). Let ι′ = (ζ, ζ ′) ≤ ι. For any x ∈ dom(ζ),

[x ∈ Y ] ∈ G0 and [¬x ∈ Y ] ∈ G0, thus Tr([x ∈ Y ], ζ) → Trp([x ∈ Y ], ζ ′) and

Tr([¬x ∈ Y ], ζ) → Trp([¬x ∈ Y ], ζ ′). Hence, for any a ∈ dom(ι′), a ∈ A → ι′(a) ∈ A′

and ¬a ∈ A → ¬ι′(a) ∈ A′.

Now, we interpret ns-WKL0 in WKL0
′′ and show that ns-WKL0 is a conservative

extension of WKL0.

Definition 6.9 (in WKL0
′′). Let M̄ s = M̄∗ = M , S̄s = S̄∗ = S. Here, M̄ s, M̄∗,

S̄s, S̄∗ denote the sets of standard numbers, non-standard numbers, standard sets

and non-standard sets in non-standard second order arithmetic. Define 0s, 1s ∈ M̄ s

and 0∗, 1∗ ∈ M̄∗ as 0s = 0∗ = 0 and 1s = 1∗ = 1. Using the forcing notion (P,≤),

we inductively define η °w ψ for any L∗2 ∪M ∪ M̄∗ ∪ S ∪ S̄∗ sentence ψ as follows.

Let η ∈ P , a, b, c ∈ M , a∗, b∗, c∗ ∈ M̄∗, A ∈ S, A∗ ∈ S̄∗. Note that we consider

η(as) ∈ M̄∗ for as ∈ dom(η).

• η °w as =s bs ⇔ {ι | as, bs ∈ dom(ι) ∧ as = bs} is dense below η.

• η °w +s(as, bs, cs) ⇔ {ι | as, bs, cs ∈ dom(ι) ∧+(as, bs, cs)} is dense below η.

• η °w ·s(as, bs, cs) ⇔ {ι | as, bs, cs ∈ dom(ι) ∧ ·(as, bs, cs)} is dense below η.
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• η °w as <s bs ⇔ {ι | as, bs ∈ dom(ι) ∧ as < bs} is dense below η.

• η °w as ∈s As ⇔ {ι | as, As ∈ dom(ι) ∧ as ∈ As} is dense below η.

• η °w a∗ =∗ b∗ ⇔ a∗ = b∗.

• η °w +∗(a∗, b∗, c∗) ⇔ +(a∗, b∗, c∗).

• η °w ·∗(a∗, b∗, c∗) ⇔ ·(a∗, b∗, c∗).

• η °w a∗ <∗ b∗ ⇔ a∗ < b∗.

• η °w a∗ ∈∗ A∗ ⇔ a∗ ∈ A∗.

• η °w ψ(ǎs, b∗, Ǎs, B∗) ⇔ {ι | as, As ∈ dom(ι) ∧ ι °w ψ(η(as), b∗, η(As), B∗)} is

dense below η where ψ is a non-standard atomic formula.

• η °w ϕ ∧ ψ ⇔ η °w ϕ ∧ η °w ψ.

• η °w ¬ψ ⇔ ∀ι ≤ η ι 6°w ψ.

• η °w ∃xsψ(xs) ⇔ {ι | ∃as ∈ dom(ι) ι °w ψ(as)} is dense below η.

• η °w ∃Xsψ(Xs) ⇔ {ι | ∃As ∈ dom(ι) ι °w ψ(As)} is dense below η.

• η °w ∃x∗ψ(x∗) ⇔ ∃a∗ ∈ M̄∗ η °w ψ(a∗).

• η °w ∃X∗ψ(X∗) ⇔ ∃A∗ ∈ M̄∗ η °w ψ(A∗).

Define °w ψ as ∅ °w ψ.

Note that we can easily prove that the following are equivalent within WKL0
′′:

1. η ° ψ

2. {ι | ι ° ϕ} is dense below η.

3. ∀ι ≤ η ι ° ϕ.

We next prepare some lemmas.

Lemma 6.12 (in WKL0
′′). Let as, bs, cs ∈ M̄ s, As ∈ S̄s, and let η ∈ P such that

as, bs, cs, As ∈ dom(η). Let a pair of L∗2 formula (ψ, ψ′) is one of the following:

{(as =s bs, ǎs =∗ b̌s), (+s(as, bs, cs), +∗(ǎs, b̌s, čs)), (·s(as, bs, cs), ·∗(ǎs, b̌s, čs)), (as <s

bs, ǎs <∗ b̌s), (as ∈s As, ǎs ∈∗ Ǎs). Then,

η °w ψ ↔ ψ′.
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Proof. Let η = (ξ, ξ′). By the definition of partial embedding, Tr(z, ξ) → Trp(z, ξ′ ¹
Vp) for any atomic formula z with only the free variables associated with ξ. Thus,

we can easily check that η °w ψ ↔ ψ′ by the definition of °w.

Lemma 6.13 (in WKL0
′′).

(η °w ϕ(~as, ~As)s) ↔ ϕ(~as, ~As)(51)

for any L2 formula ϕ and for any η ∈ P such that ~as, ~As ∈ dom(η).

Proof. We show this by induction on the complexity of formulas. Atomic for-

mulas satisfy (51) by the definition of °w. We can easily check that ϕ ∧ ψ and

¬ϕ satisfy (51) if ϕ and ψ satisfy (51). Let ~as ∈ M̄ s, ~As ∈ S̄s, ψ(~as, ~As) ≡
∃xϕ(x, ~as, ~As) and ι ∈ P such that ~as, ~As ∈ dom(η). By the induction hypoth-

esis, (ι °w ϕ(bs, ~as, ~As)s) ↔ ϕ(bs, ~as, ~As) for any bs ∈ M̄ s and ι ∈ P such that

bs, ~as, ~As ∈ dom(ι). If ∃xϕ(x, ~as, ~As), then, by Lemma 6.11.1, for any η′ ∈ P

such that η′ ≤ η, there exist bs ∈ M̄ s and ι ≤1 η′ such that ι °w ϕ(bs, ~as, ~As)s

and bs ∈ dom(ι). Thus, ∃xϕ(x, ~as, ~As) → (η °w (∃xϕ(x, ~as, ~As))s). Conversely,

(η °w (∃xϕ(x, ~as, ~As))s) → ∃xϕ(x, ~as, ~As) is obvious. Similarly, we can show the

case that ψ(~as, ~As) ≡ ∃Xϕ(X, ~as, ~As) by Lemma 6.11.3.

Lemma 6.14 (in WKL0
′′).

(η °w ϕ(~a∗, ~A∗)∗) ↔ ϕ(~a∗, ~A∗)

for any L2 formula ϕ and for any η ∈ P , ~a∗ ∈ M̄∗, ~A∗ ∈ M̄∗.

Proof. Obvious from the definition of °w.

Lemma 6.15.

WKL0
′′ `°w ns-WKL0.

Proof. We show °w ns-WKL0 in WKL0
′′. By Lemma 6.12, °w “

√
is an injective ho-

momorphism” (Definition 6.4.2). By Lemmas 6.13 and 6.14, °w (WKL0)
s∧ (WKL0)

∗

(Definition 6.4.1).

We first show that °w “end extension” (Definition 6.4.3). We only need to show

that (η °w b∗ <∗ ǎs) → (η °w ∃xs x̌s =∗ b∗) for any as ∈ M̄ s, b∗ ∈ M̄∗ and for any

η ∈ P such that as ∈ dom(η). Let as ∈ M̄ s, b∗ ∈ M̄∗, η ∈ P such that as ∈ dom(η)

and η °w b∗ <∗ ǎs. Then, b∗ < η(as). Thus, by Lemma 6.11.2, for any η′ ∈ P such
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that η′ ≤ η, there exist ι ≤1 η′ and cs ∈ M̄ s such that cs ∈ dom(ι) and ι(cs) = b∗.

Hence, η °w ∃xs x̌s =∗ b∗.

Next, we show °w “standard part” (Definition 6.4.4). We only need to show

that ∃ι ≤ η ∃Bs ∈ dom(ι) ι °w ∀xs(xs ∈s Bs ↔ x̌s ∈∗ A∗) for any A∗ ∈ S̄∗ and for

any η ∈ P . Let A∗ ∈ S̄∗ and η ∈ P . Then, by Lemma 6.11.4, there exist ι ≤1 η and

Bs ∈ S̄s such that Bs ∈ dom(ι) and ∀ι′ ≤ ι ∀as ∈ dom(ι′) (as ∈ Bs ↔ ι′(as) ∈ A∗).

Thus, ι °w ∀xs(xs ∈s Bs ↔ x̌s ∈∗ A∗). Hence, ∅ °w ∀X∗∃Y s∀xs(xs ∈s Y s ↔ x̌s ∈∗
X∗).

Finally, we show °w “Σ0
1 overspill” (Definition 6.4.6). Let ϕ be Σ0

1 formula

and a∗ ∈ M̄∗, A∗ ∈ S̄∗. Let ∅ °w ∀ys∃zs(zs ≥ ys ∧ ϕ(žs, a∗, A∗)∗). Then, there

exist η0 ∈ P and as ∈ η0 such that η′ °w ϕ(ǎs, a∗, A∗)∗. Thus, by Lemma 6.14,

∃x ≤ p ϕ(x, a∗, A∗). Define b∗ ∈ M̄∗ as b∗ = max{x ≤ p | ϕ(x, a∗, A∗)} by Σ0
1

induction. We show that there is no ι ∈ P such that ι(bs) = b∗ for some bs ∈ dom(ι).

Assume there exist ι ∈ P and cs ∈ M̄ s such that cs ∈ dom(ι) and ι(cs) = b∗. Since

ι °w ∀ys∃zs(zs ≥ ys∧ϕ(žs, a∗, A∗)∗), there exist ῑ ∈ P and ds ∈ M̄ s such that ds > cs,

ds ∈ dom(ῑ) and ῑ °w ϕ(ďs, a∗, A∗)∗. Then, p ≥ ῑ(ds) > b∗ and ϕ(ῑ(ds), a∗, A∗), but

it contradicts the definition of b∗. Thus, ∅ °w ∀xs(b∗ > x̌s) and ∅ °w ϕ(b∗, a∗, A∗)∗.

Hence, ∅ °w ∃y∗(∀xs(y∗ > x̌s) ∧ ϕ(y∗, a∗, A∗)∗).

Theorem 6.16.

ns-WKL0 ` ψ ⇒ WKL0
′′ `°w ψ

for any L∗2 sentence ψ. Moreover, we can transform a proof of ns-WKL0 ` ψ into a

proof of WKL0
′ `°w ψ.

Proof. We can easily check that °w is closed under inference rules. Thus, by Lemma

6.15, we can transform a proof of ns-WKL0 ` ψ into a proof of WKL0
′′ `°w ψ

effectively.

Corollary 6.17.

ns-WKL0 ` ϕs ⇒ WKL0 ` ϕ

for any L2 sentence ϕ. Moreover, we can transform a proof of ns-WKL0 ` ϕs into a

proof of WKL0 ` ϕ.

Proof. By Theorem 6.16, we can transform a proof of ns-WKL0 ` ϕs into a proof

of WKL0
′′ `°w ϕs. Thus, as in the proof of Lemma 6.13, we can get a proof of

WKL0
′′ ` ϕ. Therefore, we can get a proof of WKL0 ` ϕ easily.
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7 Appendices

We outline some ongoing studies and we present some open questions.

7.1 Some more studies on Reverse Mathematics for complex

analysis

We summarize some more results on Reverse Mathematics for complex analysis

without proofs10. This is a joint work with Yoshihiro Horihata.

We first study Laurent expansions.

Theorem 7.1 (Laurent expansion). The following is provable in RCA0. Let f be

an effectively integrable holomorphic function on D = {z | 0 ≤ R1 < |z − a| < R2}.
Then, for all z ∈ D,

f(z) =
∞∑

n=1

a−n

(z − a)n
+

∞∑
n=0

an(z − a)n

where R1 < r < R2 and

a−n =
1

2πi

∫

|ζ−a|=r

f(ζ)(ζ − a)n−1 dζ,

an =
1

2πi

∫

|ζ−a|=r

f(ζ)

(ζ − a)n+1
dζ.

Theorem 7.2. The following assertions are pairwise equivalent over RCA0.

1. WKL0.

2. If f is a holomorphic function on D = {z | 0 ≤ R1 < |z − a| < R2}, then,

there exists {an}n∈Z such that f(z) =
∑

n∈Z an(z − a)n for all z ∈ D.

Definition 7.1 (isolated essential singularity). The following definition is made in

RCA0. Let f be a holomorphic function on D = {z | 0 < |z − a| < R}. Then,

a is said to be an isolated essential singularity if there exists {an}n∈Z such that

f(z) =
∑

n∈Z an(z − a)n for all z ∈ D and ∀m ∈ N ∃k ≥ m a−k 6= 0.

By Theorem 3.25, we can integrate bounded continuous functions within WWKL0.

Thus, many theorems are provable in WWKL0.

10Proofs will appear in Horihata’s Master’s thesis[17].
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Theorem 7.3 (Liouville’s theorem). The following is provable in WWKL0. Let f be

a holomorphic function from C to C. If f is bounded, then f is a constant function.

Theorem 7.4 (Riemann’s theorem on removable singularities). The following is

provable in WWKL0. Let f be a holomorphic function on D = {z | 0 < |z− a| < r}.
If there exists r′ > 0 such that r′ < r and f is bounded on {z | 0 < |z − a| < r′},
then, there exists a holomorphic function f̃ on D ∪ {a} such that f̃(z) = f(z) for

all z ∈ D.

Theorem 7.5 (Casorati/Weierstraß theorem). The following is provable in WWKL0.

Let f be a holomorphic function on D = {z | 0 < |z − a| < r} and a is an isolated

essential singularity. Then, f(D) is dense in C.

Theorem 7.6 (Schwarz’s reflection principle). The following is provable in WWKL0.

Let D ⊆ C+{x+ iy | y > 0 be an open set and let L = (a, b) ⊆ R be an open interval

such that L[a, b] = ∂D ∩ R. Let f be a continuous function on D ∪ L such that f

is holomorphic on D and f(z) ∈ R for all z ∈ L. Then, there exists a holomorphic

function f̃ on D̃ = D∪{z ∈ C | z̄ ∈ D∪L} such that f̃(z) = f(z) for all z ∈ D∪L.

To study singularities, we need covering spaces.

Definition 7.2 (covering space). Let X,D ⊆ C be open sets, and let π be a con-

tinuous surjective function from X to D. Let {Uij}i∈I,j∈J and {Vi}i∈I be sequences

of open sets, and let πij be homeomorphic functions from Uij to Vj. Then, π is said

to be a covering map and a sextuple (X, D, π, Uij, Vi, πij) is said to be a covering

space of D if they satisfy the following:

each of Uij and Vi is simply connected;

D =
⋃
i∈I

Vi;

∀i ∈ I π−1(Vi) =
⋃
j∈J

Uij,

∀i ∈ I ∀j ∈ J π|Uij
= πij.

Lemma 7.7 (lifting). The following assertions are pairwise equivalent over RCA0.

1. WKL0.

2. Let D0, D ⊆ C be open sets, and let (X,D, π, Uij, Vi, πij) be a covering space

of D. If D0 is simply connected and f is a continuous function from D0 to D,

then, there exists a continuous function f̂ from D0 to X such that π ◦ f̂ = f .
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By Riemann mapping theorem and Schwarz reflection principle, we can construct

a holomorphic covering map from B(0; 1) to C \ {0, 1}. Then, by Lemma 7.7, we

can show the following Picard’s theorem.

Theorem 7.8 (Picard’s theorem). The following is provable in ACA0. Let f be a

holomorphic function from C to C. If the range of f omits two points, then, f is a

constant function.

7.2 Reverse Mathematics for groups and rings

We summarize some results on Reverse Mathematics for groups and rings without

proofs11. This is a joint work with Takashi Sato and Takeshi Yamazaki. Each of

the following theorems is a generalization or a refinement of a known result which

appeared, e.g., in [31].

Theorem 7.9. The following assertions are pairwise equivalent over RCA0.

1. ACA0.

2. For any group G and a subset S ⊆ G, there exists a subgroup generated by S.

3. For any group G and a ∈ G, there exists a subgroup generated by a.

4. For any group G, the center of G exists.

5. For any group G and a subgroup H, the normalizer of H exists.

6. For any group G, the commutator subgroup of G exists.

7. If a group G acts on a set X, then the orbit of each point x ∈ X exists.

8. If S is an integral domain and R is a subring of S, then there exists the integral

closure of R in S.

Theorem 7.10. The following assertions are pairwise equivalent over RCA0.

1. WKL0.

2. For any group G and g, h ∈ G such that ∀n ∈ N h 6= gn, there exists a subgroup

H such that g ∈ H ∧ h /∈ H.

3. Let I be an ideal of a ring R. Then, there is no ideal J such that J ⊃ I and

J 6= I if and only if I is maximal, i.e., R/I is a field.

11Proofs are in Sato’s Master’s thesis[26].
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7.3 Π1
1-conservativity and Π1

2-theories

In this section, we study Π1
1-conservativity for Π1

2-theories. This study is inspired

by the following questions.

Question 7.3 (Cholak, Jockusch, Slaman[8]). Let T0, T1, T2 be Π1
2-theories.

1. [8, Question 13.3] Let T1 be a Π1
1-conservative extension of T0. Then, is every

countable model of T0 an ω-submodel of some model of T1?

2. [8, Question 13.4] Let T1, T2 be Π1
1-conservative extensions of T0. Then, is

T1 + T2 Π1
1-conservative over T0?

We first answer these questions. We can easily show that a positive answer to

1 implies a positive answer to 2. However, the answer to 1 is no. In [3], Avigad

constructed a counter example for 1. Here, we show another counter example. We

construct true Π1
2-theories which denies 1.

Let T0 = Π1
1(ACA0

+) + ACA0 and let T1 = ACA0
+ where Π1

1(ACA0
+) = {ϕ |

ϕ is a Π1
1 sentence and ACA0

+ ` ϕ}. Then, T1 is a Π1
1-conservative extension of T0.

Since T1 ` ∃X ‘X is a full satisfaction class for N (as an LPA-structure)’, the first

order part of a countable model of T1 must be recursively saturated (as an LPA-

structure). Note that a recursively saturated model is not a short model. On the

other hand, we can construct a countable model of T0 whose first order part is a

short model (as an LPA-structure). To show this, let T ′ be the first order part of T0,

i.e., T ′ be the set of all LPA sentences which are proved in T0. Then, there exists

a countable model M of T ′ which is short. Thus (M, ARITH(M)) is the required

countable model of T0.

Now, we give a positive answer to Question 7.3.2.

Lemma 7.11. Let T0 and T1 be Π1
2-theories. Then, the following are equivalent.

1. T1 is a Π1
1-conservative extension of T0.

2. If (M,S) is a countable model of T0, then there exist M ′ ⊇ M and S ′ ⊇ S

such that (M ′, S ′) |= T1 and (M,S) ≺ (M ′, S ′) with respect to arithmetical

formulas.

Proof. To show 2 → 1, assume T0 6` ∀Xϕ(X) where ϕ is arithmetical. Then, there

exists a countable model (M,S) |= T0+∃X¬ϕ(X). Then, there exists (M ′, S ′) |= T1
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such that (M, S) ≺ (M ′, S ′) with respect to arithmetical formulas. Since (M,S) |=
∃X¬ϕ(X), (M ′, S ′) |= ∃X¬ϕ(X). Hence, T1 6` ∀Xϕ(X).

For the converse, let (M, S) be a countable model of T0. Let Θ be all arithmetical

L2 ∪M ∪ S sentences which are true in (M, S). We show that Θ + T1 is consistent.

Presume Θ+T1 is inconsistent, there exist an L2∪M formula ψ( ~X) and ~Z ∈ S such

that (M,S) |= ψ(~Z) and T1 ` ¬ψ(~Z). Then, T1 ` ∀ ~X¬ψ( ~X). By Π1
1-conservativity,

T0 ` ∀ ~X¬ψ( ~X), but it contradicts (M, S) |= T0 + ψ(~Z).

Theorem 7.12. Let T0, T1, T2 be Π1
2-theories and let T1 and T2 be Π1

1-conservative

extensions of T0. Then, T1 + T2 is a Π1
1-conservative extension of T0.

Proof. By the previous lemma, we can construct an arithmetical elementary chain

{(Mi, Si)}i∈ω such that (M2i, S2i) |= T1 and (M2i+1, S2i+1) |= T2. Let M :=
⋃

i∈ω Mi

and let S :=
⋃

i∈ω Si. Then, (M, S) |= T1+T2. Thus, by the previous lemma, T1+T2

is a Π1
1-conservative extension of T0.

Professor Tsuboi and Dr. Ikeda pointed out that the previous lemma and theorem

can be generalized to a similar theorem for general first order theories. We give

another generalization. Let Γ0 be the set of all sentences of the form ∀X∃!Y ϕ(X, Y )

where ϕ is arithmetical. In [36], Yamazaki showed that RCA+
0 is a Γ0-conservative

extension of RCA0. In [30], Simpson, Tanaka and Yamazaki showed that WKL0 is a

Γ0-conservative extension of RCA0, and then, they showed that WKL+
0 = WKL0 +

RCA+
0 is also a Γ0-conservative extension of RCA0. Then, is T1+T2 a Γ0-conservative

extension of T0 if T1 and T2 are Γ0-conservative extensions of T0? The answer is yes.

We can generalize Theorem 7.12 as follows.

Theorem 7.13. Let Γ be a class of Π1
3 sentences which satisfies the following:

(∗) for all Σ1
2 formula ψ(X) and for all Σ1

0 formula θ(X), if ∀Xψ(X) ∈ Γ, then,

there exists ϕ ∈ Γ such that

T0 ` ∀X(θ(X) → ψ(X)) ↔ ϕ.

If T0, T1 and T2 are Π1
2-theories and both T1 and T2 are Γ-conservative extensions

of T0, then, T1 + T2 is a Γ-conservative extension of T0.

Proof. Easy modification of the proof of Theorem 7.12.

Corollary 7.14. Let T0, T1 and T2 be Π1
2-theories such that T1 and T2 are Γ0-

conservative extensions of T0. Then, T1 + T2 is a Γ0-conservative extension of T0
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We can easily generalize this theorem for Π1
n-theories.

Theorem 7.15. Let Γ be a class of Π1
n+3 sentences which satisfies the following:

(∗) for all Σ1
n+2 formula ψ(X) and for all Π1

n∪Σ1
n formula θ(X), if ∀Xψ(X) ∈ Γ,

then, there exists ϕ ∈ Γ such that

T0 ` ∀X(θ(X) → ψ(X)) ↔ ϕ.

If T0, T1 and T2 are Π1
n+2-theories and both T1 and T2 are Γ-conservative extensions

of T0, then, T1 + T2 is a Γ-conservative extension of T0.

Remark 7.16. Avigad showed that there exist Π1
2-theories T0, T1 and T2 which

satisfy the assumption of Theorem 7.12 but T1 + T2 + Π1
1-AC is inconsistent. This

shows that we cannot weaken the assumption of Theorem 7.12. Similarly, there

exist Π1
n+2-theories T0, T1 and T2 which satisfy the assumption of Theorem 7.15 but

T1 + T2 + Π1
n+1-AC is inconsistent.

7.4 Open questions

We finally present some open questions.

We first consider complex analysis. Theorem 4.20 shows that we can construct

the derivative of a complex differentiable function within WWKL0. As we stated in

Section 7.1, we can prove many theorems within WWKL0 because integrability for

bounded functions plays a key role in complex analysis. However, we do not know

whether WWKL is exactly needed. For example,

Open question 1. can we prove that a complex differentiable function is a holo-

morphic function in RCA0?

When we study complex analysis, an entire function is a important and basic

object. We aim to deal with entire functions within RCA0. An entire function must

be a power series, but is this provable in RCA0? To prove this, we need Cauchy’s

integral theorem for entire functions.

Open question 2. Can we prove Cauchy’s integral theorem for entire functions in

RCA0?

We aim to sharpen the result on Reverse Mathematics for the Riemann mapping

theorem (Theorem 5.17).
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Open question 3. Is the Riemann mapping theorem equivalent to ACA0 over RCA0?

By Theorems 5.26 and 5.25, the interior of a Jordan curve exists and is homeo-

morphic to the open unit disk in WKL0. Then, we consider another version of the

Riemann mapping theorem:

(JRMT) if D ⊆ C is the interior of a Jordan curve, then there exists a conformal

map f : D → B(0; 1).

Open question 4. Is JRMT provable in WKL0?

Note that Picard’s theorem is provable in WKL0 + JRMT.

Next, we consider arguments of non-standard analysis in second order arithmetic.

We developed non-standard analysis only in WKL0 and ACA0. Then,

Open question 5. develop suitable parts of non-standard analysis in RCA0.

We aim to find some more good axioms of non-standard second order arithmetic.

Define two new axioms as:

(EEQ) ϕs ↔ ϕ∗ where ϕ is an L2-sentence;

(SB) ∀xs∃y∗ψ(xs, y∗) → ∃z∗∀xs∃y∗ ≤ z∗ψ(xs, y∗) where ψ is an L∗2-formula.

Open question 6. Is ns-ACA0 + EEQ is a conservative extension of ACA0? More

precisely, does ACA0 prove ° ns-ACA0 + EEQ?

We can show that ns-ACA0 +SB is a conservative extension of ACA0 by ω1 iterations

of Theorem 5.2. Then,

Open question 7. does ACA0 prove ° ns-ACA0 + SB? Otherwise, is there a good

interpretation of ns-ACA0 + SB in ACA0?

We seek some more axioms to develop non-standard analysis richly in second

order arithmetic.

Open question 8. Find some more good axioms of non-standard second order

arithmetic.
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