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Abstract

This research is motivated by the program of Reverse Mathematics. We study real
and complex analysis in second order arithmetic. To develop analysis in second
order arithmetic, we adopt techniques of non-standard analysis, which enables us to
simplify many proofs.

In Chapters 3 and 4, we introduce some suitable notions for differential and
integral calculus and develop basic real and complex analysis within RCAy. Then,
we present some results on Reverse Mathematics for real and complex analysis such
as the following: the inverse function theorem and Taylor’s theorem for holomorphic
functions are proved in RCAq, L?-convergence of Fourier series and Cauchy’s integral
theorem is equivalent to WKLg over RCA,.

In Chapter 5, we introduce some model-theoretic arguments of non-standard
analysis for WKLy and ACAq using Tanaka’s self-embedding theorem for a model
of WKLy and Gaifman’s conservative extension for a model of PA. Then, applying
these techniques, we show that the Jordan curve theorem is equivalent to WKL over
RCAy and that the Riemann mapping theorem is equivalent to ACAy over WKL,.

In Chapter 6, we introduce systems of non-standard second order arithmetic
ns-ACAp and ns-WKL, and formalize the non-standard arguments introduced in
Chapter 5. Then, we obtain some effective methods to transform non-standard
proofs in ns-ACAq or ns-WKLg into standard proofs in ACAy or WKLq and show that
ns-ACA, and ns-WKL, are conservative extensions of ACAy and WKLq respectively

without using a model-theoretic method.
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1 Introduction

This thesis is a contribution to the foundations of mathematics. The main objectives
of this thesis are mathematics in second order arithmetic, especially arguments of
non-standard analysis for second order arithmetic and Reverse Mathematics.

Most or all ordinary mathematics can be developed within a system of axiomatic
set theory such as ZFC. On the other hand, some parts of basic analysis or linear
algebra can be developed using elementary methods such as computable methods.
For example, it is difficult to find a fixed point of a continuous function from the unit
disk to itself (Brouwer’s fixed point theorem). However, if a function is a contraction
mapping, one can find a fixed point computably (actually, 0, £(0), f(f(0)),... con-
verges to a fixed point of a contraction mapping f). Then, which parts of ordinary
mathematics can be formalized in weak systems? (In this setting, we are especially
concerned with the core of ordinary mathematics such as calculus, real and com-
plex analysis, abstract algebra, and geometry, which are learned by undergraduates.)
Motivated by this question, we develop some parts of ordinary mathematics (mainly
analysis) within some sufficiently weak subsystems of second order arithmetic (in-
troduced in the following section), which consist of axioms to treat computable sets
and other plain sets.! This development is the first subject of this thesis. The sys-
tems we adopt have few axioms to treat infinite sets. For that reason, we encounter
many difficulties in developing analysis. Consequently, we require some suitable
methods to treat limit, differentiation, integration, and so on. We adopt techniques
of non-standard analysis to develop mathematics more richly in these systems.

When a theory of ordinary mathematics is provable by weak axioms, then are
these axioms exactly necessary to prove it? For example, the fixed point theorem
for contraction mappings requires less axioms than Brouwer’s theorem.? The second
subject of this thesis is to answer the previous question. Friedman[11] revealed the
following theme: very often, if a theorem 7 of ordinary mathematics is proved from
the “right” axioms, then 7 is equivalent to those axioms over some weaker system in
which itself is not provable. This theme is known as Reverse Mathematics. Following
this theme, we determine which axioms are necessary to prove some theorems of real

and complex analysis in second order arithmetic.?

IThere are many other studies to formalize ordinary mathematics in weak systems from various

standpoints such as recursive mathematics[23], constructive mathematics[4] and so on.
2See Shioji/Tanaka[27].
3 Aside from the viewpoint of second order arithmetic, Constructive Reverse Mathematics (see,



1.1 Second order arithmetic and Reverse Mathematics

The formal system Z, of second order arithmetic is a system in which one can
deal with natural numbers and sets of natural numbers. Its language is a two-
sorted language, i.e., there are two distinct sorts of variables which are intended
to range over two different kinds of objects, natural numbers and sets of natural
numbers. Its axioms consist of basic axioms of arithmetic such as ordered semiring,
an induction axiom and a comprehension axiom which expresses that, for any second
order formula ¢(n), there exists a set of all n such that ¢(n) holds. Second order
arithmetic is adequate to develop the core of ordinary mathematics. Actually, most
or all concepts of ‘classical’ mathematics can be developed within second order
arithmetic.

Friedman pointed out that the study of subsystems of second order arithmetic
is necessary and important to answer the theme of Reverse Mathematics. Actu-
ally, we can determine the right axioms for many theorems of ordinary mathematics
and classify theorems by the strength of axioms they require in second order arith-
metic. For this reason, we study ordinary mathematics in subsystems of second order
arithmetic. Reverse Mathematics in second order arithmetic is carried forward by
Friedman, Simpson, Tanaka, and others. Many theorems of ordinary mathemat-
ics are provable within a subsystem of second order arithmetic RCAg, or equivalent
over RCAq to one of the following subsystems: WKLg, ACAq, ATRy, and IT}-CAy. We
usually consider these five subsystems of second order arithmetic when we study
Reverse Mathematics.

RCAq is a system of recursive comprehension that guarantees the existence of
recursively definable sets. This system is the weakest system that we will consider;
it is the basis of Reverse Mathematics. However, it is sufficiently strong to prove
some basic theorems of continuous functions, algebra, and so on. For example, the
mean value theorem and fixed point theorem for contraction mapping is provable in
RCA, [14, 27].

WKL, consists of RCAg and a particular set existence axiom called weak Kdnig’s
lemma, which asserts that every infinite tree of sequences of 0’s and 1’s has an infinite
path. Although the first order part of WKL, is the same as that of RCAg, many
important theorems, such as the Heine-Borel theorem, Brouwer’s fixed point theorem

and the uniform continuity of continuous functions on the closed unit interval cannot

e.g. [18]) is also known.



be proved in RCAy but can be proved in WKLy. Since the consistency strength of
WKL,y is equivalent to that of PRA ( Primitive Recursive Arithmetic), mathematics in
WKL present important implications for the foundations of mathematics, especially
in relation to Hilbert’s program [29, page 382].

The system ACAg consists of RCAg and arithmetical comprehension axiom, which
guarantees the existence of arithmetically definable sets. The first order part of ACAq
is just PA (Peano Arithmetic). ACAq is stronger than WKL, in the sense of consis-
tency, and it proves many theorems related to convergence, e.g., the convergence of
a bounded monotone real sequence.

ATR is a system of arithmetical transfinite recursion, which says that arithmeti-
cal comprehension can be iterated along any countable well ordering. IT}-CA, is a
system of I} comprehension, which guarantees the existence of II} definable sets.
Both ATRq and TI}-CA, present numerous mathematical consequences in the realms
of algebra, analysis, classical descriptive set theory, and countable combinatorics.

For this thesis, we mainly consider RCAy, WKLy, ACAy and another system,
WWKL,y, which is introduced by Simpson/Yu[39]. For mathematics in ATRy and
I11-CAy, see [29, Chapters V, VI].

1.2 Non-standard analysis and second order arithmetic

Non-standard analysis is a noteworthy application of model theory to mathematics.
It is a method to handle infinitely large and small numbers and develop analysis as
follows. First, fix a model V' including N and R to carry out mathematics, which
is called the standard model. Then, construct an elementary extension *V = V.4
In *V, one can find infinitely large natural numbers and infinitely large or small
real numbers from the standpoint of V. Then, one can carry out mathematics with
infinitely small and large numbers. By elementarity, consequences in *V return to
V.

Non-standard analysis was initiated by Robinson[24] and carried forward by
many people. It provides a suitable framework for the development of differential
and integral calculus using intuitive definitions of limits, derivatives and so on using
infinitely small and large numbers. Using non-standard analysis, one can substan-
tially simplify many proofs of analysis.

As described earlier, we encounter some difficulties in dealing with various ‘in-

4Sometimes, an elementary extension with some saturation is needed.



finities” such as limit, continuity and integration when we study analysis in weak
systems of second order arithmetic. Consequently, within these systems, it would
be extremely convenient to handle ‘infinities’ if techniques of non-standard analysis
were completely available and ‘infinities’ were expressed by ‘hyper finite concepts’,
i.e., as expressed by finite concepts with infinitely small or large numbers. Unfor-
tunately, second order arithmetic is not sufficiently strong to use full techniques of
non-standard analysis. Actually, Henson, Kaufmann and Keisler[15] and Henson
and Keisler[16] showed that some systems of non-standard analysis deduce some
properties which cannot be proved in Z,. Therefore, some restriction exists in using
arguments of non-standard analysis in subsystems of second order arithmetic. Non-
standard analysis is based on constructions of a non-standard model. For that rea-
son, some model theoretic consideration is needed to use techniques of non-standard
analysis in second order arithmetic.

In [34], Tanaka introduced some arguments of restricted non-standard analysis
for a system WKL, using self-embedding theorem for countable non-standard models
of WKLg. On the other hand, many constructions of non-standard models of arith-
metic are known. In this thesis, we introduce non-standard arguments for ACAq
using Gaifman’s model constructions. Then, we apply these arguments to some
theorems of standard analysis.

According to the model theoretic arguments presented above, we can show that
some theorems are provable in second order arithmetic. However, we cannot find
the steps of proofs in which some essential axioms are needed. In fact, we need a
precise formal proof for Reverse Mathematics. We seek to reconstruct a formal proof
of second order arithmetic from a model theoretic non-standard proof. For that
reason, we formalize non-standard arguments and transform non-standard proofs

into formal proofs of second order arithmetic.

1.3 Outline of this thesis

A main topic of this thesis is non-standard arguments for second order arithmetic
and its applications to Reverse Mathematics, which we argue in Chapters 5 and 6.
The other is Reverse Mathematics for real and complex analysis related to differen-
tiability and integrability, as described in Chapters 3 and 4. Arguments presented
in Chapters 3 and 4 are used to prove the Riemann mapping theorem and the Jor-

dan curve theorem as applications of non-standard arguments in Chapter 5, but the



other parts of Chapters 5 and 6 are independent from Chapters 3 and 4.

Chapter 2 is devoted to define the systems RCAy, WWKLy, WKL, and ACA,.
We introduce the real number system in RCAg. In addition, we study the strength
of compactness and convergence for Euclidean space within RCA,.

In Chapters 3 and 4, we develop basic real and complex analysis within RCAq
and show some results for Reverse Mathematics. Analysis in second order arithmetic
has been developed well, e.g. in [29]. However, some difficulty remains in dealing
with derivatives within RCAy because we might not construct the derivative f’ in
RCAp even if f is continuously differentiable (see Theorem 3.8). We introduce a
suitable definition and a useful expression of derivatives for RCAy. Then, we prove
some basic theorems such as the inverse function theorem in RCAy and present some
results on Reverse Mathematics for Fourier expansions. For complex analysis, we
show some results for Reverse Mathematics, which are mainly related to Cauchy’s
integral theorem presented in Chapter 4.

In Chapter 5, we introduce some non-standard arguments for WKLy and ACA,.
We also prove the Riemann mapping theorem in ACAq and the Jordan curve theorem
in WKLy. Using Tanaka’s self-embedding theorem for a model of WKLy, some proofs
of non-standard analysis are available within WKL, [33, 32]. Applying this, we show
that the Jordan curve theorem is provable in WKLy. We also introduce non-standard
arguments for ACAg by Gaifman’s conservative extension, by which non-standard
analysis for sequential compactness is available in ACAy. Subsequently, we apply
them for the Riemann mapping theorem within ACAg. We eventually show that
the Riemann mapping theorem is provable in ACAg; moreover, we show that the
Riemann mapping theorem is equivalent to ACAq over WKL,.

In Chapter 6, we seek some effective methods to convert non-standard proofs
introduced in Chapter 5 into proofs in ACAg or WKLy. Professor Sakae Fuchino in-
spired this research. We introduce systems ns-ACAy and ns-WKL,, corresponding to
ACAy and WKLy, following the non-standard arithmetic introduced by Keisler [21].
In these systems, we can formalize non-standard arguments introduced in Chapter 5
such as proofs of the Jordan curve theorem and the Riemann mapping theorem. As
stated earlier, although we can find that ns-ACA, and ns-WKL, are conservative ex-
tensions of ACAg and WKL, respectively by model theoretic considerations, we seek
to obtain sharper and more effective conservation results without model theoretic
considerations. For this reason, we interpret ns-ACAg and ns-WKLy within ACA,

and WKLy and show the conservativities as corollaries, as with the formalization of



Harrington’s conservation theorem by Avigad[2]. Thereby, we can find methods to
transform non-standard proofs into proofs in WKLy or ACA,.

The works presented in Chapters 4 and 5 appeared respectively in [37] and
[38, 25]. Other works in this thesis have been presented at several workshops and

as preprints.



2 Preliminaries

In this chapter, we first define four subsystems of second order arithmetic RCAy,
WWAKLy, WKLy and ACAy. Then we introduce the real number system and Euclidean
space in RCAq and study the strength of compactness and convergence in Euclidean

space within RCA,.

2.1 Subsystems of second order arithmetic

The language L5 of second order arithmetic is a two-sorted language with num-
ber variables z,v, z, ... and set variables X,Y, Z,.... Numerical terms are built up
from numerical variables and constant symbols 0,1 by means of binary operations
+ and -. Atomic formulas are s = ¢, s < t and s € X, where s and t are numer-
ical terms. Bounded (X or II)) formulas are constructed from atomic formulas by
propositional connectives and bounded numerical quantifiers (Vo < t) and (3z < ),
where ¢ does not contain x. A ¥? formula is of the form Jz,Vz,...z,0 with 6
bounded, and a I1% formula is of the form Va;3z; ... x,0 with § bounded. All the
Y0 and TI° formulas are the arithmetical (3} or II}) formulas. A X! formula is
of the form 3X VX5 ... X, with ¢ arithmetical, and a I} formula is of the form
VX13Xs ... X, p with ¢ arithmetical.

The semantics of L, are given by the following definition.

Definition 2.1. An Ls-structure is an ordered 7-tuple
(M757+Ma 'M)OMa 1M7<M)a

where M is a set which serves as the range of the number variables, S is a set of
subsets of M serving as the range of set variables, 4+, and -j; are binary operations
on M, 0p; and 1, are distinguished elements of M, and <,; is a binary relation
on M. We always assume that the sets M and S are disjoint and nonempty. The
structure (M, S, +ur, a1, Onr, Lar, <ar) is simply denoted by (M, S). Formulas of £,

are interpreted in (M, S) in the obvious way.

We also write M for an Ly-structure (M, 4+, -ar, Onr, Lag, <ar). If M is the set
(or structure) of standard natural numbers w, an Lo-structure (M, S) is called an

w-structure or an w-model.

We first define RCA,.



Definition 2.2. The system of RCAq consists of
(1) the discrete ordered semiring axioms for (w,+,-,0, 1, <),
(2) AJ-CA (RCA):

Vi(p(r) = ¢(r)) — 3XVr(r € X < o(z)),

where ¢(z) is X9, ¢ (z) is 11, and X does not occur freely in o(x),

(3) ¢ induction scheme:
p(0) AVz(p(z) — o(z + 1)) — Vop(z),
where () is a ¥? formula.

The acronym RCA stands for recursive comprehension axiom. Roughly speaking,
the set existence axioms of RCAq are strong enough to prove the existence of recursive
sets.

If X and Y are set variables, we use X C Y and X = Y as abbreviations for
the formulas Vn(n € X - ne€Y) and Vn(n € X < n €Y). We define N to be the
unique set X such that Vn(n € X).

Within RCAg, we define a pairing map (m,n) = (m + n)*> + m. We can prove
within RCAg that for any m, n, i, j in N, (m,n) = (4,7) if and only if m = i and
n = j. Moreover, using A)-CA, we can prove that for any X and Y, there exists a
set X xY C N such that

Vnne X xY o de<niy<nze X AyeY Al(z,y)=n)).

We can encode a finite sequence of natural numbers in RCAy using the method by
Shoenfield [28, page 115]. We define N<N to be the set of (codes for) finite sequences
of elements of N. A sequence of sets of natural numbers is defined to be a set
X C N x N. By A comprehension, we define X as m € X3 < (k,m) € X and
write X = { Xy }reny or X = (X | k € N). Let {Ag}r<n be a sequence of sets. Then,

by AY comprehension, we define a direct product ], o Ai as

HAk = {0 e NN |lh(o) =nAVi<no(i) € A}

k<n
where 1h(o) denotes the length of 0. We write A" for [],_, A. A set X is said to
be finite if there exists a monotone increasing finite sequence o such that Vz(x €
X < 3Ji o(i) = x). If a finite set X is denoted by o, define |X| (the cardinality



of X) as |X| = lh(o). For X and Y, a function f : X — Y is defined to be
aset f C X xY such that VaVyVy((x,y0) € f A (x,11) € f — yo = y1) and
Ve e X3y € Y(x,y) € f. We write f(z) =y for (z,y) € f.

Within RCAg, the universe of functions is closed under composition, primitive
recursion (i.e., given f: X — Y and g : Nx X xY — Y there exists a unique
h:Nx X —Y defined by h(0,m) = f(m), h(n+ 1,m) = g(n,m, h(n,m)) and the
least number operator (i.e., given f : N x X — N such that for any m € X there
exists n € N such that f(n,m) = 1, there exists a unique g : X — N defined by
g(m) =the least n such that f(n,m) = 1). Especially, if (M, S) is an w-model of

RCAy, then (M, S) contains all recursive functions on w.

Theorem 2.1. The following is provable in RCAq. If o(z,y) is X9 and VnImp(n, m)
holds, then there exists a function from N to N such that Yne(n, f(n)) holds.

Proof. We reason within RCAg. Write

o(r,y) = 320(x,y, 2)

where 6 is ¥3). By A? comprehension, we define projection functions p; and p, as
follows: p;((n1,m2)) = n; for all ny,ny € N. Again using A} comprehension, there

exists a function ¢g from N? to N such that

6(n, p1(m), pa(m)) < g(n.m) = 1.

Then Vn3mg(n, m) = 1, hence by the least number operator there exists a function h
from N to N such that g(n, h(n)) = 1. Define a function f as f(n) = p1(g(n, h(n))),
then Vnp(n, f(n)) holds. This completes the proof. O

Next, we define WKLg. Within RCAq, we define 2<N to be the set of (codes for)
finite sequences of 0’s and 1’s. A set T' C 2<N is said to be a tree (or precisely 0-1 tree)
if any initial segment of a sequence in T is also in T'. A path through T is a function
f N — {0,1} such that for each n, the sequence f[n] = (f(0), f(1),..., f(n — 1))
belongs to T'.

Definition 2.3. WKL, is the system which consists of RCAqg plus weak Konig’s

lemma: every infinite 0-1 tree T" has a path.

In particular, w-models of WKLy are known as Scott systems and extensively
studied by e.g. Kaye [20]. The first-order part of WKL, is the same as that of RCA,.



Furthermore, WKL, is conservative over Primitive Recursive Arithmetic (PRA) with
respect to IT9 sentences. On the other hand, WKL, is strong enough to prove many
theorems of ordinary mathematics, for example, Heine-Borel covering theorem, max-
imum principle for continuous functions on [0,1], Brouwer’s fixed point theorem and
SO on.
We next introduce a weaker version of weak Konig’s lemma called weak weak
Konig’s lemma: if a 0-1 tree T" has no path, then
lim {o € T |1h(o) = n}| _
n—o0 on

Definition 2.4. WWKL, is the system which consists of RCAy plus weak weak

0.

Konig’s lemma.

WWKL, is introduced by Simpson/Yu[39]. WWHKL, is properly weaker than
WKLy and properly stronger than RCAy,. WWKLy permits a theory of Lebesgue

measurability.
Finally, we define ACAq.

Definition 2.5. ACAj is the system which consists of RCAg plus ACA (arithmetical
comprehension axioms) :
AXVn(n € X < p(n)),

where ¢(z) is arithmetical and X does not occur freely in ¢(x).

ACA( permits a smooth theory of sequential convergence. For any sentence o of
the language of Peano Arithmetic (PA), o is a theorem of ACA, if and only if o is
a theorem of PA. ACA, is finitely axiomatizable although PA is not. The following
theorem will be useful in showing that ACA is needed in order to prove various

theorems of ordinary mathematics.

Theorem 2.2 ([29] Theorem I11.1.3). The following assertions are pairwise equiv-
alent over RCA.

1. For any one-to-one function f from N to N, there exists a set X C N such
that X is the range of f.

2. X9-CA: 3XVn(n € X < ¢(n)) restricted to XY formulas o(z) in which X does

not occur freely in ¢(x).

3. ACA,.

For details of the definitions of these four subsystems, see [29].

10



2.2 Real number system and Euclidean space

Next, we construct the real number system. We first define Z and Q. Define an
equivalence relation =z on N? as (m,n) =z (p,q) <> m+q = n+p, and by A?Y com-
prehension, define Z, a set of integers, as (m,n) € Z « Yk < (m,n) (p1(k), p2(k)) #z
(m,n), i.e., Zis a set of least number elements of equivalence classes of =7. We define
+7:Z X Z — 7 as (I1,ls) +7 (m1,ms) = (n1, ne) where (ny,ny) is a unique element
in Z which satisfies (I; +my, la+m3) =z (n1,n2). We define -z similarly. We can also
define | - |z and <z (norm and order in Z) naturally. Similarly, we define a relation
=g on ZxZ* (Z* is a set of positive integers) as (m,n) =q (p,q) < m-zq =z n-zp,
and define Q as (m,n) € Q « Vk < (m,n) (p1(k),p2(k)) #o (m,n). We also define
+0, ‘@, | - |o and <g as in Z, and then the system (Q;0, 1, +q, -0; <@) is an ordered
field.

Definition 2.6 (Real number system). The following definitions are made in RCA,.
A real number is an infinite sequence of rational numbers o = {g,}nen (i.e. a
function from N to Q) which satisfies |qx — qi|o <g 27" for all [ > k. Here, each g, is
said to be n-th approximation of a. Define {p, }nen =r {¢n}tnen as VE |pr — qilo <o
27F+1 We can also define +g, g, | - |r and <g naturally. We usually write o € R if
« is a real number. For details of the definition of the real number system, see [29,
Chapter I1].

We usually omit the subscript z, g or g.
Imitating the definition of R, we define Euclidean space R"™. We define the
addition and the scalar multiplication naturally, and see Q™ as a (countable) vector

space. We also define || - ||on as

lallo = Vi + - + ¢,

where q = (q1,. -, qn)-

Definition 2.7 (Euclidean space). The following definitions are made in RCAg. An
element of R” is an infinite sequence of elements of Q™ a = {qy }xen Which satisfies
lax — qu|| < 27% for all [ > k. Then, each a; = {qu;i }ren is a real number. (Here,
ar = (qk1,- -, Gkn).) We define || - [|gn, the norm of R™ as the following:

|allge = Var? + - + a2,

Here, of course the real number field R is the 1-dimensional Euclidean space R!.
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Remark 2.3. In this thesis, to avoid too many subscripts, we use the intuitive
expression such as q = (qi, ..., ¢,) even if the dimension of Euclidean space n may

be nonstandard.

Let X = { X} }ren be a sequence of sets. If X = a, € R", i.e., each X}, is formed
an element of R", then X = {ay}xren is said to be a sequence of points of R". We

say that a sequence {ay}ren converges to b, written b = limy_, ag, if
Vm 3k Vi ||b — ap|| < 27™.

Note that b = limy_.., a; is expressed by a II3 formula. The next theorem shows

that R™ is ‘weakly’ complete.

Theorem 2.4. The following is provable in RCAq. Let {ay}ren be a sequence of
points of R™. If there ezists a sequence of real numbers {ry }ren such thatlimy_,o 1 =
0 and VEYi ||ag — agq|| < 7x, then {ay}ren is convergent, i.e., there exists b such

that b = hmkﬂoo ag.

Proof. This theorem is a generalization of nested interval completeness [29, Theorem

I1.4.8], and modifying its proof, we can easily prove this theorem. O

Note that we can prove Theorem 2.4 effectively, i.e., we can effectively find the
limit limy,_,c a5 in Theorem 2.4.° Thus, a sequential version of Theorem 2.4 holds.

The next theorem shows that the ‘strong’ completeness of R™ is not provable in
RCA,.

Theorem 2.5. The following assertions are pairwise equivalent over RCAg.
1. ACA,.

2. Every Cauchy sequence in R™ is convergent. (A sequence {ay}ren in R™ is

said to be Cauchy if Ve > 0 Im Vn(n >m — |ja, —a,| <e¢.)

Proof. This theorem is an easy generalization of [29, Theorem I11.2.2]. O

°In this thesis, ‘we can effectively find a set X (using a parameter Y) means ‘a set X is
directly constructed by RCA (AY comprehension) with parameter Y. In this situation, given
a sequence of sets {Y,,}nen, we can find a sequence {X,,}nen such that each X, is constructed
from Y,,. For example, ‘Theorem 2.4 is effectively provable’ means that there exist a X{ formula
o(n, X,Y) and a I1{ formula ¢ (n, X, Y) such that ‘for any {ay }ren and {7% }ren as in Theorem 2.4,
Z = A{n | o(n {ar}ren, {riteen)t = {n [ ¥(n {ar}ren, {rr}ren)} is the limit of {a}ren’ is
provable in RCAg.
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Next, we define an open or closed set. It is coded by the countable open basis
of R™.

Definition 2.8 (open and closed sets). The following definitions are made in RCA,.

1. A (code for an) open set U in R" is a set U C N x Q™ x Q. A point x € R™ is
said to belong to U (abbreviated x € U) if

dn Ja Ir (||[x —al| <rA(n,a,r) € U).

2. A (code for a) closed set C'in R" is a set C C N x Q" x Q. A point x € R" is
said to belong to C (abbreviated x € C) if

Vn VaVr ((n,a,r) e C — ||x—al >r).

The following lemma is very useful to construct open or closed sets.

Lemma 2.6 ([29] Lemma I1.5.7). For any X9 (or 11?) formula o(X), the following
is provable in RCAg. Assume that for all x,y € R", x =y and o(x) imply ¢(y).
Then there exists an open (or closed) set U C R™ such that for allx € R", x € U if

and only if p(x).
Finally, we consider some versions of Heine-Borel theorem.

Theorem 2.7. The following assertions are pairwise equivalent over RCAy.
1. WKLy.

2. Heine-Borel theorem for bounded closed rectangles: if C' C R™ s a bounded
closed rectangle, i.e., C is a products of bounded closed intervals, and {Uy}ren

be a sequence of open subsets of R™ which covers C', then there exists m such
that {Uy }k<m covers C.

3. A sequential version of 2: if {C;}ien is a sequence of bounded closed rectangles
in R™ and ({Ujgtren | I € N) be a sequence of sequences of open subsets of R"
such that each {Uy}ren covers Cy, then there exists a sequence {m;}en such
that {Up }k<m, covers Ci.

Proof. This theorem is a generalization of [29, Theorem IV.1.2], and we can imitate

its proof. Il
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Theorem 2.8. The following assertions are pairwise equivalent over RCAy.
1. WWKLy.

2. If C C R"™ is a bounded closed rectangle and {Uy}ren be a sequence of open
subsets of R™ which covers C, then there exists a sequence of finite sequences
of rectangles ({Vi;}i<i;) | i € N) such that {Uy}ie; U{Vij}i<1, covers C for all
1€ N and

k) =0
J<li
Here, \(V') denotes the volume of V', i.e., A(V) = (by —aq)(ba—as) - - - (b, —ay)

where V- = [ay, b1] X [ag, bg] X -+ X [a,, by].
3. A sequential version of 2 as in Theorem 2.7.

Proof. This theorem is a generalization of a weak form of Heine-Borel compactness

appeared in [39], and we can imitate arguments in [39]. O

A bounded closed rectangle is called a ‘totally bounded (or compact)’ and ‘sepa-
rably closed’ closed set in the theory of complete separable metric spaces® in RCA,,
and the above Heine-Borel theorem can be generalized for complete separable metric

spaces.

6For the theory of complete separable metric spaces, see e.g. [7, 6, 12].
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3 Basic analysis in second order arithmetic

In this chapter, we introduce a means to deal with differentiability and integrability
within RCAq, and then, develop basic real analysis. Subsequently, we present some

results on Reverse Mathematics for fundamental real analysis.

3.1 Differentiability and integrability

In this section, we define continuous functions, C!-functions and Riemann integrabil-
ity. To deal with C!-functions within RCAy, we introduce a differentiable condition
function for a C!-function. To consider Riemann integrability of continuous func-
tions, we introduce a modulus of integrability for a continuous function. These are

powerful tools to develop differential and integral calculus within RCA.

3.1.1 Continuous functions

In this subsection, we define a continuous function and show some basic results for
continuous functions. We define continuous functions as a certain code given by the

countable open basis of R".

Definition 3.1 (continuous functions). The following definition is made in RCA,.
A (code for a) continuous partial function f from R"™ to R is a set of quintuples
F CNxQ"x Q" xQ x QF which satisfies the following properties. We write
(a,r)F(b,s) as an abbreviation for Im((m,a,r,b,s) € F'). The properties which we

require are:
1. if (a,7)F(b,s) and (a,r)F(V,s'), then [b —b'| < s+ §;
2. if (a,r)F(b,s) and ||’ — a|| + 1" < r, then (a’,7")F(b, s);
3. if (a,7)F(b,s) and |b —b'| + s < &, then (a,r)F(V, ).

A point x € R” is said to belong to the domain of f, abbreviated x € dom(f), if
and only if for any € > 0 there exists (a,r)F(b, s) such that |[|[x —a|| <r and s < €.
If x € dom(f), we define the value f(x) to be the unique y € R such that |y —b| < s
for all (a,r)F (b, s) with ||x — a|| < r. The existence of f(x) is provable in RCA,.

Let U, V be an open or closed subset of R" R, respectively. Then f is said to
be a continuous function from U to V' if and only if for any x € U, x € dom(f) and
f(x)eV.
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Definition 3.2. The following definitions are made in RCAq. A continuous partial
function from R™ to R™ is a (code for a) finite sequence of continuous partial func-
tions f = (f1,..., fm) such that fi,..., f,, are continuous partial functions from R"
to R.

Let U, V be an open or closed subset of R”, R™, respectively. Then f is said
to be a continuous function from U to V' if and only if for any x € U and for any
1 <i<m,xedom(f;) andy = (fi(x)...[fn(x)) € V.

Remark 3.1. Imitating definition 3.1, we can define another code for a continuous
partial function from R” to R™. A (code for a) continuous partial function f from
R™ to R™ is a set of quintuples F CNx Q" x Q" x Q™ x Q* which is required to
satisfy:

1. if (a,r)F(b,s) and (a,r)F(b/, ), then |[b —b/|| < s+ ¢;
2. if (a,r)F(b,s) and ||a’ — a| + ' < r, then (a’,7')F(b, s);
3. if (a,r)F(b,s) and ||b — b/|| + s < ', then (a,r)F(b', s').

We can easily and effectively find a code for f from codes for fi,..., f,,. Conversely

we can easily and effectively find codes for fi,..., f,, from a code for f.

First, there exist a code for an identity function, a constant function, a norm
function, and so on. We can construct other elementary continuous functions by

next theorem.

Theorem 3.2 (Theorems [29] 11.6.3 and 11.6.4.). The following is provable in RCA,.
There ezists a (code for a) continuous function of a sum, a product and quotient

of two R-valued continuous functions. Also there exists a (code for a) continuous

function of a composite of two continuous functions.”

The next two theorems show the basic properties of continuous functions.
Theorem 3.3. The following assertions are provable in RCAq.

1. Let U be an open subset of R™, V' be an open subset of R™ and f be a continuous
function from U to R™. Then there exists an open set W = f~2(V)NU, the

wverse image of V.

"“There exists a composite of n continuous functions for all n € N’ cannot be proved in RCA,.
See [10].
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2. Let C be a closed subset of R™, V' be an open subset of R™ and f be a continuous
function from C' to R™. Then there exists an open set W C R™ such that
wncC=fYvV)ncC.

We write such W as W = f~1(V).

Proof. Immediate from Lemma 2.6. O

We can prove Theorems 3.2 and 3.3 effectively, and thus, sequential versions of

these theorems hold.

Theorem 3.4 (intermediate value theorem: [29] Theorem 11.6.6). The following is
provable in RCAq. If f is a continuous function from [0,1] to R such that f(0) <
0 < f(1), then there exists ¢ such that 0 < ¢ <1 and f(c) = 0.

Note that a sequential version of the intermediate value theorem is not provable
in RCAg. Actually, it is equivalent to WKLy over RCAq (see [29, Section IV]).
Next, we consider some behavior of continuous functions on a bounded closed

set, such as uniform continuity and boundedness.

Definition 3.3 (modulus of uniform continuity). The following definition is made
in RCAq. Let U be an open or closed subset of R", and let f be a continuous function
from U to R™. A modulus of uniform continuity on U for f is a function h from

N to N such that for any n € N and for any x,y € U, if ||x — y|| < 27" then
[£(x) — £(y)ll <27
A modulus of uniform continuity for f guarantees stronger uniform continuity of f

than that in the usual sense. In fact, in RCAg, f may not have a modulus of uniform

continuity even if f is uniformly continuous. See [29, Exercise IV.2.9].
Theorem 3.5. The following assertions are pairwise equivalent over RCAq.
1. WKLg.

2. Every continuous function on a bounded closed set is bounded.

3. Every continuous function on a bounded closed set has a modulus of uniform

continuity.

4. A sequential version of 2: if {Cklren is a sequence of bounded closed sets in
R™ and {f;}ren is a sequence of continuous functions such that each fy is from

Cy to R™, then, there exists a sequence of rational numbers { My }ren such that
each £y, is from Cy to B(0; M) = {x | ||x|| < M}.
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5. A sequential version of 3: if {Cx}ren is a sequence of bounded closed sets in
R™ and {fx }ren is a sequence of continuous functions on Cy, then, there exists
a sequence of functions {hy}ren such that each hy is a modulus of uniform

continuity for £, on CY.

Here, a bounded closed set is a closed set which is included in some bounded closed

rectangle.
Proof. Easy generalization of [29, Theorem VI.2.2 and VI.2.3]. O

Remark 3.6. Boundedness cannot always provide the maximum value principle.
In fact, the property ‘every continuous function on some bounded closed rectangle
attains a maximum value’ is equivalent to WKLy over RCAq, but ‘every continuous
function on some bounded closed set attains a maximum value’ is equivalent to ACAg
over RCA. For details, see [29, IV].

The next theorem is very useful to show that constructing some continuous

functions requires ACAq.
Theorem 3.7. The following assertions are pairwise equivalent over RCAy.

1. ACA,.

2. If f is a continuous function from (0,1) to R such that lim,_, o f(z) = 0, then

there exists a (code for a) continuous function f from [0,1) to R such that

: f(x) ifxe(0,1),
flx) = ‘

0 if x =0.
The following proof of 2 — 1 is due to Tanaka.

Proof. We reason within RCAy. We first prove 1 — 2. By arithmetical comprehen-

sion, define F as

(n,a,r,b,5) €F < acQnN0,1)AbEQAs,r€QtAn=(a,r,b,s)
AVpeQn(0,1) la—p|<r—|b— f(p)| < s.

Let f be a continuous function coded by F. Then clearly (0,1) C dom(f) and
1l ©01) = f. lim,_4o f(x) = 0 implies for any € > 0 there exist r, s € QT such that

Vp e QnN(0,1) [0—pl <r —|0— f(p)| < sand s < e. Hence 0 € dom(f) and

F(0) = 0.
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Next we show 2 — 1. By Theorem 2.2, we show that for any one-to-one function
h from N to N, there exists a set X such that X is the range of h. Let h be a

one-to-one function from N to N. Then lim,, .., h(n) = co. Define {a,}nen as

1 1

 h(n)+1 h(n+1)+1

a, ‘= i 1 .
n+tl  nt2

Then we define a continuous function f from (0,1) to R such that

1 1
+
n -+ 1) (h(n) +1)
for each n and z € [ 25, =5]. Then, f(1/(n+1)) = 1/(h(n)+1) for all n € N, and
lim,_o f(z) = 0. Hence by 2, we can expand f into f such that

- f(z) ifz € (0,1),
0 if x =0.

f(z) = an (x -

Now we construct the range of h. Let I be a code for f, and let o(k,1) be
a X! formula which expresses that there exists (a,r,b,s) such that (a,r)F(b,s),
la| +1/(l +1) < r and |b| +s < 1/(k 4+ 1). Then by conditions of a code for a
continuous function, Yk3lp(k, ) holds. Hence, there exists a function hg from N to
N such that Vko(k, ho(k)) holds. This implies

Vm € Nm > ho(n) — n < h(m).
By A? comprehension, define a set X C Nasn € X < 3Im < ho(n) n = h(m).
Then clearly, X is the range of h. This completes the proof of 2 — 1. n
3.1.2 C!-functions
We first define differentiability and continuous differentiability.

Definition 3.4 (differentiablity). The following definition is made in RCAq. Let U
be an open subset of R, and let f be a continuous function from U to R. Then f is

said to be differentiable if
Ve € U Ja, € R ay = lim 20 =@
u—z U — T

A differentiable function f is said to be continuously differentiable if

VeeUVe>030>0VyeU |r—y|<d—|a, — oyl <e.
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Though we can deal with continuous functions within RCAg, the above defini-
tion of continuous differentiability cannot work to construct derivatives in RCA,.
Actually, the next theorem shows that the existence of derivatives of continuously

differentiable functions requires ACA.

Theorem 3.8. The following assertions are pairwise equivalent over RCAq.

1. ACA,.

2. If [ is a continuously differentiable function from (—1,1) to R, then there

exists a (code for a) continuous function f' which is the derivative of f.

Proof. We reason within RCAg. We can prove 1 — 2 by arithmetical comprehension
as in the proof of Theorem 3.7. For the converse, we assume 2. By Theorem 2.2,
we show that for any one-to-one function i from N to N, there exists a set X such
that X is the range of h. Let h be a one-to-one function from N to N. Then
lim,, . h(n) = co. Define {a, }nen and {b, },en such that

1 1
h(n)+1  h(n+1)+1

In = T 1

n+1 n+2
A 1 1 N 1 1 1
" 2\hn)+1 h(n+1)+1) \n+1 n+2)°

Then b, < 1/(n+1) — 1/(n+ 2), hence by Theorem 3.26.1, > ;7 by, is convergent
for all n € N. Using these, we define a continuously differentiable function from
(—=1,1) to R. Define a continuous function fy from (—1,0) U (0, 1) such that

fo(x)—{ _%(x_nig) + s — e b it e [, ),
7"(1;_#1) +%+Zk n Ok 1fa:€[n+2?n+rl]

for each n. Here, if |z| < 1/(n+ 1), then |fo(x)| < 1/(n+1). Hence, we can extend
fo into f from (—1,1) to R such that

f(x)_{o if 2 = 0.

To extend fy into f, we need to construct a code for f. Let Iy be a code for fy and
let p(a,r,b,s) be a X{ formula which expresses (a,7)Fy(b,s) V Im € N |a| +r <
1/(m+1) <s— |b|. Write

o(a,r,b,s) = Imb(m,a,rb,s)
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where 0 is 3. By AY comprehension, define F as (m, a,r,b,s) € F < 0(m,a,r,b,s).
Then clearly f is coded by F.

Next, we show that f is continuously differentiable. Define «, as above, then

—an (¢ = 57) + g i 7 € [ sl
Oy = 0 ifoO,
an(x—#l)—l—m ifxe[n%?’n%l]'

We can easily check the condition of continuously differentiability for f. By 2, there
exists a continuous function ¢ from (—1,1) to R such that g(z) = a,. Note that
this continuous function ¢ is similar to the continuous function we constructed in
the proof of Theorem 3.7. Hence, we can construct the range of A as in the proof of
Theorem 3.7. This completes the proof of 2 — 1. Il

Theorem 3.8 pointed out the difficulty of constructing the derivative. To avoid
this difficulty, we mainly consider the following C!-functions to develop differential

calculus.

Remark 3.9. There is another difficulty in dealing with differentiable functions

within RCAg. Actually, the following assertions are pairwise equivalent over RCA,.
1. ACA,.

2. If f is a differentiable function from (—1,1) to R and {x, },en is a real sequence

in (—1,1), then there exists a real sequence {a;, }nen such that

Vn €N q, = lim M

U—Tn U — Tp

3. If f is a continuously differentiable function from (—1,1) to R and {z, }nen is

a real sequence in (—1, 1), then there exists a real sequence {ay, }nen such that

VneNaq, = lim M

We first define C!-functions in R, and similarly we define C" and C*°-functions

in R.

Definition 3.5 (C!-, C"- and C*-functions). The following definitions are made in

RCA,.
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1. Let U be an open subset of R, and let f , f' be continuous functions from U
to R. Then a pair (f, f') is said to be of C! if and only if

Vo eU hmM

U—T u—2a

= ['(x).

2. Let U be an open subset of R, and let {f™},<, be a finite sequence of con-
tinuous functions from U to R. Then {f™},<, is said to be of C" if and only
if for any n less than r, (™, f(+1) is of C!.

3. Let U be an open subset of R, and let {f™},cy be an infinite sequence of
continuous functions from U to R. Then {f™},cy is said to be of C* if and

only if for any r € N, {f(™},<, is of C".

We usually write f for f© when {f™},<, is of C" or {f™},en is of C=. If (f, f)
is of C', {f™}, <, is of C" or {f™},cx is of C®, f is said to be of C', C" or C*,

respectively.
The next lemma shows that the uniqueness of the derivative is provable in RCA,.

Lemma 3.10. The following is provable in RCAq. Let U be an open subset of R,
and let f,g be C"- or C®-functions from U to R. IfVx € U f(x) = g(z), then for
anyk <r ork € NVx € U f®(z) = g™ (), respectively.

Proof. We reason within RCAg. It is sufficient to prove only the C*> case. By
definition of continuous functions, the following equivalence is easily derived:
Ve eR (z e U — fP(z) = ¢g®(2))
o YgeQ(geU— fP(g) = g™ (q)).
Write
p(k) =Yg e Q (ge U — fP(g) = g™ (g)).
Then ¢(k) is TIY and ¢(0) holds. If ¢(k) holds, then for any z € U,

FED (@Y = fim SO () = fP(x)

uU—xT u—2x
(k) _ 4(k)
e gP ) - W)
U—T u—=x
— g(k+1)($)_

Hence ¢(k + 1) holds. Then by I{-induction, Yky(k) holds and this completes the
proof. O]
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To develop differential calculus, we have to begin with the mean value theorem.
Fortunately, the mean value theorem for C!-functions is easily provable in RCAq

using the intermediate value theorem.

Lemma 3.11 ([29] Exercise 11.6.10). The following is provable in RCAq. Let U be
an open subset of R, and let f be a Cl-function from U to R. Let K be a positive
real number. If [a,b] C U and for all x € [a,b] |f'(x)] < K, then

f(b) = f(a)

< K.
b—a -

Theorem 3.12 (mean value theorem). The following is provable in RCAq. Let [a, b]
be an interval of R and let f be a continuous function from [a,b] to R. If f is of C!
on (a,b), i.e. there exists a continuous function f' from (a,b) to R such that (f, f)
is of C', then there exists ¢ € (a,b) such that

fb) = fla) _
I e,
Proof. The proof is easy from Lemma 3.11 and Theorem 3.4. [

Note that a sequential version of Theorem 3.12 is not provable in RCAg. Actually,
it is equivalent to WKLy (due to Yamazaki).

Remark 3.13. We can prove a stronger version of Theorem 3.12. In fact, the
mean value theorem for a differentiable function can be proved in RCAg. See
Hardin/Velleman[14]. However, we do not know whether a sequential version of

the mean value theorem for a differentiable function is provable in WKL,.
Next, we define C"- or C*-function in R".

Definition 3.6 (C"- and C*-functions from U C R™ to R™). The following def-
initions are made in RCAy. Let U be an open subset of R". The notation a =

(ay,...,a,) € N" is a multi-index and |a| = ay + -+ + ay,.

1. A C"-function from U to R is a finite sequence of continuous functions { fo }jaj<r

from U to R which satisfies the following: for any a = (ay,...,a,) such that

...........

t—0 t

where e; is the unit vector along x;.
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2. A C*®-function from U to R is an infinite sequence of continuous functions
{fa}taenn from U to R such that for any r € N, {fq}a<r is a C"-function.

3. A C"- or C®-function from U to R™ is a finite sequence of C"- or C*°-functions
f=(f1,..., fm) from U to R, respectively.

If {fa}jaj<r is of C" or {fa}aenn is of C*, then f is said to be of C" or C*. As

usual, we write

aa1+"‘+anf

Qg ... Qg

f(al,...,an)

Theorem 3.14. The following assertions are provable in RCAg.

1. Let U be an open subset of R", and let f be a C'-function from U to R. If
its derivatives f,, = 0f /0x; and f,, = Of /Ox; are also of C!, i.e., there exist
finite sequences {(fz;)a}al<1 and {(fz;)a}aj<1 which satisfy the condition for

C!, then
al’j N 05171 ’

2. Let U be an open subset of R™, and let f be a C'-function from U to R. If each
derivative f, is also of C', then we can expand f into a C*-function, i.e., we

can construct a finite sequences { fo }|a|<2 which satisfies the condition for C2.
Proof. We can prove 1 imitating the usual proof, and 2 is immediate from 1. Il

Remark 3.15. Theorem 3.14.1 can be strengthened for a continuously differentiable
version, i.e., the derivative along x; of f,, is equal to the derivative along w; of f;
at each point if f;, and f,, are continuously differentiable. To prove this, we use the

mean value theorem for differentiable functions (Remark 3.13).

To prove basic properties of C!-functions in RCAg, we construct differentiable
condition functions. A differentiable condition function for a C!-function f expresses
a condition of differentiability at each point of dom(f). It also expresses a continuity
of the derivative f’. Hence using a differentiable condition function, we can easily

prove basic properties of C!-functions in RCA,.

Theorem 3.16. The following is provable in RCAq.
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1. Let U be an open subset of R™, and let f be a Ct-function from U to R. Then,

there exists a continuous function ey from U x U to R such that
(1) Vx € U ef(x,x) = 0;

(2) v,y eU fly) - f(x) = Z fe: () (i = i) + ep(x,¥)[ly = x|

(HCTG, fxz = af/a$z)

2. Let U be an open subset of R, and let f be a C'-function from U to R. Then,

there ewists a continuous function ey from U x U to R such that
(3) Ve e U ep(z,x) =0;
(4) Ve,y €U fly) = f(z) = (y — 2)(f'(z) + es(z,y)).

We call this e; a differentiable condition function for f.

Note that we can effectively find a differentiable condition function for a C!-

function. Thus, a sequential version of Theorem 3.16 holds.

Remark 3.17. Theorem 3.16 is not trivial. Actually, for 3.16.2, we want to define

ef as

5
©) 0 if x =y,

oy = { I o2

and of course this ey is a continuous function in the usual sense. However, Theorem
3.7 points out that RCA, cannot guarantee the existence of a code for a continuous
function which is defined like as above, hence it is not easy to construct (a code for)
ef.

Proof of Theorem 3.16. We reason within RCAg. To prove 1, define a (code for a)
closed set A C R*™ as A = {(x,x)|x € U}. By Theorem 3.2, we can construct a
continuous function g from U to R and a continuous function €} from U x U\ A to
R such that

g(x) = Z | fa: (X)];

fly) = f(x) — Z?:1 Jai (%) (yi — 20)
ly —x|| '

e} (x,y)

Let EY be a code for €}, and let G be a code for g. Let (a,r,b, s) be a XY formula

which expresses the following (i) or (ii) holds:
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(1) (a,r)ERD,s);

(i) b= 0 and there exists (mq, ag, 70, by, So) € G such that ||a— (ag,a0)| +7 < 19

and s > 2nsg.

Write
e(a,r,b,s) = 3Imb(m,a,r,b,s)

where 6 is 3§. By A comprehension, define Ey as (m,a,r,b,s) € Ey < 0(m,a,r,b,s),
i.e., (a,r)E¢(b,s) holds if and only if (i) or (ii) holds. Then E; is a code for
a continuous (partial) function. To show this, we have to check the conditions
of a code for a continuous function. It is clear that FE; satisfies conditions 2
and 3 of definition 3.1. We must check condition 1. Assume (a,r)Ef(b,s) and
(a,r)Ef(V, ). If (a,r,b,s) and (a,r, b, s') satisty (i), then clearly condition 1 holds.
If (a,r,b,s) and (a,r,b,s’) satisfy (ii), then we can show condition 1 holds easily
by G satisfying condition 1. Now we consider the case (a,r,b,s) satisfies (i) and
(a,rV,s") satisfies (ii). By condition 2, it is sufficient that we only check the case
{y) | |(x,y)—al] <r} CUxU\A holds. Let (myg, ag, ro, b, So) be an element
of G such that ||a — (ag,ap)|| +r < r¢ and s’ > 2ns,. Here, (mq, ag, 7o, bo, s0) € G

implies
n
(6) Vz e U ||Z—3.0H <Tg— Z|f%(x)|—bo < sg.
=1
Write
a — (a%,a’)(c R" x R");
a® = (aalca ’ag);
a’ = (a?{’ vagr/z)?
Zz; = (a?{7 7a§/aa'f+17 ’a’i)'

Here a” # a¥, z, = a”, z, = a¥ and each z; satisfies ||z; — ag|| < ro. Then,

(7) )b < s
®) D) ¥ = |(a"av))|
" (@) — f@) — fol@®)(a — a?)]
< 2 Jav — a| |
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On the other hand, using Theorem 3.12, for any 1 < i < n, if af # a!, there exists
0 < 6 < 1 such that

f(Zi>y_ f(:l_l) = fu:i(Zi1 + 0(z; — 2i-1)).

a; — a;

(Here, ||(z;—1 + 6(z; — z;—1)) — ao|| < r¢.) Then,

(9)

(2 ~ f(11) ~ o (a)a? — )
< (M IEe) g
= [fu(Zio1 +0(2; — 2i1)) — [, (2")]

oo = |
a’
< | fai(Zic1 +60(2zi — 2i-1)) — bo| + | fz,(Q%) — bo.

Hence by (6) and (9), for all 1 <i < n,
|f(z:) = f(2zi1) = f, (") (0] — a7)]

la¥ —a]]

(10)

S 280.

(If a¥ = a?, then clearly (47) holds.) From (46) and (47),

(11) ) -] < 3 ) =T - fule) (e - ap)
=1 ||a a ||
S i280
=1
< 5.

By (45) and (11), |b — b'| < s+ &' holds. This means E satisfies condition 1.

Let ey be a continuous function which is coded by Ef. Then, (i) provides U X
U\ A C dom(ey) and (ii) provides A C dom(ey), hence U x U C dom(ey). Clearly
ey satisfies (1) and (2), and this completes the proof of 1.

We can prove 2 similarly. O]

Remark 3.18. If U is an open subset of R and f = (fy,..., f,) is a C'-function
from U to R™, then we define the differentiable condition function for f as e =
(€fs---,¢€5,). Then

Vx € U ef(x,x) = 0;

n

Vx,y €U f(y) —f(x) = > £, (x) (g — ) + es(x,y)lly — x].

=1

(Here, £, = (fizys- - finaz)-)
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Remark 3.19. Conversely, let U be an open subset of R", f, f' be continuous
function from U to R and ey be a continuous function from U x U to R. If f, f', es
satisfy (1) and (2), then clearly (f, f) is of CL.

Corollary 3.20. The following assertions are provable in RCAy.

1. Let U be an open subset of R and let k be a real number. If f and g are C"-
or C*®-functions from U to R, then kf, f + g, fg are all C"- or C*®-functions
from U to R. Moreover, (kf) =kf', (f+9) =f +4¢ and (fg) = f'g+ f¢
hold.

2. Let U be an open subset of R, and let f be a C"- or C*®-functions from U
toR. If f # 0 in U, then 1/f is a C"- or C®-function from U to R, and

(1/f) = =f"/(f?) holds.

3. (chain rule) Let U be an open subset of R™ and let V' be an open subset of R™.
If £ = (f1,..., fm) is a continuous function from U to V, g is a continuous
function from V to R and both f and g are of C" or C*°, then go f is a C"-

or C*®-function from U to R and satisfies

d(gof) _ dg df;
G0 = 2 G50

Proof. We reason within RCAg. We only prove 3. (We can prove 1 and 2 easily.)
For any x € U, 1 <i <nand Az € R\ {0}, define Ay; (1 <j <m) as

Ay; = fi(x+ Azxe;) — f(x)
B af;
= Ax oz,

(x) + |Azles, (x,x + Are;).

where e; is the unit vector along x; and each ey, is the differentiable condition

function for f;. Then

Ax 3fj
|Az| (91:2

2
X) +ep, (X, X + Avey )> .
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i
Define €. as

ehor(Az) = 28—9 ))es, (x,x + Axe;)

" [ Az 9f; 2
+eg(F(x), f(x + Azey)) | > (M%(@ +ep (%, %+ Axei))
j=1 !

where e, is the differentiable condition function for g. Then

(12) Ahliloe

(Az) =0,

gof

(13)g 0 f(x + Aver) — g0 f(x) = 3 Ay (£(x) + | Ay ey (E(x), E(x + Azer))

j=1 %
= sza—j(f(X))ai( x) + |Az]eyoe(Az).
j=1 % '

(12) and (13) show that 7", (0g/dy;)(0f;/0x;) is the first derivative of gof along
x;, and this completes the proof. Il
3.1.3 Riemann integration

In this subsection, we define Riemann integrability and study some conditions to

integrate continuous functions within RCA,.

Definition 3.7 (Riemann integral: [29] Lemma IV.2.6). The following definition is
made in RCAg. Let f be a continuous function from [a,b] to R. Then, define the

Riemann integral f; f(z)dz as

|A[=0

b
/ f(x)dz = Tim S2,(f)

if this limit exists. Here, A is a partition of [a,b], i.e. A ={a =29 <& <121 <
- <&, <z, = b}, S[ab( ) is defined as

Stan(f fok Tk — Tg-1)

and |A| = max{xy —z5_1|1 <k <n}.

To integrate continuous functions effectively, we introduce a modulus of integra-

bility.

29



Definition 3.8 (modulus of integrability). The following definition is made in RCA,.
Let f be a continuous function from [a,b] to R. A modulus of integrability on [a, D]
for f is a function h from N to N such that for any n € N and for any partitions

Al; AQ of [a, b],

—h(n) A 9—"h(n)
A\ <
b—a |22 b—a

Ay < - |S[ilb}(f> - S[in](fN <27

Within RCAp, we can easily show that if A is a modulus of integrability for f,
then h is a modulus of integrability for |f|.

Lemma 3.21. The following is provable in RCAqy. Let f be a continuous function
from [a,b] to R, and let h be a modulus of uniform continuity for f. Then, h is a

modulus of integrability on [a,b] for f.

Proof. We reason within RCAg. Let Ay, Ay be partitions of [a, b] such that |A;]| <
27" /(b — a) and |Ag| < 27 /(b — a). Take a common refinement A of A; and
As. Then,
‘S[ﬁ,lb](f) - S[%,b](f)‘ <2
and
’S[ﬁfb](f) — S[%,b](f)’ <27
Thus,
|S[ﬁ,1b}(f) - S[i?b](fﬂ <27,
[

The next lemma show that if f has a modulus of integrability on [a, b], then we

can integrate f effectively.

Lemma 3.22. The following is provable in RCAq. Let f be a continuous function
from [a,b] to R, let ¢,d € [a,b], and let h be a modulus of integrability for f. Take
a natural number K > b — a and define t(n) as t(n) = min{k|1/k < 27"™W-2/K}.

Define S, as
t(n) .
d—
Salfied) =G (t(inw—c)w)-

— t(n )

Then, fcdf(x) dx ezists and
d
/ f(z)dx = lim S,(f;¢c,d).
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Moreover, for alln € N,

d
/f(SB)dZE—Sn(f) <27

Proof. Obvious from the definition of a modulus of integrability. n

We call S,(f;¢c,d) in above lemma n-th approximation of fcd f(z)dx. We often
say that a continuous function f is effectively integrable on [a,b] if f has a modulus

of integrability on [a, b].

Lemma 3.23 (indefinite integral). The following is provable in RCAq. Let f be
a continuous function from [a,b] to R, let ¢ € [a,b], and let h be a modulus of
integrability for f. Then, there exists a continuous function g from [a,b] to R such
that

o) = [ fayds

Proof. We reason within RCAg. We construct a code G for the desired continuous

function g. Let ¢(p,r,q,s) be a 3{ formula which expresses the following:
EI7n177n2 eN ‘Sml(f7c>p) - Q| + Sm2(|f|ap17p2) +27™M 427" < s

where S, is m-th approximation, p; = max{a,p — r} and ps = min{p + r,b}. As
in the proof of Theorem 3.16, define G C N x Q x Q" x Q x Q" as (p,r)G(q, s) «
o(p,7,q,s). Then, (p,r)G(q, s) if and only if

/ @) — g

Hence, we can easily show that G satisfies the conditions for a code for a continuous

Vo € [a,b] v —a|] <7 — < 8.

function and g is the desired continuous function. m

The next theorem shows that the integrability of continuous functions requires
WKL,.

Theorem 3.24. The following assertions are pairwise equivalent over RCAq.
1. WKLg.
2. Every continuous function on |a,b] is Riemann integrable.
3. Every continuous function on [a,b] has a modulus of integrability.

4. A sequential version of 3 as in Theorem 3.5.5.
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Proof. By Theorem 3.5, Lemmas 3.21 and 3.22, 1 — 4 — 3 — 2 holds. See [29,
Theorem IV.2.7] for 2 — 1. O

To integrate bounded function, we only need WWKL,.
Theorem 3.25. The following assertions are pairwise equivalent over RCAy.
1. WWKLy.
2. Every bounded continuous function on [a,b] is Riemann integrable.
3. Every bounded continuous function on [a,b] has a modulus of integrability.
4. A sequential version of 3 as in Theorem 3.5.5.

Proof. We first show 1 — 3. We reason within WWKLy. Let f be a bounded
continuous function on [a, b]. Without loss of generality, we can assume [a, b] = [0, 1]
and f(x) € [-1,1] for all x € [0,1]. Let F C N x Q x Qt x Q x Q" be a code for

f. Define X9 formula o(n,a,r) as
on,a,r) = a€QATr€QtAIeQIs € QT (a,2r)F(b,s) As <22
By AY comprehension, take a sequence {(a@nk, rnr) trennen such that
VnVaVr(e(n,a,r) < Jk(a,r) = (ank, Tnk))-

Note that [0, 1] € Uyey B(@nk, i) for all n € N. Thus, by Theorem 2.8, there exists
neN, e

a double sequence of finite sequences of open intervals ({(cnij, dnij) }i<i,.;
N) such that for any n € N,

[0.1] € | Blank, rar) U | (enigs duiy),

hm E ’dm] — Cnij| =0.
1—00
ngnz

R o N —n—2 7.
i cmnj| < 2 and define [,, :=

Take a sequence {iy }nen such that di< . ld
L -

Nin *

Define a function h as

h(n) :=min{g € N | 27% < min{r, | k < I,}}.
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We show that this h is a modulus of integrability for f. Let A;, Ay be partitions of
[0, 1] such that |A;] < 277 |Ay| < 270 Let A={0=mg <21 < --- < 2Ny =

1} be a common refinement of Ay, Ay, and let 0, := [z, Tpmi1]- To show
S’ (f) = Sz (Al <27,

we only need to show that for any {&, }m<n, {&), }m<n such that &,, & € o,

N

Z ’f(ém) - f(gn)‘(merl - -Tm) < 27",

m=0
Define I C {0,--- N} as
[ =: {m <N | 5m N U B<ankarnk) = Q)}
k<in
Then,

0.1] € | Blanksmt) | 0.

k<in mel

D @ =) <My ;= il

mel jSZn

If m € I, then, by definition of h, &,,&.. € 6, C Bl(ank,2rnk). Thus, |f(&,) —
f(& )] <27t for all m € I. Therefore,

D 1F(Em) = FE (Tmar — Tm)

S Z 2(3:771—&-1 — xm) + Z 2_n_1($m+1 - l'm)
mel megl
< 2 Ny = gl H277
Il
< 27"

This completes the proof of 1 — 3.
We can show 1 — 4 similarly. The implications 4 — 3 and 3 — 2 are trivial.
To show 2 — 1, we define the following notation. For a tree T C 2<N, define a
set Sy C 2<N and \! € N as

Sp = {o€2MN o ¢ TAVr Co(r£0—71eT)};
A= o €T [h(o) =n}|.
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For a finite sequence o € 2<N, define a,, b, € Q as

Qo = Z ;(3;

i<lh(o)

1
bo- = ag—l—m.

Thus, if 0,7 € St, then, b, < a, or b, < a,. Note that a tree T" has a path if and
only if [0,1] € U, cg, @0, bs]-

Now, we show =1 — —2. We reason within RCAy. Assume “WWKL. Then,
there exist ¢ > 0 and a tree T" which has no path such that

)\T
Vn€N2—Z>q.

Since [0, 1] €

as

sesp 0o U], we can define a continuous function f from [0, 1] to [0, 1]

f(l‘) — ciicjzf; T € [a’cnco] No € ST,
o 1w € [Cmba] No € Sy

bs—Co

where ¢, := (by + a5)/2.
We show that this f is not Riemann integrable. Define partitions Ay of [0, 1] as

1<2< <2k—1
FEFS SR

Ay = {og < 1} = {[ay, by) | 7 € 2N ATh(n) = k}.

Note that we can easily take M, := max{f(z) | z € [a,, b,s]} and m, := min{f(x) |
x € [ay,b,]}. We show that for any k£ € N,

Z (M, —m,)27"% > q.

ne2<NAlh(n)=k

If n € T, then, there exists o € Sp such that ¢ 2 7, thus, [a,,b,] 2 [as,bs).
Therefore, n € T' implies M,, —m,, = 1. Hence, for any k € N,

Z (M, — mn)Q_k

n€2<NAlh(n)=k

> e

neTAlh(n)=k
M=

v

v

> q.

This completes the proof of 2 — 1. n
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3.2 Series

In this section, we construct some C*>-functions by series in RCAq. Especially, we
construct power series, which are elementary examples of analytic functions. We
also prove the termwise differentiation and integration theorems. They are very
important in this thesis.

The next theorem is the core of this section.

Theorem 3.26. Let {ay, }nen be a sequence of nonnegative real numbers whose series

Yoo g is convergent. Then the following assertions are provable in RCA,.

1. If a sequence of real numbers {a,}nen which satisfies |a,| < a,, for alln € N,

then the series y . a, is convergent.

2. ([29, Lemma I1.6.5]) Let U be an open subset of R', and let {f,}nen be a
(code for a) sequence of continuous functions from U to R which satisfies the
following:

Vx e U Vn e N |f,(x)] < .

Then there ezists a (code for a) continuous function f from U to R such that

vxeU f(x) = an(x).

Proof. The proof of 2 is in [29, Lemma I1.6.5], and 1 is immediate from 2. [
Corollary 3.27. The following assertions are provable in RCAq.
1. Absolutely convergent series are convergent.

2. Lety 2 a, be an absolutely convergent series, and let h is a bijective function

from N to N. Then Y~  ap(n) is convergent and

Z Ap(n) = Z Qy, .
n=0

n=0

3. If Y0 g an and Y07 b, are absolutely convergent series, then their Cauchy

product " > arby is absolutely convergent and

Z Z akbl = Zaann.
n=0 n=0

n=0 k+Il=n
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Proof. Immediate from Theorem 3.26.1. m

Theorem 3.28. The following is provable in RCAq. Let Y~ o, be a nonnegative
convergent series, and let { f,}nen be a sequence of continuous functions from [a, b]
to R which satisfies the following:

Vr € [a,b] Yn € N |f,(z)] < .

By Theorem 3.26.2, we define f =" fn. Let {hy}nen be a sequence of functions
such that each hy is a modulus of uniform continuity for f,. Then, f has a modulus

of uniform continuity.

Proof. We reason within RCAq. Let h, be a modulus of uniform continuity for f,.
Let > @, = a. Define k(n) as the following:

k
(a — Z ozi> <22 2_k+1} .
=0 k

(Here, () is the k-th approximation of «.) Then

k(n) = min {k‘

(14) Zozz<2”2

i=k(n)+1

Now define h as
h(n) = max{h;(n +2+1)| i < k(n)}.

Then for any z,y € [a,b], |z — y| < 27"™ implies
(15) Vi < k(n) |fi(z) = fily)] <2777

Hence by (14) and (15), for any n € N, if |z —y| < 27%") then,

1f(2) = fy)| < Zufz( )|+ | fily +Z|fz fil

i=k(n)+1

§22a1+z2n21

i=k(n)+1
< 2_2n2+2n1

= 27"
This means h is a modulus of uniform continuity for f. m
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Next, we prove the termwise differentiation theorem, and construct a power

series.

Theorem 3.29 (termwise differentiation). The following is provable in RCAq. Let
U be an open interval of R, and let Y s a, and >~ b, be nonnegative convergent
series. Let {(fn, [1)}nen be a sequence of C'-functions from U to R which satisfies

the following conditions:
Ve e UVn €N |f(2)] < ap,

Ve e UVn e N |f ()] < b,.

Then there exists a Cl-function (f, f') from U to R such that

F= "t =D 1

Proof. We reason within RCAg. By Theorem 3.26.2, there exist continuous functions
f and f’ from U to R which satisfy the following condition:

F=Yfu £1=) 10
n=0 n=0

Let ey, be a differentiable condition function for (f,, f,,). By Theorem 3.12, for any
n and for any x # y in U, there exists z € U such that

fa(y) = fu(z) _
y—x
Hence, for any n € N, if  # y, then there exists z and

o) = (PR )
= |fu(2) = fu(@)]-
Then for any n € N,
(16) les, (z, )] < 2by.

(Clearly, (16) holds if = y.) Then by Theorem 3.26.2, ey = Y >° ey, exists and

ey satisfies

Ve e U ef(x,x) =0;
Vo,y €U f(y) — f(z) = (y — 2)(f'(2) + es(z,9)),

which means (f, f’) is of C'. This completes the proof. O
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Let {a,}nen be a sequence of real numbers, and let r be a positive real number.
If the series >~ |a,|r™ is convergent, then for any a € R and for any x such that
|z —a| <7, > a.(x — a)" is absolutely convergent and |a,(z — a)"| < |a,|r"™.
Define an open set U and a sequence of continuous functions { f, },en from U to R
as U = {z| |xr —a|] < r} and f,(z) = a,(z — a)”. Then by Theorem 3.26.2 there

exists a continuous function f from U to R such that

f(z) = Y fale)

o0

= Z an(x —a)".

n=0

Corollary 3.30. The following is provable in RCAq. Let {a,}nen be a sequence
of real numbers, and let v be a positive real number which satisfies Y~ |an|r™ is
convergent. Let U = {x| |z —a| < r}. Define a continuous function f from U to R
as f(x) =302 jan(x —a)". Then, there exists a sequence of continuous functions
{f™)enyie., fis a CP-function.

Proof. We reason within RCAg. Define a function p from N2 to N as

! .
—— if k<n,
p(n7 l{?) — (n—k)! ‘ >
0 it & > n.
(Here 0! = 1.) Define alf) = p(n, k)a, and £ (x) = al¥'z7=* Then each f¥ is a
continuous function from U to R, and for all n,k € N a pair ( ,(Lk), ,(Lkﬂ)) is of C1.
Moreover, we can easily show that > ]afﬁ”r” is convergent because Y - . |a,|r"

is convergent. Since the construction of functional series in Theorem 3.29 is effective,
fE =3 £ exists and (f®) f*+1) §s of C! for all k € N. Then {f(™}, cy is of
C* and this completes the proof. m

The next lemma is very useful to construct continuous, C"- or C*°-functions.

Lemma 3.31. The following is provable in RCAg. Let {Up}nen be a (code for
a) sequence of open subsets of R', and let {f,}nen be a (code for a) sequence of

continuous, C"- or C*®-functions. Here, each f, is from U, to R. If { f,}nen satisfies
vx €R' Vi, j €N (x € U;NU; — fi(x) = f;(x)),

then there exists a continuous, C"- or C®-function f from U = J.~_, U, to R such
that
VxeUVneN (xeU, — f.(x) = f(x)).
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(We usually write f =J,_ fn-)

Proof. We reason within RCAy. We first treat the case of continuous functions. Let
F, be a code for f,. Let ¢(a,r,b,s) be a ¢ formula which express there exists n
such that I(m’,a’,r") € U, ||a—a'|| +r <" and (a,r)F,(b, s) holds. Write

e(a,r,b,s) = 3Imb(m,a,r,b,s)

where 6 is ©). By AY comprehension, define F' as (m,a,r,b,s) € F' < 0(m,a,r,b,s).
Then clearly F is a code for a continuous (partial) function and f is from U to R

which satisfies
VxeUVneN (xe U, — f.(x) = f(x)).

This completes the proof of the continuous case.

To prove the C" or C* case, by Lemma 3.10, for any o = (aq, ..., a,),

aa1+~~~+an S Ot tan f.
() = ).

o%gy...0%x, 0y ...0%mg,

VxeRle’,jeN(xEUiﬁUja

Then we can use the continuousness case to construct

aa1+~~-+anf _ G aa1+~~+anfn
n=0 a

0y ...0%zx, argy ... 0%x,

We can easily check the condition for C" or C*.

Example 3.9. The following analytic functions can be constructed in RCA,.

1. Define s(n) as
(—1)2 if n is even,
s(n) =
0 it n is odd

and define {a, }nen, {bn}neny and {c, }nen as

1
an = —, by, = S(n+3)a Cn = S(H)
n!

n! n!

Then for any m € N, >~ |a,|m™, > 07 |bo/m™ and >~ 7, |¢,|m™ are conver-
gent. Define U,, = {z| |z| < m}. On U,, define exp,,(z) = > 7 a,z",
sig, (z) = Y o0 obpx”™ and cosy,(z) = > 7 ¢z By Lemma 3.31, C*-
functions exp = {J,,cn €XPpn, SiD = [, ey Sinm and cos = |J,, ey COSp, from

R to R can be constructed.
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2. Define {d, }nen as d,, = n-(—1)"*! and define t(m) as t(m) = 1—1/m. Then for
any m € N, > |d,|t(m)™ is convergent. Define U,, = {z| |z — 1| < t(m)}.
On U,,, define log,,(z) = > 7 a,(z — 1)". By Lemma 3.31, a C*°-function
log = U, ,en 108, from (0,2) to R can be constructed.

Next, we show the termwise integration theorem.

Theorem 3.32 (termwise integration). The following is provable in RCAqg. Let
Y02 o (i be monnegative convergent series, and let { f,}nen be a sequence of effec-

tively integrable continuous functions from [a,b] to R which satisfies the following:®
Vo € la,b] Vn e N |f,(2)] < .

By Theorem 3.26.2, we define f = " fn. Then, f is effectively integrable and

(17) /ab f(z)de = 2 /ab ful@) dz.

Proof. We reason within RCAg. Let h,, be a modulus of integrability for f,. Let
Yo g = . Define k(n) as
k
<a N Z 0%') <2 2’““} .
=0 k

h(n) = max{h;(n+2+14)| i < k(n)}.

k(n) = min {k

and define h as

Then, similarly to the proof of Theorem 3.28, we can check that h is a modulus of

integrability for f. To prove (17), for any n € N,
b k(n)  p
/ f(x) dx—Z/ filz)dz
a i—0 Ja
b o0
< / Z a;(z) dx

i=k(n)+1
< [b—al277

which implies (17). This completes the proof. [

8We loosely say that {f,, }nen is a sequence of effectively integrable continuous functions if there

exists a sequence of functions {hy, },en such that each h,, is a modulus of integrability for f,.
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Note that we can effectively prove Theorems 3.26, 3.28, 3.29, 3.32, Corollary 3.30
and Lemma 3.31, thus, sequential versions of these theorems, corollary and lemma
hold.

Finally, we argue about the commutativity of limits and integrals when a se-
quence of functions does not uniformly converge. The next theorem is a Riemann

integral version of the monotone convergence theorem in [40].
Theorem 3.33. The following assertions are pairwise equivalent over RCAg.

1. WWKLy.

2. If a uniformly bounded monotone sequence of effectively integrable continuous
functions { fn}lnen on [a,b] converges to an effectively integrable continuous

function f pointwise, then,

lim fn )dx = / f(z
(a sequence of continuous functz’ons {fn}nen on [a,b] is said to be uniformly

bounded if there exists a natural number K such that | f,(z)| < K for alln € N
and for all x € [a,b].)

3. If a uniformly bounded monotone sequence of continuous functions { f, }nen on
la,b] converges to a continuous function f pointwise, then, each of f, and f

15 integrable and

lim fn d:c—/f

n—oo

Proof. We reason within RCAg. We show 1 — 3. Let K € Q and let {f,}nen be a
monotone sequence of continuous functions on [a, b] such that | f,| < K and {f, }nen
converges to a continuous function f pointwise. By Theorem 3.25, each of f,, and
f is effectively integrable. Let ¢ > 0. We show that | f fo(x)do — f f(x)dz| < e
for some n € N. By Lemma 2.6, define open sets U,, as U, = {x | |f(z) — fu(z)] <
e/2(b—a)Vx & la,bl}. Since {f,}nen is monotone and converges to f pointwise,

{Upn}nen is a monotone open covering of [a,b]. By Theorem 2.8, there exist n € N
and {[c¢;, d; }i<; such that [a,b] C U, U, [c;,d;] and Y. _,(d; — ¢;) < e/2K. Then,

[ w@a= [ .

3 — 2 is trivial. Modifying the proof of 2 — 1 of Theorem 3.25, we can prove 2

<

(b—a)+KZ(di—ci)<€.

i<l

— 1 easily. O]
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3.3 Inverse function theorem and implicit function theorem

In this section, we prove the inverse function theorem and the implicit function

theorem in RCAy. A differentiable condition function again plays a key role.

Theorem 3.34 (inverse function theorem and implicit function theorem). The fol-

lowing assertions are provable in RCAy.

1. Let U be an open subset of R", and let f be a C"- (r > 1) or C®-function
from U to R"™. Let a be a point of U such that |f'(a)| # 0. Then, there exist
open subsets of R™ V., W and a C"- or C>®-function g from W to V' such that
acV, f(a) e W and

vxeV o g(f(x)) =x,

vyeW f(gly) =vy.

2. Let U be an open subset of R™ x R™, and let F be a C"- (r > 1) or C®-
function from U to R™. Let a = (aj,as) be a point of U such that F(a) =0
and |Fy, .\ zn..(@)] # 0. Then there exist open subsets V- C R", W C R™
and a C"- or C®-function £ from W to V such thata; € V, as € W and

f(al) = ag,

Vv eV F(v,f(v)) =0.

Here, |[f'(a)| and |Fy, ., 4,...(a)|] are the Jacobians, i.e.,
ofi
F(a) = det( f) ,
Ox; 1<i,j<n

OF;
det < > )
0Ty 1<i,5<m

Proof. We reason within RCAg. We first prove 1. By Theorem 3.3 and Corollary

3.20, we may assume the following condition:

| Fl’n+1 o Tp+m (a> |

a="f(a)=0;

vx € U |[f'(x)] > 0;
of; 1 ifi=y,
3%:{Oiﬁ#j
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Define u from U to R™ as u(x) = x — f(x). Then u is of C!, hence we can construct

the differentiable condition function e, for u. Then for any x,y € U,
uly) — a0 = 3 s (9 — ) + euly)ly — x|
i=1
Hence
[u(y) —ux)[| < (i [, (%) + [leu(x, Y)H> ly = x|
i=1

Here, Y7 | |Jug,(0)|| = 0 and ||e4(0,0)|| = 0. Hence by continuity of > | |lu,,

and |leyl|, we can get £ > 0 such that

Wy = {xeR"| [x— 0| <} C U,
1

vxe Wy 3 s ()] < 5,
i=1

1
vx:y S WO ||euxi(X7y)H < Z

Then for any x,x € Wy,

(18) [uty) ~uGl < Sl x|

(19) Iy =l = Juy) + ()~ u(x) ~ £(x)]
< ) ~ £ + uly) — u(o)l
< [E) — £l + 5lly x|

Hence

(20) Iy — x|l < 20f(y) ~ £

Define open sets V and W as

n _ €
W',.{xeR Ix 0H<2}
Vo= (W) N W

Claim 3.34.1. For anyy € W, there exists a unique x € V' such that f(x) =y.

To prove this claim, let y be a point of W. Define v, from W, to R" as vy (x) =
y +u(x). Then by (18), for any x',x" € W,

1
(21) vy (x") = vy (G < glIx" =]
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Especially,

/ / 1 / €
(22) vy () =yl = llvy (x) = vy (0)l] < SlIx]l < 5.
On the other hand, y € W implies |ly|| < /2. Hence by (22),
(23) Vx' e Wy vy (X)) < e.

(21) and (23) mean that hy is a contraction map from Wy to Wy. Hence by con-
traction mapping theorem (particular version of [29] Theorem IV.8.3), there exists
a unique x € Wy such that hy(x) = x. This implies f(x) = y and then x € V. This

completes the proof of the claim.

Next, we construct a code for the local inverse function. Let F’ be a code for f.
Let ¢(b, s,a,r) be a X formula which expresses that ||b|| +s < £/2 and there exists
(m/,a’,r’", b’ s") € F such that |b —b’|| + s < ¢’ and [|ja — a'|| + 45’ < r. Write

o(b,s,a,r) = 3Iml(m,b,s,a,r)

where 6 is 330, By A? comprehension, define G as (m, b, s,a,r) € G < 0(m,b, s, a,r).

Claim 3.34.2. G is a code for a continuous (partial) function (in the sense of
remark 3.1).

We can easily check that the condition 2 and 3 holds. We must check the
condition 1. Assume (b, s)G(ay, 1) and (b, s)G(ag, r2). By the previous claim, we
can take a unique a; € V such that f(ay) = b. By the definition of G, there
exist (a’;,rl, b, st) (i = 1,2) such that (a';,7})F(b';,s}), ||b — bi|| + s < s; and
la, —a’|| +4s; <r; (i =1,2). Then

1£(a0) — £(a"s)[| = [[b — f(a’s)|| < [[b — b + [b’; — f(as)]| < 2s;.
Hence by (20),
||a0 — a'l-|| < 4S/z

This implies ||ag — a;|| < r; (¢ = 1,2) and then ||a; — as|| < r; + r2. This completes
the proof of the claim.

Claim 3.34.3. Let g be the continuous function coded by G. Then for anyy € W,
y € dom(g).
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For any y € W and for any § > 0, we need to show that there exists (b, s, a,r)
such that (b, s)G(a,7), |[b —y| < s and r < §. Take x € V such that f(x) = y.
Then there exists (a’,7', b’, s') such that (a’,7")F (b, ¢'), ||’ —x|| < r"and ||b'—y] <
s’ < §/8. Then, there exists n such that the following conditions hold:

lyn = bl[+27" < s
Wl F277 <

Iyl + ;
Here, y,, is an n-th approximation of y. These conditions can be expressed by a 39

formula, hence we can take n = ng which satisfies them. Define (b, s,a,r) as

b = Ynos

s g-notl,
a = a;

r = b5s.

Then ||a—a'||+4s" < r, hence (b, s)G(a,r). Also |[b—y|| < s and r < § hold. This

completes the proof of the claim.
Claim 3.34.4. g is the local inverse of f, i.e.,

(24) xeV  g(f(x)
(25) VyeW  f(g(y))

X,

y.

We first show (24). Let x € V and y = f(x). To prove x = g(y), we need to
show that (b,s)G(a,r) and ||y — b|| < s imply ||x — a|| < r. Assume (b, s)G(a,r)
and |y — b|| < s. Then by the definition of G, there exists (a’,7’,b’, s’) such that
(@, r")F(b,s), |[b —b||+s < s and ||a—a'|| +4s’ < r. Then

If(x) —f@)] = lly —f(@)]
< [ly = bl + [b = bl + [[b" - f(a)]]

< 2¢.
Hence by (20),
|x —a'|| <45

Therefore

Ix —all < [lx —a'[| +[]a" —a] <
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(25) is immediate from (24) since f is bijective on V. This completes the proof

of the claim.

Now we expand g into a C"- or C*®-function. We can easily define the derivatives

of g. For example, define the first derivatives as

(3).~(G),)
Ox; 1<i,j<n O 1<i,j<n

It remains to prove that g and their derivatives surely satisfy the conditions for C”

or C*. Using the differentiable condition function for f, this can be achieved as
usual. This completes the proof of 1.

We can imitate the usual proof to show the implication 1 — 2. ]

Mathematics in RCAq is concerned with constructive mathematics. The construc-
tive proof of implicit function theorem is in Bridges, Calude, Pavlov and Stefanescu

[5]. For details of constructive mathematics, see Bishop and Bridges [4].

3.4 Fourier expansion

In this section, we show some results of Reverse Mathematics for some basic theories

of Fourier expansion.

Remark 3.35 (definition of 7). RCAq proves that a continuous real function sin x is
monotonous on [2,4] and there exists a unique a € [2,4] such that sina = 0. Then,
we can set 7 := a in RCA,.

Using this definition, we can prove basic properties of 7m concerning sinx and

cosx in RCA,.

Here, sinx and cosx are trigonometric functions defined in Example 3.9. Note
that sin x, cos x and their sum and product have a modulus of continuity, thus, they
are effectively integrable. Note also that sum and product of effectively integrable
functions are effectively integrable.

We write f € P?" if f is a continuous periodic function with period 2m. Let

{a }ren, {bk }en be real sequences. Then, define S, as

Snl{ar b} (x) = 24 Z(ak cos kx + by sin kx).

2
k=1
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If f € P?™ is effectively integrable, then, define

Sul (@) = Sn[{arHbr}] ()

where a; and b, are Fourier coefficients, i.e.,
1 s
ar = —/ f(z) cos kxdx;
™ —Tr
1 [" )
by = —/ f(z)sin kzdz.
™ —Tr

The next lemma is an easy modification of Theorems 3.5 and 3.24
Lemma 3.36. The following assertions are pairwise equivalent over RCAg.
1. WKLy.
2. Ewvery periodic Ct-function has a modulus of uniform continuity on R.
3. Ewvery periodic C'-function is Riemann integrable on any closed intervals.

4. Every periodic Ct-function has a modulus of integrability on any closed inter-

vals.
We first show some basic lemmas.

Lemma 3.37 (Bessel inequality). The following is provable in RCAqy. Let f € P?"
be effectively integrable and let aj and by be Fourier coefficients of f. Then,

2 S (laif? + [bif?) < / f(x)de
i=0 -
for alln € N.

Proof. Straightforward imitation of the usual proof. m

Lemma 3.38. The following is provable in RCAqy. Let f € P?™ be effectively inte-
grable. If

/ f(x) cos kxdx = 0;
/ f(x)sinkzdr =0
for alln € N, then, f =0.
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Proof. Straightforward imitation of the usual proof. m

Lemma 3.39. The following is provable in RCAq. Let f € P> be a C'-function
and let f and f' are effectively integrable. Then, the Fourier series S,[f] uniformly

converges to f.

Proof. We reason within RCAq. Let aj and by be Fourier coefficients of f, let a) and

b, be Fourier coeflicients of f" and let

K= /_1 f(2)2da

Tay = / f(z) cos kxdx

Then,

b/
— krdr =
/f sin kxdx .
Ta,
b k.
0 k

By Schwarz’s inequality and Lemma 3.37,

(lax] + [bx])

S DENDHATAD
k=n

k=n

I
el

IN

Thus, by Theorem 2.4, >~ ,(Jax| + |bx|) converges. Then, by Theorem 3.26, there
exists g € P?" such that

g(r) = lm S,[f](x)

a > .
— ?0 + Z(ak cos kx + by, sin kx).

Let f = g— f. Then, by Lemma 3.38, f = 0. This means S,,[f] uniformly converges
to f. n

The first theorem is concerned with the uniform convergence of Fourier series.
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Theorem 3.40. The following assertions are pairwise equivalent over RCAy.
1. WKL,.

2. If f € P* is a C'-function, then, there exist real sequences {ay}ren and

{bk}ken such that S, [{ax }{bx}] uniformly converges to f.

Proof. By Lemmas 3.36 and 3.39, 1 — 2 holds. For the converse, we assume 2. By
Lemma 3.36, we only need to show that every periodic C!'-function (with period 27)
has a modulus of uniform continuity. Let f € P** be a Cl-function. Then, there
exist {ag}ren and {bg}ren such that S,[{ay}{bx}] uniformly converges to f. Since
sinx and cosx has a modulus of uniform continuity, f has a modulus of uniform

continuity by Theorem 3.28. This completes the proof. O]
Next, we argue about L?-convergence of Fourier series.

Definition 3.10 (L2-convergence). The following definition is made in RCAq. Let
{ fu}nen be a sequence of functions in P?". Then, we say that {f, }nen L?-converges
to f if for any ¢ € N there exists £ € N such that for any m > k there exists a

continuous function g such that ¢? is effectively continuous and

[ fm(@) = F(@)] < 9(2),
/ g(x)*dx < 27"

—T

Lemma 3.41. The following is provable in RCAqy. Let f € P?™ be effectively inte-
grable. Then, the Fourier series Sy,|f] L*-converges to f.

Proof. We reason within RCAg. Let h : N — N be a modulus of integrability for f
on [—7,m]. We can construct a sequence of continuous functions on [—m, 7] {fi}ieN

(by means of piecewise parabolic functions) which satisfies the following:
e f;isof C! and f; and fi/ are effectively integrable;
o [iltij) = f(tij);

e fi is monotone on [t;, ;1]
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where t;; = —m 4 2mj/2"D (j < 2/®). Then, {fi}ien L*-converges to f. By
Lemma 3.37,

™

[ 0@ - silfieya
< [ G@-d@rds [ G- sifi@rds [ S - S

— - -

< 2 [ (@ =R+ [ (i) - Sl
Since {f;}ien L?-converges to f,

™

lim (f(z) — fi(z))*dz = 0.

| —
i—oo J_

By Lemma 3.39, {S,[f;]}nen uniformly converges to f;. Thus,

™

lim (filx) — Sn[fz] (37))26537 = 0.

n—oo
-7

Hence,
lim [ (f(z) = Su[f](2))*dz = 0,
and this completes the proof. Il

Theorem 3.42. The following assertions are pairwise equivalent over RCAq.
1. WKLg.

2. If f € P>, then, there exist real sequences {ay}ren and {bytren such that
Sp[{ar}{br}] L?-converges to f.

Proof. We reason within RCAg. By Theorem 3.24 and Lemma 3.41, 1 — 2 holds.
For the converse, we show =1 — —2. Let “WKLy. Then, by Theorem 3.5, there
exists an unbounded function f € P?". Thus, for any real sequences {ay}ren and
{bk }ren, |Snl{ar}{br}] — f| is unbounded. Therefore, if | S, [{ax}{br}] — f| < g, then,
¢? is not integrable, which means that —2. This completes the proof of 2 — 1. [

Theorem 3.43. The following assertions are pairwise equivalent over RCAy.
1. WWKL,.

2. If f € P?™ and |f| < K for some K € Q, then, there exist real sequences
{axren and {by}ren such that S,[{a;}{br}] L?-converges to f.
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Proof. We reason within RCAg. By Theorem 3.25 and Lemma 3.41, 1 — 2 holds.
For the converse, we show =1 — —2. We use the notation St and AT defined in the
proof of Theorem 3.25. Let “WWKLy. Then, there exist ¢ > 0 and a tree T" which
has no path such that

)\T
VneNQ—Z>q.

For a finite sequence o € 2<N_ define a,, b, € R as

. o(i).
Qe = —Tm+27 E SR
i<lh(o)
27
bo- = Qs + W.

Since T' has no path, [=7,7] = U, g, (00, bs]. Define a function f € P?" as

8(z—as) T € |ay,¢o) No € St,

bo—ao
f(z) = W x € [¢y,ds) No € S,
% x € [dy,bs) No € St

where ¢, := (b, + 3a,)/4 and d, := (3b, + a,)/4. Then, f(c,) =2, f(d,) = —2 for
any o € St and |f| < 2.

Now, we show that for any real sequences {aj}reny and {b;}reny and for any
n € N, if [S,[{ax}{bx}] — f| < g, then, [T g(z)?dz > mq. Let {aj}ren and
{br}ren be real sequences, let n € N and let g be a continuous function such
that ¢* is effectively integrable and |S,[{ax}{bx}] — f| < ¢g. Take My € Q such
that My > max{|ao|,...,|anl,|bol, .-, |bs|} and define M := (n + 1)2My. Then,
1S, [{ax b} (z)] < M for any = € [—m,7]. Thus, if o € Sy and 27/2"() < 1/M,
then, |S,[{ax}{bx}](x)] < 1 for all x € [a,,bs] or |S,[{ar}{bx}](x)] > —1 for
all x € [ay,b,]. Therefore, g(c,) > 1 or g(d,) > 1 for any ¢ € Sy such that
27 /29 < 1/M. Let h be a modulus of integrability for g> on [—, 71]. Take N € N
such that 27/2Y < 1/M and 27V < 27" /27 where i = min{j € N | 277%2 < 7q}.
As in the proof of Theorem 3.25, if n € T and lh(n) = N, then, there exists
z € |a,, by] such that g(x)? > 1. Take (a, € [a,, by] | n € 2N Alh(n) = N) such that
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g(ay,) > 1if n € T. Then, as in the proof of Theorem 3.25,

[ ari = glaPy—a) -2

o ne2<NAlh(n)=N

2 Z (by — ay) — 277
neTAlh(n)=N
2L
> ov T
> 7q,
which means that =2. This completes the proof of 2 — 1. O]

Imitating the usual arguments for Fourier expansions in RCAg, we can show the

following theorems.

Theorem 3.44 (Perseval equality). The following is provable in RCAq. Let f € P*"
be effectively integrable, and let ap and by be Fourier coefficients of f. Then,

223 (Ja +16) = [ fw)ds
i=0 -

Theorem 3.45 (Riemann-Lebesgue lemma). The following is provable in RCAy.

Let f be an effectively integrable continuous function on R. Then, for any a,b € R,
b

lim f(z)cosnzdx = 0.

n—oo
a

Theorem 3.46 (pointwise convergence). The following is provable in RCAq. Let f €
P?™ be bounded variation on [—m, 7], i.e., there exist monotone increasing functions
9o, 1 such that f = go — g1. Then, f is effectively integrable and S,[f] pointwise

converges to f.

Theorem 3.47. Let fi, fo € P?™ be effectively integrable and let vy € R. Let
fi = f2 on some neighborhood of xy. Then, S,[fi1](xo) converges if and only if

Sulfa](xo) converges. Moreover, if S,[f1](zo) converges, then,
Jim S, [fi](wo) = lim Sy [fo](20)-

Finally, we argue about local approximation for continuous functions by trigono-

metric functions.
Theorem 3.48. The following assertions are pairwise equivalent over RCAg.
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1. WWKL,.

2. If f is a continuous function on R and xy € R, then, there exist real se-
quences {ay}ren and {by}ren such that S,[{ay}{bx}] L*-converges to f on a
neighborhood of xy.

Proof. 1 — 2 is a straightforward direction from Theorems 3.43 and 3.47. For the
converse, we show -1 — —2. We reason within RCAy,. By —-WWHKL,, define a
continuous function f on [—m, 7] as in the proof of 2 — 1 of Theorem 3.43. Then,
define continuous functions f; on [0,7/2Y] as f;(z) = 27" f(2""'z — 7). Note that

|f;] < 27!, Thus, we can define a continuous function f on [—7, 7] as

fi+1(x+ %) YIS [;?7 2?«?1]7
f(x) = fi+1(x - #) HANSS [21’7—‘;-17 %]7

0 z = 0.

Let U be a neighborhood of 0. Then, there exists ¢ € N such that [, %] € U.
As in the proof of Theorem 3.43, there is no real sequences {ay}ren and {by}ren
such that S, [{ax}{bx}] L?-converges to f on |55+, |, which means that —2. This
completes the proof of 2 — 1. O
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4 Complex analysis in second order arithmetic

In this chapter, we develop complex analysis related mainly to Cauchy’s integral
theorem within RCAg. In RCAq, Cauchy’s integral theorem holds on a good neigh-
borhood of each point, but Cauchy’s integral theorem itself is equivalent to WKLq
over RCAy. For that reason, some ‘local’ properties of holomorphic functions are

provable in RCAq, but ‘global’” properties are not.

4.1 Complex differentiability and integrability

In this section, we prove basic properties of holomorphic functions on the complex
plane within RCAg. Most of the following results are easy modifications of those in
Chapter 3.

We first define the complex numbers and holomorphic functions.

Definition 4.1 (the complex number system). The following definitions are made
in RCAy. We identify a complex number, an element of C, as an element of R?, and

we define +¢, -c and |- |¢ by:

(w1,91) +c (12,92) = (21 + 22,51 + 12);
(x1,11) ¢ (T2,92) = (2122 — Y1Y2, T1Y2 + T2Y1);

(@ 9)le = [z, y)lee = Va2 +y2

We write (0,1) = ¢ and (z,y) = = + iy where z,y € R. We usually leave out the
subscript C. A continuous (partial) function from C to C is a continuous (partial)

function from R? to R2.

Definition 4.2 (holomorphic functions). The following definition is made in RCA,.

Let D be an open subset of C, and let f , f’ be continuous functions from D to C.

Then a pair (f, f') is said to be holomorphic if
Vze D lim M

w—z w—z

= f'(2).
Informally, we write f for a holomorphic function (f, f’).

Let f be a continuous function. We are safe to say that f is holomorphic when

we can effectively find a (code for a) continuous function f’ which is the derivative

of f.
Similarly to C!-functions, we give another expression of holomorphic functions

without using limits.
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Theorem 4.1. The following is provable in RCAq. Let D be an open subset of C,
and let f be a holomorphic function from D to C. Then, there exists a (code for a)

continuous function ey from D x D to C such that

(26) Vze D eg(z,2) =0;
(27) Vz1 € D,V2y € D f(2z2) — f(z1) = (22 — 21)(f'(21) + ep(21, 22))-

Such an ey is called the differentiable condition function for f.
Proof. Easy modification of Theorem 3.16. m

Clearly, if f, f" and ey satisfy (26) and (27), then (f, f') is a holomorphic function.
Using differentiable condition functions, we can easily prove in RCAy that sum,
product, quotient and composite of holomorphic functions are holomorphic.

Let a be an element of C and let r be a positive real number. Then we define

Bla;r) = {z[ [z —a[ <7},
B(a;r) = {z||z—a| <r}.

The next lemma is a complex version of Lemma 3.11.

Lemma 4.2. The following is provable in RCAq. Let D be an open subset of C, and
let f be a holomorphic function from D to C. Let a € D and r, K > 0 be such that

B(a;r) C D and for all z € B(a;r), |f'(2)] < K. Then for all z,w € B(a;r),
[f(w) = f(2)] < 4K]w — z].

Proof. We reason within RCAg. Suppose f = fi+ifs, 2 = xo+iyo and w = x1 +iy;.
Define C!-functions g;, go from R to R as

gi(t) = fi(z + (w = 2)t) (j =1,2).

Then
G0 = S+ 0= — ) + o+ (0= 20— w) (= 1,2)
Hence

lg;(D)] < 2Kfw— 2| (j =1,2).
By Lemma 3.11,
195(1) = g;(0)] < 2Kw — 2|(1 - 0) < 2K|w — 2| (j = 1,2).
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Hence

[f(w) = f(2) < [filw) = fi(2)] + | fa(w) = fa(2)]
= |g:(1) = 92(0)] + [g2(1) — g2(0)]
< 4K|w — 2.

This completes the proof. Il

Next, we define analytic functions. We will show in Section 4.3 that a holomor-

phic function is an analytic function in RCA,.

Definition 4.3 (analytic functions). The following definition is made in RCA,.
Let D be an open subset of C. An analytic function on D is defined to be a
triple (f, {@n, 7 }nen, {Qnk fnenken), where f is a continuous function from D to C,
ap, oy € C and r, € RT, satisfying the following conditions:

L. U, en Blan; ) = D;

2. Vz € Blap;m) f(2) =Y ey @npz® for all n € N.

Informally, we write f for an analytic function (f, {an, 75 fnen, { @k }nen ken)-

As holomorphic functions, we are justified in saying that a continuous function

f is analytic when we can effectively find {a,, 7, fnen and {@nk }nenken such that

(fs {an, rn tnen, {Qnk fnenken) is an analytic function.
Next, we present complex versions of Theorems 3.26.2, 3.29, Corollary3.30 and
Lemma 3.31.

Theorem 4.3. The following is provable in RCAq. Let {ay,}nen be a (code for a)
sequence of nonnegative real numbers whose series -, o, is convergent. Let D
be an open subset of C, and let {f,}nen be a (code for a) sequence of continuous
functions from D to C such that

Vn e NVz e D |f,(2)] < ap.

Then there ezists a (code for a) continuous function f from D to C such that

VzED f(z) = ful2).
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Theorem 4.4 (termwise differentiation). The following is provable in RCAq. Let
D be an open subset of C, and let > a, and >~ b, be nonnegative convergent
series. Let {(fn, [}) }Inen be a sequence of holomorphic functions from D to C which

satisfies the following:

Vn e NVz e D |fu(2)| < ap,
Vn e NVz e D |fl(2)] < by.

Then, there ezists a holomorphic function (f, f') from D to C such that

F= "t =D 1
n=0 n=0

Theorem 4.5. The following is provable in RCAq. Let {a, }nen be a sequence of com-
plex numbers, and let r be a positive real number such that )" |a,|r" is convergent.
Let a be a complex number, and define an open set D C C as D = {z| |z —a| < r}.

Define a continuous function f from D to C as a complex power series on D, i.e.,

f(2)=) an(z—a)"

n=0

Then, there exists a sequence of continuous functions {f™ }nen.

Lemma 4.6. The following is provable in RCAg. Let { D, }nen be a (code for a) se-
quence of open subsets of C, and let { f,,}nen be a (code for a) sequence of continuous

or holomorphic functions where each f, is from D,, to C. If {f,}nen satisfies
VzeC VZ,_] eN (Z € D,L N Dj — fZ<Z) = fj(Z)),

then there exists a continuous or holomorphic function f from D = J,~, D, to C
such that
Vne NVze D (z€ D, — fulz) = f(2)).

Proofs of Theorems 4.3, 4.4, 4.5 and Lemma 4.6 are similar to those of Theorems
3.26.2, 3.29, Corollary 3.30 and Lemma 3.31 respectively.

We can also construct exp(z), sin(z) and cos(z) as analytic functions in the same
way as in Example 3.9.1.

Let f be an analytic function. Then by Theorem 4.5 and Lemma 4.6, we can
easily construct its n-th derivative f(® in RCAq. Clearly, for each n, f™ is holo-

morphic and analytic.
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Next, we define line integral. Let a, b, ¢ be elements of C and let r be a positive

real number. Then we define the following:

la,b] = {a+(b—a)r|0 <z <1},
Aabe = {azx)+bro+ crs|z + 20+ 23 =1,0 < 19,29, 23 < 1},
S(a;r) = {a+(x+iy)| —r <z,y <r},
0Aabc = [a,b]Ub,c]U]c, al,
dS(a;r) = [a+ (—r—ir),a+ (r—ir)]Ula+ (r—ir),a+ (r +ir)]

Ula+ (r+ir),a+ (—r+ir)]Ula+ (=r +ir),a+ (—r —ir)].

Definition 4.4 (line integral). Let D be an open or closed subset of C, and let f

be a continuous function from D to C. Then the following definitions are made in
RCAo.

1. Let v be a continuous function from [0, 1] to D. Then, we define fv f(2)dz,

the line integral of f along ~, as

|Al—0 7

/f(z) dz = lim S2(f)

if this limit exists. Here, A is a partition of [0,1], i.e. A ={0 =12 <& <

T < s S & < an = 1) SR = X f(1(&) (v(@k) — y(@k-1)) and
|A| = max{zy — 21 |1 <k <n}.

2. If [a,b] C D, we define y(t) = a + (b — a)t and define f[a . f(2)dz as
f(z)dz = /f(z) dz.
[a,0] gl

3. If 9Aabc € D and 9S(a;r) C D, we define [, . f(z)dz and faS(a-r) f(2)dz,

respectively as

/ f(z)dz = (2)dz + (2)dz + f(z)dz,
0Aabc ]

[a,b] [b,c] [c,a

/ f(z)dz = / f(z)dz+/ f(z)dz
9S(a;r) la+(—r—ir),a+(r—ir)) l[a+(r—ir),a+(r+ir)]
+/ f(z)dz+/ f(z)d=.
la+(r+ir),a+(—r+ir)] la+(—=r+ir),a+(—r—ir)]

Let f be a continuous function from D C C to C, and let [a,b] C D. A modulus
of integrability along [a,b] for f is a function hy from N to N such that for any
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n € N and for any partitions A;, Ay of [0,1] C R, if |A],[Ag] < 27Mes(™ then
|S[ﬁ71b](f) — S@fb}(f)] < 27" We say that f is effectively integrable on D when for
every [a,b] C D, we can find a modulus of integrability along [a, b].

We can show that if f has a modulus of uniform continuity on D, then f is
effectively integrable on D as in the proof of Lemma 3.21. Let f be an effectively
integrable continuous function on D. Let hj,y be a modulus of integrability on for
f and let K be a rational number such that |f(z)] < K for all z € [a,b]. As in
Lemma 3.22, define n-approximation S, (f; [a, b]) of f[a,b] f(2)dz as

s(n) a i
S.(filat) = s s (@“’ —at >

i=1
where s(n) = min{k|1/k < 27"es(™W=2/ K} Then,

(x)dx — S,(f;[a,b])| <27

‘ [a,b]

The next theorem is a line integral version of Theorem 3.32.

Theorem 4.7 (termwise integration). The following is provable in RCAq. Let
> gan be a convergent series of nonnegative real numbers, and let {f,}nen be
a sequence of effectively integrable continuous functions from D C C to C which
satisfies the following:

Vne NVz e D |fu(2)] < an.

Then, f =" fa is effectively integrable and for all [a,b] C D,

oo

f(z)dz = Z fu(2) dz.
[a,b] n=0 [a,b]
Proof. Similar to the proof of Theorem 3.32. [

The next lemma is some basic properties of line integral.
Lemma 4.8. The following assertions are provable in RCAy.

1. For any a,b,c € C, faAabc 1dz and faAachdZ exist and

/ 1dz:0,/ zdz = 0.
O0Aabc 0Aabc
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2. Let D be an open or closed subset of C, and let f be a continuous function
from D to C. If [a,b] C D and there exists a modulus of uniform continuity
on [a,b] for f, then f[a . f(2)dz and f[b . f(2)dz exist and

(2)dz + f(z)dz=0.
[a,b] [b,a]

Proof. Obvious. O]

Note that we can effectively prove Theorems 4.1, 4.3, 4.4, 4.5, 4.7 and Lemma 4.6,

and thus, sequential versions of these theorems and lemma hold as in Chapter 3.

4.2 Cauchy’s integral theorem

To prove Cauchy’s integral theorem in RCAg, we need to integrate holomorphic
(hence analytic) functions effectively. Actually, we can prove Cauchy’s integral
theorem for power series in RCAq since power series are always effectively integrable.
However, we cannot prove Cauchy’s integral theorem in RCAy because there might
exist a holomorphic (analytic) function which cannot be integrated.

The next theorem is an RCAq version of Cauchy’s integral theorem.

Theorem 4.9. The following is provable in RCAq. Let D be an open subset of C,
and let f be a holomorphic function from D to C. If f is effectively integrable on D
then, for any a,b,c € D such that Aabe C D,

/ f(z)dz=0.
0Aabc

Proof. We reason within RCAy. We imitate the usual proof of Cauchy’s integral
theorem (c.f. [1, page 109]) for triangles (or rectangles) in RCAqg. The existence of
JoAape f(2) dz is given by the modulus of uniform continuity on D. Define L as the
length of 0Aabe, i.e., L = |b—a|+ |c —b| + |a — ¢|. Assume

/8Aabc f (Z) e

then there exists a positive rational number ¢ such that

/ f(2)dz
OAabe

> 0,

(28) >q > 0.
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Now by primitive recursion, we construct a sequence {(a, b, ¢,) }nen such that

(ao, bo, co) (a,b,c);

Aan—i—l bn+1cn+1 g Aanbncn;

b, —a
|bn+1_an+1| = %;
c, — b
|Cn+1_bn+1| = MTnl;
|an+1_cn+1| = M;
2
q
/8Aabc f(z)dz| > L
nvntn

Let (an,bn, ¢,) be already defined. Define {(a, ;, b}, ,¢hq) i<ica as ahyy = an,

b’}z—f—l = ai-s—l = wa—l = (an + bn)/2, bgz—i—l = by, Ci-&-l = b?z-l—l = ai+1 = (b +cn)/2,
oi=cpand ¢l =ad, =bt,, = (¢, +a,)/2. Then

Zzi: /8Aa f(z)dz

1 n+1 n+1 n+1
4

> Z/ f(z)d=
8Aan+1 n+1 n+1
= f(z)dz
OAanbncn
q
> i
Hence,
TR q 3
(29) Jk eN !Sk(f; OAal bl 1 chy)] > T + o

for some 1 < 7 < 4 where

Se(f; aAa/j’L—‘rlbf’l—f—lcil-i-l) = Sk(f; [ Ayt bﬁm]) +Sk(f; [biz—i—l? Ciu—l]) +Sk(f; [Cfu-la a’j’b—l—l])‘

Since (29) is expressed by a X{ formula, a function H exists such that H(ay,, by, c,) =
(alyq, 0%, chq) where (a1, 0%, ¢ ) satisfies (29). Then, by primitive recursion,
define {(ay, by, ¢n) bnen as (ao, bo, co) = (a,b, ¢) and (a1, bpy1, Cny1) = H((an, by, cp)).
Clearly, |ap11 — an| < L/2" holds for all n € N. Hence by theorem 2.4, there
exists zyp = lim, . a,. Then clearly, for all n € N, 2y € Aa,b,c,. Let e; be the
differentiable condition function for f and let E; be a code for ef. Let p(k) be a

39 formula which express there exists (m/,a’,r’,V/,s') € E; such that [|(z0, 20) —
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a'|| +27% < v and V| + ¢ < q/2L% Then ef(z9,2) = 0 implies Ipp(p). Hence
there exists kg € N such that (ko) holds. Take ng such that L2701 < 27k then

Atpybngcno € B(z9;27%). Define a continuous function g from D to C as

9(z) = fl(20)+ (2 = 20)f"(20)
= [f(2) —ef(20,2)(2 — 20).

Then for any z € Ady,ybnycny C B(20;27%),

[F(z) =9()| = les(20,2)(2 = 20)|

< 4 L
- 22 2mo
B q
o L2metl’
Hence
L q
30 - d _—
) /BAanObnOcno fz) —glz)dz) < 2no  [2not+l
_ q
2. 4no”

On the other hand, by Lemma 4.8,

/ g(z)dz = 0.
8Aanobnocn0

Hence
[ g
0Aan b"oc"()
= / f(z)dz
8Aan0 b"oc"()
4
gm0’
which contradicts (30). This completes the proof. O

By this theorem, if f is a effectively integrable holomorphic function on D =

B(a;r), then, there exists a continuous function F' on D such that

F(z) = f(x)dx

[a,x]

as in Lemma 3.23. Clearly, (F, f) forms a holomorphic function.

We show that Cauchy’s integral theorem is equivalent to WKLy over RCAy.
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Theorem 4.10. The following assertions are pairwise equivalent over RCAy.

1. If f is a holomorphic function on an open set D C C, for any Aabc C D, f

18 bounded on Aabc.

2. If f is a holomorphic function on an open set D C C, for any Aabc C D,

there exists a modulus of uniform continuity on Aabc for f.

3. Cauchy’s integral theorem for triangles: if f is a holomorphic function on an
open set D C C, then for any Aabc C D, [, .., f(2)dz ezists and

/ f(z)dz =0.
dAabc

4. WKL,.

Proof. We reason within RCAg. The implications 4 — 1 and 4 — 2 are immediate
from Theorem 3.5. The implication 2 — 3 is immediate from Theorem 4.9.

To prove 1 — 4 and 3 — 4, we show that -“WKLy implies =1 and —3. Let
T be an infinite tree with no path, i.e., T is an infinite subset of 2<N and for
any function h from N to {0,1}, there exists n € N such that h[n] ¢ T. By A®?
comprehension, define T as 0 € T « o € 2N\ T AVk < lh(o) o[k] € T. Let
{0n}nen be an enumeration of 7' which satisfies for any n € N, Th(o,) < Th(o,41).
Define ¢,,d, € [0,1] for each 0 € 2N as ¢, =0, dy = 1, ¢o~(0) = o, do~(1) = dy
and ¢,~y = dy—~() = (¢o + d,)/2. Then define natural numbers s,,, real numbers

a, and open intervals I,, as follows:

sp = lh(o,) +1;

Con + do,
an = )
2

I, = (¢,,ds,) = (an—2"""a,+27°").

Note that for any p,q € N I, N [, = (.

Next, by A comprehension, define X as

X = {(o,7) €T xT|dy=c,}U{((2),7)|TE€T N, =0}
U{(o,2) e eT ANd, =1}.

Let {(6n,7n) }nen be an enumeration of X. Then define natural numbers t,, real
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numbers b,, and open intervals J, as follows:

t, = max{lh(d,),Ih(7)} + 1;
bn = d&n:Cf—n;

Jo = (by—27",b, +27").

(Here, dizy = 0, ¢ioy = 1 and 1h((2)) = 1.) Then for any n € N, there exist at
most two k’s such that J, N [, # (), and for any n,k € N, a, ¢ J,. Moreover,
{L }nen, {Jn fnen cover [0, 1], i.e.,

Jno Um0
n=0 n=0

Now, define an open cover of C as follows:

A, = {z+iy|zel,yecR};
B, = {z+iy|z € J,y e R};
C = {z+iylzr<0ve>1yeR}

Then

GAnuGBnuczc
n=0 n=0

Define a sequence of complex numbers {(, }nen as
Co=an+i 27" € A,
and consider each a,, as a complex number, i.e., redefine a,, as
a, =a, +1i-0€ A,.

Then for any p,q € N, A,N A, =0 and for any n € N, a,, and (,, are not in each By,

and C'. Moreover, for any n € N,
(31) Vg A, |z — (| =270

Define a sequence of holomorphic functions {f, }nen as

97sn 1\
n = T '27871;
Fnl2) <z—<n 2z‘>

2—Sn 1 n+sn+1
() = — L Y 1),
fu(2) <Z—Cn 22.) iln+ s, +1)
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(Here, each f, is from C\ {¢,} to C.) Then

—sn n—+sn

.22 2

Define {a, }neny and {8, nen as a,, = 27" and (B, = (n + 1)27"~!. Then their series
Yo gy and Y B, are convergent. By (31), for any n € N,

33) g A 66 = (o '1)7Hﬁ” -
z n |Jn\Z = 5 . "
|z — Cu| 2
1 n+sn
()
2
<y,
9—sn 1 n+snp+1
34 Vzeg A, |fL(2) = ( -—) 2(n+s,+1
(34) a6 = (P ( )
1 n+sn+1
< <§) -2<n+8n+ 1)
< B

Define {m,, },en as

my, = min{k|t, < s}
Then for any n € N
(35) Vk>m, AyNB,=10,.

Let k > n. Then by (33) and (34), |fk(2)| < oy and |f(2)]| < Bk for all z € A,,.
Hence by Theorem 4.4, for each n € N, we can construct holomorphic functions f4,
from A, \ {¢,} to C as

Fan®) =3 =+ 3 fle).

Similarly, by (35), we can construct holomorphic functions fg, from B, to C and a

holomorphic function fo from C' to C as

) = SR+ S S,

k=mn,+1

foz) = Y fil2):
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Then by Lemma 4.6, we can construct a holomorphic function f = ()~ fa, U

UoZ fB, U fo from U2 (A \ {¢}) Uy Bn U C = C\ {Gy}nen to C. Here, for
any n € N,

flan) = fn(an)+2fk(an)

k#n

= 2"+ filan),

k#n
Y fila)| £ Y ap<2
k=0

Hence, the real part of f(z) cannot be bounded in [0, 1], and then, faA(fi)Ol f(z)dz
cannot exist although A(—:)01 C C\ {(, }nen, which means that 1 and 3 are denied.

This completes the proofs of 1 — 4 and 3 — 4. O]

We can generalize the above version of Cauchy’s integral theorem. Let us regard
a Cl-function from [0, 1] to R? as a C'-function from [0, 1] to C. (At end points, we
consider one-side derivative.) A piecewise C'-Jordan curve v on an open set D C C
is a finite sequence of one-to-one C!'-functions {,}1<;j<, from [0, 1] to C which have
no common points except v;(1) = v;41(0), (1) = 7 (0). (We just write ; for
C'-function (v;,7}).) Given a continuous function from D to C, we define a line

integral along v as
/f(z) dz = Z f(2)dz.
v j=1Y7

Remark 4.11. Let v is a piecewise C!-Jordan curve on C. If ¥([0,1]) is a closed
set and its complement is divided into two arcwise connected open sets Uy and Uy
such that Uy is bounded, then Uy is said to be the interior of v. However, we cannot
prove the existence of the interior of a piecewise C!'-Jordan curve. In fact, we show
that the Jordan curve theorem is equivalent to WKLy over RCAq in Chapter 5. See
also [25].

In WKLy, we can find a broken-line approximation of a piecewise C'-Jordan
curve. Thus, in WKLy, we can prove Cauchy’s integral theorem for piecewise C!-

Jordan curves by Theorem 4.10.

Theorem 4.12. The following assertions are pairwise equivalent over RCAg.
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1. Cauchy’s integral theorem: if f is a holomorphic function on an open set
D C C, v is a piecewise Ct-Jordan curve on D such that its interior exists
and is included in D, then fw f(z)dz exists and

Lf(z) dz = 0.

2. WKL,.

4.3 Taylor’s theorem

In this section, we show the Taylor theorem for holomorphic functions within RCAg,
1.e., we show that a holomorphic function can be expanded into a power series
on some neighborhood of each point. This means that ‘holomorphic functions are
analytic’ in RCAg. Holomorphic functions are uniformly continuous and effectively
integrable on some neighborhood of each point. Thus, to show the Taylor theorem,
we only need Cauchy’s integral theorem for effectively integrable functions, which is
provable in RCA,.

Let f be a continuous (partial) function from C to C, and let B(a;r) C dom(f).
Let h be a modulus of uniform continuity on B(a;r) for f. Then we call a pair
(B(a;r),h) (or just B(a;r)) uniformly continuous neighborhood (u.c.-neighborhood)
for f.

Lemma 4.13. The following is provable in RCAqg. Let D be an open subset of C,
and let f be a holomorphic function from D to C. Given a positive real number K
such that |f'| < K on B(a;r) C D, then there ezists a modulus of continuity for f

on B(a;r), i.e., B(a;r) is a u.c.-neighborhood.

Proof. We reason within RCAg. Without loss of generality, we may assume K is a

positive rational. Define h from N to N by:

h(n) = min {k

2_k < 2:
4K |-
Then by Lemma 4.2, h is a modulus of uniform continuity for f on B(a;r), which

completes the proof. O

Let f be a holomorphic function from an open set D to C. By the continuity of f’,

for each zy € D there exists a positive rational number r such that f’is bounded on
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B(zo;7). Then B(zo;7) is a u.c.-neighborhood. By Theorem 4.9, Cauchy’s integral
theorem holds on B(zp;7). Roughly speaking, Cauchy’s integral theorem holds
locally in RCAq. Using this, we can show that ‘holomorphic functions are analytic’
in RCA,.

Lemma 4.14. The following is provable in RCAq. Let D be an open subset of C,
and let f be a holomorphic function from D to C. Let ay € D and ro, K > 0 be such
that B(ag;ro) € D and for all z € B(ag;1o), |f'(2)| < K. Take zy € B(ag;r0) and

define a continuous function g, from D to C as the following:

gzo('Z) - €f<Z0’ z) + f,(z())'
f(z):f(zo) ZfZ ?é 20,
{ f'(0) if 2 = zo.

(Here ey is the differentiable condition function for f.) Then, the following hold.

1. If g, is holomorphic on D \ {2}, then, there exists a modulus of uniform

continuity on B(ag;ro) for g.,-

2. For any a,b,c € B(ao;70), [yaum. 920(2) dz exist and

/ 9x(2)dz = 0.
0Aabe

Proof. We reason within RCAg. We first prove 1. Clearly g¢., is holomorphic on
D\ {zp}. We only need to find a modulus of uniform continuity on B(ag;ro) for g.,
effectively. By Lemma 4.13, we can effectively find a modulus of uniform continuity
ho on B(ag;rg) for f. Let G, be a code for g,, and let p(n,m) be a 3V formula
which expresses that there exists (12, @, 7, b, §) € G, such that |zg — a| + 27 < 7
and |g.,(z0) — bl + 8 < 2772, Since z, € dom(g,,) implies VnIme(n, m), we can
find a function ! from N to N such that Vne(n,(n)) holds. Thus for any n € N,

(36) le, Wy € B(Zo, 27“”)71)

|9z (W1) = gzp(Wa)| < [gz (1) = g (20)] + gz (w2) — o (20)]
< ol

Now, take mg € N such that |f(ag)| + 4Kr9 < 2™. By Lemma 4.2, for all w €
B(ag; o), we have |f(w)| < 2™°. Define a function h from N to N as

h(n) = max{ho(l(n) +n+ 3),2l(n) + mo + 5}.
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The proof will be completed if we show that A is a modulus of uniform continuity

on B(ag;ro) for g.,. To show this, we need to check the following three cases:

(i) wy,we € B(20;27'™=1) and |w; — wsy| < h(n);

(ii) wy,wy € Blag;r) \ B(20; 2771 and |w; — wy| < h(n);

(iil) wy € B(zo; 271 ™=1), wy € Blag;ro) \ B(z0;27"™ 1) and |w; — wa| < h(n).
If (wq,ws) satisfies (i), then by (36),
1920 (w1) — g2 (w2)| < 27770

If (wy,ws) satisfies (ii), then

o0 = ga () = |2 - — L) Jlwa) = /)
_ ’f — f(w2) i (f(w2) + f(20)) (w2 — w)
Wy — 2o (w2 - Zo)(wl - Zo)
1 2.2mo
< WU(U&) f(ws)] t S g |wa — w1

< 21(n)+1 . 2—l(n)—n 3 + 2m0+2l( n)+3 | 2—mo—2l(n)—n—5

— 2—71—1‘

Assume (wy,ws) satisfies (iii). Let ws be an intersection point of [wy,ws] and

{w] |w—z| = 27171}, Then (w;, ws) satisfies (i) and (wy, ws) satisfies (ii). Hence

1920 (W1) = gz (w2)| < {920 (w1) = gao (w3)] + |92 (w2) — gz (w3)]
< 277171 4 27%71
= 27"

Hence for any n € N, if wy, we € B(ag;ro) and |wy —wsy| < h(n), then |g.,(w) —
Gz (w2)| < 27™. This completes the proof of 1.
By 1 and Theorem 4.9, we can prove 2 as usual (c.f. [1, page 111]). O

Since we can effectively prove Lemmas 4.13 and 4.14, sequential versions of these
lemmas hold.

Now, we are ready to prove the main theorem of this section.

Theorem 4.15 (Taylor’s theorem). The following is provable in RCAq. Let (f, f') be

a holomorphic function from an open set D C C to C, then, there exist {a,, ' }nen

and { g fnen ken such that (f,{an, Tn}nen, {0k bnenken) forms an analytic function
from D to C.
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We can prove this theorem effectively and thus a sequential version of this the-
orem also holds. This theorem shows that a holomorphic function is an analytic
function. Particularly, the derivative of a holomorphic function is a holomorphic

function.

Proof. We reason within RCAg. We first decompose D into u.c.-neighborhoods. Let
F’ be a code for f’, and let (my,,a,,rs,bn, s,) be an enumeration of all elements
(m,a,r,b,s) of F’ which satisty 3(,a,7) € D |a —a| +r < 7. Define 7, = 1,/2,
K, = |f'(a,)| + s, and M,, = 4K,,s,|f(a,)|. Then by the definition of continuous
functions and D C dom( f’),

(37) Vz € B(an;ry) ’f/(Z)‘ < Ky,
(38) | B(an; i) = D.

By Lemma 4.13, we can find a modulus of uniform continuity on B(a,;r,) for f for
each n.
Next, we expand f into a power series on each B(a,;7,). For any n € N and for

any z € B(ay;7,), define g, as

g:(w) = es(z,w) + f(2)
f(w):f(z) if w# z,
{ f(2) if w=z.

Here, ey is the differentiable condition function for f. Then by Lemma 4.14,

/ g.(w) dw = 0.
BS(an;%r")

This means

d
(39) £(2) / Yo / G,
8S(an;2rn) W — 2 8S(an;2ry) W — 2

if these two integrals exist.

Claim 4.15.1. For any n € N and for any z € B(ay;7,) the following integrals

exist and,

d d
GS(an;%rn) w—==z as(0;1) W

Moreover,
d
/ —w‘ < 8.
0S(0;1) W
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We can find a modulus of uniform continuity on 95(a,;2r,/3) for 1/(w — z) and
a modulus of uniform continuity on 05(0;1) for 1/w easily. Hence the integrals in
(40) exist. The equality (40) is obvious. The estimation (41) can be proved by an
approximation which is produced by a modulus of integrability. This completes the

proof of this claim.

Claim 4.15.2. For any n € N and for any z € B(ay;7,) the following integrals

exist and,

(42) / UG
BS(an;%rn) w—z

=0 aS(an;%rn) (w - an)]

To prove this claim, define a sequence of continuous functions {p;},en as

) = (2 - 0 f(w)

w — a,)Itt
For all w € 0S(an;2r,/3),

() ][ EE s

(7))’ 3\’ M,
<My—5—"7"—<|(-])  —.
Crytt S \1) “2n,

Hence by Lemma 4.3, > 7 p;j(w) is convergent and,

z

> pyw) = 1

Using a modulus of uniform continuity for f, we can construct a modulus of uniform
continuity on 05(a,;2r,/3) for each p;. Then by Theorem 4.7, (42) holds. This

completes the proof of this claim.

Define a,; as
f(w)
faS(an;%rn) (w—ay)It1 dw
Qnj = dw

fBS(O;l) w

Then, by (41) and (43), for any n € N

: 1 8 3\’ M,

Vi€ NVz € B(an;7n) |ani(z —ay)| < Zgr"(Z) o
3\ M,
~ \4 3
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Hence by (39) and Lemma 4.3,
Vz € Blay; ™) f(z) = Zanj(z —a,)
=0

for all n € N. This means (f, {an, 7n fnen, {0 }nenjen) is an analytic function, which

completes the proof. O

Let f be a continuous function from [a,b] C R to C, we define f; f(t)dt as

/abf(t)dt:/abfl(t)dtJri/abe(t)dt

where, f = f; + ifs. The next corollaries are straightforward from the Taylor

theorem.

Corollary 4.16 (mean value principle on some u.c.-neighborhood). The following
1s provable in RCAq. Let D be an open subset of C, f be a holomorphic function
from D to C and zy € D. Let zy € B(a;r) be a u.c.-neighborhood for f. For any

positive real number 7, if B(zo;7) C B(a;r), then the following integral exists and

/0 ' f(z0 + 7exp(if)) dO = 27 f(2o).

Corollary 4.17 (maximal value principle on some u.c.-neighborhood). The follow-
ing is provable in RCAq. Let D be an open subset of C, f is a holomorphic function
from D to C and zy € D. Let zyp € B(a;r) be a u.c.-neighborhood for f. If |f(z2)]

attains a mazximal value at zo, then f is constant on B(zo;T).

4.4 Some other results

In this section, we show some other results for Reverse Mathematics for complex
analysis.
Using differentiable condition functions, we can prove the basic theorem for the

Cauchy-Riemann equation.

Theorem 4.18. Let D be an open subset of C(= R?) and let f = fi +ify be a
continuous function from D to C(= R?), i.e., fi, fo are continuous functions from
D to R such that f(z) = fi(2) + ifa(2). (If f is a continuous function from R™
to R™, then we can effectively find (codes for) continuous functions fi, ..., fm from
R™ to R such that f(x) = (f1(x),..., fm(X)).) Then the following assertions are
provable in RCAq.
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1. Given the continuous derivative of f, we can find continuous partial derivatives
of f1 and fy which satisfy the following Cauchy-Riemann equation:

ofi _90fr 0f of
44 e e 2
(44) or Oy’ Ox oy
2. Given continuous partial derivatives of fi and fo which satisfy (44), then

O0f1/0x +1i0f1 /0y is the continuous derivative of f.

Proof. We reason within RCAg. We can easily prove 1. To prove 2, let f = (f1, f2)
be a C!'-function which satisfies the Cauchy-Riemann equation. Let e;, and ey, be
differentiable condition functions for f; and fo, and let f' = df;/0x 4+ i0f1/0y. Let
A be a closed set such that A = {(w,w)|w € D}. Define a continuous function e}
from D x D\ A to C as

Gw) = Llenlmw) +ilen(zw),

where ey, is a differentiable condition function for f;. Then,

Vz e D lim e} (z,w) =0,

V(z,w) e Dx D\ A f(w)— f(z)=(w—2)(f"(z) + e?c(z,w)).
These imply
Vze D lim

w—z w—z

which completes the proof.? O

Theorem 4.19 (Morera’s theorem). The following is provable in RCAqg. Let D be an
open subset of C, and let f be a continuous function from D to C. If f s effectively
integrable on D and for all Aabc C D, fBAabc f(2)dz =0, then, f is a holomorphic

function.

Proof. We reason within RCAq. By the definition of open set, write D = |, .y B(an;7n)-
Using moduli of integrability for f, we can easily construct continuous functions F),

from B(ay,;r,) to C such that

neN

F.(z) = f(w) dw.

[anvz}
Then, clearly (F,, f) is holomorphic on B(ay,;r,). By theorem 4.15, F}, is analytic.
Hence f|p(anr,) is a holomorphic function on B(an;ry,) for all n € N. Thus, f is

holomorphic on D. This completes the proof. m

9 Actually, we can expand e?c into the differentiable condition function for f.
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A continuous function from an open set D to C is said to be complex differentiable
if
V:eDaeC lim LW =S _

w—z W — 2
Theorem 4.9 holds for complex differentiable functions in place of holomorphic func-
tions. Now, the question is ‘a complex differentiable function is a holomorphic func-
tion?’ i.e., can we find the derivative of a complex differentiable function? To answer

this, we need to use the complex differentiable version of Theorem 4.9.

Theorem 4.20. The following is provable in WWKLq. Let D be an open subset of
C, and let f be a continuous function from D to C. If f is complex differentiable,

then f s analytic. Particularly, complex differentiable functions are holomorphic.

Proof. We reason within WWKLgy. By Theorem 3.25, all bounded continuous func-
tions are effectively integrable. Let F' be a code for f, and let (my, a,,r, by, Sn)
be an enumeration of all elements (m,a,r,b,s) of F' which satisfy 3(in,a,7) €
Dla—a|+r <7 Then D =], _nBlan;r,) and f is bounded on each B(ay;r,).
Hence f is effectively integrable on each B(a,;r,). By the complex differentiable
version of Theorem 4.9, for all Aabe C B(an;y), [5au. f(2) dz = 0. Then by Theo-
rem 4.19, f is analytic on each B(ay;r,). Thus, f is analytic on D. This completes
the proof. n

neN

Remark that for real differentiable functions, the situation is quite different.
We showed that the existence of the derivative of a real continuously differentiable
function requires ACAp in Theorem 3.8. We can find the derivative of a complex
differentiable function within a weaker system. We do not know whether RCA,
proves that complex differentiable functions are holomorphic, but we get a complex

differentiable version of Cauchy’s integral theorem.
Theorem 4.21. The following assertions are pairwise equivalent over RCAq.

1. If f 1s a complex differentiable function on an open set D C C, v is a piecewise

Ct-Jordan curve on D such that its interior exists and included in D, then
|, f(2) dz exists and
/ f(z)dz=0.
gl

2. WKL,.
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5 Non-standard arguments for WKLy and ACA,

In this chapter, we introduce non-standard arguments and prove the Riemann map-
ping theorem in ACAy and the Jordan curve theorem in WKLy. Arguments of non-
standard analysis in second order arithmetic were first introduced by Tanaka as a
corollary to his self-embedding theorem for WKLy [34]. He showed that some pop-
ular arguments of non-standard analysis can be carried out in WKLg [33]. Using
that method, Tanaka and Yamazaki[32] constructed the Haar measure in WKL,.
However, arguments of non-standard analysis in WKLg are insufficiently strong to
carry out some popular applications of non-standard analysis. We carry out some
popular methods of non-standard analysis for sequential compactness in ACAq. For
non-standard analysis in ACAg, we use the construction of models of ACAq (cf. [9]).

Applying non-standard arguments, we study standard analysis in WKLy and ACA,.

5.1 Model construction for non-standard analysis

In this section, we introduce some model construction to carry out non-standard
analysis in WKLy and ACA,.
To carry out arguments of non-standard analysis in WKL, we use an extension

of a non-standard model of WKL, provided by Tanaka’s self-embedding theorem.

Theorem 5.1. Let V = (M, S) be a countable non-standard model of WKLgy. Then,
there exists a countable model of WKLy *V = (*M,*S) which satisfies the following:

1. *M 1is a proper end extension of M;
2. S={XNM|Xe*S};
3. 3%:V —*V st x|y =idy and * is a 3) elementary embedding.
Proof. Easy from the self embedding theorem for WKLg [34, Main Theorem 2.7]. [

A careful examination of arguments of non-standard analysis in WKLy shows
that the above three conditions are essential. These conditions correspond to the
techniques of ordinary non-standard analysis. By the first condition, we can find a
‘non-standard’ element, i.e., we can take an infinite element from the viewpoint of
V. Since *V is again a model of WKLy, we can use the ‘overspill principle’. The
second condition allows us to construct ‘standard parts’. By the third one, we can

use the ‘transfer principle’ for XJ-sentences. Using these, we can apply methods of
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non-standard analysis for some theorems such as the maximal value principle for
continuous functions.

Although the conditions described above provide us with some useful popular
arguments of non-standard analysis, they are not sufficiently strong to prove some
other popular theorems. Actually, the transfer principle for ¥.)-sentences are not
sufficiently strong to carry out methods of non-standard analysis for sequential com-
pactness or others. Therefore, we strengthen the third condition. The next theorem
asserts that we can strengthen the third condition for a model of ACAg. Using this
theorem, we can carry out some more popular arguments of non-standard analysis
in ACA,.

Theorem 5.2. Let V = (M, S) be a countable model of ACAg. Thereby, a countable
model of ACAg *V = (*M,*S) exists which satisfies the following:

1. *M 1is a proper end extension of M ;
2. 5={XNM]|Xe*S};
3. 3%:V —*V st x|y =idy and x is a 3} elementary embedding.

The third condition corresponds to the ‘transfer principle’ for ¥} sentences; we call
the third condition X} transfer principle.

This theorem is an easy consequence of the following Gaifman’s theorem [20,
Theorem 8.8]. Let R be a countable set of unary relation symbols, and let £ =

Lpa U R. Define PA(L) as PA™ plus induction axioms for £-formulas.

Lemma 5.3 (Gaifmann). Every model of PA(L) has a proper conservative extension:
if M is a model of PA(L), there exists a proper elementary extension *M which
satisfies the following:

for any L-formula o(x,¥) and d € *M, there exists a L-formula W(x,2) and € M
such that

fa€"M|*Mk pla,d)} N M = {a e M| M Eva,d}
Enayat mentioned in [9] that they can construct the extension of a model of
ACA( which has the transfer principle for arithmetical sentences using the Gaifman
theorem. By a little consideration, we can strengthen the transfer principle. The

transfer principle for X1 sentences is due to Tanaka.
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Proof of Theorem 5.2. Let (M, S) be a countable model of ACA,. We identify each
element of S as a unary relation on M and regard M as an £ = Lpa U Rg-structure.
Here, Rg is a countable set of unary relation symbols that correspond to S. Since
(M, S) satisfies induction axioms for arithmetical formulas, M is a model of PA(L).
Hence, by the previous lemma, there exists an L-structure *M which is a proper
conservative extension of M.

Now we construct a second order part for *M. Define *S as

"S={{ae"M|"Mp(a)} | ¢(z) € Lu(x)}.

Here, £+)(7) is the set of all LU*M-formulas with only one free variable z. Clearly,
(*M,*S) is a model of ACA,.

Foreach X € S, define*X € *Sas*X ={a € *M | *M = X(a)}. Because *M is
an end extension of M as an L-structure, we can define a map x : (M, S) — (*M,*S)
as *(a) := a for each a € M and *(X) := *X for each X € S. Also, because *M is
an elementary extension of M, a map * is a ¥} elementary embedding.

Next, we show that *V' = (*M,*S) satisfies the second condition. By the defi-
nition of *S, a subset Z of *M is definable in *M if and only if Z € *S. For that
reason, if X € *S, then X N M is definable in M because *M is a conservative
extension of M. Because of that fact, X N M is arithmetically definable in (M, .S).
Then, X N M € S since (M, S) = ACAq. Therefore, S ={X NM | X € *S}.

To show the third condition, let ¥(X, 37, Z) be an arithmetical Lo-formula with
no free variables other than X ,}7,:? and let A € S and @ € M. Clearly, V
3XY(X, A, @) implies *V = 3X¢(X,*A,@). We show the converse. Let *V |
IX(X,*A,@). Then, there exists X, € *S such that *V = (Xo,*A,d). By the
definition of *S, there exist b € *M and an arithmetical £-formula 0(z, ) such that
V= Vz(z € Xo < 0(2,b)). Let ¥(6(7),Y, ) be a formula obtained by replacing
all subformulas of the form z € X that appears in ¥(X, Y, %) with 0(z, 7). Clearly,
*V = (0(b),*A,@). Hence, *V = 37p(0(§), *A, @). Note that Ijp(0(7), A, @) is an
L-sentence. Thus, V = 350(0(7), A, @). Then, there exists @ € M such that V =
¥(0(@), A,d@). By arithmetical comprehension in V' there exists X; € S such that
V EVz(z € Xy < 0(2,6). Then, V = (X1, A, @)ie., V EIXP(X, A, ). O

5.2 Non-standard arguments for WKL, and ACA,

In this section, we give some examples of applying non-standard arguments to math-

ematics in second order arithmetic. We prove Heine-Borel covering theorem using
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methods of non-standard analysis for WKLy and we prove the Bolzano Weierstrafl
theorem and the Ascoli lemma using methods of non-standard analysis for ACA,.
The original proofs of these three theorems using ordinary non-standard analysis
are in [24].

The following lemma is a basic tool for non-standard arguments.

Lemma 5.4 (overspill, underspill). Let V = (M, S) be a countable model of WKLg
and let *V = (*M,*S) be an extension of V' that satisfies the three conditions pre-
sented in Theorem 5.1, and let @ € *M and Ae*S. Let*V = 122, Then, for all
0 formula gp(x,g’,)z), the following hold:

-,

1. overspill: if Vm € M3n € M n > m A*V | ¢(n,da, A), then, Ib € *M \
M *V E ¢(b, @, A).

-,

2. underspill: if Vb € *M \ M3c € *M ¢ < bA*V = ¢(c,a, A), then, In €
M *V = o(n,d, A).
Proof. To prove 1, let w(x,gj,)?

)
then, *V = ¢(0,d, A) AVz(¢Y(z,d,A) — Y(z + 1,d, A) and *V B Vay(z, d, A), but
it contradicts V' = 1%2. We can prove 2 similarly. O

=dz < xgp(z,@)?). Assume 1 does not hold,
@, A

Example 5.1 (Heine-Borel covering theorem). The following is provable in WKL,.
If {Uy}ren be a sequence of open subsets of R which covers [0, 1], then there exists
m such that {Uy }x<m covers [0, 1].

Proof. Let V = (M, S) be a countable model of WKLy and let *V = (*M,*S) be
an extension of V' that satisfies the three conditions presented in Theorem 5.1. Let
Ureo Ux 2 [0,1] in V. Without loss of generality, we can assume U,, = B(f(n), g(n))
where f and ¢ are sequences of rational numbers (i.e., f,g : N — Q) and Vn €
N 3m > n B(f(n), g(n)) € B(f(m), g(m)), thus, we need to show that there exists
K € N such that

K
U B(F(n), 9(m) 2 [0,1].
n=0

By overspill, there exists a € *M \ M such that *(f)|<, and *(g)|<, are sequences

of rational numbers in *V .

Claim 5.4.1. Let (1) be a X9 formula, and let w € *M \ M. Then, there erists a
real number o € [0, 1] such that V' |= ¢(«) if and only if there exists ¢ € *M such
that *V = ¢ <w A p(c/w).
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This claim is easily proved by overspill (cf. [33]).
Take w € *M \ M. By the previous claim, for any b € *M \ M such that b < a,

b
Ve <w = e | BHIm), (g ).

Thus, by underspill, there exists K € M such that

VvV <w = e | BEM) +9)m),

n=0
Then, by the claim,
K
U B(f(n),9(n)) 2 [0,1]
n=0

]

Let V = (M, S) be a countable model of ACAg and let *V = (*M,*S) be an
extension of V' which satisfies the three conditions in Theorem 5.2. Then, by 31
transfer principle, *(NV) = NV, x(ZV) = Z'V and *(Q") = QY. Here, NV, ZV,
Qv are N, Z, Q defined in V and NV, ZV, Q" are those defined in *V. We usually
write N, Z, Q for NV, ZV, Q" and *N, *Z, *Q for NV, Z'V, QV. If X € S, we write
*X for *(X)(€ *S). Note that if ¢ € Q, then, *(¢q) € *Q by ¥ transfer principle.
Note also that if ¢ € Q, then, ¢ = %(q) since Q C M.

Remark 5.5. Let X € S, and let X,, ={a € M | (n,a) € X}. (X is a sequence of
sets { X, }nen in V.) Then, for any n € N and for any b € *M, b € *x(X,,) < (n,b) €
*(X) b e (x(X))n, ie, (X,) = (*X), in *V. Thus, we do not distinct *(X,,)
and (*X),, and we write *X,, for (*X),. Then, *X is a sequence of sets {*X,, },exn
in *V.

By X1 transfer principle, if o = {g, }nen is a real number in V, *a = {g, }ne+n is
a real number in *V.

A real number a = {g, }nen is said to be normally expressed if each g, is a form
of 1/2"*1 for some i € Z. Within RCAy, if @ = {g, }nen is a real number, we can find
a normally expressed real number o = {¢/, }en such that o/ =g «. If 5 = {q, }nen
is a normally expressed real number in *V and |3] < K for some K € N, then,
BN M(e S)is areal number in V. We write N M = §|y and By is said to be
the standard part of 3.
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Example 5.2 (Bolzano-Weierstrafl theorem). The following is provable in ACA,.
Let {ay,}nen be a sequence of real numbers such that 0 < a,, < 1 for all n € N.

Then, there exists a convergent subsequence {ay, }ren, 1o < nyp < -+- <y < ---.

Proof. Let V = (M,S) be a countable model of ACAg and let *V' = (*M,*S) be
an extension of V' that satisfies the three conditions presented in Theorem 5.2. Let
A = {ap}nen € S be a sequence of real numbers such that 0 < «,, < 1 for all n € N.
Without loss of generality, we can assume that each «,, is normally expressed. Then,
by X} transfer principle, *A € *S is a sequence of real numbers *A = {*a, hpe-n,
where each *«,, is normally expressed and 0 < *a,, <1 for all n € *N in *V.

Take w € *N\ N. Because *«, is expressed normally, v = *a, |y is a real number
in V. Then *yNM = *a, N M. Consequently, for all n,m € N, *V |= 3y > m [*o,, —
*v] < 27" (take y = w). Then, by X} transfer principle, V = Jy > m |a, — 7] <27
for all n,m € N. Therefore, we can easily find a subsequence of A which converges
to v in V. According to the completeness theorem, ACAg proves the existence of a

convergent subsequence of {a;, }nen- O

Next, we show the Ascoli lemma in ACAg using non-standard analysis. For the
convenience, we redefine continuous functions. We use this definition only in this

section.

Definition 5.3 (normally expressed continuous functions). The following definition
is made in ACAg. A code for a continuous (partial) function f is a set of quadruples
FCQxQ"xQx QT that satisfies the following:

1. if (a,7,b,s) € F and (a,r,b',s") € F, then |b —V| < s+ ¢;
2. if (a,r,b,s) € F and |a’ — a| + 7" <r, then (d/,7',b,s) € F; and
3. if (a,r,b,8) € Fand |b— V| + s < &, then (a,r,V,s') € F.

As in the definition in Chapter 3, a point x € R is said to belong to the domain of
f, abbreviated = € dom(f) if and only if for any m € N there exists (a,r,b,s) € F
such that |x —a| < r and s < 27™. If x € dom(f), we define the value of f(x) to
be the unique y € R such that |y — b| < s for all (a,r,b,s) € F with |[x —a| < r.

A code F for a continuous function f from [e,d] to [, d'] is said to be normally

expressed if F' satisfies the following:

(45) FCQeaxQ" xQua xQF,
(46) o(F,a,r,b,s) — (a,r,b,s) € F
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where, Qo ={¢€ Q| a <q < B} and p(F,a,r,b,s) =Vqg € Qg |l¢—a|] <7 —
(', 7", 8") € F (Jg—d| <r" N|b=V|+ 5 <s).
This definition is equivalent to the definition in Chapter 3 over ACA,.

Remark 5.6. The formula ¢(F,a,r,b,s) expresses f(B(a;r)) C B(b, s). Therefore,
a normally expressed code F' for f contains all (a,r,b, s) with f(B(a;r)) C B(b, s),
i.e., F'is the maximal code. Moreover, given a code Fj for a continuous function
f from [e,d] to [¢,d'], we can construct a normally expressed code F for f as

(a,7,b,s) € F — o(Fo,a,r,b,s).
Remark 5.7. Let V = (M, S) be a countable model of ACAq and let *V' = (*M,*S)

be an extension of V' that satisfies the three conditions in Theorem 5.2. Let F' be
a normally expressed code for a continuous function from [c, d] to [¢/,d’]. Then, by
Y1 transfer principle, *F satisfies (45), (46) and the three conditions for codes for

continuous functions in *V.

Example 5.4 (the Ascoli lemma). The following is provable in ACAq. Let { f,, }nen
be a sequence of continuous functions from [0, 1] to [0,1]. If {f,}nen is equicontin-
uous, then, there exists a uniformly convergent subsequence {f,, }ren, no < n1 <

...<nk<....

Proof. Let V.= (M, S) be a countable model of ACA, and let *V' = (*M,*S) be
an extension of V' that satisfies the three conditions in Theorem 5.2. Let F =
{F,}nen € S be a sequence of codes for an equicontinuous sequence of continuous
functions {f,}nen € S from [0,1] to [0,1]. Without loss of generality, we might
assume that each F), is expressed normally. Then, by 31 transfer principle, *F € *S
is a sequence of sets *F = {*F, },e~n. Each *F,, satisfies (45), (46), and the three
conditions for a code for a continuous function in Definition 5.3.
We first show the following;:

(47) Vm e NVae[0,1)(a e S) I eN

*VEVne '™ Nda,be*Qp ["ao—al < 2772 A (a,27",0,27™) € *F,.
By equicontinuity, for any m € N and a € [0,1], there exists [ € N such that
Vn € N f,,(B(a;27") C B(fn(a);27™). Thus, for each n € N, we can find a,b € Qg

such that |a —a| < 2772 and | f,(a) — b] < 27™. Because F), is normally expressed,
(a,2771 b, 27™H) € F,. Eventually,

VYm e NVa e [0,1](c € S) I eN
VEVENTa,beQy la—al <2772 A(a,271,b,27™) € F,.
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According to X} transfer principle, we obtain (47).

Take w € *N'\ N and define G € S as G = *F,, N M. Then, G satisfies the three
conditions for a code for a continuous function. Let g be a (partial) continuous
function coded by G. We show that dom(g) = [0,1]. Let o € [0,1], and let
m € N. By (47), there exists [ € N and a,b € *Qq; such that [*a — a| < 27172
and (a,27,b,27™" 1) € *F,. In *V, we can find 7,5 € *N with |i/2""% — a] <
27172 and |j/2™! — a| < 27™7 L. Then (i/2!2, 27171 j/2m+L 27™) € *F,. Because
i < 242 and j < 2% both i and j are standard, i.e., i,7 € N. Consequently,
(/2112 27171 j/omFL 2=m) € MN*F, = G. On the other hand, *V = [*a—i/2!2| <
2711 because |*a —a| < 27172 and |i/2!*2 — a| < 2772 in *V. Then, by %} transfer
principle, V = |a — /272 < 27171, Eventually, Va € [0,1] Vm € N 3(a,r,b, s) €
Gla—al <rAs<27™ je, dom(g) =[0,1] in V.

Next, we construct a subsequence of F that converges to g uniformly. Let § € *S
be a normally expressed real number in *V with *V |= 8 € [0,1]. Then, v := (3|5 is
areal number in V and v € dom(g). Since *yNM = 3NM =~,*V = |*v—03| < 27F
for all £ € N. Thus, V = |y —a| < r implies *V = |3 — a| < r. Therefore, for
any § € [0,1] in *V and for any m € N, there exists (a,r,b,s) € G such that
*ViE|B—a <rAs< 2™ Because G C *G and G C *F,,,

Vm e N*V =Vq e *Q, 3(a,r,b,s) € " F,N*G |¢g—a|<rAs<27™,
Then,

Vme NVl eN
VEI>1Vee Qo Ia,r,b,s) € " F,N"G |g—al <rAs<27™.

According to X1 transfer principle,

Yme NVl e N
VE3I>I1VYqe Qi Ia,rbs)e F,NG|g—al <rAs<27".

This implies that V' = 3y > [ ||f, — g|| < 27™ for all m,l € N. Thereby, we can
easily find a subsequence of F that converges to ¢ uniformly in V.
Using the completeness theorem, ACA, proves the existence of a uniformly con-

vergent subsequence of {f, }nen. O]

Remark 5.8. The Bolzano-Weierstrafl theorem and the Ascoli lemma are equivalent
to ACAq over RCA. See [29].
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5.3 Application 1: the Riemann mapping theorem

In this section, we prove the Riemann mapping theorem in ACAq by using arguments
of non-standard analysis. It becomes easy to treat a space of conformal maps if we
use methods of non-standard analysis. Then, we show that the Riemann mapping
theorem is equivalent to ACAy over WKL,.

We first develop some parts of complex analysis within RCAg and WKL,. We

define the following notation:

Q = {an +ig2 | 1,2 € Q}
B = {(a,r)]|a€QreQr>0}

In this section, we denote open sets using B as follows: A code for an open set U in
C is a sequence of elements of B U = {(an,rs) tnen. A point z € C is said to belong
to U (abbreviated z € U) if

In |z — a,| < 7.

Note that the assertion that a closed ball B(a;r) is included in an open set U (i.e.,
B(a;r) C U) is expressible by a 39 formula in WKLy. We also redefine holomorphic

functions by a suitable code to apply non-standard arguments.

Definition 5.5 (holomorphic functions). The following definition is made in RCA,.
Let D be an open subset of C. A holomorphic function on D is defined to be a pair
of sequences f = ({(@n, rn) }nen, {Qnk fnenken) such that o, € C and (a,,r,) € B,

which satisfies the following conditions:
L. U,en Blan; ) = D;
2. forall n € N, 37,y |ank|rs” converges;

3. for all n,m € N and for all z € B(a,;r,) N B(am;Tm),

Z (2 — an)* = Z (2 — am)".

keN keN

We define f(2), f'(2),..., fO(z),... as

k!
f(l)(z) = © Oy (Z - an)k_l if z€ B(an;rn).
2; (k-1 ™

[e.9]

k
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By Theorem 4.15, the above definition is equivalent to the definition in Chapter
4 in RCAq. Let {D, },en be a sequence of open subsets of C; also let {f,}nen be a

sequence of holomorphic functions where f,, is from D, to C. If {f,, },en satisfies
VzeCVp,qe N (ze€ D,ND, — fp(z) = f,(2)),
then, we can construct a holomorphic function f from D = J >~ , D,, to C such that
VneNVze D (z€ D, — fu(2) = f(2)).

We write this f as f = J{fn}-

We first define some concepts on the complex plane in RCA,.

Definition 5.6. The following definitions are made in RCAy. Let D be an open
subset of C, and let o, 3 € D.

1. A path ~v from o to 8 in D is a broken line in D which connects a and (3,
i.e., v is a finite sequence (y(0),...,v(m)) of points in D such that v(0) = «,
v(m) =3 and [y(k),v(k+1)] € D.

2. A circuit in D is a broken line in D with its two end points are common, i.e.,
a broken line v = (7(0),...,y(m)) in D with v(0) = v(m).

Lemma 5.9. The following is provable in RCAq. Let v be a circuit in C. Thereby,

there exist two open sets called exterior and interior of v and a closed set called the

image of .
Proof. Let ¢(2) (or 1(2)) be a 39 formula that expresses the following:
o 2 ¢ [y(k),v(k+1)] for all 0 < k < m;

e there exist a 0 < 6 < 7/2,0 € Q such that the half-line {(z,0) = {w € C |
arg(w — z) = 0} does not contain each (k) and the cardinality of {0 < k <
m | 1(z,0) N [y(k),v(k+1)] # 0} is even (or odd).

Then, by Lemma 2.6, we can find open sets Uy, Us such that z € U; < ¢(z) and
z € Uy < ¢(z). Uy is said to be the exterior of v and U, is said to be the interior
of 7. The image of ~y is a closed set C\ (U; U Us). O

Definition 5.7. The following definitions are made in RCAg. Let D be an open
subset of C.
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1. D is said to be path connected if there exists a path from « to £ in D for all
a,BeD.

2. D is said to be simply connected if D is path connected and for all circuit v in

D, the interior of 7 is included in D.

Next, we prepare some lemmas. As in the usual complex analysis, Cauchy’s
integral theorem (Theorem 4.10) and Taylor’s theorem (Theorem 4.15) play central

roles. See [1] for usual proofs of the following lemmas.

Lemma 5.10 (local inverse function). The following is provable in RCAq. Let D
be an open subset of C, and let f be a holomorphic function from D to C. Let
20 € D such that f'(z0) #0 and r € R, r > 0. If |f'(z0) — f'(2)| < |f'(20)|/8 for
all z € B(zo;1), then B(f(20); |f'(20)|7/2) C f(B(z0;7)). Moreover, a local inverse
holomorphic function f=% exists from B(f(20);|f(20)|r/2) to B(zo;7).

Proof. Let w € B(f(20);|f'(20)|7/2). Define a holomorphic function h as
w— f(z) | f(z0) = £(¢) + f'(20)(€ — %)

h(C) = f’(Zo) + f/<20) + 29
w— f(Q)
7(z0) +¢

Then, |A'(¢)] < 1/8 for all ¢ € B(zo;7) and |h(zy) — 20| < r/2. Hence, by Lemma

4.2, h(B(z0;7)) € B(zo;7) and |h((1) — h(()] < |G — (o] /2 for all (4, € B(zo;7).

Therefore, by the contraction mapping theorem, there exists z € B(zo;r) such that

h(z) = z. Consequently, f(z) = w. (Note that the contraction mapping theorem is
provable in RCAy.)
For construction of the local inverse function, we can imitate the proof of the

inverse function theorem for C!-functions. See Theorem 3.34. ]

Lemma 5.11 (maximal value principle). The following is provable in WKLq. Let f

be a holomorphic function on an open subset D C C, and let B(a;r) C D. Then,

sup{|f(2)| | z € Bla;r)} = sup{|f(2)| | |z —a| = r}.
Proof. We can imitate the usual proof using Theorem 4.10. O

Lemma 5.12. The following is provable in WKLy. Let D be an open subset of C,
and let f be a holomorphic function on D. Let B(a;r) C D, and let M € R such

thatVz € B(a;r) |f(z)| < M. Then,
M
V2 € Blar) | (2)] <

=3
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Particularly, if f and g are holomorphic functions on B(a;r) withVz € B(a,r) | f(z)—
g(2)| < e, thenVz € B(a,r/2) |f'(2) — ¢'(2)] < 2¢/r.

Proof. We can imitate the usual proof using Lemma 5.11. O

Lemma 5.13 (Schwarz’s lemma). The following is provable in WKLqy. Let f be a
holomorphic function from B(0;1) to B(0;1) such that f(0) = 0. Then, f satisfies
either of the following:

L |f(2)| < |z| and |f'(0)] < 1.
2. There ezists A € C such that |\ =1 and f(z) = Az.
Proof. We can imitate the usual proof using Theorem 4.15 and Lemma 5.11. [

Let D be an open subset of C, and let f be a holomorphic function from D to
C. Let v = (4(0),...,v(m)) be a path in D. Then, we define f7 f(2)dz, the line
integral of f along v, as

m—1
dz = dz.
/7 Je)d ,; /[v(k‘),'v(kﬂ)] fed:

In WKLy, if f is a holomorphic function on B(a;r), then, by Cauchy’s integral

theorem, we can easily construct a holomorphic function F' on B(a;r) such that
F(z) = [ }f(C)dC

since f has a modulus of integrability.

Lemma 5.14. The following is provable in WKLy. Let D be a simply connected
open subset of C, and let f be an holomorphic function on C. IfVz € D f(z) # 0,
then a holomorphic function g erists such that f(z) = g(z)?.

Proof. Write D = (J,oy B(ax;7%) and let 75, be a path from ag to ax. Define holo-
morphic functions Fy : B(ag;ry) — C as
J'(€) f'(€) J'(€)
Fip(z) := / —22d( = d¢ + —>=dC.
k( ) Ve —~(z) f(C) Vi f(C) lak,Z] f(C)
By Theorem 4.10, if B(ag;rg) N Blag;r) # 0, then Fi(z) = Fi(z) on B(ag;r) N

B(a;; 7). Hence we can construct the holomorphic function F' = |J, o Fr on D.
Then,

d

7, ([ (2) -exp(=F(2))) = 0.

86



Thus, we write f as
f(z) = flao) exp(F(2)).

Take « such that o = f(ag), and define a holomorphic function g as

9(2) == aexp <F<z)) |

2
Then g(2)% = f(z2). O

Lemma 5.15. The following is provable in WKLq. Let f be a non-constant holo-
morphic function from B(a;r) to C such that f'(a) = 0. Then, 21,29 € B(a;r) exist
such that zy # zo, f'(21) # 0, f'(22) # 0 and f(z1) = f(z2).

Proof. We can imitate the usual proof using Lemmas 5.10 and 5.11. [

Note that we can easily show that sequential versions of Lemmas 5.9, 5.10 and
5.14 also hold.

Definition 5.8 (conformal map). The following definition is made in RCAq. Let
Dy and Dy be open subsets of C. A conformal map from D; to D, is a pair of
holomorphic functions (h,h~') such that h : D; — Dy, h™' : Dy — D;, and
h™loh =idp, Ahoh™! =idp,.

Now, we are prepared to prove the Riemann mapping theorem.

Theorem 5.16 (the Riemann mapping theorem). The following is provable in
ACAy. Let Dy be a simply connected open subset of C such that Dy # C, and
let 29 € Dy. Then, there exists a conformal map (f, f~') from Dy to B(0;1) such
that f(z0) = 0. Moreover, if (f, f™') and (g,97") are conformal maps from Dy to
B(0;1) such that f(z0) = g(z0) = 0, then there exists A € C such that |\| = 1 and

f=2Xg.
Proof. To prove this theorem, we show the following four sublemmas.

Sublemma 1. If Dy is a simply connected open subset of C such that Dy # C and
20 € Dy, then there exists an open subset 0 € D C B(0;1) and a conformal map
(ho, hot) from Dqy to D such that ho(z) = 0.

Sublemma 2. If D is a simply connected open set such that 0 € D C B(0;1),
then there exists a conformal map (h,h™") from D to an open set 0 € E C B(0;1)
such that h(0) = 0 and its derivative at the origin is mazimal, i.e., if (h,h™") is a
conformal map from D to an open set 0 € E C B(0;1) such that h(0) = 0, then
[7(0)] < |1(0))-
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Sublemma 3. If 0 € D C B(0;1) is a simply connected open set and (h,h™') is a
conformal map from D to an open set 0 € E C B(0;1) such that h(0) = 0 and its

derivative at the origin is maximal, then E = B(0;1).

Sublemma 4. If (f, f~') and (g,g7") are conformal maps from an open set zy €
Dy # C to B(0;1) such that f(z9) = g(z0) = 0, then there are A € C such that
Al =1 and f = Ag.

Imitating the usual proof, we can readily prove Sublemmas 1 and 3 in WKLq
using Lemma 5.14. Sublemma 4 is a straightforward direction from Lemma 5.13.
We show Sublemma 2 using non-standard arguments.

Let U be a open subset of B(0;1), and let Seq; be the set of all complex rational
sequences with length [ € N. We define the following notation:

= {@2™ e Q| q <}
Q = {a+ipeClq,cQm)};
QU;m) = {qeQ(m)|B(g2m+?) CU};
U

m) = (J{(@27") | g € QUU; k) };

k=0

Seq(l;m) = {o€8Seq, |Vk <lo(k) € Q(m+k+3)}.

Note that 91(U;m) is a finite set and it can be coded by a natural number. In
addition, note that | J{B(a,r/2) | Im € N (a,r) € WU;m)} = U.

We first construct an approximation of a conformal map from D C B(0;1) to
E C B(0;1) coded by a finite set. Let D be an open subset of B(0;1). We define
an m-approximation polynomial on D as follows. An m-approximation polynomial
P on D is a pair of finite sets P = (P, Q). Here, P is a function from 2(D;m) to
Seq(lp;m) (Ip € N) and @ is a function from Ep C N(B(0;1);m) to Seq(lp;m).
If (a,7) € MN(D;m) and P(a,r) = o, we define a polynomial P,, as P,,(z) =

éioa(j)zj. We define Qs ((b,s) € €Ep) similarly. P, @ and €p satisfy the

following conditions.

1. Vz € B(ay;r) N B(ag;r2) |Pay sy (2) = Pagry(2)| < 27™ for all (ay, 1), (ag,m2) €
N(D;m).

2. Yw € B(by;s1)NB(ba; 52) |Qpy sy (W) — Qoy s, (w)]| < 27 for all (by, s1), (ba, s2) €
Ep.
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3. For all (b,s) € MN(B(0;1);m), then (b,s) € &p if (ag,m9) € MN(D;m) and
(a,0) € B exist which satisfy the following:

(a) B(a;0) C B(ag,r0/2);
(b) Vz € B(a;0) NQ (|P,, , (a) = Py, ()] < |Pi ,,(a)]/8 =327 /rg); and

ao,To

(a)|6/2 =27™).

(c) B(b;s) C B(Pagro(a); |

0,70

4. For all (a,r) € M(B(0;1);m), then (a,r) € N(D;m) if there exist (by, s9) € Ep
and (b,0) € B which satisfy the following:

(a) B(b;6) € B(bo,s0/2);
(b) Yw € B(b;6) NQ (|Q4, 4, (0) = Qpy o (W) < Py, (D)]/8=3-27™/s0); and
(c) Bla;r) € B(Qpy,s(0); | Qs 5, (D)[6/2 —27™).

5. For all (a,r) € M(D;m), there exist (b, s) € &p and w € B(b, s) N Q such that
|Por(a) —w| <27 and |a — Qp(w)| < 271

6. For all (b,s) € Ep, there exist (a,r) € M(D;m) and z € B(a,r) N Q such that
|Qp.s(D) — 2] <27 and [b— P, ,.(2)] <27

Intuitively, P is an approximation of a holomorphic function from D to C, and
cep B(bis) to
C. Conditions 1 and 2 mean that P and @) are well-defined. Condition 3 means
that if P'(z) # 0, then P(z) € dom(Q). More precisely, we can find a (sufficiently
large) neighborhood U C Ep such that P(z) € U and @ can be the local inverse

(@ is an approximation of a holomorphic function from Ep = U(b,s)

holomorphic function of P on U based on Lemma 5.10. Similarly, condition 4 means
that Q' (w) # 0 implies Q(w) € dom(P). Conditions 5 and 6 mean that @ is the
inverse function of P if P(D) C Ep and Q(Ep) C D.

We write P(z) ~ «a if |P,,(2) — a] < 27™ for all (a,r) € N(D;m) with z €
B(a;r). We write [P'(z)| 2 K (K € R)if [P, (2)| > K —27™/r for all (a,7) €
MN(D;m) with z € B(a;r/2).

Let (h,h™!) be a conformal map from D to an open set £ C B(0;1). An m-
approximation polynomial P = (P, Q) is said to be an m-approximation of (h, h™!)
if |h(z) — Pu,(2)] <27™ ! for all z € D and for all (a,r) € 9(D;m).

Claim 5.16.1. If (h,h™") is a conformal map from D to an open set E C B(0;1),

then an m-approzimation of (h,h™') exists for all m € N. Moreover, if P is an
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m-approzimation of (h,h™), then h(0) = 0 implies P(0) ~ 0; also, |W'(0)] > K
(K € Q) implies |P'(0)| 2 K.
To show this claim, we construct an m-approximation polynomial using (h, h™1).

We define €p as Ep = N(E;m). Then, by Theorem 4.15, we define Ip as the least
[ which satisfies the following;:

V(a,r) € M(D;m) Vz € B(a,r) < 27" 2 and

LW (g ,
S gy~ nge)

= o
L p10)

h=V(a) j 1 —m—2

V(b,s) € M(E;m) Yw € B(b,s) T(w—b)]—h (w)| <27™m7°.
J=0 .

For each (a,r) € N(d; m) and (b, s) € N(E;m), take o, and 7, , such that |h*) (a)/k!—
Oar (k)| < 27mF73 | R0 (D) /K — 7 (k)| < 27™ %3 and 0,,.(k), s(k) € Q(m +
k 4+ 3). Define P(a,r) = o04,, Q(b,s) := s and P = (P,Q). Then, clearly,
|h(z) — P, (2)] < 27™°! for all (a,r) € MN(D;m),z € B(a,r), and |hH(w) —
Qp.s(w)] < 27™ ! for all (b, s) € €p,w € B(b, s). Consequently, we can readily verify
that conditions 1, 2, 5 and 6 hold. We show that condition 3 also holds. By Lemma
5.12, |h(2) = Pay o (2)| < 27™ ' for all z € B(ag, o) and B(a;6) C B(ag, r/2) implies
|W (2)— P, , (2)| <27™/ry for all z € B(ag,10). Therefore, (b) implies Vz € B(a;J)

ao,To

|h(a) — W(2)| < |W(a)|/8, and (c) implies B(b;s) C B(h(a);|h'(a)|0/2). Therefore,
by Lemma 5.10, B(b; s) C h(B(a;0)) C E, which means that (b, s) € M(E;m) = Ep.
We can show that condition 4 holds similarly.

It is readily apparent that h(0) = 0 implies P(0) ~ 0. By Lemma 5.12, |h/(0)| >
K (K € Q) implies |P’(0)] 2 K. This completes the proof of the claim.

From now on, we use arguments of non-standard analysis. Let V' = (M, S) be a
countable model of ACAg and let *V = (*M, *S) be an extension of V' which satisfies
the three conditions in Theorem 5.2. Let a,b € *C; then we use the notation a ~ b
ifVpe N*V |=|a—0b] <277

Let D be an open subset of B(0;1) in V. Take w € *N\ N. Let P =
(P, @) be an w-approximation polynomial on *D in *V. (Actually, we should write
“*approximation polynomial’ for approximation polynomial in *V, but we usually
omit *.) We define the standard part of P as follows. Let ((an,7n))n<im(Dw) be
an enumeration (in *V') of all elements of M(*D;w) such that r, > r, — p < q.
Because [N(*D;m)| < 4™ and M(D;m) = N(*D;m) for all m € N, if n € N, then
(an,7s) € N(D;m) for some m € N. Let P(a,,r,) = 0,. Take ¢, 1, € Q(p+1) such
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that |guxp — on(k)| (in *V). By Lemma 5.12, ¢z, < 1+ 1/r,*. Consequently, if
n,k,p € N, then ¢, ., € M. Hence, if n,k € N, {g, 1 }peny € S is a complex number
in V. (Actually, {gnkp}pen is a standard part of o,,(k), i.e., 0,(k)|mr = {@nkp}pen-)
Let 7, :=1,/2 and o,k := {@uip}pen. We define Py, € S, the standard part of P,
as Py = ({(an, 7n) nen, {nk bnenken). (If necessary, we can redefine a code for an
approximation polynomial so that a code of the standard part of P is exactly the
set PN M.) Similarly, we define Q|p = ({(bn, Sn) bnen, { Buk fnenren), the standard
part of (), using an enumeration ((by, sn))n<|e,| Of all elements of &p. We define the
standard part of Ep = Uy gce, B(0;8) as Eply = U, ey B(bn, 8,) € S. Next, we

show that P|y; and Q| are holomorphic functions.

Claim 5.16.2. Letw € *N\N, and let P = (P, Q) be an w-approximation polynomial
on *D with |P'(0)| 2 1. Define the standard parts of P, Q) and Ep as above. Let
f = Plu, g .= Q|m and Ey := Ep|y. Then, f and g are holomorphic functions
and (f,g) is a conformal map from D to E; in V. Moreover, f(0) =0 if P(0) ~ 0;
also, |f'(0)| > K|y if |P'(0)| 2 K (K € *R and K < Ky for some Ky € N).

We first show that f is a holomorphic function on D. Clearly, | J, ey B(an;7n) =
D. Let n € N. By condition 5, |P, . (z)] < 1+27“"!in *V. Hence, by Lemma 5.12,
PP, (a,)] < (1 + 2794 /r% for all k € N. Then, [*api|fn® & [P, (an) |7k <

(142791)27% < 27*1 Consequently, |av, |7, < 2751 for all k € N and the series
> wen || converges. If z € Blay; ) N Blag; 74) (p,q € N) in V, then, in *V,

Z o k("2 — ap)k ~ Z*O‘p,k(*z - ap)k
k=0

ke*N

L l
S
i) ]
= =
= =
N
* *
N I\
N~—

%
=
<
Bl
3
N
|
S
S

2
*
S
=}
=
N
|
s
=}
—

Hence, in V,

k
Z (2 — ap)” = Z ag(z — ag)".
keN keN
Thus, f is a holomorphic function on D. We can similarly show that ¢ is a holo-

morphic function on Ey. It is also apparent that f(0) = 0 if P(0) ~ 0. Be-
cause |*f(z) — P, r,(2)] = 0 for all z € B(a,;r,) in *V, we can show readily that

91



| (0)] > K|y if [P'(0)] 2 K (K € *R and K < K| for some K € N) using Lemma
5.12.

Next, we show that f(z) € Ef and g(f(z)) = z for all z € D with f'(z) # 0.
Note that [P/(0)| 2 1 implies that f is not a constant. Let z; € D with f'(z;) # 0.
Then, in V| there exists (a,d) € B with z; € B(a;0/2) which satisfies the following:

e |f'(a)] >0and |f'(z) — f'(a)] < |f'(a)|/16 for all z € B(a;d);

e there exists n € N such that B(a;d) C B(an; ).

In *V, by Lemma 5.12, |*f'(z) — P, . (2)| = 0 for all z € B(a,;,) because |*f(z) —

An,Tn

P, .. (2)] =0 for all z € B(ay,;r,). Then, in *V, for all z € B(a;0),
P& = P @l < O pp) b0
+[7f(a) = P, r.(a)l
[P (@) 3-27% <|*f’(a)| 32
8 T 16 Tn
9
= S[F(@) = P, (@) = £ () = P ()]
Pholo)] 32
- 8 Tn
On the other hand, *f(*z1) € B(*f(a);|*f'(a)|6/8) and B(*f(a);|*f'(a)|6/4) C
B(Pa,r,(a);|P, . (a)ld/2 —27%) in *V. Then, because 6/8 % 0, there exists
p € N and there exists (b,s) € M(B(0;1);p) such that *f(*z;) € B(b,s/4) and
B(b,s) € B(Py,r,(a);|P;, , (a)]6/2—27%)in *V. By condition 3, (b,s) € €p. For
that reason, there exists p € N such that (b,s) = (by,s,) and f(z1) € B(b,;5,)

IA

in V, i.e., f(z1) € Ef. Moreover, by condition 5, w; ~ *f(*z;) exists such that
w1 € B(b;s) and Qps(w1) & *z1 in *V. Hence, in V', f(z1) = w1 |y and g(un|p) = 21,
e g(f(21)) = 21

Next, we show that f'(z) # 0 for all z € D. Then, f(z) € Ef and g(f(2)) = z for
all z € D. Assume that there exists z; € D such that f'(z;) = 0. By Lemma 5.15,
there exist 20,23 € D such that 2o # 23, f'(22) # 0, f'(23) # 0 and f(z2) = f(23).
Thereby, zo = g(f(22)) = g(f(z3)) = 23, which contradicts zo # z3.

Similarly, we can show that g(w) € D and f(g(w)) = w for all w € Ey. This

completes the proof of this claim.

Now, we are ready to prove Sublemma 2. Take w € *N\ N. In *V| we define the
set Q as Q= {qg € Q(w) | 1 < ¢ and there exists an w-approximation polynomial
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P on *D such that Ep C B(0;1), P(0) ~ 0 and [P'(0)] 2 ¢.}. (The condition
q € Q is expressible by an arithmetical formula.) Then, € is not empty because
there exists an w-approximation polynomial P; = (P;.Q;) of identity map (I,171)
from D to D. By Lemma 5.12, () is finite; therefore, max () exists. Take an w-
approximation polynomial P such that P(0) ~ 0 and |P’(0)| 2 max(2, and define
f = Plu, g == Qlm, Ef = Ep|y and K := (maxQ)|p. Then, by Claim 2,
(f,g) € S is a conformal map from D to E; with f(0) = 0 and |f'(0)] > K. We
show that (f,g) meets the requirements of Sublemma 2 in V. If not, there exists a
conformal map (f,§) € S from D to an open set £ C B(0;1) such that f(0) = 0
and f(0) > f'(0) > K. Then, there exists m € N such that |f/(0)] > K + 27"
In *V, because |*f'(0)| > *K 4 2™, an w-approximation polynomial P exists on
*D such that P(0) ~ 0 and |P'(0)| = *K + 2™ by Claim 1. Therefore, |P'(0)| >
27 4+ max () because *K =~ max{) ~ 27“ 4+ max (). However, that would mean
that 27 + max Q) € Q (contradiction). Therefore, Sublemma 2 holds in V. By
the completeness theorem, Sublemma 2 can be proven in ACAg. This completes the

proof of this theorem. O

Theorem 5.17 (reversal). The following assertions are pairwise equivalent over
WKL,.

1. ACA,.

2. If D C C is a simply connected open set and D # C, then there exists a
conformal map f: D — B(0;1).

Proof. The implication 1 — 2 is already proven in Theorem 5.16.

To prove 2 — 1, we show the convergence of bounded increasing real positive
Cauchy sequences because this convergence is equivalent to ACAg over RCAq (see
[29]). Let {an}nen be an increasing real positive Cauchy sequence such that 0 <
a, < 1. Define an open set U C C as

U:= U B(0; ay,).
neN
Clearly, 0 € U, U # C and U is simply connected. Thus, there exists a conformal
map h : U — B(0;1) such that h(0) = 0.
By h(0) = 0 and Taylor expansion, there exists a holomorphic function ¢; : U —

C such that h(z) = zg1(2). Then,
()]

2|

Vn € NVz € 0B(0;ay) |g1(2)| =

1
< .
an
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By the maximal value principle,
1
VYn € NVz € B(0;a,) |gi1(2)] < —.
an
Thus, by the increasingness of {a, }nen,
1
(48) VneNVzeU |gi(z)] < —.
an
Similarly, by A71(0) = 0 and Taylor expansion, there exists a holomorphic func-
tion gy : B(0;1) — C such that A™'(w) = zgo(w). If K,r are positive real numbers
such that Vn € Na, < K and r < 1,

h1 K
Vn € NVw € 0B(0;7) |go(w)| = [h” (w)] < —.
|w r
Hence, by the maximal value principle,
(49) VneNa, <K —Vze B(0;1) |g(w)] < K.

Let zo € U \ {0} and wy = h(zp). Let € be an arbitrary positive real number.
Then, by Cauchyness of {a, }en, there exists N € N such that Vn > N ay < a, <
ay + €. By (48),

ay < |20]
~ [h(20)]
By (49),
|20l |2~ (wo)|
<any—+e¢
|h(20)] |wol
Hence,
|20]
Vn > N —a,l <e.
|h(20)]
Consequently, {a, }nen converges to |zo|/|h(20)]. O

5.4 Application 2: the Jordan curve theorem

In this section, we prove Jordan curve theorem within WKLy using non-standard
arguments. This is a joint work with Nobuyuki Sakamoto. To prove the Jordan curve
theorem, we need to show that the interior of a given Jordan curve is non-empty.
To show this, we usually use assertions which require ACAqy such as the leftmost
mazximal value principle (appears in [22]) or the Bolzano/Weierstral theorem. Our
main tool to prove the Jordan curve theorem within WKL, is an argument of non-
standard analysis. By using non-standard arguments appropriately, Jordan curves

can be treated as polygons.
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5.4.1 Preparations

In this subsection, we prepare some notions and technical lemmas for the Jordan
curve theorem.

In this section, we write d% (or just d for simplicity) for the metric in R’, i.e.,
di(z,2') = ||v — 2| where z,2’ € R'. For (a,r), (a',r") € Q' x QF, we write

(a,7) < (a',r") as an abbreviation for d(a,a’) +r <1’

Theorem 5.18 (Simpson|29] Theorem 1V.2.3). The following assertions are pair-

wise equivalent over RCAy.
1. WKLg.

2. Every continuous function from [0,1] to R has a modulus of uniform continuity

and a supremum, and attains the supremum.
3. Every continuous function from [0,1] to R which has a supremum, attains it.
We can strengthen the equivalence of 1 and 3 as follows:

Theorem 5.19. The following is provable in WKLy. Let (¢; : i € N) be a sequence
of continuous functions ¢; : [0,1] — R. Then, there exists a sequence (x; : i € N)
such that ¢;(x;) = maxyep1] ¢i(y).

Proof. We reason within WKLo. Let (¢; : ¢ € N) be a sequence of continuous
functions ¢; : [0,1] — R. Let ¢(i,z) be a II{-formula which expresses Vg € QN
0, 1)(¢i(x) > ¢i(q)). By Theorem 5.18, there exists € [0, 1] such that ¢;(z) =
max,epo,1] ¢;(y) for each i. Then, we have Vidz € [0, 1]¢(i, z). By II3-ACy, which is
provable within WKLy [29, Lemma VIIL.2.5], there exists a sequence {z; : i € R}
such that ¢(x;) > ¢;(¢) for all ¢ € QN [0,1] and all ¢ € N. This means that
¢i(r;) = maxyejo1) ¢i(y) for each . O

Let U C R? be an open set. An arc A in U is a continuous function from
[0,1] to U. By Theorem 5.18, within WKLy, we can define the metric d(A,a) =
mingepo,1) d(A(z), a) between an arc A and a point a € R®. Let 0 = (a; € R* :
Jj < n) be a finite real sequence. A broken-line Blo| is an arc defined by putting
Blo](x 4+ i/n) = nzo(i + 1) + (1 — nx)o(i) for each i = 0,...,n — 1 and a polygon
Plo] is an arc defined as Plo| = Blo"(c(0))]. We sometimes put o(lh(c)) := o(0)
so that edges of P[o] can be written as {B[(c(j),0(j +1))] : j <1h(o)}. Note that

we can define the metric d(B, a) = mingejo1) d(B(), a) between a broken-line B and
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a point a € R? within RCAg. A Jordan curve J in U is an arc in U with J(0) = J(1)
and Vz,y € [0,1](J(z) = J(y) — (x =y V |xr —y| = 1)). A polygon is said to be

simple if it is also a Jordan curve.

Lemma 5.20. The following is provable in WKLgy. Let U be an open set in R? and
A be an arc in U. Let k € N. Then there exists a finite sequence ((my, b;,s;) =1 < c)
such that

1. A is an arc in the open set |J,_. B(bi; s;);

2. d(bo, A(0)) < so and d(b.—1, A(1)) < Se_1;

3. d(bs,biv1) < i+ 841 for alli < c—1;

4. s8; < 27F for all i < ¢;

5. Vi < c3(n,b,s) €U (b, s;) < (b,s).
Here, B(a;r) := {z € R* : d(a,z) < r}.

Proof. We reason within WKLy. Let &4 be a code for A. Fix k € N. Define ¥ C
NxQxQt xQ?xQ* as Im/(m/,d’,r',b,s") € U« I(n,b,5) € UI(m,a,r,b,s) €
Dy (a',7") < (a,7) A (bs) < (V,s")A(V,s") < (b,3).

Because A is defined entirely on [0, 1], by Theorem 2.7, we can find a finite
sequence ((m;, a;, i, b;, 8;) 11 < ¢) from W such that d(ap,0) < 7o, d(ac_1,1) < 7re_1,
Vi < ¢ — 1(d(as,ai41) < 75 +1rip1) and Vi < c(s; < 27%). Then the sequence
((mi, bi, s;) =i < c) satisfies the desired property. ]

The following theorem establishes the equivalence of arcwise connectedness and

broken-line-wise connectedness within WKL,.

Theorem 5.21. The following is provable in WKLg. Let U be an open set in R?
and A be an arc in U. Let k € N. Then there exists a broken-line B in R? such
that B(0) = A(0), B(1) = A(1), Va € [0,1]3y € [0,1] d(B(z), A(y)) < 27% and
Yy € 10,1]3z € [0,1] d(B(z), A(y)) < 27*.

Proof. We reason within WKLy. By Lemma 5.20, let ((m;,b;,s;) @ i < ¢) be a
finite sequence from U that satisfies Clauses 1,2,3,4,5 in Lemma 5.20. Then the
broken-line B[(A(0), by, ..., b.—1, A(1))] satisfies the desired property. O
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We define a locus L of an arc A as a closed set such that Vu € R*(u € Ly <

dr € [0,1] A(xz) = u). We can show the existence of the locus of any given arc
within WKLy

Lemma 5.22. WKL, proves that every arc in R? has a locus.

Proof. We reason in WKLg. Let A be an arc in R%. By Theorem 5.19, let (r, : ¢ € Q?)
be a sequence of reals such that r, = mingep 1) d(g, A(z)). By 3§ comprehension, we
can take a (code for an) open set U such that In (n,b,s) € U if and only if r, > s.
Then L, := U€ is the desired locus. Il

We define a new notion for the Jordan curve theorem. A pair of open sets (V, W)
is said to be a partition of an open set U if VUW =U, VNW = (.

The Jordan curve theorem for simple polygons are provable within RCAg.

Theorem 5.23 (The Jordan curve theorem for simple polygons). The following is
provable in RCAq. Let P be a simple polygon. Then, we can find the locus Lp and
a partition (Uy, Uy) of Lp® such that

1. Uy is bounded, i.e., there exists r € Q1 such that d(u, (0,0)) < r for all u € Uy,

2. Uy and Uy are broken-line connected, i.e., for any u,v € U;, there exists a
broken-lines B; in U; such that B;(0) = u, B;(1) = v fori=0,1;

3. For each w € Lp and each r € QF, there exist points u € Uy, v € U; such that
d(w,u) <r and d(w,v) <r;

4. Fvery arc connecting a point in Uy and a point in U; meets P;

hold.

In this situation, Uy and U, are said to be the interior and exterior of P respectively,

and U,“ = Uy U Lp is said to be a Jordan region.

Proof. Within RCAg, we can find the locus of a given polygon P as in the proof of

Lemma 5.9. Thus, we can imitate a usual proof, e.g., lemma 1 in [35] in RCAy. [

Lemma 5.24. The following assertion is provable in WKLq. Let J be a Jordan

curve. Then there exists a function H : N — N such that

1. VnamVl >m H(l) > n,
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2. Va,y € [0,1] Yn(min(jz — y|,1 — [z —y|) > 277 — d(J(2), I (y)) > 27").

Proof. We reason within WKLy. Let J be a Jordan curve. By Theorem 5.18, let h
be a modulus of uniform continuity for J. We can assume that h(n + 1) > h(n) for
all n. Put h,, = 22 Define H by putting

H(n) = the greatest [ < n such that
Vi, j < hn(min(li/hn = j/hn|, 1 = |i/hn = j/hn])
> 277 = d(J(i/hn), T (5 ha)ur > 27772),

where d(J(i/hy), J(j/hn))n+1 is the n + 1-st approximation of d(J(i/hy), J(j/hn)).

We shall prove that H satisfies Clause 2 in the lemma. Let x,y € [0,1] and
n € N. Assume min(|Jz — y|,1 — |z — y|) > 277, Let i be the least 7’ such that
i'/h, > x and j be the least 5’ such that j'/h,, > y. Then

|0/ hn = 5/ ]
> o=yl =z —i/hn] =y = j/hnl
> o —yl-27"
> 9—H(n) _ 9—H(n)-1

27H(n)71 )

Similarly, 1—i/hy,—j/hn| > 277 ™=1 Thus by the definition of H, d(J(i/hy,), J(5/hn)) >

27+l Hence

d(J(x), J(y))
d(J(@/hn), J(G/hn)) = d(J (), J(i/hn)) = d(T(y), S (5 /hn))

Y

> 2—n+1 _ 2—n—1
> 27
This implies that H satisfies Clause 2 in the lemma.
It remains to be shown that H satisfies Clause 1 in the lemma. Assume that

Vm 3l > m H(l) < N for some N € N. Let {(n, (an, b,), ) € Nx(QNJ[0,1])*xQ* :
n € N) be an enumeration of all ((a,b),7) € (QN[0,1])? x QT such that

min(|a —b|,1 — |a —b|) <27V 2 —r
V 3Im(d(J(a), J(b)) > 27" Ar < h(m+ 1)).
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Fix s € N. We shall show that the open set {(n, (an,b,),7,) : n < s} does not

cover [0,1] x [0,1]. Take a sequence my, ..., ms such that

min(|a, — b,|, 1 — |a, — b,|) < 2~ N=2_

V ((d(J(ay), J(by)) > 27™ 3 Ar < h(m, + 1))

for all n < s. Choose t so that ¢t > my,...,ms, N and H(t) < N. By the definition
of H, take i,j < h; such that min(|i/h; — j/hi|,1 — |i/hs — j/he]) > 27H®2 and
d(J(i/he), J(5/he))ee1 < 27072 Then, min(|i/hy — j/he|, 1 — |i/h — 5/ he]) > 27N 72
since H(t) < N. Moreover, for any n < s, if |a, —i/h|, |b, — 7 /hs| < 27D then

d(J(an), J(bn))
< d(J(an), J(i/he)) + d(J(if he), T(§/ Pe)) + d(T(G/ he), T (bn))
< 27mn71 + 27t+2 _i_zfmnfl < 27mn+3.

This means that d((i/h, j/ht), (an,by)) < h(m, +1) — d(J(ay), J(b,)) < 27mn 3,
Therefore, the point (i/hy, j/h;) does not belong to the open set {(n, (an,b,), ) :
n < s}.

By Theorem 2.7, we can find (z,y) € [0, 1]* such that (z,y) does not belong to
the open set {(n, (an,b,),mn) : n € N}. Then, by the construction of this open set,
min(|z —y|,1 — |z —y|) > 2772 and Vm € NVa,b € QN [0,1](Ja — z| + |b — y| <
h(m + 1) — d(J(a), J(b)) < 27™F3. Thus, |z —y| # 0,1 and J(z) = J(y), which
contradicts the assumption that J is a Jordan curve. This completes the proof for

Clause 1 in the lemma. O

5.4.2 Non-standard proof for the Jordan curve theorem

In this subsection, we prove the Jordan curve theorem using arguments of non-

standard analysis within WKL,.

Theorem 5.25 (The Jordan curve theorem). The following is provable in WKLy.
For each Jordan curve J, we can find the locus Ly of J and a partition (Uy,Uy) of
(Ly)¢ such that

1. Uy is bounded, i.e., there exists r € Q1 such that d(u, (0,0)) < r for allu € Uy,

2. For each w € Ly and each r € Q7 there exists a point a € Uy N Q? such that
d(w,a) <r;
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3. Let Ny € N and let u,v € Uy N Q% Let z,y € [0,1] with d(u, J) = d(u, J(z))
and d(v,J) = d(v, J(y)) respectively. Without loss of generality, we assume
x < y. Then, there exist broken lines By, By such that By(0) = B1(0) =
u, Bo(1) = Bi(1) = v and d(J;, B{(z)) < max(d(J;,u),d(J;,v)) + 27 for
i = 0,1 and for all 0 < z < 1. Here, Jy is the arc defined by Jo(z) =
J(zy + (1 — 2)x), and Jy is the arc defined by

J((1 =22)x) if0<2<1/2
J(2z—=1y+2—-22) ifl1/2<2<1;

hold.

In this situation, Uy and U; are said to denote the interior and exterior of J,
respectively. Our proof is a reformulation of a non-standard proof of the Jordan

curve theorem [19].

Proof. Fix a countable non-standard model V' = (M, S) of WKL and fix a Jordan
curve J (in V). By Theorem 5.1, V has an extension *V = (*M,*S) such that
S={XNM:X e€*S}. Using both V and *V, we will show that the Jordan curve
theorem holds within V. Then, by the completeness theorem, the Jordan curve
theorem is provable in WKL,.

Let ®; € S be a code for J. Then, by the definition of continuous functions and
Theorem 2.7, ®; € V satisfies the following: for any k € M, there exists K € M
such that

(Ci) there exists a finite sequence oy := ((n;, a;, 74, b, 8:) € Pyl<i 7 < lg) such
that s; < 27% and [0,1] € U,,, Blas;7);

(Cii) if (n,a,r,b,s) € ®j|<x and (n,a,r,,s") € D;|<k, then d(b, V) < s+ §;

(Ciii) if (n,a,m,b,8) € ®s|l<k, (n',ad',7",b,s) < K and (a/,r") < (a,r), then
(n',d' 1,0, s) € Dy|l<k;

(Civ) if (n,a,r,b,s) € sl<k, (n',a,rb,s") < K and (b,s) < (V/,s), then
(n',a,r,b,s") € ®sl<k;

hold in V. (Here, ®;|<x :={m e ®; : m < K}.)

Note that the above four conditions are expressed by XJ formulas. Take a set
*®; € *S such that *®; N M = ®,;. Then, by overspill, there exists w € *M \ M
which satisfies the following: for any k£ < w, there exists K € *M such that
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(*Ci) there exists a finite sequence oy := ((ns, a;,ri, b;, 8;) € *®yl<k 17 < li) such
that s; < 27 and [0,1] € U,,, Blas;7);

ii s Uy 1y Uy J 777/7 JI<K, ) = )
(*Cii) if (n,a,rb,s) € *®,;|<x and (n,a,r,b,s") € *®;|<k, then d(b,b') < s+ ¢

(*Ciii) if (n,a,r,b,s) € *®;|<k, (n/,d,r',b,;s) < K and (d',7") < (a,r), then

(n',a',r' b, s) € *Pyl<k;

(*Civ) if (n,a,r,b,s) € *® |<k, (n';a,7mV,s) < K and (b,s) < (V/,s'), then

(n',a,r b, s") € *®s|<k;

hold in *V. Let oy be a finite sequence taken in (*Ci). Let 7, := (b, ..., b, —1) if
ok = ((ng, ai, 73, by 8;) i < lg). Hereafter, we define 7(lh(7)) := 7(0). Note that if
k € M, we can find o}, in V. Then, 7, € M and d(J, P[r]) < 27% in V. Hence we
call P[] a k-th approximation of J.

Put P = P[r,]. In *V, let ¢o(x) (or ¥p(z)) be a X formula which expresses that
r € R?, x ¢ Lp and there exists ¢ € Q such that the half-line I(z,q) = {(z1 +t, 2o +
qt) € R? : t € R, t > 0} dose not contain each 7,(z) and the cardinality of [(x,q)NLp
is an odd number (or even number). Then, by Lemma 2.6, we can effectively find
the open sets Wy, W; such that z € Wy < @o(x) and x € W; < (). We can

easily show the following:
(Wi) Wo N Wl = @ and WO U Wl = ch;
(Wii) W, is bounded;

(Wiii) if 27 € W; (j=0,1), 2 € Lp® and the segment B[(xz2)] intersects Lp odd

number of times, then z, € W;_;;

(Wiv) if x; € W; (j=0,1), xo € Lp® and the segment B[(z1x2)] intersects Lp even

number of times, then z, € W;.
Define formulas o(a,r), $(a,r), ¥(a,r) and ¥(a,r) as

ola,r)=a € Q*ANa € WyAd(a, P) > r;
a,r)=a€Q’*ANa¢ Wy Ad(a,P)>r;
a,7)=a € Q*ANa € W, Ad(a, P) > r;

%
(G
dla,r)=aeQ*Na ¢ WoAd(a, P)>r.

(
(
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Note that d(a, P) > 0 can be expressed by ¥§ formula. Hence, ¢ and ¢ are %9
formulas and ¢ and ¢ are II formulas. Clearly, (a,r) < @(a,r) and ¥(a,r) <
zﬁ(a, r). Then, by A? comprehension, define *Uy and *U; as:

(n,a,r) € Uy < p(a,r) An=(a,r),
(n,a,r) € *Uy < ¢Y(a,r) An = (a,r).

Put *UyNM =Uy € S and *Uy N M = U; € S. Then, in V| it is readily apparent
that Uy U U; is the complement of the locus of J and U, is bounded, i.e., Clause 1
in the theorem holds.

Hereafter, we prove Clause 2 in the theorem. Assume r € Q1 and w € L;
in V. Without loss of generality, we let w = J(1/2). Put z = J(0) = J(1).
Take €4,¢,e, such that 0 < ¢, < € < r/2, 0 < ¢, and d(w,z) > \/§(€ + &.).
Then, there exist po, p1,qo,¢1 € Q such that 0 < py < o < 1/2 < ¢1 < p1 < 1,
J([0,p0]) U J([p1,1]) C Box(z;¢,) and J([qo, 1]) € Box(w;e,). Here, Box(a;r) :=
{(z1,20) €eR*:ay — 7 <21 <@y +7r,a0 —1r < g < ag+r}. Put Jy = J|p, 4 and
Jo = Jljg py]- Since J is injective, we can take ¢ € Q such that d(Jy,J2) > 6 > 0,
§<e—eypand d <r— /2.

In *V, put P, = Pljpyq and Po = Pl py)- Let C : [0,1] — R? be a simple
polygon such that L¢ is the boundary of Box(z;¢), i.e., C' draws the square which
is a boundary of Box(z;¢). Without loss of generality, we may assume Lp N L¢ is
finite. Since P(po), P(p1) ¢ Box(z;¢) and P(qo), P(q1) € Box(z;¢), C intersects Lp,
odd number of times (7 = 1,2). Let b, ...,bnt1 € [0,1] such that 0 < by < by <
coo < by <1, by = bg and C({by,...,bm}) = Lp N Le. Then, there exist at least
two k’s such that

() (C(br) € Lp, AC(bgy1) € Lp,) V (C(bk) € Lp, N C(bry1) € L)

holds. Moreover, there exist k,l such that k and [ satisfy (f) and |k — | is an
odd number. Hence, C'((bg,bry1)) € Wy or C((by,bi11)) € Wy. Without loss of
generality, we may assume C(by) € Lp,, C(bgr1) € Lp, and C((bg,brs1)) € W.
Define M : [by,bpra] — R as M(t) = d(Py,C(t)) — d(Py, C(t)). Then, M(by) <
—§ < 0 and M (bgy1) > 0 > 0. By the intermediate value theorem (provable in
RCAy), there exists by < ty < bry1 such that M(tg) = 0. Thus, d(P,C(ty)) =
d(P,,C(ty)) > 6/2. Then, B(C(t,);0/2) C Wy. Hence, there exist n,a,r € M
such that n = (a,7), a € Q* r € Q" and B(a;r) € B(C(t,);6/2) in *V. Then,
(n,a,r) € Uy and d(a,w) < v/2e +§ < r in V. This means a € Uy and d(w,a) < r
in V' and Clause 2 in the theorem holds.
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Clause 3 in the theorem remains to be proven. Let Hy : N — N be a modulus of
uniform continuity for J, i.e., for all 2,5 € [0,1], min(|z — y|,1 — |z — y|) < 277™
implies d(J(x), J(y)) < 27", and let H; : N — N be a function which satisfies the
two conditions in Lemma 5.24. Note that the existence of a modulus of uniform
continuity is provable in WKLy (see Theorem 3.5). Define a function H : N — N
as H(n) := min{m : Hy(n) < Hy(m)}. Then, for all z,y € [0,1] with = < v,
d(J(z), J(y)) < 275" implies Vz € [x,y] d(J(z),J(2)) < 27" or Vz € [0,2] U
ly, 1] d(J(x),J(2)) < 27". Thus, if o := ((ni, a;, 13, b;,8;) 1 < l) taken in (*Ci)
satisfies d(b;, b;) + s; +s; < 275 and i < j, then, d(b;, B[mi|<ij>]) < 27"+ 27F+1
or d(b;, Blmili<j]) < 27"+ 271 Here, m|<ijo = (b1 j <t <L) {by: 0 <t < i)
and 7x|i<; = (b1 J <i <t <j).

Take ng such that 27 < min(d(u, J),d(v,J))/2 and take N such that 27V <
min{27"0=2 2~No=1 9=H(no+1)=21 iy |/,

Next, we define a sequence p. For each side B[(7, (i), 7,(i + 1))] of P[r,], we
draw a rectangle of size (d(7, (i), 7,(i +1)) +2-27V71) x 2. 27¥=1 guch that the
side B[{(7,(4), 7, (i + 1))] lies in the rectangle at equal distance 27V~ from each of
the four sides of the rectangle. The parts of the rectangles that lie within W (since
Wy is the ‘interior’ of P) decompose Wy into some polygonal domains. Let R be the
domain constructed above containing u. Next take the sequence p such that P[p]
is the boundary of R. Then, Lpj, )N Lpy) = 0 and d(P[r,],q) < 27V < 278~ for
all ¢ € Lpy,. (If Lpir,) N Lpjy # (), then Lpjy is contained in one rectangle, but
it contradicts d(u, Lpy,,) > 27 — 27%.) Then, by underspill, we can easily find a
finite sequence (a,,r, : n <) € M which satisfies the following:

(Bi) r, < d(a,,J) < 27NV and B(a,;r,) N B(api1,7ni1) # 0 for all n < [ in V;
(Bii) Lpy €U, Blay;r,) in *V.

If both u and v are contained in R, segments B[(u, z)] and B[(v,y)] intersect with
U,<; B(an; ). Therefore, we can easily find the desired broken-lines By, By within
Uy. So, we will show v € R.

P[7] is said to be a refinement of P[r] if Lp;;) = Lpjz and {7(¢) : ¢ < lh(7)} C
{7(i) : i < 1h(7)}. Take refinements P[7] and P[p] of P[7,] and P[p] which satisfy
the following:

(Ri) Vi < 1h(p) d(p(i), p(i + 1)) < 27V
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(Rii) there exists a map v : lh(p + 1) — 1h(7) + 1 such that v(0) = 0, v(lh(p)) =
Ih(7), v(i) < v(i + 1) for all i < 1h(p) and d(p(i),7(v(i))) < 27V for all
i < 1h(p).
To show v € R, we show d(p(i), B[ |,t)<v@+1)]) < 27 for all ¢ < 1h(p). By the
above conditions, d(7(v(i)),7(v(i + 1)) < 3-27N < 27Hmo+)  Then,

d(7(v(4)), Bl7|<viywii+n>]) < g mo—l 4 o-witl
or

d(#(v(1)), Blf|ui)<uin]) <2707 4279
If d(7(v(i)), Bl <v(i)wiir1)>]) < 270l 4 9=wtl then

d(p(i), P[p]) < d(7(v

( )) [ |<V (2),v(i+1)> ]) + 2N < g7
but it contradicts v € R. Hence d(7(v(4)), B[7|ui)<vit1)]) < 27071 + 271 Thus,

d(p(i), Blt|uiy<viirn]) < d(7(v(i)), BlF gy <varn]) + 27 <277,
Therefore,
Vq € Lpp) d(q, Plp]) <27™.
If v € *Uy \ R, then d(v, P) = d(v, P[7]) < 27", which contradicts 27" < d(v, J)/2.
Hence v € R. This completes the proof for Theorem 5.25. n

5.4.3 Some more results

In this subsection, we summarize some more results. For the proofs of theorems in
this subsection, see [25].

Let D, E be open or closed sets in R or R%. Let ¢ : D — E be a continuous
function. A continuous inverse function of ¢ is a continuous function ¢ : £ — D
such that ¥(¢(u)) = u for all u € D and ¢(¢)(v)) = v for all v € E. The continuous
inverse function of ¢ (if it exists) is written as ¢~!. A pair of continuous functions
(¢,1) is said to be a homeomorphism if ¢ is the continuous inverse function of ¢.
For the simplicity, we write ¢ for a homeomorphism (¢, ¢~'). By the Jordan curve

theorem 5.25, we can show the following Schonflies theorem.

Theorem 5.26 (The Schonflies theorem, first form). The following is provable in
WKLg. Let J be a Jordan curve and let K be the Jordan region of J. Put (Q =
P[((1,1),(—1,1),(=1,-1),(1,—1))]. Let L be the Jordan region of Q. Then, there
exists a homeomorphism ¢ : K — L such that ¢(J(z)) = Q(x). Moreover, ¢ and

¢~ 1 have moduli of uniform continuities.
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Theorem 5.27 (The Schonflies theorem, second form). The following is provable
i WKLy. Let J be a Jordan curve and let () be interpreted as in Theorem 5.26.
Consequently, there exists a homeomorphism ¢ : R* — R? such that ¢(J(x)) = Q(x)
for all x € [0, 1].

Then, a strong version of the Jordan curve theorem immediately follows from

above theorems.

Theorem 5.28 (The Jordan curve theorem). The following is provable in WKLy.
For each Jordan curve J, we can find the locus Ly of J and a partition (Uy,Uy) of
(Ly)¢ such that all of the following hold:

1. Uy is bounded, i.e., there exists ¢ € Q1 such that d(u, (0,0)) < q for all u € Uy;

2. Uy and Uy are broken-line connected, i.e., for all u,v € U;, there exists a
broken-lines B; in U; such that B;(0) = u, B;(1) =v fori=0,1;

3. For each w € Ly and each q € QT, there exist points u € Uy, v € Uy such that
d(w,u) < q and d(w,v) < q;

4. Every arc connecting a point in Uy and a point in Uy meets J.
Theorem 5.27 extends the result in Shioji/Tanaka [27].

Corollary 5.29 (The Brouwer fixed point theorem for Jordan regions). The fol-
lowing is provable in WKLqy. Let J be a Jordan curve and let Uy be the exterior of
J. Let ¢ be a continuous function from Uf to itself. Then, ¢ has a fived point, i.e.,
there exists u € UY with ¥(u) = u.

Proof. Immediate from Theorem 5.27 and the fact that the Brouwer fixed point
theorem for convex hulls in R™ is provable within WKLq ([27]). O

Finally, we show that the Jordan curve theorem and The Schonflies theorem are
equivalent to WKLy over RCA,.

Theorem 5.30 (reversal). The following assertions are pairwise equivalent over
RCA,.

1. WKLy.

2. BEvery Jordan curve has a locus.
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. The Jordan curve theorem.

. For every Jordan curve J and non-empty open set U, Uy, Uy, if U° is a locus

of J and (Uy, Uy) is a partition of U, then Uy or Uy is bounded.

. For every Jordan curve J and non-empty open set U, Uy, Uy, if U¢ is a locus of
J, (Uo, Uy) is a partition of U and Uy is bounded, then, Uy and Uy are broken

line connected.
. The Schonflies theorem, second form.

. The Schonflies theorem, first form.
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6 Formalizing non-standard arguments

In the previous chapter, we introduced model theoretic arguments to do non-standard
analysis for ACAy or WKLy and applied them to demonstrate that some theorems
are provable in ACAg or WKLy. Then, can we canonically reconstruct formal proofs
within ACAg or WKLg from such non-standard arguments? Professor Sakae Fuchino
posed this question. In this chapter, we introduce systems of non-standard second
order arithmetic ns-ACAy and ns-WKLq corresponding to ACAg and WKLg. In these
systems, we can formalize the above non-standard arguments. By model construc-
tions appearing in the previous chapter, we can show that ns-ACAg is a conservative
extension of ACAg and ns-WKL, is a conservative extension of WKLy. However, we
need some canonical transformations that do not depend on semantics because we
want to analyze non-standard techniques in second order arithmetic. To transform
non-standard proofs directly into standard proofs, we interpret ns-ACAq in ACAq and
interpret ns-WKLy in WKLy, as for the formalization of Harrington’s conservation
theorem by Avigad[2]. The technical ideas of these interpretations are attributed
to [9] and [34]. In addition, systems of non-standard second order arithmetic we
introduce are the expansions of non-standard arithmetic introduced in [21].

We first introduce the language of non-standard second order arithmetic.

Definition 6.1. The language of non-standard second order arithmetic £3 is defined

by the following:
e standard number variables: % v°, ...,
e non-standard number variables: x*,y*, ...,
e standard set variables: X* Y ...
e non-standard set variables: X*, Y™ ...,

e function and relation symbols: 0%, 1%, =% 45 .5 <% €% 0" 1%, =* 4% .* <" &

7\/'

Here, 0°%,15,=5 45 -5 <5 €° denote “the standard structure” of second order
arithmetic, 0%, 1%, =" +* -* <* &* denote “the non-standard structure” of second
order arithmetic and / denote an embedding from the standard structure to the

non-standard structure.
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In this chapter, we consider +, - € L5 as ternary relations. Similarly, we consider
+5, 5, 4%, * € L5 as ternary relations.

The terms and formulas of the language of non-standard second order arith-
metic are as follows. Standard numerical terms are standard number variables and
the constant symbols 0° and 1° and non-standard numerical terms are non-standard
number variables, the constant symbols 0* and 1* and /(#*) whenever ¢* is a nu-
merical term. Standard set terms are standard set variables and non-standard set
terms are non-standard set variables and /(X®) whenever X® is a standard set
term. Atomic formulas are t; =° t5, +°(15,15,15), S(85,5,13), 6] <° &3, 1§ € X°,
TR (), (U, th), t) <* th and t7 € X where (5, 85, £ are standard
numerical terms, t7,t5,¢5 are non-standard numerical terms, X® is a standard set
term and X™* is a non-standard set term. Formulas are built up from atomic formu-
las by means of propositional connectives A, — and quantifiers Jz°, Jx*, IX° IX*.
Other connectives V, —, «<» and quantifiers Va®, Vo*, V.X° VX* are introduced by a
combination of some of A, =, 3x° Jz*, 3X° JX* as usual. A sentence is a formula
without free variables.

Let ¢ be an Lo-formula. We write ¢° for the £3 formula constructed by adding
® to all occurrences of bounded variables and relations of ¢. Similarly, we write ¢*
for the £} formula constructed by adding *. We usually omit ®* and * of relations.
We write 5 for /(%) and X for \/(X?®).

In this chapter, we use M to indicate the range of number variables and S to
indicate the range of set variables in the system of second order arithmetic. We
are not going to describe the semantics of the system by these M and S but these
symbols are introduced just to make the argument more accessible. Similarly, in the
system of non-standard second order arithmetic, we use M® to indicate the range
of standard number variables, M* to indicate the range of non-standard number
variables, S® to indicate the range of standard set variables and S* to indicate the
range of non-standard set variables. Moreover, we use V° = (M?®, S®) to indicate the
range of standard variables and V* = (M*, S*) to indicate the range of non-standard

variables.

6.1 The system ns-ACA

In this section, we introduce the system ns-ACA,. Then, we interpret ns-ACAq in

ACA, by forcing notion. For this, we use the forcing relation for generic ultra filters.
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Definition 6.2 (the system ns-ACAg). The axioms of ns-ACAq are the following:
1. (ACAo)®, (ACA)*.
2. /:V® — V*is an injective homomorphism.

3. end extension:
VoV (o < y® — 32°%(a" = 29)).

4. standard part:
VX*Y VS (2® € VP — 25 € X7).

5. 31 transfer principle:
VY X (p(2%, X°) e p(a®, X5)7)
for any X1 formula .
6. X§ overspill:
VeV X (Vy*32°(2° > A28, 2%, X)) — Jy* (Vb (y* > ws) Ap(y*, 2%, X))
for any X} formula ¢.

In fact, the axiom “end extension” is deduced from other axioms. Note that we
can check that ns-ACAq is an expansion of ACAf which is introduced by Keisler[21].

Now, we interpret ns-ACAg in ACAy and show that ns-ACAq is a conservative
extension of ACAy. We argue in ACAq. A set X is said to be bounded if dx Vy €
X y <z. Wewrite X C, YV if X \ Y is bounded.

Definition 6.3 (in ACAp). Let Ms = M, M* = {f | f: M — M}, S5 = S and
S* ={X | X C M x M}. Here, Ms, M*, S5, S* denote the sets of (names of)
standard numbers, non-standard numbers, standard sets and non-standard sets in
non-standard second order arithmetic. Define 0%,1° € Ms as 0° = 0, 15 = 1. Define
0*,1* € M* as 0*(i) = 0 and 1*(4) = 1. Let P = {X | X is unbounded} and
X <Y & X CY. For A* € S*, we write A*(i) for {z | (z,i) € A*}.

We inductively define X I ¢ for any £5UMsUM*USsUS* sentence 1) as follows.
For a® € Ms and A* € S5, we define (a®)V € M* and (A%)V € S* as (a®)V(i) = a*
and (A%)Y = {(x,i) |z € AANi€ M}. Let X € P, a*,0°, ¢ € M, a*,b*,c* € M*,
As e S A e S
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XIFa® =0 < a°=10°.

X IF+5(a%, 0%, &) < +(a®, 0%, ¢%).
o X IF5(ad b, ) < -(a® 0% ).

XIFa® <®b < a® <t

XIFa® e® A° < a® c A5

XIFa*="b" < {i|a*(i) =b"(i)} Du X.

X IF +%(a*, 0, ¢) & {i | +(a*(i), 0" (i), ¢*(i))} Dt X.

o X IF-*(a*,b*,c*) < {i]-(a*(7),b*(i),c* (7))} Dm X.

XIFa* <* b & {i] a*(i) < b*(i)} Du X.

XIFa* e A* o {i| a*(i) € A*(i)} Du X.

X |- ap(as,b*, As, B*) & X - ¢((a®)V, b*, (A%)V, B*) where 9 is a non-standard

atomic formula.

XIFpAy e XIFoAXIF.

Xl —p & VY <X =Y Ik,

X IF 3% (a®) & {Y | Ja* € M5 Y |- (a®)} is dense below X.

X Ik 3z*p(z*) & {Y | Ja* € M* Y I 4p(a*)} is dense below X.

o X IFIXsy(X®) & {Y |3A5€ S5 Y IFp(A)} is dense below X.
o X IFIX*Y(X*) < {Y | JA* € S* Y IF (A"} is dense below X.
Define I- ¢ as X IF 4 for any X € P.
The next two lemmas are easily proved in usual ways.
Lemma 6.1 (in ACAg). The following are equivalent.
1. X
2. {Y | Y I ¢} is dense below X .

3. VY <X Y IF .
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Lemma 6.2 (in ACAg). Let ¢ be an L5 sentence. Then, the following are equivalent.
1. X IF for some X € P.
2. X IF forall X € P.

Lemma 6.3 (in ACAg). Let X be an unbounded set, and let A be an arbitrary set.
Let A, = {i | (a,i) € A}. Then, there exist an unbounded set Y C X such that
(Y Ca Ap) V(Y C,y AS) for all a € M.

Proof. This lemma is an easy consequence of [20, Lemma 8.7]. This lemma is also
showed in [9, Theorem 3.2]. O

Lemma 6.4 (in ACA).
(50) X IF gp(a®, a*, A%, A¥)* s {i | p(a®, a* (i), A%, A*(i))} D X
for any ¥} formula o and for any a® € Ms, a* € M*, A € Ss, A+ e §x.

Proof. We show this by induction on the complexity of formulas. Atomic formulas
satisfy (50) by the definition of IF. We can easily check that ¢ A1) and —¢ satisfy
(50) if both ¢ and 9 satisfy (50). Let ¢» = Jzep(x) (» may have parameters from
MsUSSUM*US*). If {i | ¢} Da X, then {i | ¥}NX < X and {i | ¥} NX IF —p(a*)
for all a* € M*. Thus, X -1 — {i | 1} Du X. For the converse, we define a* € M*
as

min{a | p(a)} if Jzp(x),

0 if ~Jrp(x).
Then, {i | ¥} Da X implies {i | ¢(a*(i))} Da X. Hence, {i | ¥} 204 X — X IF
. O

Lemma 6.5 (in ACA). Let ¢ be an Ly formula and let a® € M, As e 8. Then,

the following are equivalent.

a*(i) =

— —

L. p(a®, A%).
2. X IF o(a®, A5 for some X € P.
3. X IF p(ad, &%) for any X € P.

Proof. We can easily check this by induction on the complexity of ¢. O]
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Lemma 6.6 (in ACA).

—

(X |- p(ad, A%)%) = p(ad, A°)
for any Ly formula ¢ and for any X € P, a® € Ms, As € S5,
Proof. Obvious from Lemma 6.5. n

Lemma 6.7.
ACAq HIF ns-ACA,.

Proof. We show I ns-ACAq in ACAg. We can easily check that IF “y/ is an injective
homomorphism” (Definition 6.2.2). We first show that I “X} transfer principle”
(Definition 6.2.5). Let ¢ be ¥} and |- (3X(X, as, As))*. Then, for any X € P,
there exist Y < X and A* € S* such that Y I ¢(A*, a5, A%)*. By Lemma 6.4, there
exist j € YN{i | Y(A*(3),a®, A%)}. Then, v(A*(j),a®, A%) and YV |- (A*(j), a®, A%)°.
Hence IF (3XY(X, a®, A%)). Conversely, let I (X (X, a®, A%))*. By Lemma 6.6,
IX (X, a*, A®). Hence, there exist BS € S5 such that ¢(B*,a®, A%). By Lemma 6.4,
(B, a®, As). Thus, IF (X (X, a5, A%))*.

Next, we show IF (ACAg)® A (ACAp)* (Definition 6.2.1). By Lemma 6.6 and
I “¥1 transfer principle”, we get I (ACAp)® and I (IX9)*. We show I (ACA)*.
Let 1 be ¥} and let a* € M*, A* € S*. We need to show I (IXVz(r € X <
Y(z,a*, A*)))*. Define B* € S5 as (z,i) € B* < (x,a*(i), A*(i)). Then, IF (z €
B« ¢(x,a*, A*))*. Thus IF (ACA)*.

To show IF “standard part” (Definition 6.2.4), we use Lemma 6.3. For any A* €
S* and for any X € P, there exist Y < X such that (Y C, A7)V(Y Cy (45)°) for all
b€ M. Define B € Ssas b€ B* <Y C, A;. Then, Y IF Vas(2® € B® « 15 € A*).
Thus, IF IX5Vas (25 € X5 — 25 € A*).

Finally, we show |- “3} overspill” (Definition 6.2.6). Let ¢ be 3} formula and
a* € M*, A* € S*. Let IF Vy*325(2° > v* A (25, a*, A*)*). This implies that there
exist cofinitely many i € M such that Jz(x > j A p(z,a*(i), A*(7))) for all j € M.
Define b* € M* as

min{b | b > i A p(b,a*(i), A*(2))} if Fx(z > i A p(z,a*(i), A*(7))),
0 if =Jz(x > i A @(x,a*(i), A*(7))).

b (i) =

Then, IF (b* > &) A o(b*,a*, A*)* for any ¢¢ € Ms. Thus, IF Jy*(Vus(y* > ws) A
p(y", a”, AT)). -
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Theorem 6.8.
ns-ACAq - ¢ = ACAy HIF ¢

for any L3 sentence v. Moreover, we can transform a proof of ns-ACAq - ¢ into a

proof of ACAq I 1.

Proof. We can easily check that I is closed under inference rules. Thus, by Lemma
6.7, we can transform a proof of ns-ACAq I v into a proof of ACAq HIF v effectively.
O

Corollary 6.9.
ns-ACAp F ¢® = ACAg - ¢

for any Lo sentence p. Moreover, we can transform a proof of ns-ACAg F ¢©* into a
proof of ACAy F .

Proof. By Theorem 6.8, we can transform a proof of ns-ACAg F ¢° into a proof of
ACAq HIF ¢®. Then, as in the proof of Lemma 6.6, we can get a proof of ACAg F ¢
effectively. O]

6.2 The system ns-WKL,

In this section, we introduce the system ns-WKLy and interpret ns-WKLg in (a con-
servative expansion of) WKL,. For this, we introduce another relation I-,,. We treat
the universe V = (M, S) of second order arithmetic as the non-standard universe
of non-standard second order arithmetic. Then, we construct the standard universe

within V' by forcing.

Definition 6.4 (the system ns-WKLg). The axioms of ns-WKL, are the following:
1. (WKLp)®, (WKLg)*.
2. /:V® — V*is an injective homomorphism.

3. end extension:
Vo'Vt (o < v — 3252 = 29)).

4. standard part:
VX* YVt (a® € YV® — 15 € X).
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5. X0 transfer principle:
VsV X5 (o(2%, X5)* s (a8, X5)*)
for any ) formula .
6. X9 overspill:
VeV X (Vy*32°(2° > A28, 2%, X)) — Jy* (V' (y* > ws) Ap(y®, 2%, X))
for any XY formula .

In fact, the axiom “% transfer principle” is deduced from other axioms. Note
that we can check that ns-WKLy is an expansion of WKL which is introduced by
Keisler[21].

To interpret ns-WKLy, we expand WKLg.

Definition 6.5. 1. Let ¢ be a new constant symbol. Define the system WKLy
as
WKLy := WKLy + {c>n|n € w}.

2. Let I(-) be a new unary relation symbol. Define the system WKLy" as
WKLy" := WKLy'+{I(0)AVz(I(z) — [(x+1))AVaVy < z(I(z) — I(y))A—I(c)}.

Note that for any £, sentence ¢, if we get a proof of WKLy" - ¢, we can easily
get a proof of WKLy F ¢ and a proof of WKLg - ¢.

Next, we prepare generalized %) satisfaction relation and partial embeddings to

interpret ns-WKL,.

Definition 6.6 (in WKLq:Definition 2.1 of [34]). We define the set of (Gédel numbers

of) Ly formulas G, as the following:
e Gy ={¢ | pis an atomic formula or the negation of an atomic formula},

e G! ={3xp | ¢ is a finite conjunction of G, formulas},

G? = {Vz < yp | p is a finite disjunction of G, formulas},

G2 = {VXp | ¢ is a finite disjunction of G, formulas},

Ger1 =G UGLUG? UGS,
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where z and y denote arbitrary distinct number variables, and X an arbitrary set
variable. Then, we define G = |J.c,, Ge.

Within WKLo, we can show that each formula in G is equivalent to a X9 formula.
We next define a satisfaction relation for G as in [34]. For a X satisfaction relation,
see also [13]. Forp € M, let M, = {a | a <p}, S, ={XNM,| X € S} and
V, = (M,,S,). We can define the full satisfaction predicate Tr?(z, ) for V, as a A?
relation, where z € G and £ is a finite mapping to evaluate the free variables in z
by elements of M, US,. If z is a Gédel number of ¢(Z, X) (¢ has only free variables
denoted) and if £(Z) = @ € M, and £(X) = A € S, then Tr"(z,€) < Vp |= ¢(a@, A).
Moreover, we may assume that Tr? satisfies the Tarski clauses for all formulas (Note

that there exists a non-standard formula in WKLy').

Definition 6.7 (in WKLg:Definition 2.2 of [34]). Define the satisfaction relation Tr
for G as

Tr(z,€) < Ip(p > EANTP(2,€ [ V},)).

Here, p > & means that p is greater than any {(x) and £ [ V), is defined as £ |
Vo(x) = €(z) and £ [ V,(X) = {(X) N M,.

Lemma 6.10 (in WKLg:Lemmas 2.3 and 2.4 of [34]).

1. Tr satisfies the Tarski clauses for G.

2. For any e € M and for any evaluation &, there exists a natural number p € M
such that Tr(z,&) < TrP(z,€) for any formula z € G. with only the free

variables associated with &.

From now on, we argue in WKLy". We fix p as p = min{q | Tr(z,0) < Tr(z,0)
for any sentence z € G.}. Note that for any (standard) £, formula ¢ such that
o] € G, [¢] € G, if I(a). Here, [¢] denotes the Godel number of ¢.

Definition 6.8 (in WKLy'). Let £ and £ be two evaluation mappings with the same
domain. Then the pair n = (£,¢’) is said to be a partial embedding (p.e., for short)
if p> ¢, n| <cand Tr(z,§) — TrP(2,& [ V,) for any z € Gy, with only the free
variables associated with €. Here, || = | dom(&)].

We write a € dom(n) (A € dom(n)) if a = {(z) for some number variable x (A =
£(X) for some set variable X), and n(a) =b (n(A) = B) if {(z) =a A ({(2') =a —
(2] < [#]) A& (@) = b for some 7 (€(X) = AA(E(X) = A — [X] < X)) AE(X) = B
for some X). (Here, [z] < [2/] means that the Godel number of 2’ is grater than
that of z.)
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We now define the forcing notion. Let P = {n | n is a p.e. and I(|n])}. Let
n=(&¢) and ¢ = (¢,(’) be p.e.’s. Then, we define t <nas& C(AE C and we
define t <y mpase <nAl <|n+1. Notethat t€ Pifne PAL <.

The following lemma is an easy modification of Lemma 2.6 of [34].
Lemma 6.11 (in WKL,"). Let n € P. Then the following hold.

1. Va 3¢’ < p 30 <y ma € dom(e) Au(a) =d'.

2. Vo' <n(ag) Ja < ag It <11 a € dom(e) Awla) =d for any ap € dom(n).

3. VA JA 3 <y n Aedom(e) Ae(A) =A.

4. VA JA J <3 n Aedom(t) AVY < Vaedom() (a e A t(a) e A).

Proof. 1, 2 and 3 are straight forward directions from Lemma 2.6 of [34]. We show
4. Let A’ be an arbitary set and n = (£,£') € P. Then, there exists a set A such
that Tr(z,U{(Y,A)}) — TrP (2, U{(Y, A")}) for any G._p;-1 formula z with only
the free variables associated with € U {(Y, A)}, where Y is a set variable not in the
domain of {. Define a p.e. ¢+ <y npast = (EU{(Y,A)}&U{(Y,A)}). We show
Vi <1Va e dom(/) (a€ A« (a)e A'). Let / = ((,(") <. For any z € dom((),
[z € Y] € Gy and [~z € Y] € Gy, thus Tr([z € Y],{) — TrP’([zr € Y],{’) and
Tr([-z € Y], () — TrP([-z € Y], (’). Hence, for any a € dom(/'),a € A — (/(a) € A’
and ~a € A — —/(a) € A O

Now, we interpret ns-WKLy in WKLy"” and show that ns-WKL, is a conservative

extension of WKLg.

Definition 6.9 (in WKLy"). Let Ms = M* = M, Ss = S* = S. Here, M5, M*,
Ss. S* denote the sets of standard numbers, non-standard numbers, standard sets
and non-standard sets in non-standard second order arithmetic. Define 05,15 € Ms
and 0*,1* € M* as 0° = 0* = 0 and 1° = 1* = 1. Using the forcing notion (P, <),
we inductively define 7 Ik, ¥ for any £5U M U M*U S U S* sentence v as follows.
Let n € P, a,b,c € M, a*,b*,c* € M*, A € S, A* € S*. Note that we consider
n(a®) € M* for a® € dom(n).

o ik, a® =" < {1]|a® b €dom(e) Aa® = b°} is dense below 7.
o 1k, +5(a®, 0%, ) < {v] a® b ¢ € dom(e) A +(a, b%, ¢®)} is dense below 7.
o nlky, S(a V%, ) < {v] a®, b°, ¢ € dom(e) A -(a®, 0%, ¢%)} is dense below 7.
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Nk, a® <* b < {u]a®b® € dom(e) Aa® < b} is dense below 7.

nlky a® € A%< {1]a®, A% € dom(t) A a® € A%} is dense below 7.

Nk, a* =" 0" < a* = b

n ke +5(a*, 0%, ¢*) & +(a*, b, c*).

nlky *(a*, 0%, ¢*) < -(a*, b, c*).

Ny a* <0 & a* < b

Nk, a* € A* & a* € A*.

n kg z/;(ds,b*,AS,B*) < {u] a®, A% € dom(e) A lky P(n(a®),b*,n(A%), B*)} is

dense below 1 where v is a non-standard atomic formula.

Nty oANY S nlby @ Ak, .
Nty " & Ve <n oy, Y.

n by Jz8Y(a®) < {¢ | Ja® € dom(¢) ¢ Iy, (a®)} is dense below 7.

n Iy 3X5Y(X®) < {0 | A% € dom(e) ¢ Ik, ¥(A%)} is dense below 7.

1l 3e*(e*) & Ja* € M* 1 Iy 9(a*).
o 7lFy X Y(X*) & FA* € M* 1) Iy (A7),
Define I, ¥ as 0 Ik, 9.
Note that we can easily prove that the following are equivalent within WKL,":
1yl
2. {¢| Ik ¢} is dense below 7.
3. Ve <nulk .
We next prepare some lemmas.

Lemma 6.12 (in WKLy"). Let a®,b°, ¢ € Ms, A5 € S5, and let n € P such that
a®,b%, ¢, A% € dom(n). Let a pair of L5 formula (,v') is one of the following:
{(a® =° V°, a5 = 1), (45(a®, 1%, ), +*(a%, 1%, ), ((a®, 1%, ¢), (a5, 1%, ®)), (a° <
b as <* b%), (a® €% A% a* €* As). Then,

Nk ) <.
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Proof. Let n = (§,&'). By the definition of partial embedding, Tr(z, &) — TrP(z, & |
V,) for any atomic formula z with only the free variables associated with £. Thus,
we can easily check that n Ik, 1 < ¢’ by the definition of I,,. O]

Lemma 6.13 (in WKL,").
(51) (0 Ik (@, A5)°) = plad, A)
for any Ly formula ¢ and for any n € P such that a®, As e dom(n).

Proof. We show this by induction on the complexity of formulas. Atomic for-
mulas satisfy (51) by the definition of IF,. We can easily check that ¢ A ¢ and
- satisfy (51) if ¢ and 1 satisfy (51). Let a® € Ms, A e S5, w(a_é,ffs) =
Jrp(x,a®, A%) and © € P such that a® A5 € dom(n). By the induction hypoth-
esis, (¢ Ik, (b5, a5, A%)) — o(b°, a5, A%) for any b° € M5 and + € P such that
b, ad, A5 € dom(e). If Elxgo(x,cfs,gs), then, by Lemma 6.11.1, for any ' € P
such that 1/ < 7, there exist b € Ms and ¢ <; 7 such that ¢ I, (b, a, A%)
and b° € dom(:). Thus, Jzp(z,d®, A5 — (n by (Gap(z, b, A%))%). Conversely,
(n Ik (Elxgo(x,cfs,/fs))s) — Elxgo(x,a_é,/fs) is obvious. Similarly, we can show the
case that 1(a®, 45) = IX (X, a®, A%) by Lemma 6.11.3. O

Lemma 6.14 (in WKL,").

—

(nFw p(a, A%)7) < p(a*, A)
for any Lo formula @ and for any n € P, a* € M*, A* e M~
Proof. Obvious from the definition of I,,. O

Lemma 6.15.
WKLy" HF,, ns-WKL,.

Proof. We show I+, ns-WKLy in WKLy". By Lemma 6.12, I, “y/ is an injective ho-
momorphism” (Definition 6.4.2). By Lemmas 6.13 and 6.14, I, (WKLg)®* A (WKLg)*
(Definition 6.4.1).

We first show that Ik, “end extension” (Definition 6.4.3). We only need to show
that (9 Ik, b* <* a®) — (1 Ik, J2° 25 =* b*) for any a® € Ms, b* € M* and for any
n € P such that a® € dom(n). Let a® € M3, b* € M*, n € P such that a® € dom(n)
and 7 Ik, b* <* a®. Then, b* < n(a®). Thus, by Lemma 6.11.2, for any 1 € P such
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that ' < n, there exist « <; 1’ and ¢® € M*® such that ¢ € dom(:) and ¢(¢®) = b*.
Hence, n Ik, 325 15 =* b*.

Next, we show I, “standard part” (Definition 6.4.4). We only need to show
that 3 < n 3IB* € dom(s) ¢ Ik, Vas(a® €% B® « 25 €* A*) for any A* € S* and for
any 7 € P. Let A* € S* and nn € P. Then, by Lemma 6.11.4, there exist ¢ <; 1 and
B* € S5 such that B € dom(:) and Vi/ < ¢ Va* € dom() (a° € B® + /(a®) € A*).
Thus, ¢ Ik, Vz5(2® €% B® «— a5 €* A*). Hence, 0 |-, VX*3Y3Vas (25 €8 Y® « 25 €*
X™).

Finally, we show I, “X{ overspill” (Definition 6.4.6). Let ¢ be %9 formula
and a* € M*, A* € S*. Let 0 I, Vy*3z5(2% > y° A (25, a*, A*)*). Then, there
exist g € P and a® € 1y such that 7' Ik, @(a®, a*, A*)*. Thus, by Lemma 6.14,
Jz < p p(z,a*, A*). Define b* € M* as b* = max{z < p | p(x,a*, A*)} by XY
induction. We show that there is no ¢ € P such that +(b°) = b* for some b° € dom(¢).
Assume there exist « € P and ¢® € M* such that ¢® € dom(:) and «(c®) = b*. Since
Ly Vys325(2% > 18 Ap(25, a*, A*)*), there exist 7 € P and d® € M such that d® > ¢*,
& € dom(7) and 7 Ik, o(d®,a*, A*)*. Then, p > i(d®) > b* and @(7(d®), a*, A*), but
it contradicts the definition of b*. Thus, 0 I, V25(b* > ) and 0 I, @(b*, a*, A*)*.
Hence, () I, Jy* (V2 (y* > 25) A o(y*, a*, A*)*). O

Theorem 6.16.
ns-WKLy F ¢ = WKLy" FHli-, v

for any L5 sentence 1. Moreover, we can transform a proof of ns-WKLg = 1 into a

proof of WKLy i, 1.

Proof. We can easily check that I, is closed under inference rules. Thus, by Lemma
6.15, we can transform a proof of ns-WKLy F 1 into a proof of WKLy" i,
effectively. O]

Corollary 6.17.
ns-WKLg F ¢* = WKLy - ¢
for any Ly sentence . Moreover, we can transform a proof of ns-WKLg = ¢° into a

proof of WKLy = ¢.

Proof. By Theorem 6.16, we can transform a proof of ns-WKLy F ¢® into a proof
of WKLy" -, . Thus, as in the proof of Lemma 6.13, we can get a proof of
WKLy" I ¢. Therefore, we can get a proof of WKLy - ¢ easily.

O
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7 Appendices

We outline some ongoing studies and we present some open questions.

7.1 Some more studies on Reverse Mathematics for complex
analysis
We summarize some more results on Reverse Mathematics for complex analysis

without proofs'®. This is a joint work with Yoshihiro Horihata.

We first study Laurent expansions.

Theorem 7.1 (Laurent expansion). The following is provable in RCAq. Let f be
an effectively integrable holomorphic function on D ={z |0 < Ry < |z — a|] < Ry}.
Then, for all z € D,

Z G—ar —l—Zanz—a

n=1
where Ry < r < Ry and
1 n—1
0=y [ FOC 0
L1 (N

2mi |(—al=r (C - a)n+1

Theorem 7.2. The following assertions are pairwise equivalent over RCAq.
1. WKLg.

2. If f is a holomorphic function on D = {2z | 0 < Ry < |z —a| < Ry}, then,
there exists {ay nez such that f(z) =3, ., an(z —a)" for all z € D.

Definition 7.1 (isolated essential singularity). The following definition is made in
RCA,. Let f be a holomorphic function on D = {z | 0 < |z —a| < R}. Then,
a is said to be an isolated essential singularity if there exists {a,}nez such that
f(z) =2 ez an(z —a)" for all z € D and Vm € N 3k > m a_j, # 0.

By Theorem 3.25, we can integrate bounded continuous functions within WWKL,.

Thus, many theorems are provable in WWKL,.

0Proofs will appear in Horihata’s Master’s thesis[17].
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Theorem 7.3 (Liouville’s theorem). The following is provable in WWKLg. Let f be

a holomorphic function from C to C. If f is bounded, then f is a constant function.

Theorem 7.4 (Riemann’s theorem on removable singularities). The following is
provable in WWKLg. Let f be a holomorphic function on D = {z]0 < |z —al| < r}.
If there exists ' > 0 such that v’ < r and f is bounded on {z | 0 < |z —a| < '},
then, there ezists a holomorphic function f on D U {a} such that f(z) = f(z) for
all z € D.

Theorem 7.5 (Casorati/Weierstra$l theorem). The following is provable in WWKLy.
Let f be a holomorphic function on D = {z | 0 < |z —a| < r} and a is an isolated
essential singularity. Then, f(D) is dense in C.

Theorem 7.6 (Schwarz’s reflection principle). The following is provable in WWKLy.
Let D C CH{z+iy |y > 0 be an open set and let L = (a,b) C R be an open interval
such that Lla,b] = 0D NR. Let f be a continuous function on D U L such that f
is holomorphic on D and f(z) € R for all z € L. Then, there exists a holomorphic
function f on D = DU{z e C|ze DUL} such that f(z) = f(z) for all z € DUL.

To study singularities, we need covering spaces.

Definition 7.2 (covering space). Let X, D C C be open sets, and let 7 be a con-
tinuous surjective function from X to D. Let {U;;}ierjes and {Vi}ier be sequences
of open sets, and let 7;; be homeomorphic functions from U;; to V;. Then, 7 is said
to be a covering map and a sextuple (X, D, w,U,;;,V;, m;;) is said to be a covering

space of D if they satisfy the following:

each of U;; and V; is simply connected;

D=JVs

el
Vie I '(Vi)=|]JUy,
jeJ

Lemma 7.7 (lifting). The following assertions are pairwise equivalent over RCAy.

1. WKLy.

2. Let Dy, D C C be open sets, and let (X, D, m, Uy, Vi, m;) be a covering space
of D. If Dy is simply connected and f is a continuous function from Dy to D,

then, there exists a continuous function f from Dqy to X such that mo f = f.
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By Riemann mapping theorem and Schwarz reflection principle, we can construct
a holomorphic covering map from B(0;1) to C\ {0,1}. Then, by Lemma 7.7, we

can show the following Picard’s theorem.

Theorem 7.8 (Picard’s theorem). The following is provable in ACAqg. Let f be a
holomorphic function from C to C. If the range of f omits two points, then, f is a

constant function.

7.2 Reverse Mathematics for groups and rings

We summarize some results on Reverse Mathematics for groups and rings without
proofs!!. This is a joint work with Takashi Sato and Takeshi Yamazaki. Each of
the following theorems is a generalization or a refinement of a known result which

appeared, e.g., in [31].
Theorem 7.9. The following assertions are pairwise equivalent over RCAq.

1. ACA,.

2. For any group G and a subset S C G, there exists a subgroup generated by S.
3. For any group G and a € G, there exists a subgroup generated by a.

4. For any group G, the center of G exists.

5. For any group G and a subgroup H, the normalizer of H exists.

6. For any group G, the commutator subgroup of G exists.

7. If a group G acts on a set X, then the orbit of each point x € X exists.

8. If S is an integral domain and R is a subring of S, then there exists the integral

closure of R in S.

Theorem 7.10. The following assertions are pairwise equivalent over RCAq.

1. WKLy.

2. For any group G and g, h € G such that¥n € N h # g™, there exists a subgroup
H such that g€ HN\Nh ¢ H.

3. Let I be an ideal of a ring R. Then, there is no ideal J such that J D I and
J # I if and only if I is mazximal, i.e., R/I is a field.

UProofs are in Sato’s Master’s thesis[26].
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7.3 Ili-conservativity and IIi-theories

In this section, we study II}-conservativity for ITi-theories. This study is inspired

by the following questions.
Question 7.3 (Cholak, Jockusch, Slaman(8]). Let Ty, Ty, Ts be IIi-theories.

1. [8, Question 13.3] Let T} be a IT}-conservative extension of Ty. Then, is every

countable model of T an w-submodel of some model of 777

2. [8, Question 13.4] Let T, T» be II}-conservative extensions of Ty. Then, is

Ty + T, T}-conservative over Ty?

We first answer these questions. We can easily show that a positive answer to
1 implies a positive answer to 2. However, the answer to 1 is no. In [3], Avigad
constructed a counter example for 1. Here, we show another counter example. We
construct true ITi-theories which denies 1.

Let Ty = I}(ACAeT) + ACAy and let Ty = ACAy" where TI} (ACA,T) = {¢p |
¢ is a II} sentence and ACAy" - ©}. Then, T} is a IIj-conservative extension of Tp.
Since T} F 3X ‘X is a full satisfaction class for N (as an Lpa-structure)’, the first
order part of a countable model of T} must be recursively saturated (as an Lpa-
structure). Note that a recursively saturated model is not a short model. On the
other hand, we can construct a countable model of T; whose first order part is a
short model (as an Lpa-structure). To show this, let 7" be the first order part of Tp,
i.e., T'" be the set of all Lpa sentences which are proved in Tj. Then, there exists
a countable model M of T" which is short. Thus (M, ARITH(M)) is the required
countable model of Tj.

Now, we give a positive answer to Question 7.3.2.
Lemma 7.11. Let Ty and T, be 11}-theories. Then, the following are equivalent.
1. Ty s a H%—consematz’ve extension of Ty.

2. If (M,S) is a countable model of Ty, then there exist M' O M and S" O S
such that (M',S") = Ty and (M,S) < (M',S") with respect to arithmetical

formulas.

Proof. To show 2 — 1, assume Tj I/ VX p(X) where ¢ is arithmetical. Then, there
exists a countable model (M, S) = Ty+3X —¢(X). Then, there exists (M', S") = T}
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such that (M, S) < (M’',S") with respect to arithmetical formulas. Since (M, S) =
AX—p(X), (M',S") = 3X—-¢(X). Hence, T} VX p(X).

For the converse, let (M, .S) be a countable model of T. Let © be all arithmetical
L£?U M U S sentences which are true in (M, S). We show that © + T} is consistent.
Presume O + T} is inconsistent, there exist an £2U M formula w()? ) and Z € S such
that (M, S) = ¢(Z) and Ty F —=¢(Z). Then, T; F VX = (X). By [I'-conservativity,
Ty + VX —p(X), but it contradicts (M, S) = Ty + 1(Z). O

Theorem 7.12. Let Ty, Ty, Ty be 11}-theories and let Ty and Ty be 11i-conservative

extensions of Ty. Then, Ty + Ty is a I1}-conservative extension of Tp.

Proof. By the previous lemma, we can construct an arithmetical elementary chain
{(Ml, Si)}iew such that (Mgl', SQZ) |: T1 and (Mglqu, S2i+1) ): TQ. Let M := UiEw Mz
and let S :=J,. S;. Then, (M, S) = T1+T5. Thus, by the previous lemma, 71 + 75

is a IIj-conservative extension of Tj. [l

1Ew

Professor Tsuboi and Dr. Ikeda pointed out that the previous lemma and theorem
can be generalized to a similar theorem for general first order theories. We give
another generalization. Let Iy be the set of all sentences of the form VX3!Y p(X,Y)
where ¢ is arithmetical. In [36], Yamazaki showed that RCA{ is a ['g-conservative
extension of RCAq. In [30], Simpson, Tanaka and Yamazaki showed that WKLy is a
I'p-conservative extension of RCAg, and then, they showed that WKL = WKLy +
RCASr is also a I'g-conservative extension of RCAg. Then, is 77 + 715 a I'g-conservative
extension of Ty if T} and T, are I'g-conservative extensions of Ty? The answer is yes.

We can generalize Theorem 7.12 as follows.
Theorem 7.13. Let ' be a class of 11} sentences which satisfies the following:

(%) for all ¥ formula ¥(X) and for all 3 formula 0(X), if VX (X) € T, then,
there exists ¢ € I' such that

To FVX(O(X) — (X)) < ¢.
If Ty, Ty and Ty are H%—theom’es and both T7 and T5 are I'-conservative extensions
of Ty, then, Ty + Ts is a I'-conservative extension of Tj.
Proof. Easy modification of the proof of Theorem 7.12. m

Corollary 7.14. Let Ty, Ty and Ty be H;—theam'es such that 11 and Ty are T'g-

conservative extensions of Ty. Then, Ty + Ty is a I'g-conservative extension of Ty
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We can easily generalize this theorem for IT!-theories.
Theorem 7.15. Let I be a class of 11}, 5 sentences which satisfies the following:

(%) for all ¥}, formula ¢(X) and for all 11} UY,, formula 0(X), if VX9 (X) € T,
then, there exists p € I' such that

To FVX(0(X) = ¢¥(X)) < .

If Ty, Ty and Ty are H}L+2—theories and both Ty and Ty are I'-conservative extensions

of Ty, then, Th + T is a I'-conservative extension of Ty.

Remark 7.16. Avigad showed that there exist II3-theories Ty, T and T, which
satisfy the assumption of Theorem 7.12 but T} + T + I1{-AC is inconsistent. This
shows that we cannot weaken the assumption of Theorem 7.12. Similarly, there
exist II; , ,-theories Ty, T7 and Ty which satisfy the assumption of Theorem 7.15 but
T\ + T» + 11}, . ,-AC is inconsistent.

7.4 Open questions

We finally present some open questions.

We first consider complex analysis. Theorem 4.20 shows that we can construct
the derivative of a complex differentiable function within WWKLy. As we stated in
Section 7.1, we can prove many theorems within WWKLy because integrability for
bounded functions plays a key role in complex analysis. However, we do not know
whether WWKL is exactly needed. For example,

Open question 1. can we prove that a complex differentiable function is a holo-

morphic function in RCAq?

When we study complex analysis, an entire function is a important and basic
object. We aim to deal with entire functions within RCAg. An entire function must
be a power series, but is this provable in RCAy? To prove this, we need Cauchy’s

integral theorem for entire functions.

Open question 2. Can we prove Cauchy’s integral theorem for entire functions in

RCAy?

We aim to sharpen the result on Reverse Mathematics for the Riemann mapping
theorem (Theorem 5.17).
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Open question 3. Is the Riemann mapping theorem equivalent to ACAg over RCAq?

By Theorems 5.26 and 5.25, the interior of a Jordan curve exists and is homeo-
morphic to the open unit disk in WKLy. Then, we consider another version of the

Riemann mapping theorem:

(JRMT) if D C C is the interior of a Jordan curve, then there exists a conformal
map f: D — B(0;1).

Open question 4. Is JRMT provable in WKLy?

Note that Picard’s theorem is provable in WKLy + JRMT.
Next, we consider arguments of non-standard analysis in second order arithmetic.

We developed non-standard analysis only in WKLy and ACAg. Then,
Open question 5. develop suitable parts of non-standard analysis in RCA,.

We aim to find some more good axioms of non-standard second order arithmetic.

Define two new axioms as:

(EEQ) ¢® <> ¢* where ¢ is an Lo-sentence;
(SB)  Vz*dy*y(2®,y*) — 2"Vt Iy* < 2"p(2°, y*) where 9 is an L3-formula.

Open question 6. Is ns-ACAg + EEQ is a conservative extension of ACAy? More
precisely, does ACAq prove IF ns-ACAqy + EEQ?

We can show that ns-ACAq + SB is a conservative extension of ACAq by w; iterations
of Theorem 5.2. Then,

Open question 7. does ACAq prove |- ns-ACAq + SB? Otherwise, is there a good
interpretation of ns-ACAy + SB in ACAy?

We seek some more axioms to develop non-standard analysis richly in second

order arithmetic.

Open question 8. Find some more good axioms of non-standard second order

arithmetic.
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