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Preface

COOPERATION AGREEMENT BETWEEN
MATHEMATICAL INSTITUTE, GRADUATE SCHOOL OF SCIENCE,
TOHOKU UNIVERSITY, JAPAN
AND
SCHOOL OF MATHEMATICAL SCIENCES,

FUDAN UNIVERSITY, CHINA

was signed by Professor Akihiko Yukie, Chair of Mathematical Institute of Tohoku Uni-
versity, and Professor Quanshui Wu, Dean of School of Mathematics of Fudan University,
in November 2009. The background and details of activities are given in the articles by
Professor Motoko Kotani and Professor Emeritus Katsuei Kenmotsu, and in the record
of the activities in this volume, which features lectures held during 2008-2010 under this
agreement.

We are grateful to all the lecturers for their splendid lectures and their contributions
to this issue. We also thank all those, especially doctoral students, who took the notes,
or did proof-reading. We sincerely thank Ms. Junko Bannai for her effective work in the
preparation of the manuscript.

The Faculty of Science of Tohoku University celebrates its centennial in September
2011. On this occasion, the publication of these lecture notes in memory of Professor
Su Buqing (#% #*75), a great mathematician and a leader of modern China, Doctor of
Science, Tohoku Imperial University in 1931, is one of the most suitable and honorable
events.

We intend to continue our activities for the development of mathematics on both sides
through this exchange program.

September 2011

Reiko Miyaoka






Foreword

Tohoku University has been proud of maintaining “Research First” and “Open Door Pol-
icy” as the school principles since its foundation as the third imperial university following
University Tokyo and Kyoto University. It has been known as the first university of Japan
which admitted female students against the government in 1913. From its early stage,
Tohoku University also opened its doors to international students, with two graduating
in 1911. The great author Lu Xun (£, a father of modern Chinese philosophy, studied
at Tohoku University.

Department of Mathematics contributed to the history. The mathematician Chen Jian-
gong (B AtL)) enrolled in Tohoku University in 1920, and in 1929 became the first
international student to obtain a doctorate in Japan. Su Buqing (#f %), who entered
Department of Mathematics in 1924, not only continued to the graduate school upon
graduation, but also began teaching as a lecturer at Tohoku University. He obtained
a doctorate in sciences in 1931. Both contributed to establish modern mathematics in
China. As of May 2010, there are around 1,500 international students enrolled at Tohoku
University from 80 countries with 744 from China.

In 2007, on behalf of Graduate School of Science, Professor Reiko Miyaoka and I paid a
visit to Fudan University together with Vice President Osamu Hashimoto of international
relationship. It was to reconfirm our long history of friendship and discuss about a possible
action to extend our research exchange and collaboration into a more intense and clear
form. On that occasion, we visited the School of Mathematical Science to discuss about
our academic programs and agreed to enter a new stage of relationship for the benefit
not only to professors but to our students and made a contract. It says that we shall in
turn invite professors of one of the two institutes to stay at the other’s to give a series
of lectures for the graduate students every year and publish the Su Buqing Lecture Note
based on the lectures.

Since then, Professor Jiaxing Hong, Professor Quanshui Wu, Professor Yuaolong Xin
and Professor Reiko Miyaoka have put their valuable effort to establish the new flow of
exchange and accomplished the agreement.

The present lecture note is an outcome of our five years activities. We hope it will
contribute to promote our collaboration on both research and education.

June 13, 2011

Motoko Kotani

Former Chair
Mathematical Institute
Graduate School of Science
Tohoku University

il






A BRIEF HISTORY OF
THE MATHEMATICS EXCHANGES BETWEEN
TOHOKU AND FUDAN UNIVERSITIES

Katrsuet KENMOTSU

The exchange of mathematicians between Tohoku and Fudan Universities began when
Prof. Su Buqing came to Sendai on December 6, 1955, to present a talk at the colloquium
of the Mathematical Institute at Tohoku University. On the occasion of the visit, he wrote

the following poem:

SRR B
SRR R,
ISR RN
s Lk H AL

1955 = 12 A 6 H K3
R B AR E I O

o AE

Coming here again over twenty years as in my dream.
Feeling autumn chilly as less and less my hair.
A few old friends in Sendai are still alive ?

Sitting alone and facing mountains to see red sunset.

Visiting Alma Mater, so many reflections and thoughts come out and write down to

commemorate.

Su Buqing, December 6, 1955 (translated by Yuan-long Xin)

In fact, Prof. Su graduated from Tohoku Imperial University, which is now called
Tohoku Universty, in 1927; he received the degree of Doctor of Science at the same
University in March, 1931. One month later, he returned to China with a wife, Yoneko
Matsumoto, and took a position at Zhejiang University. After that, he worked in China
and became an outstanding leader within the mathematics community.



In August of 1981, when the International Symposium of Differential Geometry and
Differential Equations was held at Fudan University in honor of Prof. Su’s 80th birthday,
six Japanese mathematicians were invited to give talks. Among them, the youngest was
Seiki Nishikawa, who is now a leading figure at the Mathematical Institute of Tohoku
University.

In April of 1983, Prof. Su, who was then the Honorable president of Fudan University,
visited Japan again with Professors H. Hu and Y. Wang. He gave an invited talk at
the annual meeting of the Mathematical Society of Japan held in Hiroshima, and he also
delivered an address at the reception in honor of Prof. Su held at Sendai city hall.

In September of 1991, there was an international symposium on differential geometry
in honor of Prof. Su’s 90th birthday, at which seven Japanese mathematicians, including
myself, were invited. At the reception of the symposium, it was an honor for me to give
an address as the representative of the foreign participants. At that time, I met many
young Chinese graduate students. Later, some of them came to Tohoku University as
post doctoral fellows, invited by Japanese foundations.

As the scientific exchanges between Tohoku and Fudan Universities were extended
to other faculties and increased in activity since 1992, both universities agreed to sign a
treaty for cultural exchange. On April, 2001, the president of Tohoku University, Prof.
Abe, and I visited Fudan University to sign this document.

In the field of mathematics, to promote increased, systematic exchange, both depart-
ments of mathematics participated in the exchange program in 2008; it now works very

well.

I would like to thank my younger friends Yuan-long Xin of Fudan University and Seiki
Nishikawa of Tohoku University for their help in preparing these notes.

May 12, 2011

Sendai, Japan

vi



Record of the activities 2007—-2011

1. Courtesy visit to the President of Fudan University, Wang Shenghong -t 168 H.
KL (6 Dec. 2007)

Visitors: Osamu Hahimoto (Dean of the faculty of Science of Tohoku University)
Motoko Kotani, Reiko Miyaoka: Professors (Mathematics)
Masahiro Yamaguchi: Professor (Physics)

2. Meeting: Professor Jiaxing Hong, Dean of School of Mathematical Sciences, Profes-
sors Yuanlong Xin, M. Kotani and R. Miyaoka (7 Dec. 2007)

3. A visit to Fudan University (9-12 Sept. 2010) by R. Miyaoka (meeting with Pro-
fessor Jiaxing Hong, and Professor Quanshui Wu, Dean of School of Mathematical
Sciences.)

Exchange intensive lectures:

‘ Lecturer ‘ Title Dates and Place
Jixiang Fu Balanced Metric 23-25 Jul. 2008
(Diff. Geom.) Tohoku
Takashi Shioya Geometric Analysis 3,5 Dec. 2008
(Diff. Geom.) on Alexandrov spaces Fudan
Yuanlong Xin Topics in 7-9 Oct. 2009
(Diff. Geom.) Minimal Submanifolds Tohoku
Masayoshi Takeda | Some formulae on additive functionals | 2-3 Nov. 2009
(Probability) of symmetric Markov Processes Fudan
Jiangang Ying Introduction to Markov Processes 24-25 Nov. 2010
(Probability) Tohoku
Masanori Ishida On the construction of 23,25 Nov. 2010

(Alg. Geom.) toric varieties Fudan

vii



Events held in Tohoku University

Colloquium:

1. J. Fu, Balanced metrics, (22 July 2008)
2. Y.L. Xin, Minimal subanifolds of high codimension, (5 Oct. 2009)

3. J.G. Ying, From Douglas integral to Feller measure, (22 Nov. 2009)

Geometry seminar:

Y.L. Xin, Curvature estimates for submanifolds with prescribed Gauss image and mean
curvatrure, (6 Oct. 2009)

Probability seminar:
Y. Yijun, Complex Structure on Noncommutative 2-Tori, (22 Nov. 2010)
Mini-workshop:

1. (with Prof. Fu), Speakers: A. Takatsu (DC), K. Funano (DC), Q.M. Cheng (Pro-
fessor at Saga University), (25 July 2008)

2. (with Prof. Xin), Speakers (all DC): S. Kikuta, T. Omori, M. Tanaka, A. Takatsu,
M. Watanabe, (7 Oct. 2009)

Events held in Fudan University

Colloquium:

1. M. Kotani, A mathematical challenge to a new phase of materials science, (6 Dec.
2007)

2. R. Miyaoka, Hypersurface geometry and its applications, (6 Dec. 2007)

3. T. Shioya, Collapsing three-manifolds with a lower curvature bound, (2 Dec. 2008)
4. H. Chihara, Geometric analysis of Schroedinger maps, (2 Dec.2008)

5. M. Takeda, Dirichlet forms L* theory in symmetric Markov processes, (1 Dec. 2009)

6. T. Yamazaki, Higher dimensional class field theory of a product of curves, (1 Dec.
2009)

7. M. Ishida, Counting lattice points by the Riemann-Roch theorem, (24 Nov. 2010)

8. M. Ishikawa, Milnor fibrations and contact structures in low-dimensional topology,
(24 Nov. 2010)

9. R. Miyaoka, Recent Development of hypersurface geometry, (10 Sept. 2010)

viil
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BALANCED METRICS

Jixiang FU

0 Introduction

A smooth Calabi-Yau threefold is a complex three dimensional manifold with finite fun-
damental group and trivial canonical bundle. If a Calabi-Yau threefold is Kéhler, then
according to Yau’s celebrated solution [34] to the Calabi conjecture, there exists a unique
Ricci-flat Kahler metric in each Kéhler class of the threefold. Such metrics, known as
Calabi-Yau metrics, are the bedrocks of geometric studies of Calabi-Yau threefolds and
the superstring theory.

On the other hand, by the Clemens-Friedman construction, a large class of non-Kahler
Calabi-Yau threefolds is obtained from Kahler Calabi-Yaus by blowing down rational
curves and then smoothing the singularities. For example, the connected sum #;(S® x S%)
of k copies of S3 x 83 for any k > 2 can be given a complex structure in this way. Based on
this construction, Reid speculated that any two projective Calabi-Yau threefolds can be
connected by a sequence of deformations, contractions and smoothing through non-Kahler
Calabi-Yau threefolds. This speculation demonstrates the potential role of non-Kahler
complex manifolds.

Therefore, it is important to construct canonical metrics on such non-Kéahler complex
manifolds. First, one should choose in general a good hermitian metric which is weaker
than Kahler. One proposal is the balanced metric, which is a hermitian metric with the
property that the (n — 1) power of its hermitian form is d-closed, where n is the complex
dimension of the manifold. (Such a metric is also called a semi-Kéhler metric in older
references.)

In 2008, J. Li, S.-T. Yau and Fu [14] constructed balanced metrics on above mentioned
non-Kihler Calabi-Yau threefolds, so especially on #;>5(5% x S$?). Combining this result
with some discussions in [7], they also proved that there exists no hermitian metric on
#1>2(S% x S%) such that its hermitian form is 90-closed.

On the other hand, such results are also needful in superstring theory. A candidate
internal space in heterotic string is a compact three-dimensional hermitian manifold with

trivial canonical bundle. The N = 1 supersymmetry requires that the given hermitian



metric is a conformal balanced metric. More precisely, the holonomy of the hermitian
metric with respect to the spin connection is SU(3). So the concept of balanced metric

plays an important role in superstring theory.

In these lectures, we focus on balanced metrics. In first two sections, we give the
definition of a balanced metric and its basic properties. We prove that the existence
of balanced metrics is preserved under a proper holomorphic submersion. We also give
some examples of hermitian manifolds which admit no balanced metrics. In sections 3
and 4, we describe two classes of balanced manifolds: one is constructed by Calabi, and
the other is observed by Goldstein and Prokushkin. From section 5 to 7, we discuss
small deformations of a balanced manifold. In section 5, we give an example which shows
that the existence of balanced metrics is not preserved under small deformations. In
section 6, we give a sufficient condition, i.e., the d0-lemma condition, under which small
deformations of a balanced manifold are also balanced. Then, in section 7, we weaken
the d0-lemma. condition. We especially obtain the result that any small deformation of
the twistor space over a compact self-dual four manifold admits a balanced metric. This
section is recently added. In section 8, some existence theorems on balanced metrics
are presented. In last two sections, we describe the results of Fu-Li-Yau’s paper on the
existence of balanced metrics on non-Kahler Calabi-Yau threefolds and of Fu-Yau’s paper

on solutions to the Strominger system on a class of non-Kahler threefolds.

Acknowledgment. These lectures were given when the author was visiting Department
of Mathematics, Tohoku University in July, 2008. The author would like to thank their
warm hospitality. These lectures were revised by Shin Kikuta whom the author would
also like to thank.

The author would like to thank Professor J. Li and S.-T. Yau for useful discussions on
complex geometry and geometric analysis. He would also like to thank Professor C.-H.
Gu, H.-S. Hu, Y.-L. Xin and J.-X. Hong for their encouragement and support.

This work is partially supported by NSFC 10771037, 10831008 and 11025103.

1 The definition

Let (X, J) be a complex n-dimensional manifold. Let g be a hermitian metric on X, i.e.,

a riemannian metric with the property that at each point z € X

g(V,W) = g(JV,JW) for all V,W € T, X.



Associated with it is the hermitian form
w(V,W) =g(JV,W).

Note that in literature, w is called the Kahler form of g. Then the standard complex
hermitian metric is

h=g—iw.

Definition 1. A hermitian metric g on a complex n-dimensional manifold is said to be

balanced if its hermitian form w satisfies
(1.1) d(w" ) =0.

A complex manifold is called a balanced manifold if it admits a balanced metric. Other-

wise, it is called a non-balanced manifold.

Remark 2. (1) A hermitian metric g is called Kahler if its hermitian form w satisfies
dw = 0. Hence a Kdahler metric is automatically balanced.

(2) When n = 2, the conditions of being balanced and Kdhler are equivalent.

In this section, we will use local coordinates to understand the balanced condition
(1.1). Let (z1,...,2,) be alocal complex coordinate system on X. Suppose the complex

hermitian metric is given in this coordinate by

o 0

h=> hgdz @dz, hyj= h(8_z,~’ 8—%).

Then the hermitian form w can be written as
w=1Y hgdz Adz.
Let (h*),y, be the inverse of the matrix (hy)nxn. Direct calculations show
Wt =" (n — 1) det(h;;)
S ThRde Nz A Nz AdE A Adz AdE A N dzg A dz,

and

Ow™ ™t =" (n — 1)l det(hy;)

Ohyj Ol o =
D (G W A Az A Az A dE N Nz A d
k i

Since w is real, dw" ! = 0 if and only if dw™ ' = 0. So the balanced condition (1.1) is

equivalent to

' — YR = <k<n.
(1.2) E (f)zk 72, )h 0 forany 1<k<n

i7j



On the other hand, the hermitian connection vy of the complex hermitian metric h
can be defined by

Vo

62’ Zejk@@ ,ejk=Zahﬂ.hzk.
l

Hence, the torsion TV € T'(A*T*X @ TX) of the connection 57 has no (1,1)-component
and its (2,0) and (0, 2)-components are the complex conjugates of one another. Therefore,
we only need to consider its (2, 0)-component:

0 g 0
v =
Te 2=V BZk &zj [823 8zk

dz; 0z, aZk
=20l 57) 8—21 =20l ol

0z;
Z(%}Z’ B 0z, )hilf)izl'

7

If we denote

Ohy  Ohg
(1.3) Tl = Z( 821; _ 821 )hu

then the (2,0)-component of the torsion TV is

0
T:ZT;kdz]/\dzk®a—Zl

A contraction of T gives a (1, 0)-form
T = erdzj, T = ZTJkk
k

In [27], 7 is called the torsion (1,0)-form of the complex hermitian metric h. Combining
(1.2) with (1.3) gives

Proposition 3. A hermitian metric on a complex n-dimensional manifold is balanced if
and only if = 0.

2 Basic properties and examples of non-balanced com

plex manifolds

Proposition 4. [27] Suppose X is a compact complex n-dimensional manifold with a bal-
anced metric. Then, every compact complex subvariety of dimension n—1 in X represents
a non-zero class in Hoy o(X,R).



Proof. Let w be the hermitian form of a balanced metric on X. Let S be such a subvariety.
Then

[5 WL = (n— 1)lvol(S) # 0.

On the other hand, if [S] = 0 € Hs, (X, R), then the Poincaré duality implies that there

exists an exact 2-form ng = d(g such that

/Swn_l = /Xwn_l NdCs = /X dw"t A () — /X dw" ' A (s = 0.

It’s a contradiction. O

Example 5. Calabi and Eckmann [9] constructed a complex structure on S?PT1 x S2at!
such that
7 S §2tt 5 CPP x CP?

is holomorphic. Here S***1 — CP? and S**' — CPY are the hopf fibrations. Hence,
if we take the compact complex hypersurface S = CPP~! x CP? in CP? x CP9, then
7 1(S) is a compact complex hypersurface in the complex manifold ST x S2at1. As

Hopiq) (ST x S2HER) = 0, we see that the manifold possesses no balanced metrics.

Proposition 6. [27] Let X and Y be complex manifolds.
(1) If X and Y are balanced, then the product X XY is also balanced.
(2) If X is balanced and if m : X — Y is a proper holomorphic submersion, then'Y is also

balanced.

Proof. Let dim¢ X = n and dim¢ Y = m.
(1) Let wx and wy be, respective, hermitian forms of balanced metrics on X and Y.
Then

W= wx + wy
is a hermitian form of the product metric on X x Y and

n—1 m—1
wn—l—m—l — ( )wn—l /\wm+ ( )wn /\wm—l‘
n+m-—1 X Y n+m-—1 X v

Obviously, we have d(w™*™ 1) = 0 and so the product metric is a balanced metric on
X xY.
(2) Let wy be the hermitian form of a balanced metric on X. Let Qy = w% . Since

7 is a proper holomorphic submersion,

Qy = W*QX



is an (m — 1,m — 1)-form on Y. Here 7, is the push-forward operator. In fact, for any

2-form ¢ on Y with compact support, 7*¢ is also with compact support in X. Then 7,Qx

is defined by
/W*QX/\¢:/QX/\7T*¢:/(/ QX)/\¢.
Y X Y N )

For €y, we have the following facts:
(i) dQy = 0, since dm, = m.d;
(i) Qy is a strictly positive (m — 1, m — 1)-form.
Actually, Qx = w'y ! is a strictly positive (n — 1,n — 1)-form; that is, with respect to

any C-basis 0y, - ,0, of the holomorphic cotangent space T X, we have
(2.1) Qx(z) :z’"—IZaﬂ;Hl/\O]A---/\@AéjA---AekAéAk/\..-Aen/\én,

such that (a;z)nxn is @ hermitian positive definite matrix. Now fix y € Y and fix a C-basis
01,..., 0 for T2V . At each point © € F = f~'(y), we can lift the forms 6,,...,0,,
and supply some suitable forms to obtain a basis 6;,...,60, of T:1°X. Since 7 is the

holomorphic submersion, we can do this so that
V= in_m0m+1 A H_m_|_1 VANCIERIVAY HTL VAN e_n,

when restricted to F, is any given smooth volume element. So if we write Q2x(x) for any
r € f~'(y) asin (2.1), then Qy at y can be written as

Qy(y):im—lzdj,;(y)el/\9‘1A---/\HAjAéjA---AekA@A---AOmAém,

where

)= [ | atoy

for each j,k. Note that since (a;)nxn is hermitian positive definite, (dﬂ;)me is also
hermitian positive definite. Hence, Qy is a strictly positive (m — 1,m — 1)-form on Y.

We need the following

Claim. There exists a unique strictly positive (1, 1)-form wy on Y such that wi?~' = Qy-.

Proof. We assume that wy is a strictly positive (1,1)-form on Y. Locally we write

Wy = ZZ h,ﬁ, N éj.

If Wi~ = Qy holds, then
(m — 1) det(hg;)h'* = dyy.

We can solve h,; from the above equality

(detag) ™
2.2 hk[:—_ax .
2 ((m — 1Y)



Hence we define h;; by (2.2) to get wy. Then such an wy is unique, strictly positive and

satisfies wi' ™! = Qy. O

Of course, wy determines a unique hermitian metric g on Y by the formula g(V, W) =
w(JV, W) for all vector fields V and W. Since dw}?~' = dQy = 0, g is a balanced metric
onY. O

Remark 7. (1) A good reference on positive forms is [29].

(2) From the proof of the above proposition, we know that, to find a balanced metric on
a complex n-dimensional manifold, we only need to find a d-closed and strictly positive
(n—1,n—1)-form.

Example 8. If M is a balanced manifold, then according to proposition 6, M x T? is
also a balanced manifold for all k-dimensional complex torus T?*.

On the other hand, if M is a compact non-balanced complexr manifold, for example, if
M is a compact non-Kdihler complex surface, then the complex manifold M x T?* is also

not balanced for any k > 1.

3 Examples: Calabi’s construction

Let @ & R® denote the set of Cayley numbers. We fix a basis {1, ..., I;} such that
(1) I; - I; = &;; with respect to the standard inner product on R¥;
(2) The table of the cross product I; x I is the following

I Iy —-Is -1, Is I, —-I O

Then via this basis, we have the isomorphism R” & Im(0).

Next let X® < R” be a smooth oriented hypersurface. There is a natural almost
complex structure J : T X — TX induced by the Cayley multiplication as follows. Let N
be a unit normal vector field to X. Since for any V € T, X at z € X,

N-(NxV)=0,

So in the following, a strictly positive (1, 1)-form is also called a hermitian metric.




we have N x V € T, X. Then we define J : T, X — T, X by
J(V)=NxV.
One can check that
JPV)=Nx(NxV)==(NxN)xV+(N-V)N—(N-N)V =-V.
So J is an almost complex structure on X.
Theorem 9. [8] J is integrable if and only if
B(JV,JW)=—-B(V,W)
for all pairs of tangent vectors V. and W. Here B is the second fundamental form of X.

Calabi then constructed compact complex manifolds as follows. Let C' be a com-
pact riemann surface carrying 3 holomorphic differentials ¢q, ¢o, ¢3 with the following

properties:
(1) linear independent;
(2) ¢1+ 5+ 05 =0;
(3) i1 A b1 + i A o +ich3 A G > 0.

We lift ¢y, @2, ¢35 to the universal covering ¢ — C' and denote them by the same

symbols. Moreover, we fix a point p’ € C and set
, P
.Tj(p)=R,e/ ¢j7 j:17273
pl
for any point p € C. Then, we obtain a conformal minimal immersion
Y= (2',2% 2% : C - R

This mapping is regular, since the differentials ¢; satisfy (3); furthermore, by the Weier-
strass representation, property (2) is equivalent to the statement that ¢ is minimal and
conformal; finally, it follows from property (1) that C is not mapped into a plane.

Now we consider the hypersurface of the type
(1h,id) : C x R* = R® x R* = Im(0),

where we regard R® = spang {1, I, Is} and R* = spang {4, I5, Is, I;}. Since ¥ : C — R?
is minimal, ' x R?* is a complex manifold by theorem 9. If g : C' — C denotes a



covering transformation, then ¢(gp) = ¢(p) + t, for some vector ¢, € R* because ¢;
are invariant by g. It follows that the complex structure on C' x R* is invariant by the
covering transformations of C' and so descends to C' x R*. On the other hand, for R*,
we can further divide by a lattice A of translation of R*, and thereby produce a compact
complex manifold X, = C' x T*.

Let p' € C and ¢ € RY. The unit normal vector field N to C' x R* at (p/,¢) is just

the unit normal vector field to C' at p'. Thus, we can let the unit normal vector field be

NG = Nq) =D)L Y _aj=1.

J=1

If we let
3

erlp) = Db, Y b =1

3
j=1 j=1

be a unit vector field to C' at p/, then from table (3.1), we have
ea(p') £ N(p') x e1(p) € R

We also have
es(p) - ea(p') =(N () x er(p)) - (N(0') x ex(p'))
X

=e1(p') -er(p) =
and

ex(p') - er(p') = (N(p') x ex(p)) - ex(p) = 0.

Therefore, the complex structure on X, when restricted to C' x {q} for any q € T*, is
the rotation by —90° on C' x {q}. Since 1 is conformal, this induced complex structure
on C' x {q} is the same as the given complex structure on the riemann surface. Hence,

we get the following picture:
T8 —— X A

lﬂ': hol.

C
On the other hand, by table (3.1) again,

I; x I, eRY, forall j=1,2,3; a=456,T.

Then we have N x I, € R* for all « = 4,5,6,7. So for each p € C, {p} x T* is a complex
submanifold of X,. However, the unit vector field N(p) depends on p. Therefore, we can

view X, as a family of complex tori, parameterized by the riemann surface.
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Proposition 10. [8] The complex manifolds X, are non-Kdahler.
Proposition 11. [21] The complez manifolds X, are balanced.

Proof. We use the method in [16]. We can write down the natural metric on X,. Define
a 2-form on C' x R* by
w(V,IW)=N-(V x W)

for any V, W € T,(C x R*) at any point # € C' x R*. Then, clearly we have
w(V, W) =—-w(, V),

Using the formula
N-(VxW)=(NxV)-W,

we also have

W(JV, JW) = w(V,W);
wV,JV)=(NxV)-(NxV)>0, if V#0.

Thus, w is a strictly positive (1, 1)-form on C x R*. Since w is invariant under the covering
transformations of X, it descends to X, and defines a hermitian metric on X,, which is
still denoted by w.

Next, we should check that w is a balanced metric. Let the unit normal vector field

to be
3 3
N:ZCL]'IJ', ZCL?:].,
Jj=1 Jj=1

where a;, for j = 1,2,3, are functions on C. Let (x4, 5,26, 27) be the standard local

coordinates on 7%. Note that w can be written as
w = T 'we + Yo,
where we is a Kahler metric on C' as 1) is conformal, and

©o :Clldilf4 N dflf5 + Clgdl’4 VAN dl’ﬁ — a3d1'4 VAN dl’7
—Clgdilf5 N dilfﬁ — Clgdilfg, N dilf7 + Clldl'ﬁ VAN dl’7.

A direct calculation shows
gog = 2dx4 N\ dxs A dxg A dar.
Therefore,
d(w?) = d(2m*we A o + 05) = 2% (dwe) A wo + 27 we A dpg = 0,

since we is the Kahler metric on C, and all functions a; for j = 1,2, 3 are only defined on
C. O
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Remark 12. Gray [21] used the different method to prove the above proposition. Actually

he showed ;

2w(V) = = S (75 )V, N), E).

i=0
Here d* is the coderivative on X with respect to w and {Ey, ..., Eg} is any frame field. As

the vector cross product X is parallel, d*w = 0. Then from the identities d*w = —*xd*w =

dwn—l

= 18 a balanced metric.

— %
Remark 13. As a differential manifold, X, is just the product manifold C x T*. Define
712 Xa — T? to be the natural projection. For any smooth function u on T*, we define

wy = (e % om) m'we + (e“ o) - o.

Then, w, s also a balanced metric on X,.

4 Examples: Goldstein-Prokushkin’s observation

We deal with this section as in [17].

Theorem 14. [20] Let wy and wy be two closed 2-forms on a complex m-dimensional
manifold M such that the following two conditions hold:
(1) wy + iwy has no component in A%*T*M;

w1

(2) & and §2 represent integral cohomology classes.

Then there is a complex (m + 1)-dimensional manifold X and a holomorphic fibration
7 : X — M such that all fibers are T?.

Proof. We choose a good cover U = {U,} on M, i.e., all nonempty finite intersections
Uag--ayp = Uqo N+ --NU,, are diffeomorphic to R?™. Since dw;, = 0 and U, is diffeomorphic

to R?™, by the Poincaré lemma, there exists a smoothly real 1-form &, on U, such that

W1|Ua = dflw

If Uys # 0, then
d(&1a — &18)|v.s = 0.

Also, since U,g is diffeomorphic to R*™, by the Poincaré lemma again, there exists a

smooth real function f,s on Uys such that

(610 — &18) Uy = dfap-

If Upgy # 0, then we have

d(fap + foy + Fr)Uasy = (1o = &18 + &15 — &1y + &1y — &1a) |15, = 0.
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Hence, (fas + fgy + fra)lv.s, is a real constant, which we denote by cqp,. If we use the

language of the Céch cohomology, we have
{Cagfy} € CQ(Z/{,R)
It can be easily checked that

(6C)apyn = Coyn = Cann + Capy — Capy = 0,

ie., [c] € HX(M,R).

Since 5 represents an integral class, [5-] € FIQ(M, Z), ie., cg% € Z. If we let

Gop = €128
then on U,g.,

Gopdsv9va = exP{i(fap + foy + fra)} = exp{icas, } = 1.
Hence, {gas} defines a line bundle 7y : L1 — M. A localization of L,

gOaIL1|UagUaXC

satisfies
Patpy (T, 28) = (T, gap(2) 2a)-

This localization defines local sections

Sa(x) = 90;1(377 1a>

satisfying
$6(2) = gapsa().

We define a hermitian metric A on the line bundle L; as
h(Sa, Sa) = 1.
It is well-defined since
h(sp,55) = M(gapSar Japsa) = |gasl*P(Sas sa) = 1.

The hermitian connection on L; can be defined by

Vsa = 10 @ Sq.
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This definition is reasonable, since

Vs = V(9apSa) =dgap ® Sa + Jap V Sa
=dgap @ Sa + 19asla @ Sa
=igap(E1a — 19,3090p) © Sa
=igas(§1a + dfap) @ sa
=118 @ S3.

We then compute
VQSa = V(iéla & Sa) = Z’dgloz & Sq — 5104 A éla & 8o = wi ® Sa-

Thus, the curvature of the connection is iw; and the first Chern class of L, is [£%].
Let
Sy ={v € Ly|h(v,v) = 1}.

Then, 7; : S; — M is a S'-bundle over M. The section s, defines a local coordinate z,
on its fibers; that is, points on fibers can be described by e“=s,. For any point p € Uyg,

a point on the fiber 77!(p) can be described by e™s, and €®¢s5. Then from
e sy = sy = €1 g5, = @ Has) g
we get a relation between fiber’s local coordinates z, and xz: For some k € Z,
To = 23 + fap + 2km.

Therefore,
§1a +drg = &1+ dapg + df o = 15 + dags.

This equality means that &1, +dx,, is a globally defined real 1-form on S;, which is denoted
by dx + &.

Similarly, we can use ws to construct another line bundle Ly such that its first Chern
class is [52]. A natural hermitian metric on L, also defines another circle bundle S,.
Moreover, if we write locally wsl|y, = d€., we can choose a local coordinate y, on its
fibers such that dy, + &, is a globally defined real 1-form on Sy, which is denoted by
dy + &s.

Now we define the direct sum X = §; &S, . There is a natural map = : X — M.
We need to define a complex structure on X. Let (21,...,2,) be a holomorphic local

coordinate system on M. Let

0 = (dz + &) +i(dy + &).
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If we define {7*dzy, m*dzo, ..., m*d2zp, 0} as a basis of the linear space of (1,0)-forms on
X, then it defines an almost complex structure J on X. Since d(n*dz;) = 0 for all
j=1,...,m, and df = 7*(w; + iws) has no (0, 2)-component, J is integrable. Thus X is
a complex manifold such that 7 : X — M is a holomorphic 72 bundle. O

Remark 15. (1) Calabi-Eckmann’s example in section 2 can be gotten in this way: take
M =CPP xCP1, [£]=1€ H*(CP?,Z) = Z and [£2] = 1 € H*(CP?,Z) = Z.

(2) If M = T* and wy is trivial, we can choose [$2] € H*(T*,Z) such that the manifold
X s just the Twasawa manifold.

If gy is a hermitian metric on M, then
g ="m"gn + (dz + &)* + (dy + &)?

is a hermitian metric on X. If we denote the hermitian form of the metric gy, by wyy,

then the hermitian form of the metric g is
W=7 wy +i0 A6.

Proposition 16. [20] Let (Y, wy, Vy) be a smooth Calabi-Yau 2-fold with a nonvanishing
holomorphic 2-form Vy such tat | Vy ||wy= 1. Let wi and wy be d-closed anti-self dual
real (1,1)-forms on'Y such that [$8], [%2] € H*(Y,Z). Then, there is a hermitian 3-fold
X such that m: X — Y is a holomorphic T?-fibration over Y and the following holds:

(1) X admits a nowhere vanishing holomorphic 3-form

YV =7"Vy A6.

(2) If either wy orwsy represents a non-trivial cohomological class, then X is non-Kdhler.
(3) The natural metric wy = 7wy + 0 A 0 is a balanced metric on X.
(4) Furthermore, for any smooth function v on'Y', the hermitian metric
Wy = 7 (e"wy) +i0 A O
is conformal balanced. More precisely, (wy, V) satisfies the equation

d(|[V]],wy) = 0.

Proof. Note that 6 is not a holomorphic 1-form. Actually, since df = 7*(w; + iws) is a
(1,1)-form, then

(41) 00 = 0, 59 = 7T*(UJ1 + iWQ).



15

On the other hand, since w; and w, are J-closed, according to the 0-Poincaré lemma,
there exist (1,0)-forms (; and (» on U, such that

w1|Ua = 5(1 and (.L)2|UDY = 5<2

If we define
bo = 0 — 7 (C1 + iCa),

then 06, = 0. So 6, is a holomorphic 1-form on 7 (Uy).
(1) Although @ is not a holomorphic 1-form on X, V = 7*Vy A 6 is a holomorphic

3-form on X since we can write V locally as
V=m"Vy A0 —7(C +1iC)).
(2) Goldestein and Prokushkin proved that

RYO(X) =hM0(Y)
RO (X)) =h™ (V) + 1.

Here 1 stands for the dimension of the extra subspace of Hg’l(X , C) which is spanned by
[0] since 98 = 0 by (4.1) and [f] is non-trivial by assumptions on w; and w,. So X is
non-Kéhler.

(3) We compute
dwo = idO A O — i A df = im* (w1 + iwy) A0 — i A T (wy — iwy).
Since wi and wy are anti-self-dual, w; A wy = 0 and wy A wy = 0. Therefore
d(w) = 2dwy A wp = 0.

(4) As || Vyllwy =1, ||V|lw, = 1. Then we have

VIR, _wd 1
2_62u

2
||V||wu - ||V||2 -
wo

and

Vo, wi = wi +7*((e" — Lwy).

Since u is the function on Y, we have

d(||V||wuw12L) = d(wg) + mrd(e" — 1) A ﬂ*w%/ =0.
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5 Small deformations—a counterexample

Let {Xi|t € A(e)} be a complex analytic family of compact complex manifolds. Here
A(e) = {t € C||t| < €}. We will only consider the small deformation; that is, we can
assume, if necessary, ¢ will be small enough. Kodaira and Spencer proved the following

result.
Theorem 17. [24] Any small deformation of a compact Kdhler manifold is also Kdhler.

Thus, it is reasonable to ask whether the property of being balanced is stable under
small deformations. The answer is no, as shown by Alessandrini and Bassanelli. They
observed that there exist no balanced metrics on the small deformation of the Iwasawa
manifold which was built up by Nakamura.

Let us first describe the Iwasawa manifold. Let

1 20 23
G = 01 2 |;zeCpr=cC?
0 0 1
and let
1 wy ws
r= 0 1 w |jwi€ZdV-1Z
0 0 1
We define an action of I' on G by
1 29 23 1 wy w3 1 24wy 23+ 29wy + w3
01 2z |10 1 w =10 1 21 +wp ,
0 0 1 0 0 1 0 0 1

ie.,
2 =21 +w

2 =29 + Wy
2y =23 + w122 + Ws.
We let X = G/T'. Then X is a complex manifold and is a holomorphic T?-bundle over
T*. X is called the Iwasawa manifold.
Lemma 18. The Iwasawa manifold X is a balanced manifold.
Proof. On G = C?, we define ¢ = dz1, ¢ps = dzs, and ¢3 = dz3 — 2;d2,. One can check
¢ =dz) = dz = ¢y;
¢y =dzy = dzg = ¢o;
¢y =dzb — 21dzh = d(2z3 + w120 + w3) — (21 + wi)d(22 + wo)

=dz3 — z21dzy = ¢3.
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Hence, ¢1, ¢o and ¢3 descend to forms on X, which are still denoted by ¢1, ¢2 and ¢3
respectively. Clearly {¢1, o, 3} is a basis of the space of holomorphic (1, 0)-forms on X.
Let

w=1(d1 AP+ P2 A da + 3 A P3).

Then, w is a hermitian metric on X. On the other hand, since
dps = —dz Ndzg = —d1 N ¢,
and

dw = i(dgs A ¢3 — d3 A dds) = i(—p1 A da A b3+ d3 A d1 A da),

we have
dw? = 2dw Aw = 0.

0

Now we should prove that X is not a Kéhler manifold. A compact Kéhler manifold

satisfies the following 90-lemma.

Definition 19. A complex manifold X satisfies the d0-lemma if for every differential
form a on X such that Oa = dov = 0 and such that o = dv for some differential form ~
on X, there is some differential form 3 such that o = i90).

Remark 20. There are several equivalent versions of the 00-lemma, see [10].

Lemma 21. The Iwasawa manifold does not satisfy the 90-lemma. Thus, it is non-
Kahler.

Proof. Let a = dgs. Then o = —¢ A ¢ is a (2, 0)-form and da = da = 0. Clearly o can
not be written as a = 1998 for any B. So the 90-lemma does not hold on X and X is
non-Kéhler. O

Next let us recall Nakamura’s construction. From the definition of the Iwasawa man-

ifold, we define a smooth family of diffeomorphisms ®, : C* — C3 as follows:

G =21 +1t2
(o =29 for te A(1).
<3 =23,

For any (wy,ws,ws) € I', we denote

(@01 (t), wa(t),ws(t)) = Py(wr, wa, ws),
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ie.,
01 (t) =wq + tw,

2(t)
3()
Let Ty = {(@1(t), 0a(t), 03(t))| (w1, wa, w3) € T'}. We define an action of T'y on C? as

ISR

W2

&

w3.

=C1 + @i (1)
=(o + Wo(t)
=C3 +@3(t) + (@1(t) — twn(t)) o,
and then let X; = C3/T";. We can check that

(1 =21+ t2 + wy + twy = 2] + tZ]

(y =20+ wy = 2}

(5 =23 + w120 + w3 = 25.

That is, the following diagram is commutative:

C3 Pt ; (C3
I‘—actionl ll“t—action
3 2 B,
Therefore, the diffeomorphisms ®; descend to a smooth family of diffeomorphisms ¢; :

X = X,
CB Py s (C3

wl lm
X =C3T -2 X, =C3T,

Thus, we get a complex analytic family X, such that X, is the Iwasawa manifold.

Proposition 22. [1] The above small deformation X, of the Iwasawa manifold is not
balanced when t # 0.

Proof. Since d({ = d(; and d{}, = d(s, d(; and d(, descend to two forms on X;, which are
denoted respectively by ¢, and ¢2;. Then we let

¢3 = d(s + (tCo — (1)dC.
By the definition, we have

¢y =dC; + (tC; — ¢1)dC;
=d(s + (1 — €1)dCs = ¢,
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i.e., ¢3 defines a (1,0)-form ¢z, on X;. We compute

dgss = —tpas A Gay — P14 A Doy

If there exists a balanced metric w, on X, then for t # 0,
/ d¢3,t A th =—1 ¢2,t A ég’t A th 7’5 0.
Xt Xt
On the other hand,
/ dgs s ANwi = / d(gse Awp) + | ¢3¢ Adw] =0.
Xt Xt Xt

It’s a contradiction. O

6 Small deformations—a sufficient condition

In this section, we will give a sufficient condition under which small deformations of a
balanced manifold are also balanced.

Let X; be a complex analytic family of compact complex manifolds. We denote by
AP the space of (p, q)-forms on X;. We choose a smooth family of hermitian metrics wy

on X; and consider the Kodaira-Spencer operators F; : AP? — AP? as follows:
Lemma 23. [24] The differential operators E; are self-adjoint and strongly elliptic of
order 4. A form o € AP'? satisfies the equation Eyp = 0 if and only if
Op=0p=0 and 90 ¢ = 0.
Then, we let
FPT ={p € AY¥| Evp = 0}

be the kernel of E; and let F; : AP? — FP"? be the orthogonal projection with respect to
the hermitian metric w;. Let G; be Green’s operator associated to E; so that for each
p e A

¢ = E:Grp + Frp.
Theorem 24. [32, 33] If X, satisfies the 00-lemma, then for small enough t, X, also

satisfies the 00-lemma and

hf;q — dim thpaq — h}oﬁq.

Theorem 25. [33] If X, satisfies the d0-lemma and admits a balanced metric, then X,

admits a balanced metric for small enough t.
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Proof. Let w be a balanced metric on Xy. Pick a smooth family of hermitian metrics wy
on X; so that wg = w. For example, we can pick w; as follows. Let z; : X; — Xy be a
family of diffeomorphisms smoothly depending on ¢ and z¢ = id. Then Q; = zjw{ ' is a

real (2n — 2)-form on X;. We decompose €, as
Qt o Qn,n—Q + Qn—l,n—l + Qn_Q’n
L t t -

Since p = wy ™! is strictly positive, by continuity, we see that for small ¢, Q?_l’"_l are
also strictly positive definite. Hence, there exists a unique hermitian metric w; on X; such
that wP ™t = QP "' Clearly w, depends smoothly on ¢.

By theorem 24, dim 2" = h§? is constant for small ¢. Then, according to Kodaira
and Spencer’s upper semi-continuity theorem, F; and G, are differential in ¢.

Now we let
(I)t = 8,55,55:8:Gtw?_1 + .Ft(.d;l_l,
and let

Qt == ((I)t + (i)t)

N —

Then for small ¢, (; are real (n —1,n — 1)-forms depending smoothly on ¢ and dQ, = 0.
So we only need to prove € is strictly positive. If we can prove that (g = wi™t, then Qo
is strictly positive, and by continuity again, ) is also positive for small t. Therefore, we
can find a balanced metric @w; on X; such that (ZJ?_l = Qt.

So we only need to prove Qy = wp~t. From the definition of Ey, we can write formally

-1 -1 -1
(Ug =E0G0wg + Fowg

=000005 05 Gowl ™ 4 O + Ofap + Fowd ™

for some forms ¢ and . Hence,
Do+ Opp = Wi — 0p000; 0 Gowld ™t — Fowy ™.

Since the right hand side of the above equality is dy-closed and Jy-closed,

| @i+ 850050+ By, = .

Xo

Thus, 93¢ + Jgvp = 0 and

wi ™t = 00000505 Gowy ™t + Fowy

As w1t is real, by the definition of Qq, we have Q = Wi O
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7 Small deformations of twistor spaces

This section is newly added. We will weaken the dd-lemma condition such that the

existence of balanced metrics is still preserved under small deformations. First we give

Definition 26. A compact complex n-dimensional manifold satisfies the (n — 1,n)-th
weak d0-lemma if for its any real (n — 1,n — 1)-form ¢ such that Op is a O-ezact form,

there exists an (n — 2,n — 1)-form 1 such that
(7.1) O = 0.
Then we have

Theorem 27. [18] Let X; be a complex analytic family of compact complex manifolds.
Suppose X; satisfies the (n — 1,n)-th weak d0-lemma for small t # 0. If Xy admits a

balanced metric, then X, also admits a balanced metric for small enough t.

Certainly the condition of the (n — 1,n)-th weak Jd-lemma is weaker than the 90-
lemma. According to theorem 24, if X satisfies the d0-lemma, then X, also satisfies the
d0-lemma for small t. So theorem 27 is stronger than theorem 25.

We should check that the small deformation of the Iwasawa manifold constructed
in section 5 does not satisfy the (n — 1,n)-th weak dd-lemma. Actually, if we use the

notations of section 5, we find that on X, for ¢ # 0,

(7.2) O (Dre NP1 A dsy A dsy) = 0 (dsy N dre A Pog A dsy)

can not be written as a 9,0,-exact form.

An application of theorem 27 is

Corollary 28. [18] Let X be a compact complex manifold with a balanced metric. I f
H*9(X,C) =0, then any small deformation of X admits a balanced metric.

Proof. Since the function h?4(t) = dim HP(X,, C) is upper semicontinuous in ¢, h*°(t) <
h*°(0) = 0 for small t. So H*°(X;,C) = 0, and by Serre duality, H">"(X;,C) = 0. Now
let ¢; be areal (n—1,n—1)-form on X, such that Oypy is a Op-exact form, i.e., there exists
an (n — 2,n)-form 7, such that dyp; = 9yn;. Since dym; = 0 and H"2"(X;,C) = 0, there
exists an (n — 2,n — 1)-form 1, such that n; = id;p;. Hence 0y = i9,051);. Therefore X
satisfies the (n — 1,n)-th weak d0-lemma and the corollary follows. O

We can use above corollary to twistor spaces. Given an oriented riemannian 4-manifold
M, there is associated a 6-manifold Z which is called the twistor space of M. This is an

S? bundle over M whose fiber over a point is the set of all unit anti-self-dual 2-forms.
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The twistor space Z has a canonical almost complex structure. M. F. Atiyah, N. Hitchin
and I. Singer [5] proved that the canonical almost complex structure on the twistor space
Z over M is integrable if and only if M is self-dual. Hitchin [22] then showed that the
only compact twistor spaces which are Kéhler are those associated to S* and CP?. On
the other hand, the natural metric on the twistor space over a compact self-dual four
manifold is balanced (c.f. [19]). Moreover, M. Eastwood and M. Singer [11] observed that
for any twistor space Z, H*%(Z,C) = 0. Thus, corollary 28 implies

Corollary 29. [18] Any small deformation of the twistor space over a compact self-dual

four manifold admits a balanced metric.

8 Some existence theorems

Michelsohn characterized the notion of balanced metrics in terms of positive currents;

more precisely, she proved

Theorem 30. [27] A compact complex manifold is balanced if and only if there ezists
no non-zero positive current T' of degree (1,1), such that T is the (1,1)-component of a

boundary.

Michelsohn then used this theorem to the following situation. Let f : X — C be a
holomorphic map from a compact complex manifold onto a complex curve with irreducible
fibers. f is called essential if the pull back f*we of a Kéhler matric we on C'is not a

(1,1)-boundary. Clearly f being essential is a necessary condition of X being balanced.

Theorem 31. [27] If a compact complex manifold admits an essential holomorphic map

onto a complex curve such that its smooth fibers are balanced, then X s a balanced man-
ifold.

Note that this theorem gives another proof of existence of balanced metrics on the

complex manifolds X, constructed in section 3, see [27].

The next important result on the existence of balanced metrics was given by Alessan-
drini and Bassanelli. Using theorem 30, they proved that the class of compact balanced

manifolds is invariant under modification.

Theorem 32. [2, 3] Let X and X be compact complex manifolds. Let f : X — X be a
modification. Then X is balanced if and only if X is balanced.
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A modification f : X — X is a holomorphic map such that, for a suitable analytic
subset Y in X, E 2 f~1(Y) is a hypersurface and f|g_p : X —E — X —Y is a biholomor-
phism. Thus a compact manifold of Fujiki class C is balanced since it is bimeromorphic
to a compact Kahler manifold.

Alessandrini and Bassanelli also proved

Theorem 33. [4] If X is a compact complex manifold of dimension n > 3 and is Kdhler

outside an irreducible curve, then X 1is balanced.

9 Examples: non-Kahler Calabi-Yau threefolds

Definition 34. A smooth Calabi-Yau threefold is a compact complex three dimensional

manifold with finite fundamental group and trivial canonical bundle.

Thus, a smooth Calabi-Yau threefold may be Kahler or non-Kahler. If a Calabi-Yau
threefold is Kéahler, then according to Yau’s solution to the Calabi conjecture, there exists
a unique Ricci-flat Kahler metric in each Kahler class of the threefold. Such metrics are
known as Calabi-Yau metrics.

On the other hand, a large class of non-Kahler Calabi-Yau threefolds can be obtained
by the conifold transition from Kahler Calabi-Yau threefolds. The conifold transition was
developed by Clemens and Friedman.

Let Y be a smooth Kéhler Calabi-Yau threefold that contains a collection of mutually
disjoint (—1, —1)-curves F\, ..., Ej; these are smooth, isomorphic to CP' and have normal

bundles isomorphic to

O(-1)® O(—-1) = CP*.

By contracting all E;, we obtain a singular Calabi-Yau threefold (a conifold) Xy with [
ordinary double points pi, ..., p;. Then there exists a holomorphic map ¢ : Y — X, such
that

90|Y—(u§:1Ei) (Y — (U§=1Ei) = Xo—{p1,....m}

is a biholomorphism. We have the following facts:

Theorem 35. (1) [13] There is an infinitesimal smoothing of Xo if and only if the fun-
damental classes [F;] in Ho(Y,Z) satisfy a relation

(9.1) Yini[E;] =0 such that n; # 0 for every i.

(2) [23, 31] The infinitesimal smoothing can always be realized by a real smoothing, i.e.,
Xo can be smoothed to a complex analytic family X,.
(3) [13] m1(X¢) = mi(Y) and the canonical bundle of X is also trivial.
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So under the condition (9.1), the geometric transition:
Y — Xo -—=2 Xt

can always be carried out and is called a conifold transition. Moreover, according to
definition 34, X, are also Calabi-Yau threefolds. In general, X, are non-Kahler. For
example, Friedman observed that #(S® x S3) for any k > 2 can be given a complex
structure in this way (Friedman: & > 103 and Lu-Tian [26]: 2 < k£ < 102). Since the

Hodge number h'! of these manifolds is zero, they can not be Kahler. However, we have

Theorem 36. [14] Let Y be a smooth Kdhler Calabi-Yau threefold and let Y — Xo --+ X,

be a conifold transition. Then for sufficiently smallt, X, admits a smooth balanced metric.

Corollary 37. [14] The complex structure on #(S* x S®) for any k > 2 constructed

from the conifold transition admits a balanced metric.
Combining this corollary with the discussions in [7], we also have

Corollary 38. [7, 14] There exists no 00-closed hermitian metric on the complex structure
on #,(S3 x S3) for any k > 2 constructed from the conifold transition.

The conifold transition is important in string theory. P. S. Green and T. Hiibsch proved
that the conifold transition provides a connection between all known Kahler Calabi-Yau
compactifications in string theory. This result supports the Reid conjecture that Kéhler
Calabi-Yau threefolds may have a universal moduli space even though they are of different
homotopy types. Furthermore, Hiibsch thought that threefolds #;>2(S* x S*) should be
the universal covering spaces of all Kéhler Calabi-Yau threefolds in some sense.

10 Superstring theory

In heterotic string theory, the internal space X is a compact complex three-dimensional
manifold with trivial canonical bundle, i.e., with a non-vanishing holomorphic three-form
V. It also involves a holomorphic vector bundle V' over X. Let w be a hermitian metric
on X and H a hermitian metric on V. In 1986, Strominger [30] proposed a system for
(w, H):

(|| V [l »*) = 0;

FiP=F? =0, FyAw®=0;
!/
V=100w = = (tr(Ru A Ru) = tx(Fu A Fa))

The first equation says that the metric w is a conformal balanced metric. So the

concept of balanced metric plays an important role in superstring theory. The second
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equation is the hermitian-Yang-Mills equation. The existence of its solution is, by the
Li-Yau theorem which is the non-Kéahler version of the Donaldson-Uhlenbeck-Yau theo-
rem, equivalent to that V is stable with respective to the conformal balanced metric w.
The third equation is called the anomaly equation. Following Strominger, we take the
curvature R in the third equation to be defined by the hermitian connection. Thus the
term tr(R A R) is always a (2, 2)-form.

When V' is the holomorphic tangent bundle T'X and w is Kéhler, (w, H) is a solution
to the Strominger system if and only if w = H is a Calabi-Yau metric. So this system
should be viewed as a generalization of the Calabi conjecture for the case of non-Kéahler
Calabi-Yau threefolds with balanced metrics.

The existence of smooth solutions of the Strominger system has been studied since
2004. Using the perturbation method, J. Li and S.-T. Yau [25] constructed irreducible
smooth solutions to a class of Kéhler Calabi-Yau threefolds on some U(4) and U(5)
principle bundles. Shortly after, Fu and Yau constructed solutions to this system on a
class of non-Kahler Calabi-Yau threefolds. Their solutions were orbifolded by M. Becker,
L.-S. Tseng and Yau [6] to give many more solutions. Fu, Tseng and Yau [15] also
presented explicit solutions on T-bundles over the Eguchi-Hanson space. We note further
that nilmanifold solutions with different connections have been discussed recently in [12].
Now more solutions have been obtained.

Fu and Yau constructed their solutions on a class of torus bundles X over a K3-
surface Y twisted by two d-closed anti-self-dual real (1, 1)-forms w; and ws, which have

been mentioned in section 4. On such manifolds, we have showed that the natural metric
wo = mrwy +i0 A0
is a balanced metric. There also exists a non-vanishing holomorphic three form
V=n1"Vy)N0,

where Vy is a non-vanishing holomorphic two form on the K3 surface Y.

Moreover, one can define a hermitian metric on X:
wy, = T (e"wy) +V—1 0 A.

Here w is an arbitrary function on Y. This metric need not be a balanced metric. The
key point is that for any function u, the metric w, still satisfies the first equation of the
Strominger system, see proposition 16.

Next we consider the second equation. Take a stable vector bundle E over the K3
surface with respect to the metric wy. By the Donaldson-Uhlenbeck-Yau theorem, there

exists a hermitian-Yang-Mills metric H on F, i.e. its hermitian curvature Fjy satisfies

FH/\(,UY:O.
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Thus, 7*Fg A w? is also zero. This means that 7*H is a hermitian-Yang-Mills metric on
V = n*FE — X with respect to any conformal balanced metric w,. So given a stable vector
bundle E over the K3 surface Y, the second equation for the vector bundle V' = 7*FE can
always be solved for any metric w,.

Therefore, we only need to consider the third equation. Certainly the term trFyg A Fiy
is a (2,2)-form defined on the K3 surface. For the metric w,, by explicit calculation, we
found that the terms tr(R,,, A R.,) and v/—190w, are also defined on the surface. Thus
we reduced the third equation to the following Monge-Ampere equation defined on the

K3 surface:
,det “zy
+

det g
where f and p are two functions on the K3 surface satlsfying f>0and fY pwi = 0. The

Ae" — —fe_“) + 4o/ =0,

last compatibility condition is equivalent to the condition

(10.1) &/ (24 — eo(E)) + Q(wn/27) + Q(ws/27) = 0.

Here 24 stands for the second Chern number of the K3 surface and Q(w;/27), fori = 1, 2,
denotes the intersection number of w;/2w. The above equation can be solved by the
continuity method. The estimate of the volume form is very complicated. Summarizing

the above discussion we have

Theorem 39. [17] Let Y be a K3 surface with a Calabi- Yau metric wy. Let wy and wy be
d-closed anti-self-dual real (1,1)-forms on'Y such that |wy/27], [wo/27] € H*(Y,Z). Let
X be the T?-bundle over Y twisted by w, and wy. Let E be a stable bundle over Y with
gauge group SU(r). Suppose wy, wy and co(E) satisfy the topological constraint (10.1).
Then there exist a smooth function u on'Y and a hermitian- Yang-Mills metric H on E

such that (wy, H) is a solution of the Strominger system.
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GEOMETRIC ANALYSIS
ON ALEXANDROV SPACES

TAKASHI SHIOYA

1 Introduction

An Alexandrov space is a metric space with a lower curvature bound. This is a natural
geometric object and also is important in connection with the study of the topology of
Riemannian manifolds. In fact, Alexandrov spaces have been used in G. Perelman’s proof
of the geometrization conjecture.

In this article, we explain some ideas in the study of geometric analysis on Alexandrov
spaces of curvature bounded from below. This article is written in a friendly but rough
style, so the author suggests that the reader does not try to understand every details of
proofs and, instead, just tries to grasp their ideas. We refer [S2] for the formal and more
complete article on the same subject.

The organization of this article is as follows. In §2, we review the basics for Alexandrov
spaces, which was established by Burago-Gromov-Perelman [BGP]. In §3, we prove that
the set of singular points in an Alexandrov space is of measure zero, and in §4, we see the
differentiable structure and the Riemannian metric studied by Otsu-Shioya [OS], Perelman
[P] and Kuwae-Machigashira-Shioya [KMS]. In §5, we discuss the infinitesimal Bishop-
Gromov condition, which is useful to prove a Poincaré inequality as seen in §6. We see,
in §7, that the infinitesimal Bishop-Gromov condition implies the Laplacian comparison

for the distance function, which is applied to prove a splitting theorem in §8.

2 Basics

We begin with the following theorem for a Riemannian manifold. Denote by M?(k) a

complete simply connected two-dimensional space form of constant curvature k.

Theorem 2.1 (Triangle Comparison Theorem (Alexandrov-Toponogov)). Let M be a
complete Riemannian manifold and k a real number. Then the following (1) and (2) are

equivalent to each other.



32

(1) The sectional curvature Ky of M satisfies Ky > k on M.

(2) For any minimal geodesic triangle Apqgr in M and any point s on the edge qr
there exists a triangle Apgr in M?*(k) such that d(p,q) = d(p,q), d(q,7) = d(q,T),
d(r,p) = d(7,p), and such that, if § is a point on the edge gr with d(q,s) = d(g, ),
then we have

d(p, s) > d(p, 3)

(see Figure 1).

it

: q 5

Figure 1: Triangle comparison condition
We call the condition (2) in the theorem the triangle comparison condition. For a given
triangle Apgr in M, we call Apgr in M?(k) as in (2) a comparison triangle of Apqr.

Definition 2.2. A complete metric space X is called an Alexandrov space of curvature
> k if the following (i), (ii), and (iii) are satisfied.

(i) For any two points z,y € X, there exists a length-minimizing curve v joining x
and y such that L(vy) = d(z,y), where L(7) is the length of 7. Such a -« is called a

minimal geodesic.
(ii) X satisfies the triangle comparison condition for k.
(iii) dimg X < 400, where dimy X is the Hausdorff dimension of X.

It is known that the Hausdorff dimension of an Alexandrov space coincides with its
covering dimension, which is always an integer. The dimension of an Alexandrov space
means the Hausdorff dimension. By the finiteness of the dimension, an Alexandrov space

is always a proper metric space, i.e., any bounded subset of it is relatively compact.

Examples-Propositions (cf. [BGP]).

(1) Complete Riemannian manifolds of sectional curvature > k are Alexandrov spaces

of curvature > Kk by Theorem 2.1.
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(2) The boundary of a convex body in R™ is an Alezandrov space of nonnegative curva-

ture.

(3) The quotient of an Alexzandrov space by an isometric group action is an Alexandrov

space.

(4) Let {X;} be a sequence of n-dimensional Alexandrov spaces of curvature > k. If X;
converges to a proper metric space X in the (pointed) Gromov-Hausdorff topology,

then the limit X is an Alexandrov space of curvature > k and dimension < n.

(5) The Euclidean cone over an Alexandrov space of curvature > 1 is an Alexandrov

space of curvature > 0.

The Fuclidean cone over a metric space X is defined to be the cone [0, +00 ) x X/(0 x
X) with the metric

d((s,u), (t,v)) := \/s2 4+ t2 — 2st cos d(u, v), (s,u), (t,v) € [0,400) x X.

The point in the cone corresponding to 0 x X is called the vertex of the cone. Note that X
is isometric to an (n — 1)-dimensional unit sphere S"~! in R" with Riemannian distance
if and only if its Euclidean cone is isometric to R"™, where n > 1. A 0-dimensional unit
sphere consists of two points with distance 7.

Let X be an Alexandrov space of curvature > k. For a given triangle Apgr in X,
we denote by qur the angle Zpgr between ¢p and ¢r for a comparison triangle Apgr in

M?(k). By the triangle comparison condition, we have
Zpqr < Zpgs,

where s € gr and § € ¢r are such that d(q,s) = d(q, §), as in the triangle comparison
condition. This implies that, for any two minimal geodesics o : [0,l] — X and 7 :

[0,1'] = X with o(0) = 7(0) = p, Zo(s) p7(t) is monotone non-increasing in s, > 0.
Definition 2.3. The angle between o and 7 is defined by

L(o,T) = Lqpr = s%i_{%Jr Zo(s)pr(t),

where ¢ := (1), r:=7(l').

Clearly, Z(-,-) is symmetric, i.e., Z(o,7) = Z(7,0). We have the triangle inequality
L(o,y) < ZL(o,T)+ Z(T,7) for any minimal geodesics o, 7, and 7 emanating from a point
p (see [BBI, Theorem 3.6.34]). It is easy to see that Z(o,7) = 0 if and only if 0 C 7 or
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T C 0, where o and 7 indicate their images in X. The relation Z(o,7) = 0 between two

minimal geodesics o and 7 from p is an equivalence relation and the quotient
%, := { minimal geodesics from p }/(£ = 0)
becomes a metric space, which is not necessarily complete.

Definition 2.4. We denote the completion of 3 by ¥, and call it the space of directions
at p. The tangent cone at p, say K, is defined to be the Euclidean cone over ¥,
ie., for (s,u),(t,v) € K, =[0,400) x £,/(0 x 3,),

d((s,u), (t,v)) := /82 + 12 — 2st cos £ (u, v).
We denote the vertex of K, by o,.

The space of directions and the tangent cone are generalizations of the unit tangent
sphere and the tangent space respectively.

Denoting by AX, A > 0, the space X with the metric multiplied by A times, we have
the following.

Theorem 2.5 ([BGP]). For any point p € X, as A — 400, the scaled pointed space
(AX,p) converges to the tangent cone (K,,0,) at p in the sense of Gromov-Hausdorff
convergence.

o~ \(unit sphere)

Figure 2: The space of directions and the tangent cone

Theorem 2.5 together with some discussion leads us to the following. We omit the
details.

Corollary 2.6 ([BGP]). (1) The tangent cone K, at any point p € X is an Alexzandrov

space of nonnegative curvature and dim K, = dim X.

(2) The space of directions ¥, at any point p € X is a compact Alezandrov space of
curvature > 1 and dim X, = dim X — 1.
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3 Singularity

Let X be an n-dimensional Alexandrov space of curvature > . A point p € X is said to
be singular if the space of directions ¥, is isometric to an (n — 1)-dimensional unit sphere
S"~1in R" (or equivalently K, is isometric to R"). Denote by Sy the set of singular
points in X. It is a theorem that dimy Sy < n — 1 [BGP, OS]. The purpose of this
section is to prove:

H"(Sx) =0,
which is weaker than dimy Sy <n — 1.

Definition 3.1 (Radial expansion map). For p € X and 0 < ¢t < 1, we define a subset
Wyt C X and a map ®,, : W,; — X as follows. We first set ®,;(p) :=p € Wy A
point x (# p) belongs to W), if and only if there exists y € X such that z € py and
rp(x) 1 7p(y) =t : 1, where py is a minimal geodesic from p to y. Since a geodesic does not
branch on an Alexandrov space, for a given point z € W, such a point y is unique and
we set @, ,(x) := y (see Figure 3). The triangle comparison condition implies the local
Lipschitz continuity of the map ®,,: W,; — X. We call ®,, the radial expansion map.

Figure 3: The radial expansion map

Lemma 3.2. ®,|w, ,nppr : Wpe N B(p,R) — X is a Lipschitz map with Lipschitz
constant < 1+ 0, r(1 —t), where 0, g is some function such that 6., () — 0 as & — 0.

Proof. With the notations as in Figure 4, the triangle comparison condition implies
d(wy,m2) > d(Z1,72) > (1 = O r(1 — 1)) d(§1, T2),
which completes the proof. O

Definition 3.3 (Cut locus). The cut-locus of p € X is defined by

Cut,, := { z € X | pr does not extend beyond =

as a minimal geodesic. }

It is easy to see that (J,_,., Wy, = X \ Cut, and Wy, C W,,, for any t,¢, with
ty < to.
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1 y1 = Ppe(x1)
P
x2 y2 = pi(x2)
M?(k) . 91
Z
D
To 4
Y2
Figure 4:

Proposition 3.4 ([OS]). For any point p € X we have
H"(Cut,) = 0.
Proof. For any R > 0 and 0 <t <1,
Dy (Wpe N B(p,tR)) O B(p, R).
By Lemma 3.2,
H' (W, N B(p,tR)) > (1 + 0, r(1 —t))"H"(B(p, R)).
Ast — 1, we have
H"(B(p, )\ Cut,) = H"(B(p, R)),
so that H"(B(p, R) N Cut,) = 0 for all R > 0. This completes the proof. O

We use the following theorem.

Theorem 3.5 (Milka). If an nonnegatively curved Alezandrov space contains a straight

line, then it is isometric to the product Y x R for some Alexandrov space Y .

Proof of “H™(Sx) = 07. Since X is proper, there is a dense countable subset {p;}$2, of
X. We take any point z € X \ J;, Cut,,. For each ¢, the minimal geodesic p;z extends
beyond z, so that K, has a straight line ; corresponding to p;z. It follows that | J, v; C K,
is dense. By Theorem 3.5, K, is isometric to R", so that z is non-singular. Therefore we
have Sx C Uil Cut,,, which together with Proposition 3.4 completes the proof. 0]
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4 Differentiable and Riemannian structure

Let X be an n-dimensional Alexandrov space and set, for 6 > 0,
Xs = { re X | dGH(Ew,Sn_l) <4 },

where dgy denotes the Gromov-Hausdorff distance function. The purpose in this section

is to show the idea of the proof of the following theorem.

Theorem 4.1 ([0S, BGP, KMS]). (1) There ezists a positive real number 6(n) depend-

ing only on the dimension n of X such that Xsu) is a C*-manifold.

(2) There exists a unique continuous Riemannian metric g on Xs(n) \ Sx such that the

distance function induced from g coincides with the original one.

Definition 4.2. A finite sequence of points {p;}i—+1. +n in X is called a d-strainer at a

,,,,,

point x € X, § > 0, if we have

. T—¢§ fori+# +j,
Zpixp; > 2 7+

m—0 fori=—j.
If there is a d-stainer at a point z € X, we say that z is d-strained. The map ¢ : X — R"

defined by
o(y) = (d(p1,y),....dpn.y)) €R", ye X,

is called the strain map associated with the d-strainer {p;};—+1

For example, for an orthonormal basis {e;}!; on a Euclidean space R", by setting
Py = *e; for i = 1,2,...,n, we have a d-strainer {p;};—41
any 6 > 0.

+n, at the origin of R™ for

,,,,

,,,,

Lemma 4.3. If © € Xy, then © has a 0(9)-strainer, where 6(5) — 0 as 6 — 0.

Proof. As A — +00, the scaled space (AX,z) converges to the tangent cone (K,,0) in
the sense of Gromov-Hausdorff convergence. It follows from = € X; that (K, 0) is close

to (R™,0). Since R™ has a strainer at the origin o, we have the lemma. |
We omit the proof of the following.

Theorem 4.4 ([BGP)). There exists 6(n) > 0 such that if {p;}i—s1, 4n is a 0(5(n))-
strainer at a point © € Xj(,), then there exists a neighborhood U of x such that the strain
map ¢ : U — o(U) C R™ is a bi-Lipschitz homeomorphism and the image ©(U) is an
open subset of R™.
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Outline of Proof of Theorem 4.1.
Step 1. Let © € X be a non-singular point. Then there is a strainer {p;} at = such that
pi ¢ Cut, for all i = 1,...,n. By Theorem 4.4, the strain map ¢ : U — o(U) C R" is a

bi-Lipschitz homeomorphism. A Riemannian metric at = is defined by
9ij(x) == cos Lpixp;, G, j=1,...,n.

We remark that (U, ) depends on z and that g;; is not necessarily unique if p; € Cut,
for some 1.
We take another strainer {¢;} at « such that ¢; ¢ Cut,. Let ¢ : V- — (V) C R" be

the strain map associated with {g¢;}.

1

Lemma 4.5. ¢y o o™ s differentiable at x.

For the proof of this lemma, the following is essential.

Lemma 4.6 (First variation formula). If px is unique, then

d(p,y) = d(p,z) — d(x,y) cos Zpzy + o(d(x,y)),

for all y € X, where o(-) is uniform fory.

We omit the proof of the first variation formula.
The first variation formula implies that, if x is non-singular and if px is unique, then
the distance function r = d(p, -) is differentiable at z, which proves Lemma 4.5.

Step 2. For € > 0 small enough and for y € X, we define

7 S z "(z
gol(y) T H"(B(pl,G)) /;(phd d(y7 )dH ( )7

¢(y) = (21(y), .. &nuly))-
By using H"(Cut,) = 0, y € X, we show that the map ¢ is differentiable at any non-
singular point. (U, @) is a chart better than (U, ).
Step 3. Deform ¢ o ¢ to a C* diffeomorphism, say F, between o(UNV) and zﬁ(U N
V) and then consider the gluing @(U) and ¥(V) by F, which is a C° manifold bi-
Lipschitz homeomorphic to U UV (see Figure 5). This bi-Lipschitz homeomorphism is
C' diffeomorphic on X \ Sx. If the whole space Xy, is covered by U and V, then a
O structure on Xj(,,) = U UV is induced from the C* structure of the gluing. If you
have more than three charts covering Xs(,), then we repeat this procedure to obtain a
C® structure on Xs(,). The Riemannian metric as defined in Step 1 induces a metric on
Xs(n)- O
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gluing by F of ¢(U) and ’QZJ(V) UuvV

Y

bi-Lip homeo
C'on X\ Sx

Figure 5:

5 Infinitesimal Bishop-Gromov condition

We want to consider the condition of a lower bound of Ricci curvature for an Alexandrov
space. However, the Ricci curvature tensor cannot be defined on an Alexandrov space
because of the low regularity of the Riemannian metric. Instead, we consider a volume
comparison condition as follows.

We first define a function

sin(vVKr)/vVEK if K >0,
si(r) = qr if K =0,

sinh(\/|K|r)/\/]K] if K <O0.

This is a solution to the Jacobi equation sx”(r) + Ksk(r) = 0 with sx(0) = 0 and
S K’(O) =1.
The following is the volume comparison condition.

Definition 5.1 (Infinitesimal Bishop-Gromov condition). Let K and N be two real num-
bers with N > 1 and p a positive Radon measure with full support in X. u satisfies the
infinitesimal Bishop-Gromouv condition, BG(K, N), if we have

Fotyu)du) > [ 1) W ay)

Wit
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for any point p € X, any number 0 < ¢ < 1, and any Borel measurable function f : X —
[0, 400 ) with compact support, where ®,, : W, , — X is the radial expansion map (see
Definition 3.1).

We are going to prove:

Theorem 5.2 ([KS3]). If X is an n-dimensional Alexandrov space of curvature > k, then

the n-dimensional Hausdorff measure H" satisfies BG(k,n).

Assume that H"(OW,;) = 0 and X = X, for simplicity. (The proof in the general

case is much more technical.) By the area formula,

) d n
Wp,tfo pel() dH /|detd<bpt| "()-

So, it suffices to prove the following:

Lemma 5.3. For almost all v € X, y := ®,,(z), we have

sw(r(y)"!
| det d®, ()] < Fon(r(@)) T

Proof. (a) We prove that |d®,.(v)| = |v|/t for any v € K, tangent to the ray from p,

where |v| := d(v,0,). This is obvious by the definition of the radial expansion map (see
b Lot
D " D, (z) =y
Figure 6:
Figure 6).

(b) We prove that |d®,(v)| < z:g:gz;; |v] for any v € K, orthogonal to the ray from p.
To prove it, we take any point z € 9B(p,r(z)) and set y := &, ,(x), w := D, ,(z). Then

we have

QL
—~
SR
£
S—
N
1
&
)
Y
—~
=
—
8
S—

which implies (b).
Combining (a) and (b) completes the proof of the lemma. O
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6 Poincaré inequality

The following theorem is essential for the existence of heat kernel, the Rellich compactness,

and convergence of spectra under a Gromov-Hausdorff convergence X; — X.

Theorem 6.1 ([KMS]). Let 0 < r < R and « € X. For any Lipschitz function u :
B(z,3r) = R we have

C”l"n+2

|u — Up(en|* dH" < —/ |Vul|?dH",
/B(x,r) Bl Hn( ( )) B(z,3r)

where C' = C(n, k, R) is some constant depending on n, r, and R and we set

1
UB(2r) *= T R o "
UB(z,r) HY(B(z, 7)) /B(a:,r)u &

Proof. For any y € B(x,r),

) ~ 50| = ey o PO N )

< B m/ /|w 1(2))] dtdH(z).

Since t — @, 1(2) is a minimal geodesm from y to z, we have
2 4r? ' ~1 2
[u(y) = Upgan|” < W / / . IVu(®, 1 (2))|* dH"(z)dt

PEIETCI
Bler) // Ve S )

< —H"(B(:L",T))/O /B(%Qtr) |Vu(z) o d?-["(z)dt
4Cr? L |Vu(2))? B n(,
BT, Ly e ) G

where I(z,t) :=1if d(z,y) < 2tr; I(2,t) := 0 otherwise,

4Cr? / ! 1
= < Vu(z 2/ —dt dHn y4
Hn(B('TJ T)) B(z,3r) | ( )| d(z,y)/2r 128 ( )

ontlCentl / |Vu(2)|?
< IVUET (2.
(0= R B.)) Sy Ay 1o )

Therefore,

|u(y) - ﬁB(x,r)|2 dHn(y)
B(z,r)

2n+1 CTn—l—l

2 L n(,
< (n— 1)H"(B(z,r)) /B(x,?,r) |Vu(z)] /B(x,r) d(z,y)"—ld% (y)dH"™(z).
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Since there is a 1-Lipschitz map from M"(k) to X keeping the distance from z, we have
/ L ) < / s
- Yy) = - Y
B(z,r) d(za y)n ! B(z,2r) d(Z, y) !
1

: Sy dvol(§) < C'r.
/3(0727")CM"(K;) d(o, g)t ( )

We thus obtain

2n+10clrn+2
U — Up(pn|? dH" < / Vul? dH™.
/B(:r,r) | bl )| (TL - 1)HH(B(£E7T)) B(x,3r) | |

O

The discussion above relies only on BG(K, N) and the Bishop volume comparison and
works for a more general setting (cf. [KS1]).

We omit the proof of the following two lemmas.

Lemma 6.2 ([KMS]). For any x,y € X, we have

d(z,y) = sup{ u(y) —u(z) |ue WA X)NC(X), |Vu| <1 a.e. }.

loc

Lemma 6.3 ([KMS]). Let Q@ C X be a relatively compact open subset, let 6 > 0, and
let Sy := X \ Xs. Then, there exist two sequences of numbers {ri}s>, and {si}7>, with
0 <71 < sk — 0 and a sequence of Lipschitz functions {1y : Q@ — [0,1]}32, such that for

any k we have
(1) ¢ =0 on QN B(Ss,71),
(2) ¢ =1 on Q\ B(Ss, s),
(3) [ IVe|> dH™ = 0 as k — oc.

The Poincaré inequality (Theorem 6.1) and Lemmas 6.2, 6.3 together imply the fol-

lowing:

e There exists a continuous heat kernel on X by using the method of Grigor’yan,
Saloff-Coste, Sturm, etc.

e We obtain a continuous Brownian motion, which does not hit Sx almost surely by

using the general theory of Dirichlet form.
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7 Laplacian comparison

In this section we prove:
Theorem 7.1 (Laplacian comparison theorem [KS4]). Let K, N € R with N > 1. If u
satisfies BG(K, N), then

(%) /X<VT, Vi)du> /X{—(N — 1) cotgor}f du
for any p € X and for any Lipschitz function f: X — [0,+00) with compact support in
X\ {p}, where r(x) :=d(p,x) and coty := sk’'/sk.
Note that (x) is a weak form of Ar — (Vlogp, Vr) > —(N — 1) cot, or.
Proof. Recalling the definition of the radial expansion map, we see
tr(Ppi(x)) =r(z).

Differentiating this by ¢ at t = 1 yields

d
r(z) + (Vr, atpp’t(:c)h:l) =0,

and hence
d

%Qp,t(as)h:l = —r(z)Vr(x).

Setting €2 := supp f we have

A((VT,V(Tf)> —f)dp= /Q<TV7”, VF)du
— [ le)los. V1) i) = = [ 27 00,(0) s )

dt o d

t—>1 olffol@jtt )_ xid
o s (r(@)V ' f )
2 lim inf [/Q (1t_ t()sK())( )/tSN T dnlw) -

Z/thlnftSK(T(l.) _SK( ( )/t) ( ) ( )

t—1-0 (1 —t)sg(r(z)/t)N-1

_/d( K(r(@) /)Y~ )
t t
:qu—w;nmwmﬂme@MM@

Therefore,

QL—<M (by BG(K, )

/(o) dp(x)

t=1 S (r(z))N-1

/(VT,V(Tf)) du > /{—(N— 1) cotg or}rf du.
0 0

Replace rf by f. |
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8 Splitting theorem

In this section, we prove:

Theorem 8.1 (Splitting theorem [KS4]). If a positive Radon measure u satisfies BG(0, N)
for some N > 1 and if X contains a straight line, then X is homeomorphic to' Y x R for

some metric space Y .
The idea of the proof is based on a splitting theorem by Cheeger-Gromoll.

Definition 8.2. A ray in X is a curve v : [0, 400 ) — X such that d(v(s),v(t)) = |s — ]
for all s,t > 0. The Busemann function for a ray v : [0,4+00 ) — X is defined by

by(z) = lim (t —d(z,~(t))), zeX.

t—-+o00

Proposition 8.3. Let v : [0,400) — X be a ray. If a positive Radon measure j satisfies
BG(0, N), then

[ w090 dp <o
X
for any f : X — [0,4+00) Lipschitz with compact support, i.e., by is subharmonic w.r.t. fu.

Proof. Take a sequence t; — +oo. Since —Vd(y(t;),-) = Vb, a.e. as i — 0o, we have

/X (Vb Vf) du= —lim [ (Vd(y(t:). ), Vf) dp

11— 00 X
. f(=)
< (N —=1) lim ————du(z) =0.
=0 Jsupp £ d(’y(ti), 37)
O
Qutline of Proof of Theorem 8.1. Let b := by, + by __ - By Proposition 8.3, b is

subharmonic w.r.t. p. It is easy to see that b < 0 and b o~y = 0. We have the maximum
principle, which is quite nontrivial. Therefore, we have b = 0 on X, which implies that
X is covered by disjoint straight lines bi-asymptotic to 7, so that X is homeomorphic to
b7 (t) x R. O

Assume for an n-dimensional Alexandrov space X,
e Sy is closed,
e X*= X\ Sx is an (incomplete) C*° Riemannian manifold,

e V:X 5 ReC(X)NC®(X).
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The Bakry-Emery Ricci curvature on X* is defined by

Ric if N =n,
Ricy,v := { Ric+Hess V — &2 if n < N < 400,
Ric+ Hess V' if N =+o00.

Corollary 8.4. Let n < N < +o0o. Assume that supyV < 4o if N = 4o0. If
Ricyy > 0 on X* and if X contains a straight line, then X is isometric to Y x R for

some Alexandrov space Y.

Borzellino-Zhu proved the corollary in the case of complete Riemannian orbifolds and

N = n. Lichnerowicz proved it in the case of complete Riemannian manifolds.
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TOPICS IN MINIMAL SUBMANIFOLDS

Y. L. XIN

(Institute of Mathematics, Fudan University, Shanghai)

CHAPTER 1

Certain Techniques in Hypersurfaces

We outline basic notions on minimal submanifolds in this chapter. For
more detail account we refer to consult author’s book [X2].

1.1 Basic Notions and Formulas

*+ The second fundamental form

Let N be a Riemannian manifold of dimension m, M be an n-
dimensional Riemannian manifold. We assume that m=n + k, k > 0.
Let M — N be an isometric immersion which means that the natural
induced Riemannian metric on M from the ambient space N coincides
with the original one on M. The number k is called codimension of M in
N. If k£ =1, the submanifold M is called a hypersurface in N.

For each p € M the tangent space T}, N can be decomposed to a direct
sum of T, M and its orthogonal complement N, M in T, N. Such a decom-
position is differentiable. So that we have an orthogonal decomposition
of the tangent bundle T'N along M

TN|y =TM & NM.
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Let (---)T and (---)" denote the orthogonal projections into the
tangent bundle T'M and the normal bundle NM respectively.

Let V be the Levi-Civita connection on N. As vector bundles
TM, NM over M, they carry the induced metrics as their fiber met-
rics.

DEFINITION 1.1.1 For VW € T'(TM), v € T(NM), the induced con-
nections on 7'M and N M are defined by

VoW L (T, w)T,

Vv ().

ProprosITION 1.1.2 V is just the Levi - Civita connection on M.

As done in the above proposition, the induced connection V on the
normal bundle also preserves the inner product.
Consider
Byw < (VW)Y =V W - VW
for V,W e I'(T'M). B is a symmetric bilinear form on 7'M with values
in NM. We call B to be second fundamental form of M in V.
For v € I'(INM) we define the shape operator A : TM — T'M by

It is easy to check that AY is a symmetric operator on the tangent space
at each point, moreover, it satisfies the Weingarten equations:

(Bxy.v) = (A"(X),Y). (1.1.1)

DEFINITION 1.1.3 If B =0, then M is called a totally geodesic subman-
ifold in V.

From the definition of the second fundamental form, we see that M
is a totally geodesic submanifold, if and only if any geodesic in M is also
a geodesic in the ambient manifold N.

Taking the trace of B gives the mean curvature vector H of M in N

and
n
E Beieiv
i=1

where {e;} is a local orthonormal frame field of M. The mean curvature
vector is a cross-section of the normal bundle.

1
i Etrace(B) =

S|



REMARK The definition of the mean curvature in some references is dif-
ferent from one here by a constant factor which is equal to the dimension
of the submanifold.

DEFINITION 1.1.4 If H =0, then M is a minimal submanifold in N.

DEFINITION 1.1.5 If H is a parallel cross-section on the normal bundle,
then M is defined to be a submanifold with parallel mean curvature.

From the definitions one immediately sees that a totally geodesic sub-
manifold M in N is necessarily a minimal submanifold and any minimal
submanifold is a manifold with parallel mean curvature.

Note the special case that M is a hypersurface in N. Fix a unit normal
vector field v locally. Then the second fundamental form is determined
by

A% g,

This is symmetric on tangent space at each point. Its eigenvalues
ki,--- ,k, are called the principal curvatures. The product of all prin-
cipal curvatures is called the Gauss - Kronecker curvature. It is easy to
see that the mean curvature is the mean value of all principal curvatures.
In this case there is a notion of constant mean curvature hypersurfaces
instead of manifolds with parallel mean curvature.

We can define the curvature tensors Rxy Z and Rxy i, correspond-
ing to the connections in the tangent bundle and the normal bundle
respectively:

RxyZ =—-VxVyZ+VyVxZ+VxyZ,

Rxyp=—-VxVyu+VyVxu+ Vixyu,

where X, Y, Z are tangent vector fields, x1 is a normal vector field. Those
are related to the curvature tensor R of the ambient manifold N and the
second fundamental form B.

PROPOSITION 1.1.6 (GAUSS EQUATION)
(RxyZ,W)=(RxyZ, W) — (Bxw,Byz) + (Bxz,Byw), (1.12)

where X,Y, Z, W are tangent vector fields in M, their images under the
isometric immersion are tangent vector fields in N. For the simplicity we
use the same notations.

REMARK  From the Gauss equation we obtain the famous Theorem
Egiregium of Gauss: Let M be a surface in R3. Then the sectional cur-
vature of M is equal to the Gauss - Kronecker curvature of M.
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PROPOSITION 1.1.7 (CODAZZI EQUATIONS)
(VxB)yz — (VyB)xz = —(Rxy 2Z)" (1.1.3)
PROPOSITION 1.1.8 (RICCI EQUATIONS)

v ) = (Rcyin ) + By ) (Bres)
—(Bxe; V) (Bye, 1), (1.1.4)

where {e;} is a local orthonormal frame field, j1, v are normal vector fields
in M. Here and in the sequel we use the summation convention.

The equations of Gauss, Codazzi and Ricci are fundamental equations
for the local theory of the immersed submanifolds. It is possible to state
a generalization of the fundamental theorem of local surface theory in
R3. We refer the readers to the book [Spi] (vol. IV, pp 64-74).

*+ The First Variational Formula

The notion of totally geodesic submanifolds is a higher dimensional
generalization of geodesics. But, those are very few in general situation.
Note that geodesics are critical points of the arc length functional.

A minimal submanifold is defined to be one with vanishing mean
curvature. This definition seems to have no relation with the ”minimal”
terminology. In fact, Lagrange found minimal surfaces in his investigation
of the calculus of variations. Now, we generalize Lagrange’s study to
more general setting. Consider the space Z(M, N) of all immersions
from M into N. Then the volume vol(f(M)) is a functional on the space.
The critical points of the volume functional are minimal submanifolds
by the following first variational formula. Thus, the notion of minimal
submanifolds is an adequate generalization of that of geodesics

ProprOSITION 1.1.9 Let M be a compact Riemannian manifold,
f : M — N an isometric immersion with mean curvature vector H.
Let fi, |t| < e, fo = f, be a smooth family of immersions satisfying

filomr = flom- Denote V. = %%‘ to be the variational vector field
t=0

along f. Then

d
%Vol(ftM)

=—/ (nH,V)dvol (1.1.5)
M

t=o0

REMARK 1.1.10 The first variational formula (1.1.5) shows that the
—n H represents the gradient of the volume functional. The equation
H = 0 is the Euler - Lagrange equation for the functional.



If we restrict the variation above to be normal, namely V' is normal
to M everywhere and V7 = 0, then the formula remains valid without
the boundary condition.

If M is not compact, then the formula can be used for compactly
supported variations.

* Minimal Submanifolds in Euclidean Space

The study of minimal surfaces in R? is an interesting subject since
Lagrange’s time. Up to now the subject still attracts many mathemati-
cians. The present section starts with its interesting feature on the co-
ordinate functions. Then, we derive the equation for minimal graphs of
codimension one in R**1.

Let M be a Riemannian manifold of dimension m. Consider the
Laplace operator A : C*®°(M) — C*°(M). For f € C*°(M) choose a local

orthonormal frame field {ey,--- ,e,,} in M. Then
Af = eiei(f) — (Veiei) f (116)
Around each point p, there are local coordinates (z!,--- ,2™), where

the Riemannian metric on M can be written as ds* = g;;dz'dz?. If we
denote (¢g*) = (¢;5) " and g = det(g;;), then

100 . Of
sr= L2 (L), 01

In general, for any differential form with values in a vector bundle
we can define exterior differential operator d and codifferential operator
6 and the Hodge - Laplace operator dd + dd. The minus sign of the Hodge
-Laplace operator acting on a smooth function f, a cross-section of the
trivial bundle M x R, is just the ordinary Laplace operator

Af = —6d . (1.1.8)

We omit the verification of the equivalence of those three definitions,
which is left to the readers as an exercise.

Any f € C°°(M) satisfying A f = 0 is called a harmonic function. We
have the Hopf maximum principle for harmonic functions: any harmonic
function on a Riemannian manifold has to be a constant, if it attains the
local maximum in an interior point.

Now let us study the minimal submanifolds in Euclidean space.
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ProrosITION 1.1.11 Let ¥ : M — R™ be an isometric immersion with
the mean curvature vector H, then

Atp =m H, (1.1.9)

where A = (AL, - Ay™).
COROLLARY 1.1.12 An isometric immersion 1 : M —R"™" is a minimal
immersion if and only if each component of 1 is a harmonic function on

M.

From Corollary 1.1.12 and the Hopf maximum principle we have im-
mediately: There is no compact minimal submanifold in Euclidean space.

From the first variational formula (1.1.5) we know that H = 0 is
the Euler-Lagrangian equations for the volume functional of immersed
submanifolds in an ambient manifold. What is the equations look like?
Let us see the simplest situation.

In R™*! a minimal graph M is defined by

xn-l—l — f(l‘l,"' ’xn).

We denote f; = g L. The induced metric on M is

Tt

ds? = Jij dx’ dxj,
where
9ij = 0ij + fif;.
Denote v = /14 ), f7. We have ¢¥ = §;; — v% fi f;- The unit normal

vector to M is .
V= Z(fla 7fn7_1)'

It is obvious that

= 0 0 af
vﬁ;zl%_axl (O, ,0,1,0,--- ,O,%> _(O, ,f”)

= 0 1
<B%%’V> - <Va?m @’V> =—Jis-

From H = 0 it follows that ¢ f;; = 0. Thus, we obtain the minimal
hypersurface equation

(1+Zfi2)fjj_fifjfij =0, (1.1.10)

and




which is equivalent to

o (1of\ _ 0
Oxt \voxi )
When n = 2 (1.1.10) reduces to

(L + D) fow = 2fufyfoy + (L4 f2) fyy =0, (1.1.11)

where we denote z = !, y = 2.

It is a nonlinear elliptic PDE.
On a minimal submanifold in R" there is another important equation.
In fact, we have

PrRoPOSITION 1.3.5 Let M be an oriented hypersurface with constant
mean curvature in R™*! and with second fundamental form B. Let v be
the unit normal vector to M. Then for any fixed vector a € R"*1,

A{a,v) +|BJ? (a,v) = 0. (1.1.12)

When M is a graph defined by 2! = f(2!,--- ,2™) in R"™1. Put
a=(0,---,0,—1)and v = 1(f1, -, fn, —1). Then (a,v) = %dgf'w and

we have :
Aw + |B|*w = 0. (1.1.13)

* Examples

The minimal surface equation (1.1.11) is a nonlinear partial defer-
ential equation. It is hard to solve. Besides the linear functions, what
are its solutions? As early as 1776 J. L. Meunier obtained two nonlinear
solutions to the equation firstly. Their graphs are catenoid and helicoid.

The catenoid is defined by

z = cosh™ ' /22 + 42, (1.1.14)

Take a catenary in Y-Z coordinate plane. Letting it rotating about Z-
axis gives the catenoid.
The helicoid is defined by

1

z = tan~ (1.1.15)

SRS

Let a line in X —axis screw about Z—axis. The resulting surface is a
helicoid
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We now give some examples of minimal submanifolds in the sphere.
Let ¢ : M — S™ ¢ R*! and ¢/ : M’ — S™ C R™*! be minimal
immersions. For any constants ¢ and ¢

b @ M x M — R 2

is also an isometric immersion of the product manifold M x M’ to
R +2 If we choose ¢ and ¢ with ¢2 + ¢ = 1, then the image of
M x M’ under ¢p @ /4’ lies in the sphere S"t"'+1 We know that the
induced metric on M under ¢y is ¢? ds?, where ds? is the original metric
on M.

If ¢ and ¢’ also satisfy

we obtain a minimal immersion cty &1y : M x M' — S +1 In partic-
ular, M = S™ and M’ = S™ we have the Clifford minimal hypersurface

n n n’ n n+n’+1
S x S =S . (1.1.16)
n+n' n+n'
We have
$*(V3) — 8%,
which can be realized by the map
1 1 1
V(r,y,z) = | —=2xy, —=22, —=Y*2,
(z,y,2) (\/g v 5 Y
1 2 2y 1/ o 2 2
—— (" —y°), (2" +y" —227)), (1.1.17
SR ) gyt = 22)) (L)

where 22 4+ y? + 22 = 3. It is called the Veronese surface which is an
imbedding of the real projective plane of curvature % into S%.

The Clifford minimal hypersurface and the Veronese surface are im-
portant minimal submanifolds in the sphere.

* Bochner-SimonsType Formula and Rigidity Theorems

A geometric invariant described by nonlinear equations possesses
rigidity properties in many cases. The squared norm of the second funda-
mental form is in the case. This phenomenon was revealed by J. Simons
[Si]. He firstly applied the useful Bochner technique to minimal subman-
ifold theory.



Let M — N be a minimal immersion with the second fundamental
form B, which can be viewed as a cross-section of the vector bundle
Hom(®2T M, NM) over M. A connection on Hom(®*T' M, NM) can be
induced from those of T'"M and N M naturally. There is the trace-Laplace
operator V2 acting on any cross-section of a Riemannian vector bundle
E. We know that if the base manifold is compact, then V? is a semi-
negative and self-adjoint differential operator with respect to the global
inner product on I'(E) (see [X3], p8). To compute V2B we introduce
some relevant cross-sections in this bundle.

DEFINITION 1.1.13

B I BoBo B,
where B! is the conjugate map of B.
DEFINITION 1.1.14

p
def.
Bxy = E (Bavi avs (x)y + Bx aviavi (v) — 2Bavi (x) 4% (v)) »
Jj=1

(1.1.18)
where v; are basis vectors of normal space and p is the codimension. It

is obvious that By y is symmetric in X and Y, which is a cross-section
of the bundle Hom(®?T'M, NM).

LEMMA 1.1.15

p
(Byy.v) = (ad A% ad A% A"(X), Y),

—

<

where v is a normal vector and (adA)B = [A, B].
DEFINITION 1.1.16.

Rxy LY [(VxR)yeyej + (Ve, R)xe,Y]" (1.1.19)
j=1

where n is the dimension of M and {e;} is a local orthonormal frame
field of M.

LEMMA 1.1.17 Rxy is independent of the choice of {e;} and is sym-
metric: Rxy = Ry x-

DEFINITION 1.1.18

EXY = Z |:2RY6]'(BX6]-) + 2RX€j(BY6j) - BX(RYEJ.CJ')T
j=1 (1.1.20)

_ N
_BY(RXejej)T +RBXY6jej_2Bej (RXer)T] .
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It is a cross-section of Hom(®2*T'M, N M) obviously. It is easily seen
that the former 5 terms in (1.1.20) are symmetric in X and Y. As for the
last term of (1.1.20), it is also symmetric in X and Y, since

B, (rx V)T = Be, e, (Rxe,Y, k)

and the symmetric properties of B and R.

THEOREM 1.1.19 ([S1]) Let M be a minimal submanifold in N with the
second fundamental form B. Then

V:B=-B-B+R+R (1.1.21)

If the ambient manifold M is local symmetric, namely, VR = 0, then
R = 0. In particular, if M has constant sectional curvature ¢, besides
R = 0 we have R = ncB. In fact, since Rxy Z = c((X, 2)Y — (Y, Z) X),
we have

Ryej(BXej) =0, (Ryejej)T:c(l—n)Y,
RBXYejej = —cnBxy, (Rxer)T =c((X,Y)e; — (Y,e;) X),

Be, (Rx.,v)r = —¢Bxy.

Thus,
EXY = nc BXY.

In summary we have

THEOREM 1.1.20 ([S1]) Let M be a Riemannian manifold with constant
sectional curvature ¢ and M a minimal submanifold in N with the second
fundamental form B. Then

V2B =-B—-B+ncB. (1.1.22)

If M has codimension one, from the definition we know that B = 0,
moreover,

<[S’,B> —(B'oB,B' o B)
= <Bt o Beiej7€k ® €l> <Bt o Beiej7€k © 6l>

= <B6i€j ) Bekez> <Beiej ’ Bekel>
= |B[*



In this case we have
(V2B,B) = —|B|* + nc|B|*. (1.1.23)

THEOREM 1.1.21 ([S1]) Let M — S™*! be a compact oriented minimal
hypersurface in the unit sphere with the second fundamental form B. If
|B|? < n, then B = 0, namely M is a totally geodesic hypersurface in

gntl
Now we study the cases of higher codimension.
LEMMA 1.1.22

(B+B.B) < (2 - %) BJ%, (1.1.24)

where p is the codimension.
We now have the following theorem due to J. Simons [Si]

THEOREM 1.1.23 Let M — S™ be a compact minimal submanifold

in the unit sphere. If
n

2 L7
p

|B|* < (1.1.25)
then |B|? = 0, namely M is a totally geodesic submanifold in S™*P,

This theorem tells us that the squared norm of the second fundamen-
tal form of a compact minimal submanifold in the sphere can not take

every value. It omits the values in the interval (0, 2_%) . It seems that
p

|B|? is an extrinsic invariant. In fact, by the Gauss equation (1.1.2) its
scalar curvature

s=mn(n—1)—|B]* <n(n—1).

Thus, the scalar curvature omits the values of the interval

(n(n -1) - %, n(n — 1)) .

Therefore, this is an intrinsic rigidity theorem.

Chern-do Carmo-Kobayashi [C-doC-K] (see also [L] for codimension
one case) studied minimal submanifolds in the sphere satisfying
n

2—1°
p

|BJ* =

Thus the second fundamental form can be determined in a suitable frame
field, so did the connection form with respect to an adapted frame field.
If the submanifolds are compact, they are either the Clifford minimal
hypersurface or the Veronese surface.
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REMARK Consider a minimal hypersurface M in S™ C R**!. Let v be
a unit normal vector field of M in S™, a a fixed vector in R**!. A similar
calculation leads the same equation as (1.1.12)

A{a,v) = — {a,v) | BJ?, (1.1.26)

where B is the second fundamental form of M in S™. Integrating this
formula and using Stokes’ theorem gives the Simons’ extrinsic rigidity
theorem as follows:

Suppose M is a compact minimal hypersurface in S™, whose normal
vector makes a positive inner product with a fixed vector in R®*!. Then
M has to be a totally geodesic submanifold in S™.

*+ The Second Variational Formula

We know from the first variational formula (1.1.5) that minimal im-
mersion f : M — N is a critical point on the immersion space from M
into N. It is natural to ask if f is a local minimum of the volume func-
tional, namely, for any smooth variations f; : M — N, and ¢ > 0 small
enough whether

vol(f) < vol(fi)

holds true. To answer the problem we need to derive the second varia-
tional formula. First of all let us consider the relevant geometric invari-
ants.

1. For cross-sections on a vector bundle we can define the trace -
Laplace operator V2. For the immersion f : M — N we have normal
bundle N M, where there define an induced connection V = (V)" on the
normal bundle. Hence,

VZ:T(NM) —T(NM).
We assume that M has boundary OM # (), —V? is self adjoint, semi-
positive operator on

No ={v e (NM); v|on = 0}.

It is also an elliptic operator.

2. The second invariant is defined by curvature of the ambient
manifold. Let R be the Riemannian curvature tensor on N. Define
R € Hom(N,M, N, M) as follows:

R(v) = {Rye, ()}, (1.1.27)

where v € N, M and {e;} is a local orthonormal frame field near x € M.
It is a symmetric operator owing to the properties of the curvature tensor.
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REMARK If the codimension of M in N is one,

R(v) = (Rue,(e1))" = ~Ric(v, v)v.

3. The last invariant involves the second fundamental form B of
M in N.Recall that B € T'(Hom(S*I'M, NM)). Its adjoint operator is
A= B'e€ Hom(NM,S?TM). We define B € T(Hom(NM,NM)) by

B=BoB. (1.1.28)
By definition it follows that

<B(V), ,U> - <B€i6]‘ s V> <Beiej ) 1UJ> .

Hence, B is symmetric and semi-positive. Now, we can prove the following
second variational formula.

THEOREM 1.1.24 Let f : M — N be a compact minimal immersion,
v € Ny be a normal vector field which vanishes on OM. Assume that
ft : M — N is a smooth one-parameter family of immersions, such that
for |t| < e

fO :f7
0
%h:o =V,

ftlonr = flom, for each t.

Then

2

d
ﬁ VO](ftM)

:/ (=V*v +R(v) — B(v), v)* 1. (1.1.29)
t=0 M

REMARK the second variational formula is also valid for non-compact
M, provided that v has compact support.

The second variational formula (1.1.29) indicates that it is useful to
study the elliptic differential operator of second order defined on A

S=-V*+R-B.

This is so-called Jacobi operator. We thus can define a symmetric bilinear
form on Ny

() = /M (S(u).v) *1.

The general self-adjoint elliptic operator theory tells us that the
eigenvalues of S are
)\1 < )\2 < e — 00

and for each i the corresponding eigenspace Ey, C Ny is finite.
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DEFINITION 1.1.25 Let M — N be a minimal immersion. If for any
p e No
I(p, ) >0,

then M is called stable minimal submanifold.

We now study the codimension 1 case, moreover the normal bundle
is assumed to be trivial. The second variational formula then becomes

() :/ (V6P — ((Ric v, ) + [B?)6?) » L. (1.1.30)
M
When the ambient manifold is Euclidean space R™*1,
I = [ (V6P = |BE) « 1 (1.1.31)
M

PROPOSITION 1.1.26 The minimal graph M in R™t!, which is defined
by 2"t = f(a!,--- ,2"), is stable.

In fact, the minimal graphs are area-minimizing.

1.2 Curvature Estimates for Minimal Hypersurfaces

E. Heinze [H] in 1952 considered the minimal graph defined over a disc
Dpr C R? and gave curvature estimates. The classical Bernstein theorem
can be obtained by letting R — +o00 in his curvature estimates. In
this section we describe some important curvature estimates for minimal
hypersurfaces.

* S-S-Y Curvature Estimates

Now, we introduce curvature estimates for stable minimal hypersur-
faces, due to R. Schoen, L. Simon and S. T. Yau [S-S-Y].

Let M — N be a minimal hypersurface with the second fundamental
form B. In the last section we derive a fundamental equation (1.1.21)

V:B=-B-B+R+R.
In the case of codimension one we already showed that

B=0, <B,B> = |BJ*.



In addition we assume that the ambient manifolds is Euclidean space.
We have

R=R=0.
We thus have
(V?B,B) > —|B|". (1.2.1)
It follows that
A|B|?> > 2|VB|* - 2|B|*, (1.2.2)
and moreover,
|B|A|B| +|V|BJ||* > [VB|* — |B|*. (1.2.3)

To estimate |VB|? in terms of |V|B||2 set Be, e, = hijv with the normal
vector field v. So [B? =3, . h j hij- Then

HBF<VBVB > bl
1,5,k

|V|B||2:<vek‘lzh?j7vek Zh12]> Z gh2 Zzh”h”k ’
2¥) 2y b

|VB|2 - |V|B||2 Z hzgk Z h Z Zhwhwk

i,k

1
= 5P zt: 2> hi - Z(Z hijhiji)?
s, 2¥)

i3,k
1
= 357 > (hijhsie — hathie)?. (1.2.4)
i7j787t7k
For any p € M, we can choose a local frame field {ej,--- ,e,} around p

so that h;; = \;0;; at p. Then we have
> (hijhar = hsthige)® = > (hiiha, — hsthiir)?

i,9,8,t,k i,8,t,k
+Y RN n
st i#J,k
=S U N R N
i, k,sF£t s,t i#j,k
=23 K > hi
st ik

- 2|B|2 Z hzgk

i#4,k
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Substituting it into (1.2.4) gives

VB = |VIB||> = > bl
i#j,k

> Z hlj’L —"_ Z hljj

i#] i#]

=2 hy,

i#]

On the other hand,
VB = B— Z Zhwhwk
Bi Zk: Z hiihiir)?
< ij N
= Z higg + D B

itk
=Y Wi+ D> O hy)
itk i i

< thzzk + (n — 1)Zh§ji =n thw

i#k JFi i#j

Substituting it into (1.2.5) gives
2 2 o 2 2
IVBI" = [VIB|I" = ~|VIB|I.
(1.2.3) and (1.2.6) yield

2
BIAIB| + |BI* = ~|V|B|]”

(1.2.5)

(1.2.6)

(1.2.7)

For oriented stable minimal hypersurfaces we have the stability in-

equality (see (1.1.31))

/|V¢|2*1z/ B26? £ 1,
M M

(1.2.8)



where supp ¢ is compact. Replacing ¢ by |B|'T9¢ in (1.2.8) for ¢ > 0
gives

[ g s [ [ BPTIBIRS + BT
M M

+2(1+ q)6| B[ T1(V9) - (VIBI)] + 1.
(1.2.9)

Multiplying ¢?|B|*? with both sides of (1.2.7) and integrating by
parts, we have

2
2 [ ABPIIBIE 1< (2 [ FBPIVIBIE
nJm M

s [ Bprig 12 [ olBPree) (V1B 1.
M M (1.2.10)

Adding up both sides of (1.2.9) and (1.2.10) yields
2
2| [ #ippeisea
n M

< / B2V 14 2 / S| BT (V) - (V]B]) * 1.
M M (1.2.11)

Since
2q¢|BI***1 (V) - (V|B|) < 2q¢|BI**"V4||V| B|
< eq*¢*|BI*|V|B||* + 71| B2V,
(1.2.11) becomes

2
Coarar] [ SBPIviBiE
n M
< / (1+e YB3 Ve|* * 1. (1.2.12)
M

By using (1.2.9) and (1.2.12) we are able to prove the following result.
THEOREM 1.2.1 ([S-S-Y]) For any p € [4,4—1— \/g) and any non-

negative function ¢ with compact support

/ IBIPoP 51 < ﬁ/ [VolP 1, (1.2.13)
M M

where (3 is a constant depending only on n, p.
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PROOF. Set ¢ = 252, Then

Choose ¢ sufficiently small, such that

2

= —(1+¢e)g* >0.

n
Thus, (1.2.12) becomes

[ #1BEvIBIE 1
M
< ﬂ1/ |B|29T2|V¢|? * 1, (1.2.14)
M

where (31 is a constant depending only on n and p.
On the other hand, (1.2.9) shows that

[pre s [ [+ oippovisipe
M M

+ 2L+ (|BI6VIB) - (BIE V0] k1 [ BV 1

M
< [ [+ @PBPITIBIPS + (1+ )| B VI
M
+ (1 + q)IBlp—2|v¢|2] %1 +/ |BIP72|V|* * 1. (1.2.15)
M
Replacing ¢ by ¢ in (1.2.14) and (1.2.15) yields
[ 1BPwiBiRer 1
M
< [ BpeveRen (210
M

and

[Brersi< [ [+ o BRIBIES + (1 + BRIV B
M M

+ (2+q)|B|p—2¢p—2|v¢|2] 1. (1.2.17)



By using Young’s inequality, namely for any positive real number «, a, b, p, q

01, 1
Wlth;-i-a—l

aPaP o904
+

p q

> ab,

we have

|B|IP2¢P 2|V p|* < | BIP¢P + Bo| VP, (1.2.18)

where (2 are dependent only on ¢ and p. Applying (1.2.16), (1.2.18) to
(1.2.17) gives

(1— Bse) /M IBIP¢P +1 < fa /M IVo|P 1, (1.2.19)

where (3 is dependent only on n, p and 34 is dependent only on n, p,
and e. To obtain our aim (1.2.13) it suffices to choose ¢ < %

Let Br(xz) C R™*™ be a ball of radius R and centered at = € M. Its
restriction on M is denoted by Dg(z) = Bgr(x) N M.
(1.2.13) enables us to have the following Bernstein type theorem.

THEOREM 1.2.2 ([S-S-Y]) Let M be a complete stable minimal hyper-
surface in R"*1. If for p € [4, 4+ \/g)

lim R Pvol(Dg) =0,
R—o0

then M is a totaly geodesic hypersurface.
PRrROOF. By (1.2.13) we have an estimate

/|B|p¢P*155/ VPP * 1.
M M

Choose a cut-off function ¢ to be

¢ o { 1, in DR;
B 0, outside of Dop

with ¢ > 0, and |V¢| < % almost everywhere. We thus have

P
/ |IBIP 1 < / |IBIP¢P x1 < C—/ x1 = AR PvolDg,
Dgr Dar Rp Dar

where A is a constant depending only on n and p. Letting R — oo gives
|B| =0 and M is totally geodesic.

65



66

Since minimal graphs are stable and have Euclidean volume growth
in the sense that

vol(Dr) < AR",
where A depending on n. Then, we obtain the Bernstein results for di-
mension up to 5.

COROLLARY 1.2.3 ([S-S-Y]) Let M be an entire minimal graph in R* 1,
then M has to be an affine linear space, provided n < 5.

There is a weak version of the Bernstein type theorem. It was J.
Moser [M] who proved that the entire solution f to the minimal surface
equation is affine linear, provided |V f| is uniformly bounded. There is
no dimension limitation. Ecker-Huisken improved Moser’s result by an
interesting curvature estimates.

x+ E-H Curvature Estimates

Let M be an entire graph in R"*! defined by f : R® — R. As shown
in the last section we have v = /1 + |V f|2. From (1.1.13) we obtain

2
Av=v|B* + ;|Vv|2. (1.2.20)

From (1.2.7) and (1.2.20) we obtain for any real ¢ and s

A (1BI*) 2q (g +1—e"1s)v17?|B|*|Vo]?

-2
+ s (s — nn — eq) vq|B|8_2|V|B||2 + (g —9) vq|B|3+2.

Choose s sufficiently large, we have
A(v®[B|*) = 0,

A(v¥|B|*~Y) > v®|B|F . (1.2.21)

We have the mean value inequality for any subharmonic function on
minimal submanifold M in R™*? which gives

v*|B|*(0) < 2/ v¥|B|® %1
R™ Jp,

S M (/ 1)28|B|28 * 1) ) (1222)
R Dgr
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where we assume that o € M C R*'? is any fixed point, C is a constant
depending only on n.

Multiplying by v®|B|*~1¢?®, where ¢ is any smooth function with
compact support, in (1.2.21), then integrating by parts and using the
Cauchy inequality, we have

/ U28|B|28¢28*1 S/ U8|B|S_I¢ZSA(US|B|S_1)*1
M

M
N ‘/ (V| BI* ¢™), V(v*|B|* 1) x 1
M
:_/ |V(US|B|3—1)|2¢23
M
—28/ (¢* M BI* vV, ¢°V (v*|B]* 1))
M

S 01(8)/ ’U2S|B|28_2¢28_2|V¢|2 % 1.
M (1.2.23)

By using Young’s inequality

aPaP o 94
+

p q

ab <

for any real numbers p, ¢, a, a, b with % + % =1, (1.2.23) becomes
/ V2 B2 41 < cz(s)/ 25V ¥ 1. (1.2.24)
M M
Choosing ¢ as the standard cut-off function, we obtain

/ v |B[** %1 < Cy(s) R_zs/ v¥ % 1
DR D2R

< Cy(s) R™**vol(D3R) sup v**,
D2r (1.2.25)

Noting that the minimal graph has Euclidean volume growth , then
(1.2.22) and (1.2.25) gives an estimate

|B|(0) < C’(n)R_lsglpv. (1.2.26)

This estimate yields the following result:
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THEOREM 1.2.4 ([E-H]) An entire smooth solution f of the minimal
surface equation satisfying

V11 =0 (VP +1F@)P) (1.2.27)

is a linear function and its graph is an affine subspace.

COROLLARY 1.2.5 ([M]) An entire smooth solution f of the minimal sur-
face equation with |V f| < C for any constant C' > 0 is a linear function
and its graph is an affine subspace.



CHAPTER 1I

Geometry of Grassmannian Manifolds

In order to prove Bernstein type theorems in higher codimension we
study the Gauss maps whose images in our case lie in Grassmannian
manifolds. It is natural to study their geometric properties, which is
interesting in its own right.

2.1 Riemannian Metric on G, ,,

Let R™" be an (m + n)—dimensional Euclidean space. The set of
all oriented n—subspaces (called n—planes) constitutes the Grassmannian
manifold G, ,,, which is the irreducible symmetric space.

Let P and @ be two points in Gy, ,,,. The angles between P and () are
defined by the critical values of the angle # between a nonzero vector x
in P and its orthogonal projection z* in ) as x runs through P. Assume
that e1,--- , e, are orthonormal vectors which span P, and f1,--- , f, for

Q. For a nonzero vector
€T = E Tafa,
(0%

its orthogonal projection in @ is
¥ = Z 5 fo
(0%
Thus, for any y in ) we have

(x —x*,y) =0.

Assume that
Aop = <€Oé7f5> .

69



70

We then have

TG = Z AaBTa,
e

and

<Za xaea,zﬁ xzfﬁ> B \/Za7ﬂAaﬁxal‘ﬁ
NI RVO I V2 Th ’

where A,3 = Zv Aa~agy is symmetric in « and (. It follows that the
angles 0, between P and @ (K. Jordan, 1875) are

cosf =

0o = cos 1 (Na), 0<0, < gv

where A2 are the eigenvalues of the symmetric matrix (Ayg). it is inde-
pendent of the choices of {¢;} in P and {f;} in Q.
The distance between P and @) are defined by

d(P,Q) = /> _02. (2.1)

The canonical Riemannian metric on Gy, ,, can be defined this
way. Let {eq,enti} be a local orthonormal frame field in R™*" where
i jyo=1,---,m; a,fB---=1,---,n; a,b,---=1,--- ,m+n (say,
n < m). Let {wa,wnii} be its dual frame field so that the Euclidean

metric is
_ 2 2
9= Wi+ wni
«@ i

The Levi-Civita connection forms wy;, of R™™™ are uniquely determined
by the structure equations

dwg = Wap N Wp,

2.2
Wap + wpe = 0. ( )
The Riemannian metric on Gy, ,, can be written as
ds® = Z W2 s (2.3)
a, i

From (2.2) and (2.3) it is easily seen that the curvature tensor of G,, ,,

1S
Rui gjvk 51 =0080~50ik041 4 0a~y0350:50k1 2.4)
— 0080750i10k; — 00503050k '



in a local orthonormal frame field {eq 4}, which is dual to {wa i}

The canonical Riemannian metric of Gy, ,, can also be expressed by
matrix calculation in a local coordinates. Let us introduce now. Let
Py be an oriented n-plane in R™*, We represent it by n vectors e,
which are complemented by m vectors e, ;, such that {e,,e,1;} form
an orthonormal base of R™*", Then we can span the n-planes P in a
neighborhood U of Py by n vectors f,:

fa = €q T Zailntis

where (zq;) are the local coordinates of P in U. The metric (2.3) on Gy, m,
in those local coordinates can be described as

ds* = tr((I, + Z2Z"Y Ydz (I, + 2" Z) " *dz") (2.5)

where Z = (z4;) is an (n x m)-matrix and I,, (res. I,,) denotes the
(n x n)-identity (res. m X m) matrix.

2.2 Geodesic Convex Sets on G, ;,

We know the usual convex geodesic ball Br(x) from a fixed point
2o in a Riemannian manifold N. When the sectional curvature of IV is
bounded above by k, then R < ﬁ For Grassmannian manifolds Gy, »,
we know that x = 2. It is interesting to find the larger one.

Let N be a Riemannian manifold with curvature tensor R(:,-). Let
~ be a geodesic issuing from xo with v(0) = xg and v(t) = x, where ¢ is
the arc length parameter. Define a self-adjoint map along the geodesic v

Ry :w — R(%,w)?.

Let v be a unit eigenvector of R g with eigenvalue p and (v,%(0)) = 0.
Let v(t) be the vector field obtained by parallel translation of v along
~. In the case of N being a locally symmetric space with nonnegative
sectional curvature, v(t) is an eigenvector of R4 ;) with eigenvalue p > 0,
namely

R(Y(t),v(t))y = po(t).
Thus,

1 .

— sin(y/ut)v(t), when p© >0

J(t):{ v sin(VAt)o(t)

to(t), when p =0
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is a Jacobi field along () with J(0) = 0. On the other hand, the Hessian
of the distance function r from xy can be computed by those Jacobi fields.
Now, we assume 7 is a geodesic without a conjugate point up to distance

r from x¢. For orthonormal vectors X,Y € 1’1 Sy (o) there exist unique
Jacobi fields J; and Jo such that

Jl(()) = JQ(O) = O, J1(7“) = X, Jz(?“) = Y,
since there is no conjugate point of zy along v. We then have
Hess(r)(X,Y) = (V4J1, Ja)

Assume that p; and v;(t) are eigenvalues and orthonormal eigenvec-
tors of Ry(;). Then

Ji(t) = —— sin(y/Rit)vi(t)

1
Vi

are n — 1 orthogonal Jacobi fields, where p; > 0.

1
sin(/;7) cos(y/1ir)dij
J

Hess(r)(J;, J;) =

and

Hess(r)(vi(r), v;(r)) = /i cot(y/pir) s (2.6)

(In the case p; = 0, Hess(r)(v;(r), vi(r)) = ).
On the other hand

3=

Ric(4,9) = Y (R(¥,vi) ¥, v1) Z'Un

i

Let us now compute those eigenvalues p; for Gy, .
Let 4 = zgi€qi and v = vg;€q ;. Then from (2.4)

(R(¥, €))%, V) = ZiTaiVaj + TajTalVsl — 2 T31TajVal- (2.7)
By an action of SO(m) x SO(n)

Toi = )\a(saip



where Y A2 = 1. Then, we have
Ryv = (AaA30aidgiva; + Ai&ljéawm —2XaA30a;0810a1)€8;
= (\5vgj + Aadajvsa — 2 XaXgdajvas)es;
()\%Uga + A2080 — 2 XaA3Vag)€8as
= when j=a=1,---,n;
/\%vgseﬁs, when j=s=n+1,---.,m.
For any n x m matrix V, there is an orthogonal decomposition
V =(V1,0)+ (V2,0) + (0, V3),

where V; is an n X n symmetric matrix, V5 is an n x n skew-symmetric
matrix and V3 is an n x (m — n) matrix. For vge = vag

Ryvgacsa = (Aa = Ag)*Upacsa-
For vgo = —vap
Rﬁvgaeﬁa = ()\a + )\g)zvﬁaega.

In summary, R4 has eigenvalues:

)\% with multiplicity m —n

)\721 with multiplicity m —n
(Ao + Ag)? with multiplicity 1
(Ao — Ag)? with multiplicity 1

0 with multiplicity n —1

for each pair o and § with o # . From (2.6) it follows that the eigen-
values of the Hessian of the distance function r from a fixed point at the
direction X = (24;) = (Aa0ai) are the same as the ones at X1 = (|Aa|dai)-
They are as follows.

A1 cot(A17r) with multiplicity m — n

A cOt (A, 1) with multiplicity m — n
(Ao + Ag) cot(Aq + Ag)r  with multiplicity 1
(Ao — Ag) cot(Aq — A\g)r  with multiplicity 1
1

— with multiplicity n —1
r

(2.8)
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where A\, > 0 without loss of generality.
Let (z4i) = (Aabai) be a unit tangent vector at Py. The geodesic
from Py at the direction (z,;) in U is (see [W])

tan(A1t) 0

(20i(t)) = 0 (2.9)
0 tan(\,t)

where t is the arc length parameter and 0 < t < 2|j\ra| with |\, =
max([Ar],- - [An]).

Now, let us define an open set Byx(Fp) in U C Gy, - In U we have
the normal coordinates around Py, and then the normal polar coordinates
around FPy. Define Bjx(Fp) in normal polar coordinates around Py as
follows:

v
BJXP :{X,t;X: Aa5a1,0§t<txz },
(Fo) = | (X0 X = (Aadai) ONESEY)

(2.10)
where Ay and \g/ are two eigenvalues with largest absolute values. From
(2.9) we see that Byx(Fp) lies inside the cut locus of Py. We also know
from (2.8) that the square of the distance function r? from P, is a strictly
convex smooth function in Byx (Fp).

REMARK The above definition of Byx (Fy) is for the case of m >n > 1.
If n =1, Gy, is the usual sphere S™ and the defined set is the open
hemisphere as usual.

We verify that Byx(P) is a geodesic convex set below. Let P =
((Aadai), t) and Q@ = ((Adai),t") be two points in Byx(Fp). Then the
local expression of P in U is the n X m matrix (tan(A\yt)ds;), similarly
that of @ is (tan(ALt")d4;) . Consider a curve I' between P and @) defined
by

(tan(Aat(1 — h) + N t'h)dqi)

in U, there 0 < h < 1 is the parameter for I'. We can prove that I is a
geodesic.
Let P’ be the middle point defined by

Aot + A
(tan (——; & )&m‘)

in U. We can prove that geodesic I' has the following properties:

(1) I' C BJX(PO);
(2) I'c BJX(P/).
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These two properties of the geodesic I' mean that any minimal geo-
desic v from P to @ lies in Bjx (Fp) and has length less than 2tx, where
X is the unit tangent vector of v at P. On the other hand, we already
computed all Jacobi fields along any geodesic in Gy, ,, which means that
any geodesic from P of length < 2tx has no conjugate points and that
the squared distance function from P remains strictly convex along this
geodesic for length < tx. Thus, we conclude that Bjx (FPp) shares all the
properties of the usual convex geodesic ball. In summary, we have

THEOREM 2.1 ([J-X] In Byx(Fy) the square of the distance function
from its center Py is a smooth strictly convex function. Furthermore,
Bjx (Pp) is a convex set, namely any two points in Byx (FPy) can be joined
in Byx (Py) by a unique geodesic arc. This arc is the shortest connection
between its end points and thus in particular does not contain a pair of
conjugate points.

REMARK In the Grassmannian manifold there is the usual convex geo-
desic ball Br(P) of radius

r<{

From (2.10) it is seen that Br(FPy) C Byx(Fo).

when min(m,n) > 1;

[\
<

w3

when min(m,n) = 1.

Any point in a Grassmannian manifold can be described by an
n—vector. The inner product of two n—vectors is also related to its
distance in G, ,,,. We study this relation in Byx (Fp).

Let P(t) be any n—plane in U of Py which is spanned by

fa = ea + ZaiCnti,
where z,; is defined by (2.9). Let
f1 =cos(Ait)f1, -+, fn = cos(Ant) fn.
Since |fo| = W, the vectors fq,--- , fn are orthonormal.

Therefore, we can define the inner product (P, P) of n—planes Py =
et N---ANeyand P= fi A--- A f,, by

(Py, P) = det (<ea,f5>) .
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It follows that
cos(A1t) 0
(Py, P(t)) = det cos{ot) § _ ﬁ cos(Aat).
0 | cos(Ant) -
By an elementary method we prove that
THEOREM 2.2 ([FC])

max{(Py, P); P € f)B;W (Po)} = cos™? (2\7;%) , § = min(m,n).
(2.11)
THEOREM 2.3 ([J-X])
max{(Po, P): P € OByx(Py)} = % (2.12)

2.3 Convex functions on G, ,,

We view now the Grassmannian manifolds as submanifolds in Eu-
clidean space via Pliicker imbedding.

Fix Py € Gy, 1, in the sequel, which is expressed by a unit n—vector
g1 N---Nep. For any P € Gy, p,, expressed by an n—vector eg A--- A ey,
we define an important function on Gy, ,

w="(P,Py)=(e1 A=+ Nep,e1 AN+ ANey) = det W,

where W = ((e;,¢;)).
Denote
U={P e Gy :w(P) >0}

Let {€44} be m vectors such that {€;,€,44} form an orthornormal basis
of R™™™, Then we can span arbitrary P € U by n vectors f;:

fi =&+ Zia€n+as



where Z = (z;4) are the local coordinates of P in U. Here and in the
sequel we use the summation convention and agree the range of indices:

I1<u,5<m l<a,f<m.
The Jordan angles between P and Py are defined by
0, = arccos(Ay),

where A\, > 0 and A2 are the eigenvalues of the symmetric matrix W1'W.
On U we can define
vV=w

Then it is easily seen that
m
1
v(P) = [det(I, + ZZ")]* = H sec O,
a=1

Let F;, be the matrix with 1 in the intersection of row 7 and column
a and 0 otherwise. Denote giq,jg = (Eia, E;s) and let (gw‘ﬂﬂ) be the
inverse matrix of (gm,m). Then,
(1+ )2 (14 A2)? Eig

form an orthonormal basis of TpGy, ,,, where A\, = tanf,. Denote its
dual basis in T5 Gy, m by wiq-
A lengthy computation yields

Hess(v)p = Z v Wi, + Z(l +A2)v Wi, +v dvedo

m+1<i<n,«

\/§ 2
Yo+ AaAﬂ)v(7(wa5 + wga) ) (2.13)
a<pf
V2 2
(1= 2ada)v (5 (wap = waa)) |-
For any real number a let V, = {P € G,,,,,, v(P) < a}. From Theorem
2.2 we know that
Vo C Byx and Vgﬂ?]x%@

Hess(v) p is positive definite if and only if 6, + 63 < 7 for arbitrary
«Q 79 08, ie., Pe BJX(PO).
From (2.13) it is easy to get an estimate
Hess(v) > v(2 — v)g + v tdv @ dv on Vs.

For later applications the above estimate is not accurate enough.
Using the radial compensation technique the estimate could be refined.
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THEOREM 2.3 ([X-Y2])
v is a convex function on B;x(Fy) C U C G, p,, and

v—1 p+1
3 +
pv(ve — 1) pv

Hess(v) > v(2 —v)g + ( )dv ® dv (2.14)

on Vs, where g is the metric tensor on G,.m and p = min(n, m).
REMARK For any a < 2, the sub-level set V,, is a convex set in Gy, .

REMARK  The sectional curvature varies in [0,2] under the canonical
Riemannian metric on G, ,,. By the standard Hessian comparison the-
orem we have

Hess(p) > v/2 cot(vV2p)(g — dp ® dp), (2.15)

where p is the distance function from a fixed point in Gy, .
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CHAPTER III

Bernstein Type Theorems for Higher Codimension

3.1 Harmonic Gauss Maps

In this section some basic notions on harmonic Gauss maps will be
described. Here we only introduce some related notions and formulas.
For more detail, please consult author’s book [X3].

Let (M, g) and (N, h) be Riemannian manifolds with metric tensors
g and h, respectively. Harmonic maps are described as critical points of
the following energy functional

where e(f) stands for the energy density. The Euler-Lagrange equation
of the energy functional is

() =0,
where 7(f) is the tension field. In local coordinates
e(f) = ij 8_fﬁ @h
— 9 9z 9 OV

L Or7 00 0
PY 9t B’ oy’

T(f) = (An f* +¢"T

where I'g denotes the Christoffel symbols of the target manifold N.
A Riemannian manifold M is said to be simple, if it can be described
by coordinates x on R™ with a metric

ds? = gijda:ida:j,
for which there exist positive numbers A and p such that

MNEP < g8 < pléf (3.1)
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for all x and £ in R™. In other words, M is topologically R™ with a metric
for which the associated Laplace operator is uniformly elliptic on R™.

Hildebrandt-Jost-Widman derived Hoélder estimates for harmonic
maps with values in Riemannian manifolds with an upper bound for
sectional curvature and by a scaling argument then concluded a Liouville
type theorem for harmonic maps under certain assumptions. The Holder
estimates needed a bound on the radius of the image, and examples show
that [H-J-W] had achieved the optimal bound in the general framework
for that paper. Precisely, they proved that

THEOREM 3.1 ([H-J-W]) Let f be a harmonic map from a simple or
compact Riemannian manifold M into a complete Riemannian manifold
N, the sectional curvature of which is bounded above by a constant k > 0.
Denote by Br(Q) a geodesic ball in N with radius R < QWW which does

not meet the cut locus of its center (). Assume also that the range f(M)
of the map f is contained in Br(Q). Then f is a constant map.

REMARK In the case where Br(Q) is replaced by Bjx(Fp), which is
constructed in the last section, the iteration technique in [H-J-W] is still
applicable and the result remains true.

Let M — R™' be an n-dimensional oriented submanifold in Eu-
clidean space. Choose an orthonormal frame field {ey, ..., €, 1y } in R™+"
such that the e/ s are tangent to M. Let {wq,...,wmin} be its coframe
field. By the structure equations of R™*" along M

Wntia = hiaﬁ“’ﬁ;

where the h;og, the coefficients of the second fundamental form of M
in R™*™  are symmetric in o and 3. Let 0 be the origin of R™*",
Let SO(m + n) be the manifold consisting of all the orthonormal
frames (0;eq,en+i). Let P = {(x;e1,....,en);x € M,e, € T, M}
be the principal bundle of orthonormal tangent frames over M,Q =
{(z;ent1s s min);c € M,ent; € NM} be the principal bundle of
orthonormal normal frames over M, then 7 : P & @) — M is the projec-
tion with fiber SO(m) x SO(n), i : P & Q — SO(m + n) is the natural
inclusion.
The generalized Gauss map v: M — G, ;, is defined by

Y(z) =T, M € Gy

via the parallel translation in R™*" for Vo € M. Thus, the following
commutative diagram holds



PoHQ —— SO(m+n)

ﬁl lw
M ——  Gum

The energy density of the Gauss map (see [X3] Chap.3, §3.1) is

1

1
e(y) = B (Vx€isVx€i) = §|B|2'

E. Ruh and J. Vilms discovered the relation between the property
of the submanifold and the harmonicity of its Gauss map in [R-V] (see
§3.1.5 in [X3] for its simplified proof).

THEOREM 3.2 Let M be a submanifold in R™™™. Then the mean cur-
vature vector of M is parallel if and only if its Gauss map is a harmonic
map.

3.2 Hildebrandt-Jost-Widman’s Theorem

The geometric meaning of the condition in the Hildebrandt-Jost-
Widman’s theorem is that the image under the Gauss map lies in a closed
subset of an open geodesic ball of the radius @w. From Theorem 2.2,
Theorem 3.1 and Theorem 3.2, we immediately obtain the result as fol-
lows. It is a generalization of Moser’s Theorem (see Corollary 1.2.5) to
higher codimension.

THEOREM 3.3 ([H-J-W]) Let 2% = f%z),a = 1,---,m, = =
(xt,--- ,2™) € R™ be the C? solution to the system of minimal surface
equations. Let there exist 3, where

B < cos™?® T K= Loifs=1 s =min(m,n) (3.2)
wsK) 2 if s>27 7 ’ ’

such that for any x € R",

det (&j +) %’Z %)] < B, (3.3)

then f1,.-. | f™ are affine linear functions on R"™, whose graph is an affine
n—plane in R™T™,

(SIS

Aj =
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3.3 Jost-Xin’s Theorem

From Theorem 2.3, Theorem 3.1 and Theorem 3.2, we obtain an
improved result.
THEOREM 3.4 ([J-X]) Let 2¢ = f%(z',---,2"), a = 1,---,m, be
smooth functions defined everywhere in R™. Suppose their graph M =
(z, f(z)) is a submanifold with parallel mean curvature in R"*™. Suppose
that there exists a number (3,

2 when m > 2,
Po < (3.4)
oo  when m = 1;
such that )
B 8fa afa 2
Af = |det ((513' + Za: D %)] < Bo. (3.5)
Then f!,---, f™ has to be affine linear representing an affine n-plane.

3.4 Curvature Estimates for Higher Codimension

It is natural to study the situations:
(1) the image under the Gauss map lies in an open geodesic ball of

radius \/Tiﬂ' in Gy, ,, in Theorem 3.3.

(2) the image under the Gauss map lies in open set Vo C Bjx,
namely, when [y in the condition (3.4) and (3.5) of the Theo-
rem 3.4 approach to 2.

Theorem 3.3 and Theorem 3.4 use Theorem 3.1, the Liouville type
theorem for harmonic maps. The derivation of the Theorem need closed
conditions and it is fail to deal with the above questions. Therefore, we
are interested to generalize the curvature estimates to higher codimen-
sion.

x Simons-Bochner Type Formula in Higher Codimension

From (1.1.22) we have

VB =-B-B. (3.6)
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In the case when m > 2, there is a refined estimate
. 3 4
<B+QB>§§wy
Substituting it into (3.6) gives
2 3
<V B,B> > —§|B| .

It follows that
A|B|?> > =3|B|* + 2|V B2 (3.7)

Schoen-Yau’s formula can also be generalized to higher codimension,
namely (in [X1] we derived this type formula in more general situation)

2
VB[ = (1+ ) [viBlI"
At last, we have

A|B* > 2 (1 + %) |V|B||2 —3|B|*%. (3.8)

* Schoen-Simon-Yau’s Estimates in Higher Codimension
We consider smooth functions on an open geodesic ball Bs_(F) C
4

G,,m of radius ‘/T§7r and centered at Py. Those are useful for our curva-

ture estimates later. Let

U= COS(\/§p),

where p is the distance function from Fy in Gy, ,,. We have

'LL/ = _\/§Sin(\/§p)7

u” = —2cos(V2p).
Then, from (2.15)

Hess(u) = u'Hess(p) + v’ dp & dp
< —2cos(V2p)(g — dp @ dp) — 2 cos(vV2p)dp & dp = —2ug.
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The composition function A1 = uw o~ of u with the Gauss map ~ defines
a function on M. Using the composition formula, we have

Ahy = Hess(u)(7x€;, 7€:) + du(7(7))

< —2|B|*h, (39)
where 7(7y) is the tension field of the Gauss map, which is zero, provided
M has parallel mean curvature by the Ruh-Vilms theorem mentioned
above.

For a stable minimal hypersurface there is the stability inequality,
which is one of main ingredient for Schoen-Simon-Yau’s curvature esi-
mates for stable minimal hypersurfaces. For minimal submanifolds with
the Gauss image restriction we have stronger inequality as shown in (3.10)
below. With the aid of (3.9), we immediately have the following lemma.
LEMMA 3.5 Let M be an n-dimensional minimal submanifold of R"*™
(M needs not be complete), if the Gauss image of M is contained in an

open geodesic ball of radius ‘/T§7r in Gy, y,, then we have

/ IVo|? %1 > 2/ |B|?¢% x 1 (3.10)
M M

for any function ¢ with compact support D C M.

(3.8) and (3.10) enable us to carry out Schoen-Simon-Yau type esti-
mates. Let r be a function on M with |Vr| < 1. For any R € [0, Ry,
where Ry = sup,; r, suppose

Mp={zxe M, r<R}

is compact.

THEOREM 3.6 ([X-Y1]) Let M be an n-dimensional minimal submani-
folds of R" ™ If the Gauss image of My is contained in an open geodesic

ball of radius \/7571' in Gy, y,, then we have the LP-estimate

B o asyry < Crp)(L =)' R7 VOI(MR)s  (3.11)

for arbitrary 6 € (0,1) and

pe 373 n

2 4 6
4,4+ + - 1+—).



Based on the estimate (2.14) we can define auxiliary functions on
Vo ={P € Gy m, v(P)<2}. Let

h=v""2-v)k

define a positive function on Vs, where k = 3 + 2% and s = min(m,n).
From (2.14) we have (see (4.4) in [X-Y2])

Hess(h) < — (g + %) hg, (3.12)

where g is the metric tensor on Gy, ;.

We assume that the image of M under the Gauss map is contained
in Vo C Gy, . Thus, we have the function h =ho ~ defined on M.
We denote h for h in the sequel for simplicity. From (3.12) and the
composition formula we have

Ah < — (§ + 1) | B|?h.
2 s

We then have strong stability inequality as follows.

LEMMA 3.7 Let M be an n-dimensional minimal submanifold of R+
(M needs not be complete), if the Gauss image of M is contained in
{P €UC Gy n:v(P) <2}, then we have

/ Vo[ + 1> ( / |B|?¢? % 1 (3.13)

for any function ¢ with compact support D C M.

(3.8) and (3.13) enables us to carry out the Schoen-Simon-Yau type
estimates.

THEOREM 3.8 ([X-Y2])Let M be an n-dimensional minimal subman-
ifolds of R™*™. If the Gauss image of Mp is contained in {P € U C
Gp.m : v(P) < 2}, then we have the estimate
1 1
1Bl Lo gy oy < C D) (1= 0) "R Vol(Mp)  (3.14)

for arbitrary 6 € (0,1) and

4,4+;—8+§\/(3+2)(6+§)).

n
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x Ecker-Huisken’s Estimates in Higher Codimension

We consider smooth function hs on an open geodesic ball B.5_(FPy) C
4

G,,,m of radius V25 and centered at Py defined by

4
hy = sec?(V/2p),
where p is the distance function from Fy in G, ,,. We then have

Hess(hy) = hhHess(p) + hadp & dp

3.15
> 4hsy g + ghz_ldhz ® dha (3.15)

We assume that the image under the Gauss map of a minimal
submanifold M — R™T" is contained in an open geodesic ball of

B _(Po) C Gy of radius @77 and centered at Py. Then we have
4

a function iLg = hg oy on M. We denote hy for iLg in the sequel for

simplicity. From (3.15) and the composition formula we have

3

2
(3.8) and (3.16) we can carry out Ecker-Huisken’s estimates and ob-

tain the following result.

THEOREM 3.9 ([X-Y1]) Let x € M, R > 0 such that the image of

Dpg(z) under the Gauss map lies in an open geodesic ball of radius %ﬂ'
in Gy, . Then, there exists C; = Cy(n), such that

|B|2p(x) < C’(n,p)R_(”+2p)( sup he)PVol(Dgr(z)),
Dr(x)

Ahg > 4ho| B> + Shy Y Vhy|?. (3.16)

for arbitrary p > C1.

In the case of the image of M under the Gauss map is contained in
Vo C G- Let hg = h=2. We then have

3 1
Ahs >3 hs|B]* + (5 + g)11371|Vh3|2. (3.17)
From (3.8) and (3.17) we have the result as follows.

THEOREM 3.10 ([X-Y2]) Let « € M, R > 0 such that the image of
Dpr(z) under the Gauss map lies in {P € U C Gy, ., : v(P) < 2}. Then,
there exists C1 = C1(n), such that

|B|2p(a:) < C’(n,p)R_(”+2p)( sup hs)?Vol(Dg(z)), (3.18)
DR(x)

for arbitrary p > C4
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*+ Geometric Conclusions

Let Py € Gy, be a fixed point which is described by Py = €1+ - A&y,
where €1, - -+ ,&, are orthonormal vectors in R™ ", Choose complemen-
tary orthonormal vectors €,11, -+ ,€ptm, Such that {e1,- -+ ,en,€nt1s " yEntm}
is an orhtonormal base in R™T™,

Let p: R™™™ — R"™ be the natural projection defined by

p(ajl’... ’xn;xn_i_l’... ,xm+n) = (lel,"' ’xn)’

which induces a map from M to R™. It is a smooth map from a complete
manifold to R™. It is not difficult to see that p increases the distance with
respect to a homothetic change of the induced metric on M, provided

w—function on M has a positive lower bound. In our first cosideration

S
w > Wy = (cos %ﬁ) and the second case w > wg = %

PROPOSITION 3.11 Let M be a complete submanifold in R™"™. If the
w—function is bounded below by a positive constant wgy. Then M is an
entire graph with Euclidean volume growth. In particular, if the Gauss
image of M is contained in a geodesic ball of radius %W or the Gauss
image of M is contained in {P € U C Gy, ,, : v(P) < 2}, then M is an

entire graph with Euclidean volume growth.

From Proposition 3.11 and Theorem 3.6, Theorem 3.8, Theorem 3.9
and Theorem 3.10 we obtain Bernstein type theorems.

THEOREM 3.12 ([X-Y1]) Let M be a complete minimal n-dimensional
submanifold in R" ™™ with n < 6 and m > 2. If the Gauss image of M is

contained in an open geodesic ball of G, ,, centered at Py and of radius

@w, then M has to be an affine linear subspace.

THEOREM 3.13 ([X-Y2]) Let M = (z, f(x)) be an n-dimensional entire
minimal graph given by m functions f(z!,---,2") with n < 5 and

m > 2. If
ofeofe\|?
Af = [det (513 + E 8]3; %)] < 2,

then f% has to be affine linear functions representing an affine n-plane.

For larger dimension n, we need growth conditions (3.19) and (3.20)
below when the Gauss images approach to the boundary of the open
geodesic convex sets.

THEOREM 3.14 ([X-Y1]) Let M be a complete minimal n-dimensional
submanifold in R™*™, If the Gauss image of M is contained in an open
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geodesic ball of Gy, ., centered at Py and of radius %w, and (%ﬂ' —po

7) ! has growth

(%W—pov)_l = o(R), (3.19)

where p denotes the distance on G, ,, from Py and R is the Euclidean
distance from any point in M. Then M has to be an affine linear subspace.

THEOREM 3.15 ([X-Y2]) Let M = (z, f(x)) be an n-dimensional entire
minimal graph given by m functions f®(xt,--- ,x™) with m > 2. If

of* of“ g
A= [det (5ij+z 8‘; %)] <2,

and
(2- 257" = o(RY), (3.20)

where R? = |z|? + |f|?. Then f¢ has to be affine linear functions and
hence M has to be an affine linear subspace.
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SOME FORMULAE ON
ADDITIVE FUNCTIONALS OF
SYMMETRIC MARKOV PROCESSES

MasavyosHl TAKEDA

1 Introduction

A. Beurling and J. Deny [4], [5] initiated the theory of Dirichlet forms. Using potential
theory of Dirichlet forms, M. Fukushima [26] succeeded in the construction of symmetric
Hunt processes associated with Dirichlet forms. Since then, the theory of Dirichlet forms
has been developed by many persons as a useful tool for studying symmetric Markov
processes (see e.g. [8], [28], [42], [54]). The theory of Dirichlet forms is an L*-theory, and
which is a reason why the theory is suitable for treating singular Markov processes. On
the other hand, the theory of Markov processes is, in a sense, an L'-theory. To bridge this
gap, we have studied the LP-independence of growth bounds of Markov semigroups, more
generally, of generalized Feynman-Kac (Schrédinger) semigroups ([60], [63], [69]). The
LP-independence enables us to control L*°-properties of the symmetric Markov process;
in fact, we can state, in terms of the bottom of L2-spectrum, a necessary and sufficient
condition for the integrability of Feynman-Kac functionals ([61]) and for the stability of
Gaussian both side estimates of Schrodinger heat kernels ([62]). For the proof of the
LP-independence, we apply arguments in the Donsker-Varadhan large deviation theory
([22], [23]). In particular, the identification of the rate function with its Dirichlet form
is crucial. The main objective of this note is to derive asymptotic properties of additive
functionals by applying the LP-independence to time-changed processes.

The theory of random time-changes of Markov processes is an fundamental tool for
studying positive continuous additive functionals (PCAF’s). We realize in [15] that the
random time-change theory is still finding wide application in boundary theory of Markov
processes. If a Markov process is symmetric, then the time-changed process is also sym-
metric and its generating Dirichlet form is completely identified ([15], [28]). By employing
the time-change theory in Dirichlet forms we can give simple proofs of following two for-

mulas of M. Kac and extend them.
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The first formula is in [36]: let (B;, P¥) be the Brownian motion on the 3-dimensional
Euclidean space R3. Let K be a compact set of R® with smooth boundary (so-called Kac
reqularity). Then

(1.1) lim %logIP’gV (/OO L (By)dt > 6) = —)\i.

B—00 0 2

Here 1/); is the maximum eigenvalue of the operator G defined by

|3‘jf(_y)y|dy, f € L*(K;dx).

(1.2) i) =~ /K

This formula is regarded as one on the lifetime of a time-changed process. More precisely,
let (V;,P,) be the time-changed process by the PCAF fg 1x(Bs)ds. Noting that the
lifetime ¢ of Y; equals [;° 15(B;)dt, we see that the probability in the equation (1.1) equals
Pl,(f > 3). The operator G is the Green operator of the time-changed process Y; and Ay
the L?-principal eigenvalue of the generator of Y;. Hence the asymptotic of P,({ > 3) is
controlled by an L2-quantity Ao, and thus we can think that the LP-independence for the
time-changed process is behind the first formula; indeed, we extend, in Section 4, the first
formula by employing the LP-independence for the time-changed process.

The second formula is in [37]: for a positive function V' in L'(R?), define
1 ¢
(1.3) T(V) = lim - (1 —E¥ (e—fo V<Bs>d8)) dz.
t—oo t R3

This is a probabilistic representation of the scattering length (M. Kac [37]). He proved
that for a compact set K of R? with smooth boundary,

(1.4) [(alg) — Cap(K) as a — oo,

where Cap is the Newtonian capacity. This formula is also regarded as one on the lifetime

¢ of the time-changed process Y; above. In fact, we can show that

[(alg) = a/KIEgV (exp (—a /OOO 1K(Bt)dt)) dz,

and the right hand side is written by o [, E,(exp(—a())dz. As an extension of the second
formula (1.4), M. Kac conjectured in [37] that for any positive L'-function V' with compact
support, the limit

v = lim ['(aV)

a—0o0
equals the capacity of the support of V. M. Taylor [75] probabilistically verified the
conjecture, and H. Tamura [74] proved it analytically. Y. Takahashi [57] gave a new

probabilistic representation of I'(V') for more general symmetric Markov processes and
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proved that if V' is a positive continuous function with compact support, then the limit
vy exists and depends only on the set {x : V(z) > 0}. In Section 6, we extend their
results and give another simple proof of the conjecture of Kac by using the time-change
argument in the Dirichlet space theory.

In other sections, we will treat the topics relevant to the LP-independence and the
random time-change. In Section 5, we treat the gaugeability, i.e. the integrability of
Feynman-Kac functionals, as an application of the LP-independence. As applications of
the gaugeability, we consider the penalization problem in Section 7, 8 and 9 and the
stability of heat kernels in Section 10. In the large deviation principle and the Feynman-
Kac penalization, the ergodic property of symmetric Markov processes plays an important

role. In Section 11, we summarize the ergodic theory in Dirichlet spaces.

2 Donsker-Varadhan type large deviation principle

The Donsker-Varadhan large deviation theory for the occupation time distributions of
Markov processes is considerably tractable in symmetric situations. M. Donsker and
S.R.S. Varadhan introduced the so-called I-function as the rate function in their large
deviation principle. While the evaluation of the I-function is generally hard, it becomes
easier for symmetric Markov processes; the I-function has been identified with the Dirich-
let form (Donsker-Varadhan [22]). Moreover, we can derive the Donsker-Varadhan type
large deviation principle for a general, not necessarily conservative symmetric Markov pro-
cesses by invoking an original idea in Donsker-Varadhan [21], where the one-dimensional
Brownian motion was treated.

Let X be a locally compact separable metric space and m a positive Radon measure
on X with full support. Let M = (2, F, F, Xy, Py, ¢) be an m-symmetric Markov process.
2 is specifically taken to be the space of all right continuous functions from [0, oo] into
the one point comactification Xa = X U {A} of X possessing the left limits such that
w(t) = A for any t > ((w) = inf{s > 0 : w(s) = A} and w(oco) = A. The random
variable ( is called the lifetime which can be finite and X; is defined by X;(w) = w(t) for
w e Q, t>0.{F} is the minimal (augmented) admissible filtration.

Let (£, D(€)) be the Dirichlet form on L*(X;m) generated by M:

D) = {u € L*(X;m): %m%%(u — P, W)y < oo}

(2.1)

o1
E(u,v) = %1_{% g(u — DUy V).

We assume that the Dirichlet form (€, D(E)) is reqular, that is, D(E) N Cy(X) is dense in

D(€) with respect to &-norm and dense in Cy(X') with respect to the uniform norm. Here
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Co(X) is the space of continuous functions on X with compact support and & (u,u) =
E(u, u)+(u, u)y. We define the extended Dirichlet space D (&) by the family of measurable
function v on X such that |u| < co m-a.e. and there exists an £-Cauchy sequence {u,}
of functions in D(E) such that lim, . u, = u m-a.e.

We define the (1-)capacity Cap associated with the Dirichlet form (€, D(E)) as follows:
for any open set O C X,

Cap(0) = inf{& (u,u) : w € D(E),u > 1, m-a.e. on O}
and for any Borel set A C X,
Cap(A) = inf{Cap(O) : O is open, O D A}.

We define the 0-order capacity Cap, by replacing & and D(€) with £ and D.(€). Let
A be a subset of X. A statement depending on z € A is said to hold q.e. on A if there
exists a set N C A of zero capacity such that the statement is true for every z € A\ N.
“q.e.” is an abbreviation of “quasi-everywhere”. A real valued function u defined qg.e. on
X is said to be quasi continuous if for any € > 0 there exists an open set G C X such that
Cap(G) < € and u|x\¢ is finite and continuous. Here, u|x\¢ denotes the restriction of u
to X \ G. Each function u in D() admits a quasi-continuous version @, that is, u = @
m-a.e. In the sequel, we always assume that every function u € D(E) is represented by
its quasi-continuous version.

We denote by {p;}+>0 and { R4 }as0 the semigroup and the resolvent of M, p,f(z) =
E.(f(Xy)) and Ro f(x) = Eo( [y e~ f(X,)dt). We now make following assumptions:

I. (Irreducibility) If a Borel set A is pi-invariant, i.e., pi(1af)(z) = Lapef(z) m-a.e. for
any f € L*(X;m) N By(X) and ¢ > 0, then A satisfies either m(A) =0 or m(X \ 4) = 0.
Here B,(X) is the space of bounded Borel functions on X.

I1. (Strong Feller Property) R;(By(X)) C Cy(X), where Cy,(X) is the space of bounded

continuous functions.

ITI. (Tightness Property) For any ¢ > 0, there exists a compact set K such that

sup,ex Rilke(z) < e. Here 1ke is the indicator function of the complement of K.

Remark 2.1. (i) It follows from the assumption II that the resolvent kernel R;(x,dy) is
absolutely continuous with respect to m and so is the transitions probability p,(z, dy).
(ii) If m(X) < oo and [|Ry||1.00 < 00, then ||Rilke|loo < ||R1ll1,00m(K€) and the assump-
tion IIT is fulfilled. Here || R;]/1.0 is the operator norm from L'(X;m) to L>(X;m).

(iii) If R11 € Coo(X), then the assumption II1 is fulfilled. Here C'(X) is the set of continu-
ous functions vanishing at infinity. If Co(X) is invariant under Ry, Ry (Coo(X)) C Coo(X),
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then Ry1 € Co(X) is equivalent to the assumption III. If the Markov process M is conser-
vative, then the assumption III is equivalent to that for any € > 0, there exists a compact
set K such that inf,ex Ri1x(z) > 1 — ¢, which implies a strong ergodicity.

(iv) Let P be the set of probability measures on X equipped with the weak topology. We
define the subset P,; of P by

PM={u2-m:u€D(8),/u2dm=1, E(u,u)SM}, M > 0.
X

By combining the assumption III with the inequality (5.14) below, we see that Py is
tight; indeed, for any compact set K C X and any u?-m € Py

(2.2) / urdm < || Rilge]|oo - (S(U, w) +/ u2dm> < (M + 1)||R11ke]|oo-
c X

([55]).-
We define the function Iz on P by

IS(M):{ EWINVT) ifp=f-m. VTeD(E)

00 otherwise.

For w € ) with ((w) > t, we define the normalized occupation time distribution L;(w) € P
by

1 t
L(@)(A) = / La(Xa(w))ds, A€ B(X).
0
We then have a version of Donsker-Varadhan type large deviation principle.

Theorem 2.2. (i) ([58]) For any open set G of P
1
liminf —logP,(L; € G,t < () > — inf Ie(u) for all v € P.
t—oo T ueG
(ii) For any closed set K of P

1
limsup —logsupP,(L; € K,t < () < — inf I¢(p).
t—00 reX HeEK

We would like to make comments on the theorem above. Denote by A the generator
of the Markov process M and set

D (A)={Rof: a>0, f€ L*X;m)NC;(X) and f £ 0},

where C;f (X) denotes the set of non-negative bounded continuous functions. We see that
any function in DT (A) is strictly positive by the assumption I. We define the multiplicative
functional L¢, ¢ = R,f € D*(A), by

Xt ¢ A
(2.3) LY = z((Xo)) exp (— 0 f(xg%) ly<qy, A¢p=aR.f— .
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Let M? = (Q, X;,P%, () be the transformed process of M by LY
P? (F;t < () =By (L1pit < ¢), F e

For the proof of Theorem 2.2 (i), the symmetry of the Markov process M is crucial; indeed,
even if M is explosive or of killing inside, M? turns out to be an ergodic Markov process
with invariant measure ¢?m. For the sketch of the proof of this fact, see Section 11. If K
is a compact subset of P, then Theorem 2.2 (ii) holds without the assumption III. The
assumption III is crucial to strengthen the statement to any closed set. Moreover, the
assumption III is crucial to show the uniform upper bound in initial points. In fact, the
uniform upper bound is not valid for the Ornstein-Uhlenbeck process, while the locally
uniform upper bound is valid ([23],[78]). Note that the Ornstein-Uhlenbeck process does
not satisfy the assumption III, because lim, ,, Rilgc(z) = 1. As stated in Remark 2.1
(iii), the assumption III implies a strong ergodicity for conservative Markov processes.

For one-dimensional diffusion processes, see Example 2.2 below.

Let us define the function I on P by

Au
U+ €

(2.4) I(p) =— inf /X

ueDt(A)
e>0

dpu.

The function [ is a version of the so-called Donsker-Varadhan I-function introduced in
[22]. Note that u = R,f € DT (A) is not alway a function uniformly lower-bounded by a
positive constant even if f is so, because the Markov process M is allowed to be explosive.
Thus we add positive constant € to make the function Au/(u + €) a bounded continuous
function. This is necessary for the proof of Theorem 2.2 (ii), because the weak topology
is embedded in the space P. In fact, we first prove the upper bound with respect to I
and then identify I with [¢:

Proposition 2.3.
I(p) = Ie(p),  peP.

To treat symmetric Markov processes with general state space, Jain and Krylov [35] in-
troduce another modification of I-function. We see from Proposition 2.3 that the function

I¢ is lower semi-continuous with respect to the weak topology on P.

Corollary 2.4. (Extended variational formula for Dirichlet forms) For f € D(E)

—Au
2.5 E(f,f)= sup/ 2dm.
(2.5 0= |
€
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Let Ay be the bottom of spectrum:

(2.6) Ay = inf{g(f, f): feDE), / fidm = 1}.
X
Using Corollary 2.4, we have for any u € D*(A) and € > 0,
(2.7) Ao > inf —(z)
' 2= 5w +e v

For a generalization of Corollary 2.4, see [53]. For an extensive application of the varia-

tional formula for Dirichlet forms, see [12].

S.R.S. Varadhan [77] gave an abstract formulation for the large deviation principle.
Theorem 2.2 is slightly different from the lower estimate and the upper estimate in his
formulation; since the Markov process is not supposed to be conservative, we can not
regard Theorem 2.2 as the large deviation principle from the invariant measure. By this

reason, we consider the normalized probability measure @x,t on P defined by

P,(L, € B,t < ()

(28) QilB) = =52

, BeB(P)

The family of probability measures {@az,t}t>0 then satisfies the large deviation principle
with the rate function J(v) := I¢(v) — A\a, v € P, as t — oo in Varadhan’s formulation,
where )y is the bottom of the spectrum of the L*-generator A for £ defined by (2.6). In
other words, {@m,t}t>0 obeys the full large deviation principle with the good rate function
J(v). In addition, we shall see that the ground state ¢q of the operator A exists and ¢3-m
is a unique probability measure for which J(v) = 0. On account of these facts, we shall

reinterpret Theorem 2.2 as a large deviation principle from the ground state.

A function ¢y on X is called a ground state of the L?-generator A for & if
$o € F, |[doll2 =1 and E(¢o, do) = Ao

Lemma 2.5. ([70]) Assume that M satisfies I~III.  Then there exists a ground state
oo of A uniquely up to a sign. ¢o can be taken to be strictly positive on X.

Proof. In our proof of the existence of the minimizer in the right hand side of (2.6), the
identification of the I-function with the Dirichlet form (Proposition 2.3) plays a crucial
role. In fact, let {u,}>°, C D(£) be a minimizing sequence, that is, |lu,lls = 1 and
Ao = limy, o0 € (U, Uy).

We see from (2.2) that for any € > 0 there exists a compact set K such that

sup/ u? - dm < ||RiIgel|oo - (supé'(un,un) + 1) <€,

n
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that is, the subset {u; -m} of P is tight. Hence there exists a subsequence {u;, -m} such
that u?lkm converges weakly to a probability measure v. It follows from Proposition 2.3

that the function ¢ is lower semi-continuous with respect to the weak topology,

Ie(v) <liminf Ie(u;, - m) = Iminf (uy, , ) < 00.

k00 k00
Therefore we see that v is expressed as v = ¢3-m, ¢g € D(E), do > 0. ¢y is just a ground
state of A.

It follows from the inequality ||¢o + €g||z > Xo||¢o + €g||3 holding for any g € D(€) and
any € > 0 that (¢g, 9) = Aa(¢po, g). Hence aRy_x,P0 = ¢, & > Ao, which implies that ¢
is strictly positive by the irreducibility.

To prove the uniqueness of the ground state, we introduce a closed symmetric form
(E%,D(E)) on L*(X; ¢ym) by

E%(u,v) = E(ugg, voo) — Aa(udo, Vo)
{ D(E?) = {ue L*(X;¢2-m):upy € D)}
Since 1 € D(E%), £%(1,1) = 0 and the associated resolvent R satisfies R f =
G Rax,(fdo), @ > Ay, we see from Lemma 11.4 that (£%,D(£%)) is an irreducible
recurrent Dirichlet form so that f is constant whenever f € D(£%), E%(f, f) = 0. Let
o be another ground state of A. Then vy = f¢o with f = 1)g/po € D(EP), E(f, f) =
E (1o, 1) — Ag = 0, which yields that f is constant and 1y = £¢y. O

(2.9)

In a usual proof of the existence of the minimizer, the £-weak compactness of {u,}>°,
in D(€) and the lower semi-continuity of £ are used (e.g. [40]). We would like to emphasis
that we use the tightness of {u2-m}%, C P and the lower semi-continuity of the function
I¢ with respect to the weak topology. We see from the proof of Lemma 2.5 that the level

set {v € P: I¢(v) </} is a compact subset of P. Hence we have the next lemma.

Lemma 2.6. The function J satisfies:

() 0<J(v) <

(ii) J is lower semi-continuous.

(iii) For each | < oo, the set {v € P: J(v) <1} is compact.
(iv) J(¢2-m) =0 and J(v) > 0 forv # ¢2-m

Lemma 2.6 states that the function J(v) = I¢(v) — Ao, v € P, enjoys the properties

as a good rate function in the large deviation principle. We note that the identity
(2.10) J(v) = Igso(v), v ETP,
holds true, where Igs, is defined in terms of the Dirichlet form (2.9) by

(2.11) Igo (v) = { NI T) Aty = Johm VT EDIER)

00 otherwise.
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By Theorem 2.2 we obtain the next large deviation principle:

Theorem 2.7. ([70]) Let {@m}bo be a family of probability measures defined by (2.8).
Then the sequence {Qy.+}e~0 obeys the large deviation principle with rate function J:

(i) For each open set G C P

liminf — log@xt( ) > —inf J(v).

t—00 veG

(ii) For each closed set K C P

hmsup—log@xt( ) < —inf J(v).

t—o00 vek
Corollary 2.8. The measure @x,t converges weakly to 5¢3‘m as t — oo.

Proof. If a closed set K does not contain ¢3 - m, then inf,cx J(z) > 0 by Lemma 2.6
(iv). Hence Theorem 2.7 (ii) says that lim,_,q @:r,t( ) = 0 and lim,_,o Q, +(K°) =1. For
a positive constant 0 and a bounded continuous function f on P, define the closed set
KCcPbyK={veP: |f(v)— f(¢p2-m)| >d}. Then we have

[ 10t - \ [ 110 = 68 m) et

= [ 1) = 1wl Quald) + [ 1£0) = $63 - m) Q)
K Ke
< 2 flloc Qe (K) + 0Qu (K©) — 6
as t — 0o. Since ¢ is arbitrary, the proof of the corollary is complete. O

On account of Corollary 2.8, we can regard Theorem 2.7 as a genuine large deviation

principle from the ground state.

Setting G = K = P in Theorem 2.2, we have

Corollary 2.9.

lim — 10gsupIP’(t<C)—hm logIP:C(t<C)

t—o00 reX

(2.12) = —inf {5(u,u) cu € D(E), /Xzﬂdm = 1} .

Let us denote by ||p||,, the operator norm of p; from LP(X;m) to L?(X;m) and put

1
—Ap = tliglogl()g 1pellppy 1< p < o0,
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— A, is the long time exponential growth bound of the semigroup {p;}. Note that sup, .y P.(t <

() = ||Pt]|so.c0 and the right hand side of (2.12) is equal to —Ay by the spectral theorem.
We then see from Corollary 2.9 that

It follows from the symmetry of p; that ||pi||22 < ||pt]loc.co- Hence Riesz-Thorin interpo-

lation theorem tells us that

||pt||2,2 S ”pt”p,p S ||pt||oo,007 1 S p S 0.

Theorem 2.10. ([60]) Under the assumptions I ~ III, A, (1 < p < o0) is independent
of p.

Example 2.1. Let us consider the symmetric bilinear form

8u ov
: OORd
Z/R;daﬂ 8x18xjd ’ u7UECO ( )7

7,j=1
where (a;;(x)) is a symmetric matrix satisfying

d
A2+ |2)*log(2 + )€ < ) ay(0)&€; < A2+ |2])* log(2 + |])[¢)

3,j=1
for some positive constant A\, A. Let D(€) be the closure of C{°(R?). Then, (€, D(E))
becomes a strongly local Dirichlet form on L?(R?). Denote by M = (£, X;, P, () the
associated diffusion process on R¢.

Let us define a metric p (so-called intrinsic metric) on R as follows.
(2.14)

8u ov
— - Dioe(€ (R%), E () =—=—<T1lae. p.
p(z,y) sup{u( ) —u(y) :u € Die(E)NC 2 1/Rdaj 9r: 01, = ae}

Then, we can show that if 3 < 2, (R% p) is a complete metric space and the induced
topology is equivalent to the usual one. Let B,(r) = {x € R% p(0,z) < r}. Then

2.15 B « =2
(2.15) mBN =

where g(r) ~ f(r) means 0 < liminf, gé ;< limsup, gg ; < oo0. We see from Note

6.6 in [18] that if a;;(z) are smooth and > 1, the function R;1 belongs to C(R?), and
thus obtain

(2.16) tlim %log]P’x(t < () = —inf {5(u,u);u € D(E),/ u*dm = 1} for all x € R%.
— 00 R4
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For g < 1, the diffusion process M is conservative. Thus, for § < 0, the both side of
(2.16) are equal to zero. If 0 < 3 < 1, then Sp(H) C [$Ad?, 00) (Theorem 1.5.14 in [19]).
Here H is the self-adjoint operator associated to the Dirichlet form (£, D(€)) and Sp(H)
is the set of spectrum of H. Hence, the relation (2.16) does not hold for 0 < g < 1

because the left hand side is equal to zero by the conservativeness of M.

The LP-independence of Markov semigroups can be extended to that of generalized
Feynman-Kac semigroups by extending Theorem 2.2 to symmetric Markov processes with
Feynman-Kac functional([20], [63], [68], [69], [76]). The LP-independence of Feynman-Kac
semigroups implies the existence of logarithmic moment generating functions of additive
functionals. This is a prerequisite condition when we apply Géartner—Ellis theorem to the

proof of large deviations for additive functionals. See [71], [72].

The probabilistic interpretation of A, is known:

Theorem 2.11. ([51])

sup E,(exp(A()) < oo if and noly if A < M.
reX

Therefore, we obtain

Corollary 2.12. Assume I ~ III. Then
sup E,(exp(A()) < oo if and only if X < As.

zeX

Let K C X be a compact set and D is the complement of K, D := X \ K. Let XP
be the part process on D:

XD— Xt t<TD
] A t>71p, Tp=inf{t>0:X, & D}.

We suppose that X satisfies I~II1I for any K. Define the Dirichlet form (€7, D(EP)) on
D by

g0 — ¢

Let AP be the principal eigenvalue of the spectrum of (£P, D(EP)) and ¢” the ground
state (Lemma 2.1). Tt follows from (2.2) that

1= / (67)2dm < || RiLp)lao(A” + 1).
D
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Since ||R11plleec — 0 as K 1 X by III, we see that under I ~ TIII
(2.18) Ap Too as KTX.
If M is conservative, the lifetime of X” equals the first hitting time o of K and

supE,(exp(Aok)) < 00 <= A < Ap.
xeD

Hence we can conclude that for any A > 0 there exists a compact set K such that
sup,ex Ez(exp(Aok)) < oo. In other words, M have the uniform hyper-exponential re-

currence in the sense of [78].

Ezample 2.2. Let us consider a one-dimensional diffusion process M = (X;, P,, () on an
open interval I = (ry,72) such that P,(X,- = ry or 1y, ( < 00) = P,(( < 00), z € I,
and P,(o, < o0) > 0 for any a,b € I. The diffusion M is symmetric with respect to its
canonical measure m and it satisfies I and II. The boundary point r; of I is classified into
four classes: regqular boundary, exit boundary, entrance boundary and natural boundary
([34, Chapter 5]):

(a) If 5 is a regular or exit boundary, then lim,_,,, R;1(z) = 0.
(b) If ry is an entrance boundary, then lim, ., Sup,¢ (., r,) 11 () = 0.

(c) If ry is a natural boundary, then lim,_,,, Ri1¢.r,)(2) = 1 and thus

SUDye(ry ra) Rilpyy(x) = 1.

Therefore, 111 is satisfied if and only if no natural boundaries are present. As a corollary
of (2.18), we see that if 75 is an entrance boundary, then for any A > 0 there exists
r1 < r < r9 such that

sup E,(exp(Ao,)) < oo.

x>r
Here o, is the first hitting time of {r}. The statement above implies the uniqueness of

quasi-stationary distribution ([11]).

3 Random Time Change

In this section we treat time-changed processes of the Brownian motion by PCAF’s asso-
ciated with Kato measures. We will see that PCAF’s associated with Kato measures are
a suitable class in the theory of random time-change.

Let D be the classical Dirichlet form:

(3.1) D(u,v) = [ Vu-Vudr for u,v € H'(R?),

R4
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where H*(R?) is the Sobolev space of order 1. Let us denote by (B, PY¥) the d-dimensional
Brownian motion on RY.

A positive Radon measure p on R? is said to be in the Kato class K if

hmsup/ M=O, d>3
|

0 yeprd r—y|<a |3j - y|d_2

fimsup [ (logle gl Duldy) =0. d=2
lz—y|<a

a0 rER4

sup/ wu(dy) < oo, d=1.
lz—y[<1

x€RY

For d > 3 we introduce a subclass K3° of K, by following [80]:

. du(y)
K = K;: 1 —— | =0;.
! {N < R0 {fggi /|y|zR |z — y|d=2

For 11 € K, there exists a unique (up to equivalence) positive continuous additive
functional A} which is in Revuz correspondence with u: for any ~vy-excessive function

h (v > 0) and any positive Borel function f

t—0 t

(3.2) lim = ( / £(B dA“) hads = [ fah(ody

(Cf. [28, Theorem 5.1.3]). If u is absolutely continuous with respect to the Lebesgue
measure, say p = V(z)dz, then A} is nothing but fo s)ds.
Let A} be the continuous additive functional assomated with p € Ky. Let {7}+>0 be

the right continuous inverse of A%:
= inf{s > 0: A¥ > t}.
The time-changed process Y} of B, with respect to A% is defined by
Y/ =B,,.

Then, Y} is a u-symmetric Markov process on a finely closed set F' = {z € R?: P¥ (1 =
0) = 1} with lifetime ¢ = A% (Theorem 6.2.1 in [28] and Theorem 65.9 in [52]). We
assume that the set F' equals the topological support of p:

(3.3) F = supplu).

Set
Hpu(z) = EY (u(B,,);0p < 00),

xT
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where op = inf{t > 0; B, € F'}. Then, the Dirichlet form (£, D(€)) on L?(F; 1) generated
by the time-changed process Y} is identified:

(3.4) { 1?(5') ={pel*(Fu):p=u pra.e. on F for some u € H}(R%)}
E(p. ) = 3D (Hrpu, Hru), v € D(E).
Here H]}(R?) stands for the extended Dirichlet space of (3D, H'(R?)) (Theorem 6.2.1 in
[28]).
From now on, we assume that d > 3 and denote by R(z,y) the Green function of the
Brownian motion. For € K3°,

(3.5) / R()duy) € Cn(RY)

Indeed, denote R(x,y) An by R"(x,y). Then there exists a sequence of positive numbers
oy, such that R"(z,y) = R(x,y) for |z —y| > ap, a, — 0 as n — oco. On account of
i € K4, we have

sup
x€RY

< 2sup /| | R(z,y)1{y<rydp(y) = 0 n — oo.
r—y|<anp

/ R(z, y) 1y <rydp(y) — / Rz, y) 1y <rydp(y)
R4 R

Since [ra R™ (2, y)1{y<mydi(y) € Co(RY), it holds that

/Rd R(z,y) gy <rydily) € C’OO(Rd)'

Hence, (3.5) follows from the definition of KJ°.
Let {R%(x,dy)}a>0 be the resolvent kernel of Y. Note that

aIld thUS

(3.6) Ry (2, dy) = Rz, y)u(dy).
Since R(x,y) > 0 for any (z,v),
RELA@) = [ R la)daty) >0
F
for any A € B(F) with u(A) > 0, which implies the irreducibility of Y. Hence we have

Lemma 3.1. The time-changed process Y} satisfies I ~ III.

Lemma 3.1 tells that the Kato class is a suitable class in the random time-change

theory.
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4 A Theorem of M. Kac on total occupation time
Proposition 4.1. If 4 € K$° satisfies (3.3), then

(4.1) lim %log]P’zV(A‘o‘o > ) = —inf {g(u,u) cu € D), /

ﬁ—)OO F

uldp = 1}.

Proof. As mentioned above, the time-changed process Y} satisfies Assumption I ~ III.
Since A% is the lifetime of Y}, Corollary 2.9 tells us that the equation (4.1) holds for any
x € F. Since A% =0 and thus

AL =AY+ AL (0,,.) = A% (0,,), IP’gV—a.s. on op < 00,
we obtain

Py (AL > p) = P (AL > Bior < o)
= EY(Px,, (A% > B)iop < o0)
= PJ(AL > B),

by the strong Markov property. Here, v is the positive measure on F' defined by v(B) =
P.(X,, € B;or < 00), B € B(F). Therefore, (4.1) holds for any = € R% O

Lemma 4.2. [t holds that
(4.2) inf {g(u, u) :u € D(E), / udp = 1}
F
= inf {lD(u,u) u € O (RY), / udp = 1}.
2 Rd

Proof. On account of the regularity of (£, D(€)) (Theorem 6.2.1 (iii) in [28]), the left hand
side of (4.2) equals to

inf {%D(Hpu, Hrpu) s u € C°(RY), /Rd udy = 1} ,
and the above is equal to the right hand side of (4.2) because
D(Hpu, Hru) < D(u, u)
by the Dirichlet principle (Theorem 4.3.2 in [28]). O

For u € K, with ||Rul|s < 00, denote by L* the generator of the time-changed process
Y# and by A} the bottom of the spectrum of L. Since
L'Ry  LMRGL 1
Ru+e Ru+e Ru+e

we see from (2.7) that Ay > 1/||Rp||c. Hence we have we have



106

Corollary 4.3. ([55]) For u € Ky,

/]Rd udp < ”RgHOOD(u, u) for u € H(RY).

Combining Proposition 4.1 with Lemma 4.2, we now obtain

Theorem 4.4. ([59]) It holds that for u € K3°,

lim %logIP’gV(A’;O > ) = —inf {%D(u, u) i u € CP(RY), /

B—00 R4

urdp = 1}.

Remark 4.5. Considering the absorbing Brownian motion, we can extend Theorem 4.4 as
follows: for a Green bounded domain D C R?*(d = 1,2) and any domain (d > 3),

li L
im —
B—o0 ﬁ
Here 7p = inf{t > 0: B, ¢ D}.

Ezample 4.1. Let d = 3. Let p(dx) = 1p(0,1)(x)dz. Then, by Theorem 4.4

1
logP) (A" > ) = —inf {§D(u,u) cu € C(D), / uldp = 1} :
D

1 [e/e)
lim — log PV / 1 B,)dt >
Jim 2 log Py (0 B(0,1)(Bt) ﬁ)

= —inf{%D(u,u);uEC’go(]Rg),/ qule}.
{

2| <1}
The right hand side equals %2 (e.g. [28, Exercise 6.4.10]). %2 is also the principal eigenvalue
of the Dirichlet Laplacian on the interval (—1,1). Hence, for any x € R* and y € (—1,1)

o1 - .
ﬁll_)n;.lo B log IEDIx/V (/{; 13(071) (Bt)dt > 6) = }i}% ? 10g ]P)Zv(t < 7-(—1,1))-

Here, IP)ZV means the one-dimensional Brownian motion. When both = and y are the origin
of R? and R respectively, the equation above is a corollary of Ciesielski-Taylor theorem
([48]): 7(—1.1) with respect to the one-dimensional Wiener measure P}’ has the same

distribution as fooo 1p(0,1)(By)dt with respect to the three-dimensional Wiener measure
PY.

5 A necessary and sufficient condition for gaugeabil-
ity
In this section, we consider the integrability of Feynman-Kac functionals, so-called, gauge-

ability as an application of Corollary 2.12.
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Theorem 5.1. ([60]) Suppose that p € K$° satisfies (3.3). Then

(5.1) supE)” (exp(A%)) < oo
zeD

if and only iof

(5.2) in {%D(u, u) s ue CE(D), /Duzd,u _ 1} o1,

Proof. The time changed process Y; of the part process B by Al satisfies Assumption
[ ~ III. Note A% " is the lifetime of ¥;. Denote by EP the Dirichlet form generated by Y;.
Then, Corollary 2.12 tells us that the equation (5.1) holds if and only if

inf {SD(u, u) :u € D(EP), / u?dp = 1} > 1.
F
By Lemma 4.2, the left hand side above is equal to the left hand side of (5.2). O]
Ezample 5.1. Let € K3°. For any compact set K C D, define

i)~ for Cap(K,D) >0
7T(K, D) _ Cap(K,D) or ap( ) ) )
0 for Cap(K,D) = 0.

Here, Cap(K, D) = inf{D(u,u);u > 1 on K, u € C3°(D)}. It is known in Theorem
2.5.2/1 in [43] that

inf {%D(u,u) cu e C(D), /

wldp = 1} > { 0 if supygcp m(K, D) < oo
D

1 if supgcpm(K, D) < %

Let d = 3. Let H be a 2-dimensional hyperplane in R?® and M a Borel subset of H with
regular boundary. Let p be the positive measure defined by p(B) = m(M N B), where m

is the 2-dimensional Lebesgue measure. Then, it is known in [43, p.139] that

Tl/2

sup m(F,R?) < Tm(M)l/Q.

FCR3

As a result, if m(M) < £, then EW (%) < oc.
For d > 3 and a closed set F

sup EVY (exp (/ 1F(Bt)dt>) < 00
zERI 0

(5.3) sup

if
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Here | - | means the Lebesgue measure on R? and Cap(K) =Cap(K, R?). For a closed set
F denote by Bp the ball with the same volume as F"

(P02 + 1)

BF:B(O,TF), rr = \/7__(_

Since by [43, 2.2.3, 2.2.4]
|FFN K| < |F'N K| < |FFN K|
Cap(K) — Cap(FNK) = Cap(Bprk)
| Brok]| |BF| T

Cap(Bprk) ~ Cap(Br) d(d—2)’

2

the equation (5.3) holds if

/2
(4d(d —2)7)
r(¢+1)
Ezample 5.2. Let (M, g) be a spherically symmetric Riemannian manifold with a pole o
and consider the Brownian motion (P,, X;) on M. The Dirichlet form (€, D(£)) generated

by the Brownian motion is as follows:

|F] <

E(u,u) = 3 [,,(Vu, Vo)dvg, u, veDE)
D(E) = the clousre of C§° with respect to £ 4+ (', )y,
where v, is the Riemannian volume.
Let B, = {x € M : p(o,z) < r} and 0B, its boundary. Let o, be the surface measure

of OB, and S(r) the area of dB,, S(r) = 0,(0B,). The measure o, belongs to K (G)
(We can define K (G) by the same way as K. Suppose that M is hyperbolic, i.e.,

/100%<OO.

(see [31]). On account of the Dirichlet principle, we see that for R > 0

inf{l/ (Vu,Vu)du, : v e F, 02d0'=1}
2/

9Br

= inf {l/ (Vu, Vou)dv, : v = Hyp, f(z), fido = 1} :
2 Ju

OBRr

Here Hypp,f(x) = Ex(f(XgaBR);UaBR < 00), ogp, = inf{t > 0 : X; € 0Br}. By the

spherical symmetry, the infimum is attained by the function v(x):
v(z) =c-Pogp, < 0),

where ¢ = 1/4/S(R). Since the Green function R(o, z) is written as

R(o,x)=2/doo %

(0,z)
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([31, Example 4.1]), we see that

NCCTE fdox d(o,z) > R
(5.4) v(z) =4 V f o) 500
d(o,z) < R,
S(R)
and thus
i),
5.5 — Vo, Vou)dv —OO.
(55) 3 ), (70 VO = S
Therefore, we can conclude that
1
(5.6) QS(R)/ ——dr <1<= supE, (e"2*) < oo,
R S(’l”) xeM

where (g(t) the PCAF corresponding to og. For M = R? (d > 3), S(r) = war?™! (wy:
the area of the unit sphere in R?), and we see that the measure op is gaugeable if and
only if 42 > R.

If M is 2-dimensional hyperbolic space H?, then S(r) = wosinhr and

| R eff+1
25(R) ; %dr—( —e )log(eR_l).

Put

er—1
Then f(r) is strictly increasing, lim, o f(r) = 0, and lim,_,~, f(r) = 2. Hence the equa-

F(r) = (¢" — e~ log (er * 1) e

tion f(r) =1 has a unique root (= 0.22767), and if R < ry, then o is gaugeable.
Let us consider 3-dimensional hyperbolic space H3. Then S(r) = ws sinh? 7 and

2R_1
< 1.

(5.7) 2S(R) /oo Lo

r S(r) ek
Hence, oy is gaugeable for all R > 0, and from which og is expected to be gaugeable for
all R > 0 in case d > 4. In fact,

=1 _ R _ _—R\d-1 /OO 1
25(R) . S(r)dr = 2(et—e") @ _6_T)d_1d7"
o 1
R —R\d—-1
S 2(6 — e ) /]; mdr
< L <1
d—1 '

The left hand side of (5.7) equals to Cap(9Bg)/S(R). Hence we can also say that the

measure op is gaugeable if and only if R satisfies

Cap(0Bgr) > S(R).
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As a typical example of jump processes we deal with symmetric a-stable process, the
Markov process generated by (—A)*/2. Let M® = (Q, F,F,,60,,P,, X,) be the symmetric
a-stable process on R? with 0 < o < 2. Here {F;};o is the minimal (augmented) ad-
missible filtration and 6y, ¢ > 0, is the shift operators satisfying X(6;) = X,y identically
for s,t > 0. When a = 2, M® is the Brownian motion. Let p(t,z,y) be the transition
density function of M® and Rg(z,y), 8 > 0, be its S-Green function,

Rﬁ(x,y):/ e Pip(t, x,y)dt.
0

If the process M® is transient, that is, 0 < a < d, then 0-Green function Ry(z,y) is given
by

(5.8) Ro(,y) = / T Dt y)dt = C(d, a)|e — g7,

where C(d, a) = 277~ *T(452)['(%)~" and T is the Gamma function. Ry is called Riesz
kernel of index a. We write R(z,y) for Ro(x,y) simply. For a positive measure pu, the

[B-potential of u is defined by
Rala) = [ Ralery)un).
We write Ry for Rop. We Let P, be the semigroup of M®,
Puf(e) = [ pltan) flu)dy = Ba(FX0)
Let (£,D(€)) be the Dirichlet form generated by M®: for 0 < a < 2

g(u, U) _ .A(d, Oé) //RdXRd\A (U(Zlf) — u(y))(v(x) — U(y))dajdy

(59) |Zlf — y|d+a
1= fue [ S ).

where A = {(z,2) : z € R?} and

a2d_lf(%l)

A(d, o) = 720 (1 — 2)

([28, Example 1.4.1]).

Let D.(€) denote the extended Dirichlet space ([28, Section 1.5]). If a < d, that is,
the process M® is transient, then D.(€) is a Hilbert space with inner product £ ([28,
Theorem 1.5.3]).

We now define classes of measures which play an important role in this paper.
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Definition 5.2. (I) A positive Radon measure p on R is said to be in the Kato class
(1 € K4 in notation), if

(5.10) lim sup Rgu(x) = 0.

B—00 ycRd

(IT) A measure p is said to be 3-Green-tight (u € Kg5,(8) in notation), if y is in Ky, and
satisfies

(5.11) lim sup/ Rg(z,y)p(dy) = 0.
ly|>A

A—o0 xGRd

For the Browian motion, the definition (5.10) is equivalent to that defined in Section
3 ([41]). We see from the resolvent equation that for 5 > 0

Kga(P) = Kgo (1)

When d > «, that is, M is transient, we write K3, for Kgfa(O). For i € K44, define a
symmetric bilinear form £# by

(5.12) 9 (u, u) = E(u,u) — /R dp, ueDE),

Since p € K5, charges no set of zero capacity by [1, Theorem 3.3], the form £ is well
defined. We see from [1, Theorem 4.1] that (E#,D(E)) becomes a lower semi-bounded
closed symmetric form. Denote by H* the self-adjoint operator generated by (E#, D(E)):
EMu,v) = (H"u,v). Let P! be the L*semigroup generated by H*: P}' = exp(—tH").
We see from [1, Theorem 6.3(iv)] that P} admits a symmetric integral kernel p*(t, z,y)
which is jointly continuous function on (0, 00) x R? x R?.

For p € K5, let A} be a PCAF which is in the Revuz correspondence to p. By the

Feynman-Kac formula, the semigroup P} is written as
(5.13) PE f(x) = Eq(exp(A7) f(Xe))-

Theorem 5.3. ([55]) Let u € Ky Then

(5.14) [ @) < [Ronl sl ueDE),

where Eg(u, u) = E(u, u) + B [pa u’dz.

Theorem 5.4. ([71, Theorem 3.4], [64, Theorem 2.7]) If u € K3, (1), then the embedding
of D(E) into L?(u) is compact. If d > « and pu € Kg,, then the embedding of D.(E) into
L?(p) is compact.
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Example 5.3. Let o, be the surface measure of 0B,, where 0B, is the sphere with radius
r > 0 at 0. Since the symmetric a-stable process hits the sphere 9B, if 1 < a < 2, the
surface measure o, is smooth. Denote by /,.(t) the additive functional corresponding to

o,. The surface measure o, is then gaugeable if and only if

inf {5("‘)(u, u) / udo, = 1} > 1.
{lzl=r}

Since the measure o, is spherically symmetric, the infimum is attained by the function
u(z) = cPy(ogp, < 00), v € RY

where ¢ = 1//0(9B,). Let Cap®(-) be the 0-order capacity with respect to the sym-

metric a-stable process. Then the infimum above becomes

Cap® (dB,)
o (0B,) "’

because
ED(P. (045, < 0),P.(0sp, < 00)) = Cap'®(dB,).

It is known that
aner (224 1) 1 (3)
S B
") () (%)
Therefore, since 0,(0B,) = 2r%?T(d/2)~'r%" for r > 0, the surface measure o, is gauge-

ar ()"

r a—1 r d—
2 2
Let g, be the equilibrium measure of dB,. Since the rotation invariance of the set
0B,, we see that, u, = Ao, for some constant A > 0. Then by the definition of the

(5.15) Cap'” (0B,) =

able if and only if

>T.

equilibrium measure, we have
wr(0B,) = Cap(0B,).

So, it follows that A = Cap(dB,)/0,(0B,), hence,

B Cap(0B,)
b= @B, ™"
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Therefore

sup ]Em(fr(OO)) = sup RO’T(QJ)

z€RI x€R4

= sup Ro,(z) (by the maximum principle)
r€dB,

_ 0,(0B,)

= Cap(9B,) o T ()
_ 0,(0B,)

~ Cap(9B,)’

Thus

sup E,(4,(00)) <1 <= sup E,(exp(¢,(c0))) < 0.
zeR? zeR?

The implication (=) follows generally from Khas'minskii’s lemma.

Ezample 5.4. Let p = p* —p~ € K3, with u* # 0 and = # 0. Consider the Schrédinger
type operator

1

Ll = 5(—A)a/2 +0u,  OeR.

Then it follows from Theorem 3.1 that the operator £/ (6 > 0) is subcritical if and only
if

AOp) = inf {E(Q)(u, u) + H/Rd W’ (x)pt(dz) : u e DEW),

9/ W2(2)p~(d) = 1} o1,

R4

(5.16)

Let R? = F + F* be the Hahn decomposition: u(F) = p*(R%), u=(F°) = —u(RY). Take
R > 0solarge that u= (F°NBg) > 0. Let A = F°NBg and take a sequence of non-negative
functions f,, in Cg°(R?) such that

/ (1a(x) — ful)?|u|(dz) — 0 asn — oco.
Rd
It then holds that

lim [ fi(z)p(dor) = p~(A) >0, lim [ fHz)p"(de) = p*(A) =0,

n—oo R4 n—oo R4

and consequently, there exists a function f € C$°(R?) such that

(5.17) [ P =1 [ Pt <1
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Put

F(9) = inf{g(o‘)(u, u) +9/Rd w(z)pt(dz) : uwe DED), /

R4

w?(z)p (dz) = 1} :

Then F(0), 0 > 0, is a concave function with F'(0) > 0 by the definition. Moreover, F(f)
is dominated by the function G() := E@(f, f)+6 [rq f*(z)u* (dz), where f is a function
satisfying (5.17). On account of these properties of F' and Theorem 5.4, we see that there
exists a unique 7 > 0 such that F(6") = 0. By the same argument, there exists a
unique #~ < 0 such that F(6~) = 6~. Noting that the right hand side of (5.16) is equal
to F(6)/0, we see that the operator £ is subcritical for = < @ < §F. The operators L’
is critical for = 0% and is supercritical for 6 < 6~ or § > 6T in the sense of [44]: for

0 = 6%, the equation £% = 0 has a strictly positive continuous solution h which satisfies
kT 'R(0,z) < h(z) < kR(0,x) x € B,

where k > 1 (see (4.19) in [71]).

6 Scattering length and capacity

In Section 6, we extend their results in H. Tamura [74], Y. Takahashi [57], and give another
simple proof of the conjecture of Kac by the time-change argument for Dirichlet forms.
We have:

Theorem 6.1. ([65]) Let pu be a finite smooth measure with fine support Y. Then

(6.1) (}erolo (o) = Cap(Y).

Here Cap is the capacity.

Let
(62) [0 = [ Bo () lda).

If M is conservative, then I'(u) equals

(6.3) I'(p) = lim ! i (1 —E,; (6_‘4?)) m(dzx).

t—oo t

Indeed, let M4 = (P4, X,) be the subprocess by e~4. We then see from [25, Theorem

2.22] that the Revuz measure of A} with respect to the subprocess M is also p and from

52, (62.13)] that
t
E, ( / e dAg) = EA(4Y).
0
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Hence by Theorem 5.1.3 (iii),

(ma=B () = (m ([ e anr)) = mBd (at)
- /Ot<u,p?1>d8~

Since p1(z) converges to E,(e~4%) as t — oo, we have the equation (6.2).

Lemma 6.2.
(6.4) I'ap) = a/ E. (e_aAg") p(dz) 1 Cap) V), «afooc.
X

Proof. First note that the lifetime ¢ of M is Ac. For z € Y

E, (e“"A"O) = E, (6_0‘5) =1—-alk, (/C e_o‘tdt>
0

= 1—aR,1(x),

where 1 is the identity function on Y, 1 = 1y(z). Hence the left hand side of (6.4) equals
a(l,1—aR,1),.

Noting that the function 1y is in LQ(?; p) by the finiteness of p, we know that if
1y € D(E), then a(1,1 — aR,l), is non-decreasingly convergent to £(1,1) as a T co. We
see from [28] that

£(1,1) = E(Hyl, Hypl), Hyl(r) = E.(15(Xop); 05 < 00),

.

where oy = inf{t > 0: X, € Y}. We thus have

(6.5) T(ap) =a(l,1 —aR,1), 1+ E(1,1) = E(Hyl, Hy1)

as a T 0o. Since Yisa nearly Borel, finely closed set, IP{»C(XU? € }7) = 1 and thus
Hyl(z) =Py (oy < 00).

Therefore, the right hand side of (6.5) equals Cap(o)(?) by [28, Theorem 4.3.3].
If 1 & D(E), then limy oo (1,1 — alyl), 1 00 as @ T oo and Cap(o(?) = oo. The

proof of the lemma is complete. O

P. He [33] extends Theorem 6.1 to Markov processes under weak duality.



116

7 Feynman-Kac penalization for symmetric a-stable

Processes

In Sections 7, 8 and 9, we consider Feynman-Kac penalization problem as an applica-
tion of Theorem 5.1. In [49], [50], B. Roynette, P. Vallois and M. Yor have studied
limit theorems for Wiener processes normalized by some weight processes. In [79], K.
Yano, Y. Yano and M. Yor studied the limit theorems for the one-dimensional symmet-
ric stable process normalized by non-negative functions of the local times or by negative
(killing) Feynman-Kac functionals. They call the limit theorems for Markov processes
normalized by Feynman-Kac functionals the Feynman-Kac penalizations. Our aim is to
extend their results on Feynman-Kac penalizations to positive Feynman-Kac functionals
of multi-dimensional symmetric a-stable processes.

Let M® = (Q,F,F;,P,, X;) be the symmetric a-stable process on R? with 0 < o < 2
and (€, D(€)) the Dirichlet form of M® defined in (5.9). Let p be a positive Radon
measure in the class K, of Green-tight Kato measures (Definition 5.2). We denote
by A} the positive continuous additive functional (PCAF in abbreviation) in the Revuz

correspondence to . We define the family {Q/,} of normalized probability measures by

£B) = g [ ()R, B e

t

where Zf'(x) = E,(exp(A})). Our interest is the limit of Q}, as t — oo, mainly in
transient cases, d > «. They in [79] treated negative Feynman-Kac functionals in the
case of the one-dimensional recurrent stable process, o > 1. In this case, the decay rate
of Z!"(x) is important, while in our cases the growth order is.

We define

(7.1) A(#) = inf {Eg(u, u) /Rd u?dp = 1} , 0<6 < o0,

where & (u,u) = E(u,u) + 0 [, u*dz. We see from [28, Theorem 6.2.1] and [59, Lemma
3.1] that the time-changed process by A}’ is symmetric with respect to g and A(0) equals
the bottom of the spectrum of the time-changed process. We now classify the set K37, in
terms of A(0):

(i) A(0) <1

In this case, there exist a positive constant 6y > 0 and a positive continuous function
h in the Dirichlet space D(E) such that

1= A(bo) = &, (h. 1)
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(Lemma 8.1, Theorem 5.4). We define the multiplicative functional (MF in abbreviation)
L by

(7.2) L) =e ot 2

(i) A(0) = 1

In this case, there exists a positive continuous function h in the extended Dirichlet
space D () such that
1=X0)=E&(h,h)

([71, Theorem 3.4]). We define

(7.3) L = et

(iii) A(0) > 1

In this case, the measure p is gaugeable, that is,
sup E, (eAgO) < 00
z€ERY

(see Theorem 9.4 below). We put h(z) = E,(e**) and define

h(Xe) ar

(7.4) L= h(Xo)

The cases (i), (ii), and (iii) are corresponding to the supercriticality, criticality, and
subcriticality of the operator, —(—A)*?2 + u, respectively (Theorem 9.4). We will see
that L is a martingale MF for each case, i.e., E,(L!) = 1. Let M" = (Q, P, X,) be the
transformed process of M® by L

P"(B) = /B LMw)P,y(dw), B € F,.

We then see from [14, Theorem 2.6] and Proposition 8.3 below that if A(0) < 1, then M"
is an h2dz-symmetric Harris recurrent Markov process.
To state the main result of this paper, we need to introduce a subclass K of K7%,; a

measure p € K5, is said to be in Kg if

d
(7.5) sup |x|d_°‘/ _duly) < 0.
seRd R |7 —ylTo
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This class is relevant to the notion of special PCAF’s which was introduced by J. Neveu
([45]); we will show in Lemma 9.5 that if a measure p belongs to Kg°, then fot(l/h(Xs))dA/;
is a special PCAF of M". This fact is crucial for the proof of the main theorem below.
In fact, a key to the proof lies in the application of the Chacon-Ornstein type ergodic
theorem for special PCAF’s of Harris recurrent Markov processes ([9, Theorem 3.18]).

We then have the next main theorem.

Theorem 7.1. ([66]) (i) If A(0) # 1, then
(7.6) LTS P along (F),

that is, for any s > 0 and any bounded Fs-measurable function 7,

R (Zew(A)
B, (ooplar) o)

(ii) If M(0) =1 and p € K2, then (7.6) holds.

8 Construction of ground states

For d < « (resp. d > a), let pu be a non-trivial measure in K, (1) (vesp. KJ5,). Define

(8.1) A(#) = inf {&;(u,u) : /Rd uidp = 1} , 0>0.

Lemma 8.1. The function \(0) is increasing and concave. Moreover, it satisfies limg_,oo A(0) =

Q.

Proof. Tt follows from the definition of A(f) that it is increasing. For 61,0, > 0,0 <t <1

At0; + (1 —1)0y) = inf {5t91+(1_t)92(u, u) : /R ) uidp = 1}
> tinf {Egl(u,u) : /du2du = 1} + (1 —t)inf {Egz(u,u) : /dquu = 1}
= t\(6h) + (1 - t))\(gg). )

We see from Theorem 5.3 that for u € D(E) with [, w’dp =1, E(u,u) > 1/|| Rypt|so-
Hence we have

1
(82) R T

By the definition of the Kato class, the right hand side of (8.2) tends to infinity as
0 — oo. O
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Lemma 8.2. If d < «, then A\(0) = 0.

Proof. Note that for u € D(E)

A(0) /]Rd uw*dp < E(u,u).

Since (£, D(E)) is recurrent, there exists a sequence {u,} C D(E) such that u, 1 1 q.e.
and &(un,u,) — 0 ([28, Theorem 1.6.3]). Hence if A\(0) > 0, then p = 0, which is

contradictory. O

We see from Theorem 5.4 and Lemma 8.2 that if d < «, then there exist 8y > 0 and
h € D(&) such that

(o) = int {590@, B : /R B2dy — 1} _1

We can assume that h is a strictly positive continuous function (e.g. Section 4 in [71]).
Let M}" be the martingale part of the Fukushima decomposition ([28, Theorem 5.2.2]):

(8.3) h(X,) — h(Xo) = MM + N[

Define a martingale by

t
1
M, = dM"
t /oh<Xs_> ;

and denote by L the unique solution of the Doléans-Dade equation:
t
(8.4) Zy=1 +/ Zs_ dM,.
0
Then we see from the Doléans-Dade formula that L? is expressed by

L' = exp (Mt - %(Mc>t) H (1 + AM,) exp(—AM;,)

0<s<t

- () LS 252)

0<s<t

Here My is the continuous part of M, and AM; = M, — M,_. By Ito’s formula applied
to the semi-martingale h(X;) with the function logx, we see that L has the following

expression:

(8.5) Lt = g%t ZS{{;; exp(AL).

Let d > a and suppose that 6y = 0, that is,

A(0) = inf {5(u,u) : /Rd u?dp = 1} =1
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We then see from [71, Theorem 3.4] that there exists a function h € D.(€) such that
E(h,h) = 1. We can also assume that h is a strictly positive continuous function and
satisfies

c
T2jie < h(z) < [z

(8.6) |z] > 1

(see (4.19) in [71]). We define the MF L? by

(8.7) L= 28((3 exp(AM).

We denote by M" = (Q, P, X;) the transformed process of M* by LI,

Y x)

Py (dw) = L (w) - Py (dw).

Proposition 8.3. The transformed process M" = (P" X,) is Harris recurrent, that is,
for a non-negative function f with m({z: f(z) > 0}) > 0,

(8.8) / f(Xp)dt = 00 Phas.,
0
where m is the Lebesgue measure.

Proof. Set A= {x: f(z) > 0}. Since M" is an h2dz-symmetric recurrent Markov process,
(8.9) P.(0400, < oo, ¥n>0)=1 for qe. v € R

by [28, Theorem 4.7.1](iii). Moreover, since the Markov process M" has the transition
density function

—ot P"(L, 2, Y)

h(z)h(y)
with respect to h2dx, (8.9) holds for all z € R by [28, Exercise 4.7.1]. Using the strong
Feller property and the proof of [47, Chapter X, Proposition (3.11)], we see from (8.9)

e

that M” is Harris recurrent. O

We see from [71, Theorem 4.15] : If 6y > 0, then h € L*(R?) and M" is positive
recurrent. If 6y = 0 and o < d < 2a, then h & L*(R?) M" is null recurrent. If 6y = 0 and
d > 2a, then h € L*(R?) M" is positive recurrent.

9 Penalization problems
In this section, we prove Theorem 7.1.

(1° ) Recurrent case (d < o)
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Theorem 9.1. ([66]) Assume that d < «. Then there exist 8y > 0 and h € D(E) such
that M(0y) = 1 and &, (h,h) = 1. Moreover, for each x € R?

(9.1) e 'R, (614/:) — h(x)/ h(z)dx as t — oco..

R4

Proof. The first assertion follows from Theorem 5.4 and Lemma 8.2. Note that

e () = )%t ()

Then by [64, Corollary 4.7] the right hand side converges to h(z) [z h(z)dz. O

Here we would like to make a remark that [64, Corollary 4.7] is proved by Corollary
11.6 in Section 11.
Theorem 9.1 implies (7.6). Indeed,

E, (exp(A})|F,) e 'R, (exp(A})|F,)
E, (exp(A})) e %K, (exp(A}))
e~ exp(At)e~P=IE . (exp(A},))
e~0'E, (exp(Af))
005 oxp(AMVW(X,) [oy h(z)d
e exp(AL)A(X,) fpu (x)x—Lh as t — oo.

h(z) [ga h(x)dx o

We showed in [14, Theorem 2.6 (b)] that the transformed process M" is recurrent. We
see from this fact that L is martingale, E(L?) = 1. Therefore Scheff’s lemma leads us to
Theorem 7.1 (i) (e.g. [49]).

—

(2°) Transient case (d > «)

If A(0) < 1, there exist 8y > 0 and h € D(E) such that A(fy) = 1 and &y, (h,h) = 1.
Then we can show the equation (9.1) in the same way as above. If A\(0) > 1, then A is

gaugeable (see Theorem 9.4 below), that is,

L
sup E, (€A°°) < 00,
x€RY

and thus
lim E, (eA/;) =[E, (eAg") .
t—o0

Hence for any s > 0 and any Fs-measurable bounded function Z

E, (zet) Ee (ZeA‘s‘EXS (eAé‘_s))

E, () E, (o)
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E, (Ze¥Ex, (e4%)) 1
T E, (%) ‘h@;)Efv(

ZeM h(Xs)) — E"(2)

as t — oo.
In the remainder of this section, we consider the case when A\(0) = 1. It is known that

a measure p € K39, is Green-bounded,

(9.2) sup/R _dnly) < 00

z€RI JRRA |ZL" - y|d—a

To consider the penalization problem for p with A(0) = 1, we need to impose a condition

on fi.

Definition 9.2. (I) A measure p € K4, is said to be special if

(9.3) sup |:z:|d_°“/ _dnly) < 00
z€R? re |T =yl

We denote by Kg° the set of special measures.

(IT) A PCAF A, is said to be special with respect to M", if for any positive Borel function

g with [, gdz >0
o0 t
sup E;‘ (/ exp (—/ g(Xs)ds) dAt) < 0.
rER4 0 0

A Kato measure with compact support belongs to Kg°. The set K2 is contained in
K75.(6),

(9.4) Kg C Kg,-

Indeed, since for any R > 0

d d
M) = sup <|l,|d—a u(y3 ) > R sup / u(y3 |
z€RI R4 |:1j - y' e z€B(R)¢ JRRd |£E _y| -

we have

/ duly) / du(y)
Sup T da . Sup Ty — old—c
zcR? J B(R)e |z -y x€B(R)e J B(R)c |z =y

< My
— Rd-o

Lemma 9.3. Let By be a PCAF. Then

E ( / "ot —Bt>dA“) = h(x)E" ( / "o A )
0 t “\o h(X:)

— 0, R— oc.
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Proof. We have

h(z)E ( /0 SaBt%) = E, <eAé‘h(Xs) /0 se-th‘ﬁﬁ‘f:))
_ g, ( /0 SeAgh(Xs)e_Bt%)-

Put Y; = e* h(X,)e P /h(X,). Then since Y; is a right continuous process, its optional
projection is equal to E,(Y;|F;) (e.g. [48, Theorem 7.10]). Hence the right hand side
equals

5 5 I 1 "
[ - Ay ,—Bt A5y I
E, (/0 E, (Y}|F,) dAt) =E, (/0 e h(Xt)EXt (e h(Xs_t)) dAt).

Since Ex, (eAg—th(Xs_t)) = h(X}), the right hand side equals

E. (/ eAtM_BtdAff> :
0

Hence the proof is completed by letting s — oo. O

The next theorem is an extension of Theorem 5.1 to the symmetric a-stable process.

For more general Markov processes, see [13], [61].

Theorem 9.4. ([73]) Suppose d > a.. For p = p*—p~ € K3, —Kg,, let A} = Al AT
Then the following conditions are equivalent:

(i) sup Ey(e**) < oo.
r€ERI
(ii) There exists the Green function R*(x,y) < oo (z # y) of the operator —1(—A)*/2+p

such that

. ([ o) = [ ma iy

(iii) inf {E(U, u) +/ widp” / widpt = 1} > 1.
Rd Rd

We see from (4.19) in [71] that if one of the statements in Theorem 9.4 holds, then
RH(z,y) satisfies

(9.5) R(z,y) < R"(z,y) < CR(w,y).

7

5_ 4s special with respect to M".
h(Xs)

t
Lemma 9.5. If p € K&, then/
0
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Proof. We may assume that g is a bounded positive Borel function with compact support.
Note that by Lemma 9.3

E" ( /0 e (— /0 t g(Xs)ds) hciff: )>
— ([T (4 tg()@)ds) a7

1
— _ RHgdx )
o) pl(z)
If the measure y satisfies A(0) = 1, then p — g - dv € K3, — K, satisfies Theorem 9.4
(iii), and RF9%(z,y) is equivalent with R(x,y) by (9.5). Therefore the inequality (8.6)

implies that (9.3) is equivalent to that sup,ega {(1/h(z))RF9%p(z)} < oo. O

We note that by Lemma 9.3

u t u t m
E, (eAt) =14+E, (/ eAsdAg) :1+h(a7)EZ (/ hcszs))
0 0 s

Thus for a finite positive measure v,

(9.6) E, (ef“?) = v(RY) + (v, W)E ( /0 t hc(lfi))

where v = h - v/{(v, h). For a positive smooth function k¥ with compact support, put

W(t) = B ( /O tk()@)ds) :

Then lim;_,o ¥(t) = oo by the Harris recurrence of M". Moreover,

Yt +s)
(9.7) tlgglo W»(t)

W(t+s) = E ( /0 tk(Xu)du>+IEf; (E’;(t ( /O sk(Xu)du>)

< () + [IKlloos,

=1.

Indeed,

and
Pits) o IHles

<1+ :
(1) e(t)
We see from [24, Lemma 4.4] that the Revuz measure of A} is h?u as a PCAF of M™.
Since by (9.6)

1

IN

EL, (Jy(1/h(X,)dAr)
o) ( IS k(Xs)ds)

St () = o
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and fg(l/h(Xs))dA;‘; and fot k(X,)ds are special with respect to M" we see from Chacon-
Ornstein type ergodic theorem in [9, Theorem 3.18] that

1 (1, )

(9.8) O (eAf ) s b T bt

W(
as t — oo. Note that (u, h) < oo by (8.6) and (9.2).

For a bounded Fs-measurable function Z, define a positive finite measure v by

v(B) =E, (ZeA?;Xs € B) , B e B(RY.

E, (ZeAi‘ ) _E, (eAi‘—s) .

Then by the Markov property,

Therefore
i Ee (Ze*) . E (Ze) Ju(t)
=00 B, (A7) toe B, (e) /3(t)
W9 W)E, (M) fit -9
t=vo0 E, () /9(t) '

By (9.7) and (9.8), the right hand side equals

(<V7 h) <:u7 h))/ f]Rd k‘thZK <V7 h) 1 Al h
9.9 = = E, (Ze™h(X;) ) =E, (Z).
99 (h(x){p. 1))/ Jga kh?dz  h(x)  h(z) ( ( )) 2)
Remark 9.1. We suppose that d > o and A\(0) = 1. If d > 2a, then h € L?(R?) on account

of (8.6). Hence M" is an ergodic process with the invariant probability measure h%dz,

and thus for a smooth function k£ with compact support,

U0 _ g ( /0 tk(Xs)ds) — /R Wz,

Hence we see that for p € K&

(9.10) lim %Em () = ha)(u. b

t—o00

10 Stability of heat kernels

Let M® = (Q,F,F,,P,, X;) be the symmetric a-stable process on R? with @ < d. In
this section, we consider the stability of heat kernels of Schrodinger operators as another

application of Theorem 5.1. We denote the potential of a positive measure p by

Ru(x) = /Rd R(z,y)du(y),

where R is the Riesz kernel defined in (5.8). Next lemma is shown in ([28, Example

2.2.1]); however, we give another proof by using 0-order version of the equality (2.2).
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Lemma 10.1. (28, Example 2.2.1]) If p € K, satisfies [y [za R(z,y)dp(z)du(y) < oo,
then Ry belongs to De(E).

Proof. First note that for p € Kgg,

(10.1) / W2y < | Bpllo (u,0), u € Dy(€)
Rd

(cf. [55]). Let K be a compact set of R%. Then by applying (10.1) to ux(-) = u(K N-),

we have
1/2
/sodux (u(K))'? (/ SOQdNK)
R4 R4

< ()2 Ry |0 (0, 0) 2.
Hence the measure pg is of finite energy integral, and thus

IN

/dwdﬂK < E(Rpx, Ruk) ' E(p, )"/
R

(/Rd /Rd R, y)d“K(x)d#K(y)) " E(p, ).

IN

By letting K increase to R?, we find that p is of finite energy integral, and thus Ry is in
D.(€). O

Lemma 10.1 says that pu is of finite energy integral. Assume that

(10.2) A(p) == inf {E(U, u) /Rd uidp = 1} > 1
and set
(10.3) h(z) = Ey(e™>).

Then by Theorem 9.4, 1 < h(z) < M(= sup, E,(e?>)) < cc.
Lemma 10.2. Assume that A\(;) > 1. Then it holds that

h(x) = R(hp)(x) + 1.
Proof. Define M, := E,(exp(A% )|F;). Then by the Markov property

hXy) = Ex,(exp(AL)) = Eqo(exp(AL(6:))|F)
= E,(exp(AL, — A)|F;) = exp(—A}) My,
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and thus

E, ( /0 th(Xs)dA{;> _E, ( /O t exp(—A‘;)MsdA‘;)

(10.4) =E,(My) — E,(exp(—A}) M) + E, (/Ot exp(—A‘;)dMs)
= h(z) — Eq(h(Xy)).

Noting that
tlim hX,) = tlim exp(— A} )M, = exp(— AL ) exp(AL) =1,
— 00 — 00
we have the lemma by letting ¢ to oo in (10.4). O

Suppose that p € K2, satisfies [, [oq R(x,y)dp(x)dp(y) < co. Then by Lemma 10.1,
R(hu) belongs to D(E). Thus by Fukushima decomposition

R(hp)(Xy) — R(hp)(Xo) = Mt[R(h“)] + Nt[R(hu)].

We put Mt[h] = Mt[R(h“ 1 and define the multiplicative functional L? by the unique solution
of (8.4). We then see from [17] that the Dirichlet form generated by the transformed
process M" by L is identified:

Theorem 10.3. ([17]) The transformed process M" is an h*dz-symmetric and its Dirich-
let form (EM, D(EM) on L*(RY, h%dx) is

£ (u, v) K//Rded\d u(y))*h(x D) 4oy,

|£L' _y|d+a
D(E") =

In [17, Section 3], they treat a class of functions h = e" such that u is a bounded
function in D.(€). Since log(1 + R(hu)) € D.(E), the function h in (10.3) belongs to the
class treated in [17] and Theorem 10.3 can be applied.

We denote by p)'(x,y) the heat kernel of (—A)*/2 — p:

B, (4 1(X0) = [ o) f)dn

1
s Ny

1 t 1 t
— N — | < B <CO(—N—1].
C(td/a |x—y|)—pt<x’y)— (td/a |x—y|)

The notation p}'(x,y) ~ means that there exist positive constants ¢, C' such

that
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Theorem 10.4. Let i € K& with [o4 [oa |z — y|* *dp(z)du(y) < oo. Then

t

10.5 AMp) > 1 = pl(z,y) =~ — A )
( ) (H’) 'z (:lj y) td/a |£C - yl
Proof. (<=) By the assumption, p*(t,z,y) < 57, and thus

1
1
R“(l’,y) < / p“(t,x,y)dt + C/ Wdt < 0.
0 1

Hence Theorem 9.4 says that A(u) > 1.
(=) Denote m(dx) = h*(x)dx. Then the Dirichlet form £ is written as

gh(uﬂ)) _ //Rd " (U(CIZ) B u(y))zc(x’y)m(da:)m(dy)

Here 0 < ¢ < c(x,y) = 1/(h(z)h(y)) < C < co. Let pl(x,y) be the heat kernel of M",
E2(f(Xy) = [ea P (z,y)f(y)h?(y)dy. We then see from [16] that the heat kernel pl'(z, y)

satisfies . .
h ~ AN
pi(@y) = o A p—

Since pf (z,y) = h(x)p}(z,y)h(y) by the definition of M", the proof is completed. O

The heat kernel of M® satisfies the right hand side of (10.5). Theorem 10.4 says that
the measure y satisfying the conditions in Theorem 10.4 is so small that it does not cause
an essential change of the heat kernel. We can consider the same probelem for diffusion
processes.

Let M be a complete, non-compact Riemannian manifold. Let d(x,y) be the geodesic
distance and m the Riemannian volume. Let p(t,z,y) the heat kernel associated with
half the Laplace-Beltrami operator %A. Assume that p(t,x,y) satisfies global Gaussian
lower and upper bounds: for every z,y € M and ¢t > 0,

C exp (—cl—dz(f’y)) Cs exp (—cz —dz(f’y))
< )
m(B(z, V1)) m(B(z, /1))

where Ci, ¢1,Cy, and ¢y are positive constants and B(x,7) is the geodesic ball of radius

(10.6) p(t,x,y) <

r centered at the point x € M. Following [32], we say that the heat kernel p(t,x,y)
satisfies the Li-Yau estimate, if it has the estimate (10.6). For a measure p in a certain
class, let p*(t, x,y) be the heat kernel associated with the Schrodinger operator, %A + L.
We establish, in the same manner as above, a necessary and sufficient condition on the

potential p for the heat kernel p*(t,z,y) also to satisfy the Li-Yau estimate ([62]): a
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positive Radon measure o on M is said to be in the class Sy, if for any € > 0 there exists
a compact set K C M and ¢ > 0 such that

sup / Gz, y)G(y,Z)M(dy) <e

(z,2)EMXM\A J K G(CC,Z)

and for all measurable sets B C K with u(B) < 9,

sup [BG(x,y)G(y,Z)M(dy) <e

(z,2)EM X M\A G(.T,Z)

When g is absolutely continuous with respect to m, the class S, was essentially introduced
by P. Pinchover, M. Murata, and the function in S, is said to be G-small at infinity. The
above definition is due to Z.-Q. Chen [13]. A Kato measure with compact support belongs
to the class So. For p € S, denote by pt(t, x,y) the heat kernel of the Schrodinger
operator %A + 1.

Theorem 10.5. ([62]) Suppose 1 € Se. Then p*(t, z,y) satisfies the Li—Yau estimate if
and only if Mu) > 1.

11 Ergodic properties of Dirichlet forms

Every symmetric Markov process generated a regular Dirichlet space can be transformed
to an ergodic one. This fact is crucial for the proof of the lower bound in the large
deviation principle (Theorem 2.2 (i)). In addition, an operator theoretical ergodic theo-
rem (Theorem 9.1) is crucial in Feynman-Kac penalization problem. In this section we
summarize the ergodic theory for symmetric Markov processes.

Take ¢ = Rog € DT(A) and fix it hereafter. Let M? = (Q, X;, P2, () the transformed
process of M by L? in (2.3). We then see from Lemma 6.3.2 in [28] and Theorem 62.5
in [52] that M? is a ¢*m-symmetric Markov process on X. Denote by (€2, D(E¢)) the
Dirichlet form on L%(X; ¢*m) associated with M?. It is known that the Dirichlet form &
has the Beurling-Deny decomposition: for u € D(E)

£ (u, 1) = % /X dyi,y + / /X (o)~ uw)) ) + /X k.

Theorem 11.1. ([14]) The Dirichlet space D(E) is included in D(E?) and for u € D(E)
) e =g [ iyt [ ) =)o) e dy)

Moreover, the identity function 1 belongs to D(E?) and E2(1,1) = 0.
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Theorem 11.2. The transformed process M? is conservative, pf I(x) =1 for any t >0
and any x € X, where pf is the semigroup of M?. Moreover, M? is ergodic in the sense
that if A € F is Oi-invariant, (0,)"1(A) = A, then Pﬁzm(/\) =0 or Pﬁzm(Q \A)=0.

For the proof of Theorem 11.2, we need the next general theorem taken from [30]. In

the sequel, we assume that m is finite, m(X) < oc.

Theorem 11.3. ([30]) Suppose m(X) < oo. Let (£, D(E)) be the Dirichlet form associ-
ated with an m-symmetric right process (0, F, Fy, Xy, Py, 0) on X and suppose that

1€DE) and &(1,1)=0.

Then, the following statements are equivalent each other.

(i) (&E,D(€)) is irreducible.

(ii) If a function u € D(E) satisfies E(u,u) = 0, then u is constant m-a.e.

(iii) If a function u € L*(X;m) satisfies p;u = u m-a.e. for any t > 0, then u is constant
m-a.e.

(iv) (,P,, F,0,) is ergodic, i.e., if A € F is O-invariant, then P, (A) = 0 or P, (Q\A) =
0.

Proof. ((i)== (ii)) Let u be a function in F with €(u,u) = 0. For A € R, let u) = (u—\).
Since E(uy, uy) < E(u— A u—N) =0,

E(up,v) =0 for Vv € F,
and so Auy =0 (piuy = uy). Set By = {z € X : uy(z) = 0}. Noting that
pe(1psun) = pi(uyn) = uy = 0, m-a.e. on By,

we have for any n

pt(lBﬁl{u,\z%}) =0 on B)\.
Thus, pi(1ps) = 0 m-a.e. on By (1g,pi(1ps) = 0). By the symmetry, 1p:p;(1p,) = 0.
Therefore, for f € L*(X;m)

pt(lB)\f) = 1B>\pt 1B>\ ) + 1B§pt(1B>\f)

and m(B)y) = 0 or m(B§) = 0 by the assumption. Let A\g = sup{\ : m(B,) = 0}. Then,
for any A > Ao, m(B),) # 0, which implies m(B5) = 0. Hence m({u > Xo}) = 0. On
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the other hand, for any A\ < Ao, m(B,) = 0 and so m({u < \g}) = 0. Therefore, we can
conclude that u = \g m-a.e.

((ii)== (iii)) and ((iii)== (i)) are trivial.

((iii)==> (iv)) Let F € L*(P,,) with F = F o6, P-a.e. for Vt > 0. Put f(x) = E,(F).
Note that

Ep(F 06;) = Epn(Ex, (F)) = En(f(X:))

Hence for any bounded Borel function g on X,

0=En((Fob— F)g(Xo)) = En((p:f(Xo) — f(X0))g(Xo))
= (ptf - fa g)m7

and thus p,f = f m-a.e. and f = k (constant) m-a.e. by assumption. Therefore
k= f(X,) =Ex, (F)=E,(Fo00,%,) =E,(F|F,) — F, Pp-a.e. n — oc.

((iv)==(iii)) Let f be an L-function such that f = p,f. We set

T
Qf={w€Q:/ |f(Xy)|dt < o0 forVTE(O,oo)}
0
and define

Fr(w) = { RIS e 9
0 if w ¢ Qy.

Then, Q is f-invariant and thus P,,(€27) = 0. Since for any ¢ € L*(X;m)

(fso)m = (%/()Tptfdtw) = (E+(Fr), ©)m
= En(Fro(%o).

Since

En(f(X0) _ [y fdm
m(X) m(X)

T
FT = —/ f(XO o 9t>dt —
0

by the ergodic Theorem,

(fsp)m = Jim B (Fro(Xo))

- = (S eo) = S o

and thus f = [, fdm/m(X), m-a.e. O
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Theorem 11.3 is extended to the case when m(X) = oo ([15], [39]).

Lemma 11.4. A P,,-integrable bounded random variable Z is O;-invariant (Z = Z o
O, Pr-a.e., t > 0) if and only if Z = g(Xo) Pp-a.e. for some m-integrable bounded
function g on X which is pi-invariant, p,g = g m-a.e., t > 0.

Proof. Since E,,(Z|F;) = En(Z 0 0,|F;) = g(X;) Pp-a.e. with g(z) = E.(Z) by the
Markov property,

Pon(1Z = 9(Xo)| > €) = Pu(|Z 0 0, — g(Xo 0 0;)| > €) = Pr(|Z — g(Xi)| > €)
=P.(|Z —En(Z|F)| >€) — 0 as t — oc.

Hence Z = ¢g(Xy) Pp-a.e. and so g(X;) = En(9(Xo)|F:) = 9(Xo) Pp-a.e., and thus for
any bounded function h on X

En(9(X0) — 9(X0))h(X0)) = En((mg(X0) — 9(Xo))h(X0))
- /X (peg(z) — g(x))h(z)dm = 0,

which implies p;g = g m-a.e.

Conversely, for a pi-invariant function g, g(Xo) is 6-invariant because
En((9(Xe) = 9(X0))*) = En((peg(Xo) — 9(X0))?) = 0.
O
On account of the symmetry, we have the ergodic theorem due to Fukushima [27].

Theorem 11.5. Assume m(X) < oo. For any f € LP(X;m), p > 1, there exists a
LP(X;m)-function g such that

lim pf =g, m-a.e. and in LP(X;m).
t—00
Moreover, g is p-invariant.

Proof. Let Gy = 0{ X, : s > t}. By the symmetry, Y; := E,,(f(X0)|S:) = pef(X:) Pr-ace.
and thus po, f(Xo) = Ep,(Y;|Fo). Since Y is an inverse martingale, the limit lim;_,o, Y; = Z
exists Pp,-a.e. and in LP(IP,,). Hence limy o por f(Xo) = E(Z]F0) Ppp-a.e. and in LP(P,,).
The theorem follows with g(x) = E,(Z). O

Corollary 11.6. Assume m(X) < oo. If M is irreducible, then for f € LP(X;m), p > 1
1
tli}riloptf(:c) = mx) /dem, m-a.e. and in LP(X;m).

Moreover, if for the conjugate number of q(:= p/(p— 1)) the transition probability density
satisfies pi(z,-) € LY(X;m) for any x, then the limit holds for any x € X.
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Proof. For g € LP(X;m), put ¢, = ﬁfxgdm. Let f* =(—nV f)An,n=1,2--.
Then by combing Lemma 11.4 with Theorem 11.5,

tlim pef"(z) = cgn, m-ace. and in LP(X;m).
—00
Since

[pef = esllp < Nlpef —=pef* o +llpef™ = epnllp +llegn =l
<20 = 1"llp + pef™ = epnllps

the first part of corollary follows.

The second part follows because by Holder’s inequality

pef (@) = es| =

/Xpl(x,y) (/Xpt—l(y,Z)f(Z)dm(Z) _Cf> dm(y)‘

< ([ ppin) "ami)
(/ ) (/. )

—0 ast— oo.

Amqw@ﬂ@wmwwf
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INTRODUCTION TO MARKOV PROCESSES

JiaNnGAaNG YING

1 Introduction

I have planned for years and am now trying hard to write a book on theory of Markov
processes and symmetric Markov processes so that graduate students in this field can
move to the frontier quickly. In my impression, Markov processes are very intuitive to
understand and manipulate. However to make the theory rigorously, one needs to read a
lot of materials and check numerous measurability details it involved. This is a kind of
dirty work a fresh graduate student hates to do, but has to do. My purpose is to help
young researchers who are interested in this field to reduce the fear when they face it.
We shall state some fundamental results in general theory of stochastic processes
mainly developed by Strasbourg school of probability. Let (€2, %, P) be a complete prob-
ability space. A family of o-algebra (%) = {%#, : t > 0} is called a filtration if for any
0<s<t, F, C.F C.Z. Wesay a filtration (%) satisfies the usual condition if each

Z, contains all null sets in .% and it is right continuous, namely, for each ¢ > 0,

(1.1) Ty =Ty =) Fe
s>t

Let (%) be a filtration and X = (X; : t > 0) a real-valued stochastic process. X
is (:#)-adapted (or adapted, if no confusion will be caused) if for each ¢ > 0, X; is
Frmeasurable. Moreover X is (% )-progressively measurable if for each ¢ > 0, the
map (s,w) — Xs(w) is measurable as a map from ([0,t] x Q, B|0,t] x F#) to (R, B(R)),
where 20, t] and Z(R) are Borel o-algebra on [0, ] and R, respectively. If no confusion is
caused, (%) in the front may be omitted. A subset A C R x ) is progressively measurable
if so is the process (t,w) — 1a(t,w). A process is called right continuous or continuous

or left continuous if almost all sample path has such regularity.
Theorem 1.1 A right continuous and adapted process is progressively measurable.

The least o-algebra on R x € such that all adapted right continuous real processes
are measurable is denoted by &', an optional o-field. A process which is &-measurable is

called optional. Then the theorem above implies that an optional process is progressively
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measurable. A map 7 : Q — [0,00] is called an (.%;)-stopping time if for each ¢t > 0,
{r <t} € %. For a stochastic process X and a subset A C R, define the hitting time of
A as

(1.2) Ty=inf{t >0: X, € A}.

Theorem 1.2 If the filtration (%) satisfies the usual condition and X is progressively

measurable, then for any Borel subset A C R, T4 is a stopping time.
The following theorem is called the section theorem, which is fundamental.

Theorem 1.3 Let X be a bounded progressively measurable process. If for any bounded

decreasing sequence of stopping times {7},
(13) lim E[XTn] = E[XlimnTn]a

then X is right continuous.

2 Right continuous Markov processes

In this section we shall first introduce the notion of right processes, which, essentially due
to P.A. Meyer, makes classical potential theory operate almost naturally on it. Though,
more or less, right processes are right continuous Markov processes with strong Markov
property, it is a difficult task to give the definition clearly and concisely. Let (E, &) be
a topological space with its Borel o-algebra. For any probability measure p on E, & is

the completion of & under p and set
(2.1) & =(&"
o

where g runs over all probability measures on E. A set in &* is called a universally
measurable subset of F. Any probability measure on (F, &) may be uniquely extended
on &*. The requirement for topology on E may vary, but in most cases, Radon space or
Lusin space, which is a universally measurable subset or Borel subset of a compact metric
space, respectively. One reason why we need to start from seemly so general topology is
that in this way the class of right processes keeps stable under usual transformation in

Markov processes such as killing transform, time change and drift transform.

Definition 2.1 Let E be a Radon space. A family of kernels (P,)¢>0 on (E, &*) is called
a transition semigroup if P,P; = P, for any ¢,s > 0 and P,(x, E) < 1 for any ¢t > 0 and
r € E. In addition, if Py(z,E) = 1 for any ¢t > 0 and = € E, it is called a transition
probability semigroup. A transition semigroup (F;) is called a Borel semigroup if E is
Lusin space and each P, is a kernel on (E, &), or maps a Borel measurable function to a

Borel measurable function.
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It is known that by joining a point A, called a cemetery point, to E, (P;) may be

extended into a transition probability semigroup on Ex.

Definition 2.2 A group of notations
X = (Qa g; gt; Xt; 0t7 Pm)

is called a right continuous Markov process on state space E with transition semi-

group (F,) if the following conditions are satisfied.

(1) (2,9,%,) is afiltered measurable space and (X;) is an Ea-valued process &x-adapted
to (¢;), more precisely for any ¢ > 0, X; is a measurable mapping from (£2,%;) to
(Ea, &X).

(2) (6¢)i>0 is a family of shift operators for X, i.e., 6; : Q@ — Q and, identically for any
t,s >0,
9,5095 = 9t+s and XtOQS = Xt+s~

(3) For every x € Ea, P* is a probability measure on (2,%) and
Moreover x — P*(H) is universally measurable for any H € 4.

(4) For every t,s >0, f € b&* and = € E, it holds P*-a.s.

(2'2) P$(f(Xt+s)|gs) = Ptf(Xs)

(5) For any = € E and P*-almost all w € €, t — X;(w) is a right continuous process on
Ex = EU{A}.

(6) Define ((w) := inf{t : X; = A}. Then X;(w) € E for t < ((w), and X;(w) = A for
all t > ((w). Hence ( is called the lifetime of X.

In this case we sometimes say that X or its semigroup (P;) satisfies (HD1).

The word for almost all means “for any = € E and P*-almost all”, i.e., a measurable
subset Qg of  such that P*({y) = 1 for all x € E. Notice that the measurability in
(3) is not so much restricted. Let (.#2*) (resp., (%)) be the natural filtration of (X;)
generated by &* (resp., &), precisely,

(2.3) F¥ = ¢ (U X;l(@*)) LT =0 (U Xgl(£)> .

s<t s<t
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Clearly for any t > 0, Z>* C %, and Z2 C 4. By monotone class theorem, x — P*(H)
is &*-measurable for any H € .Z2*. Furthermore if (F,) is Borel semigroup, = — P*(H)
is &-measurable for any H € 2.

Fix now such a process X on E. For any probability measure p on (E, &), define
(2.4) PH(H) — / P (H)u(dz), H € 9.
E

Denote by 4* the completion of ¢ with respect to P* and 4} the o-field generated by

¢, and all P#-null sets in ¥*. We usually say that ¢/ is the augmentation of ¥, in
(Q,9,PH).

Exercise 2.1 Prove that the completion of .Z2 with respect to P¥ is equal to the com-

pletion of .Z2* with respect to P*. The same conclusion holds for the augmentation of

(Z) and (Z2*) in (Q, F,PH).

Set

(2.5) g =9"%=(\9"
o I

where g runs over all probability measures on (E,&). The filtration (4,) is called the
augmentation of (%;). It is not hard to see that the process has Markov property with
respect to (5%) and actually for any probability measure p on F, it holds P*-a.s. for
t,s >0, f € b&*

(2.6) PH(f(Xirs)|9L) = Puf (X5)-

The procedure to get (9*) and (%) is called augmentation of the filtration of X
with respect to the laws (P*). This is a ‘dirty’ work which has to be done for a Markov
process. Therefore we may assume from the beginning that ¢ and (%) are augmented.
The augmentation of the natural filtration (%) is denoted by (.%;), which is also the
augmentation of (Z#2*). After the augmentation, we have to check that we still have the
necessary measurability such as
(1) For B € 4, x — P*(B) is universally measurable;

(2) X; is measurable from (Q,%;) to (E,&™);
(3) 0, is measurable on (£2,9).

The good news about augmentation which we shall prove later is that (¥;) will satisfy
the usual condition when a slight more condition is imposed, and then the hitting time
of any optional set is then a stopping time.

For a > 0, a [0, 00]-valued measurable function f on (FE,&*) is a-supermidian if
e P, f < f for each t > 0 and a-excessive if, in addition, e=**P,f 1 f as ¢t | 0. Let S*

be the set of all a-excessive functions.
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Definition 2.3 Let E be a Radon space and (P;) a transition semigroup on F. Assume
that the collection
X = (Qa g; gt; Xt; 0t7 Pm)

is a right continuous Markov process (HD1) on E with (F;) as its semigroup. Then X is
said to be a right process provided X satisfies (HD2), or precisely, for any a-excessive
function f, ¢t — f(X;) is right continuous almost surely. Moreover if E is Lusin space and

(P;) is a Borel semigroup, then X is called a Borel right process.

We shall now introduce the notion of potential which plays an essential role in general
theory of Markov processes. To define a-potentials, some measurability needs to be clari-
fied in advance. For a bounded continuous function f on E, t — f(X;) is right continuous
and hence (t,z) — E*[f(X})] = P.f(z) jointly measurable on (RT x E, B(R") x &*). It
is also true for bounded Borel measurable f by monotone class theorem. The following

result makes us define resolvent of (P;) legally by using Fubini theorem.

Exercise 2.2 For f € b&™, (t,x) — E"[f(X,)] is measurable for the completion of
(Z(R1) x &*) with respect to the product measure of any finite measure on R and

a finite measure on &*.

For a > 0 and f € b&™, define the resolvent or a-potential of f

2.1 U fio) = [ e R
(2.8) g /0 et p ()t
Then we have the well-known resolvent equation

(2.9) U =U"+(y—a)UU"
for ai, v > 0.

The first important property of right processes is strong Markov property. We now
give two fundamental theorems for right processes. Note that we may always assume
that €2 is the canonical space, i.e., the space of right continuous maps from [0, cc0) to E.
To state strong Markovian property, we assume that readers are familiar with the theory

related to stopping times.

Theorem 2.4 Let X be a right process on E with transition semigroup (F;). Then

(1) X has strong Markov property with respect to (%), i.e., for any (%, )-stopping
time o, f € b&*,t >0 and z € F,

(210) Ex[f(Xt+a)1{U<oo}|32£+] = 1{U<oo}EXO [f(Xt)]7

P*-a.s.;
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(2) for any probability p on E, (%#}") is right continuous, and then (%) is right contin-

uous.

Proof. (1) Let f be a uniformly continuous bounded function on E. Assume that o < cc.
Set

k
Op = Z 2_nl{(k—1)2‘”§0<k2—"}

k>1
Then o0, | o and o, is (Z?)-stopping time. By the right continuity and simple Markov
property of X, we have for any probability u on E,

= im E"U° f(Xo,) = B*U* f(Xo)
= / e EMEX() £(X,)dt.
0

This means that ¢ — E*f(X, ) and t — E*[EX() f(X,)] have the same Laplace transform
and it implies they are identical because they are both right continuous. Hence

E'f(Xipo) = EM[EX) F(X))]

from which, the strong Markov property with respect to (9&) follows.
(2) Obviously (1) implies that X has simple Markov property with respect to (.Z2,),
i.e., for any bounded random variable Y on (€, %2

) and a probability u on E, it holds
Pt-a.s.
(2.11) EX(Y o0, |.Z7.,) = EX(Y) = EX(Yo0,|.7)).
It is easy to verify that when Y = f1(X;) - fu(X3,),
E'(Y]F) = (Y |7)),

and actually it holds for any Y € 072 by monotone class theorem. Then for A € ﬁt(ﬂr,
we have Ph-a.s. 14 = EF(14|.#), and hence A € Z}'. Tt implies that

F C Tt

The conclusion follows from an assertion that the o-field generated by ﬁ& and P#-null

sets equals ./, , which is left to the readers as an exercise. O
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By (2) in Theorem 2.4, we may always assume without loss of generality that the fil-
tration (%) satisfies usual condition, i.e., it contains all null sets and right continuous. By
augmentation, the strong Markov property may be stated as follows. For any probability

p and a non-negative function f € &*, if o is an (%#]")-stopping time, then

(2.12) E*(f (Xero) Lo<oo} | FL) = Pof (Xo)Lireoo)-

Exercise 2.3 Prove that

(2.13) = /T et F(X)dt = E* (e TU f(X7)) .

For a > 0, a non-negative measurable function f (may take +00) is called a-excessive
and written as f € S* if (1) e™®P,f < f for any t > 0; (2) limyoe P, f = f. Write
simply S° as S. The following lemma lists some properties of excessive functions and is

easy to verify.

Lemma 2.5 (1) S® is a cone.

(2) S* is stable under increasing limit.

(3)Ifa>pB>0 8>S and S# = MNysp S

(4) If f,g€8S%, fAgeS~

(5) If f € S* and p is a probability measure on E satisfying pu(f) < oo, then the process
(

e~ f(X;)) is a super-martingale with respect to P*.
Actually the proof of (4) needs to use (HD2) on the process.

Lemma 2.6 (1) For @ > 0 and &*-measurable f > 0, U*f € S*.
(2) For a > 0, f € S if and only if BU™Pf 4 f as B 1 +oo.
(3) For a > 0 and f € S¢, there exist g, € b& such that U%g, T f as n 1 4o00.

Since a super-martingale which is the limit of a sequence of right continuous super-
martingales is also right continuous, we shall state following weaker forms of (HD2). A
negative function f on FE is nearly Borel for X if for each probability p on E there
exist fi, fo € & with fi < f < fy such that two processes (f1(X;)) and (f2(X3)) are
Pr-indistinguishable. A measurable function f on (F, &™) is called optional if ¢ —
f(X}) is indistinguishable from an (.#;)-optional process, and nearly optional if for
any probability measure p on E, t — f(X,) is indistinguishable from an (.#/}*)-optional
process. A set A € &* is optional or nearly optional if so is 14. Let &™° be the set of

nearly optional subsets of E/ which is a o-algebra.
Exercise 2.4 Prove that f is nearly optional if f is &"°-measurable.

The next theorem follows from the section theorem as stated in Theorem 1.3.
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Theorem 2.7 Assume that (HD1) holds. If X is strong Markov and each a-excessive
function is nearly optional, then (HD2) holds. Therefore if (F;) is Borel and X has strong

Markov property, then (HD2) holds and each a-excessive function is nearly Borel.

Proof. For any probability u, an increasing sequence {7},} of stopping times with T =

lim 7},, and a non-negative bounded function g € &*, we have by strong Markov property
EF (e Ug(Xr,)) = E“/ e g(X,)dt

— E“/ e g(Xy)dt = E* (e7*TUg(X7r)) .
T

Combining the assumption that U%g is nearly optional, it follows that ¢t — U®g(Xy)
is right continuous from Theorem 1.3. Finally by Lemma 2.6(3), t — f(X}) is right

continuous for any a-excessive function f. O

Remark 2.8 Though Theorem 2.7 hints that (HD2) may be equivalent to strong Markov
property, an example, when (F;) is not Borel, is presented by Salisbury to show that a

right continuous Markov process with strong Markov property may not be a right process.

Theorem 2.9 Assume (HD1) holds. Let C be a linear subspace of C'(E), closed under
function multiplication, which generates &. If, for any bounded f € C, the process
t — U®f(X;) is right continuous, then (HD2) holds.

Proof. Tt suffices to show that U%g is nearly optional for non-negative and bounded g €
&*. It is true by monotone class theorem for ¢ € & and it follows from the proof of
Theorem 2.7 that t — U%g(X;) is right continuous. Let now g € &* be bounded. For any
probability p on E, there exist gi,go € & such that g3 < g < go and uU%(go — g1) = 0.
Then for any ¢t > 0, U%g1(X;) < U%g(X;) < U%go(X:) and

EX U (g2 — g1)(Xe)] = pPU(g2 — 1) < e*'uU%(g2 — g1) = 0.

Therefore two processes U%go(X.) and U%g;(X.) are P#-distinguishable, i.e., U%g is nearly
optional. M

Example 2.10 (a-subprocess) Let X be a right process on E with transition semigroup
(P,). For o > 0, it is known that P® = e~ * P, is also a transition semigroup on F. Is it
a transition semigroup of a right process? Sure it is. But how do we construct the right

process? Introduce the killing operators (k;) on §2:

X, s<t,

(214) Xsokt =
A, s>t
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Intuitively k; makes no change before time ¢ but sends the path after ¢ to cemetery. For
x € E, define probability Q* on (Q,.7) by

(2.15) Q*(Y) = E° /

0

e¢} o

Yok,d(—e ") = aEx/ Yok,e~*"du,
0

where Y is a bounded or non-negative random variable on {2. Note that we use Q for

both probability and expectation. Let
Xa = (Qv¢g?7igit7Xt79t7Qx)

which is called a-subprocess of X. It is easy to check that X is a right process with

transition semigroup (FP7). In fact,

Q) = oF [ F(Xi)ekue
= aE® /00 f(Xye *du

= e ME(f(X) = P/ f(2).
The verification of (HD2) is left for those who are interested. |

Example 2.11 (Killing at leaving) Let X be a right process on F with transition semi-
group (F;). Intuitively for a subset B, killing X at leaving B shall give us a process which
certainly inherits Markov process from X. Rigorously speaking, let B € &° and T' = Tp
the hitting time of B. Define a map w — kyw on §2 by

w(t), t<T;

(2.16) krw(t) =
g A t>T.

Hence the new lifetime is { AT |

3 Feller processes and Lévy processes

A question we must ask is when and how we will have a right Markov process. There are
basically two ways: one is from Feller semigroup and the other is through transformation
as the example in the last section shows. In this section we shall introduce Feller semigroup

and prove that it may be realized as a Markov process much better than a right process.

Definition 3.1 Let E be a locally compact metrizable space with a countable base. A
transition semigroup (F;) on E is called a Feller semigroup if
(1) PCx(E) C Cx(E) for each t > 0;
(2) for each f € C(E),
i |Pf ~ fle = 0.
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With other conditions, (2) above is equivalent to a weaker one: for each f € Co(F)
and z € E, P,f(x) — f(z) ast | 0. The proof is a good exercise. Since C(FE) is a
Banach space and Feller semigroup () is a strongly continuous semigroup on C(E), its
infinitesimal generator determines (P;) completely by Hille-Yosida theorem. The following

theorem is actually a corollary of regularization theorem of super-martingales.

Theorem 3.2 Let (P;) be a Feller semigroup on E. Then (P;) has a realization which is

a Borel right process, which is called a Feller process.

Proof. Add a point A to E such that Ex is compact and (P;) is extended to a probability
transition semigroup on Ea. Any function f on E may be always viewed as a function
on Ea by defining f(A) = 0. In this way

Coo(E) ={f € C(Ea) : f(A) = 0}

Let X = (X;, P*) be a realization of (P;) on Ea. For any non-negative f € Cy(E) and
a > 0, the process (e U*f(X;) : t > 0) is a super-martingale with respect to P* for
each © € E. It follows that ¢ — U®f(X;) has right and left limits P*-almost surely. We
may take a countable subset D of {U%f : a > 0, f € Cx(Ea)} separating points in E.
Since D is countable, there exists Ny C € such that P*(Ny) = 0 for all z € E and for
any g € D and w € Ny, t — g(Xi(w)) has right and left limits. From the facts that D
separates points in E and any function in D is continuous, it follows that for w ¢ N,
t — X;(w) has right and left limits. Let Y = (V) is the right limit process of X, namely
Yi(w) = sili,sn;th(w), t>0,w & No.
It suffices to show that Y is a version of X. Fix ¢ > 0 and s > 0. Take any non-negative
functions f, g € Co(E) and

B (f(Xt)g(Xsye)) = E*(f(Xe) Psg(Xy))
= P/(fPg)(z).

As s 10, Xgyy = Y, Psg — g and hence we have

E*(f(X1)g(Yy) = Pi(fg)(x) = E*(f(Xy)g(Xy)).

It follows from the monotone convergence theorem that for any continuous function h > 0
on £ x F,
E*[n(X, Y1)] = E¥[R(Xy, Xy)]

and we have X; =Y, a.s.

Hence Y = (V;) is a right continuous realization of (P,) and it is easy to see that YV
is a Borel right process, due to Theorem 2.9 and the fact that U® f is continuous for any
f e Cu(E). O
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An important example of Feller semigroup is the convolution semigroup on Euclidean

space, whose right continuous realization is called a Lévy process.

Definition 3.3 A family of probability measures {v; : t > 0} on R? is called a convolu-
tion semigroup if
(1) vy * vs = vy for any ¢, s > 0;

(2) vy — g¢ weakly as t | 0 where gy is the point mass at 0.

Let {1} be a convolution semigroup on R? and set P;(z,dy) = v4(dy — z). Then (F;)
is a Feller semigroup on R? and its right continuous realization is called a Lévy process
on R?. Actually many well-known Markov processes such as Brownian motion, Poisson
process, stable process, are Lévy processes. The law of a Lévy process is determined by
its convolution semigroup, which is in turn determined by its so-called Lévy exponent.

Let 7, denote the characteristic function of v, which is bounded and continuous on RZ.

There exists a complex-valued continuous function ¢ on R such that

(3.1) vy = exp(—ty),

and this ¢ determines {1, } uniquely by the uniqueness of Fourier transform and called the
Lévy exponent of {1;}. Obviously ¢(0) = 0 and it is well-known that ¢ has the following

representation: for z € RY,

(3.2) o(x) =i(a,x) + %(S:z:,x) +/

Rd

(1 _gitew 4 H@:0) ) w(dy),

L+ |y|?

where a € R?, S is a d x d non-negative definite symmetric matrix, and 7 is a Radon

measure on R?\ {0} having the following integrability

(3.3) /R i 7(dy) < 0.

a1+ |y|?

The matrix S and measure 7w are uniquely determined. But the vector a depends on
the way we write (3.2). Conversely given a function ¢ as in (3.2), there must be a
unique convolution semigroup {v;} on R? such that (3.1) holds. This characterization is
the famous Lévy-Khinchin formula, which tells us that every character about a Lévy
process may be retrieved from its Lévy exponent.

1

It is easy to verify that Lévy exponent of Brownian motion is ¢(z) = 3|z|>. When 7

is a finite measure and
(3.4) o) = [ (= c)m(ay),
Rd

the corresponding semigroup (resp., Lévy process) is called the compound Poisson semi-

group (resp., compound Poisson process). In this case, let A = 7(R?) and mp = A\~ '7. At



152

each step, the process will stay freezing at a position x for an exponentially distributed
time with parameter A and then jump to somewhere according to distribution my(- — x).

For a Lévy process X on R with convolution semigroup {v;}, the Lebesgue measure
m is always an invariant measure for X, since it is easy to check that [, m(da)v(A—z) =

m(A) for any Borel subset A. X is called symmetric if

(3.5) n(—A) =1 (A)

for any Borel subset A of R?. It can be seen that in this case
(3.6) m(dz)v(dy — x) = m(dy)v(dx — y).

Clearly X is symmetric if and only if its Lévy exponent ¢ is real, i.e.,
1
(3.7) o(z) = 5(5:5, ) -l—/ (1 — cos(x,y))m(dy), = € R
Rd
Theorem 3.4 If X is symmetric, then any Radon invariant measure of X is a multiple

of Lebesgue measure if and only if its Lévy exponent ¢ has unique zero.

4 Fine topology and balayage

The Blumenthal 0-1 law is easy to prove but very important.

Theorem 4.1 (Blumenthal) For any A € %, and = € E, P*(A) is either zero or one.

Proof. For any probability g on E, there exists B € %) such that P#*(A A B) = 0. By
Markov property, P#(6,'A A 6;'B) = 0. Since 6,' B = B, P*(§,*A A A) = 0. Then by
Markov property again, for x € F,

P*(4) = P(A 05" 4) = EPX(4); 4] = (P(4)°
and it follows that P*(A) =0 or 1. O

If Blumethal 0-1 law was only talking about a set in ., it would mean nothing. Its
importance is due to the fact that %, is much richer than .%0.

Before we go any further we should answer a question: for what kind of subset B
of E, the hitting time Ty is a stopping time for the augmented filtration (.%;)? Let’s
start from two basic results. Given a filtration (.#;) and a measurable space (5,.7), an

S-valued stochastic process (Y;) is (#;)-progressively measurable if for any ¢ > 0,
(s,w) — Yi(w) is A([0,1]) x A/ -measurable.

Exercise 4.1 If Y is (.#;)-progressively measurable and ¢ : S — R is Borel measurable,
then so is t — @oY;.
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For a set A C E, the hitting time and entrance time for A of X are T4 = inf{t >
0:X;,€ A} and Dy = inf{t > 0: X; € A}. It is easy to see that T is a terminal time,
i.e., almost surely Tyofy +t = Ty on {T'x > t} for all t > 0.

Lemma 4.2 (1) A right continuous and adapted process is progressively measurable.
Therefore (X;) is progressively measurable. (2) If the filtration satisfies the usual con-
dition, the hitting time of a real progressively measurable process for a Borel set is a

stopping time.

For f € S* t — f(X) is right continuous and so f is optional. Let &° denote the

o-algebra generated by all excessive functions. Then
(4.1) ECECECE
Theorem 4.3 If A is nearly optional, then the hitting time T4 is an (.%)-stopping time.

Proof. By the definition and lemma above, T4 is an (.%}')-stopping time for any proba-
bility ¢ on E and hence an (.%;)-stopping time. O

For any A € &, since {Ty = 0} € Fy, P*(T4 = 0) = 0 or 1 for each x € E, by
Blumenthal 0-1 law. If it equals 1, we say z is regular for A or otherwise z is irregular
for A. Let A" denote the set of regular points for A. A nearly optional subset G of E
is called finely open, if for any x € G, P*(Tze = 0) = 0 or equivalently x is irregular
for G¢. Intuitively G is finely open if X, starting from any point in G, will not leave G
immediately. It is routine to show that the set of finely open subsets in F is a topology,
which we call the fine topology of X on E. Since X is right continuous, any point in an
open subset GG will not leave G immediately and hence an open set is finely open, namely,
the fine topology is really finer than the original topology on E. The fine topology carries
some intrinsic characteristics of the process and is usually hard to trace. The following

theorem presents a lot of information on fine topology.

Theorem 4.4 (1) If f is nearly optional, then f is finely continuous if and only if ¢
f(X}) is right continuous. (2) If f € S*, f is finely continuous. (3) For a > 0, the fine
topology is generated by S¢.

Exercise 4.2 For A € £"°, A" is finely closed and A U A" is the fine closure of A.
Theorem 4.5 For A € &, Xp, € AUA" on {T4 < oo} almost surely.
Proof. By definition of Ty, {Xp, & A} C {Tufr, = 0}. Hence for any z € E, using
strong Markov property
P (Xr, & AUA", Ty < 00)
=P*(Xp, & AUA" Tpolp, =0,T4 < 00)
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= E*[P*Ta(Ty = 0); X1, Z AU A", Ty < 00] = 0,
since PX74(Ty = 0) = 0 for X7, & A" O
For an (.%;)-stopping time T, define a-balayage kernel
(4.2) PRz, A) = E" [e"14(X7)], z € E, A€ &

When a = 0, this means Pr(z, A) = P*( Xy € A, T < 00). If T'= Ty, write P as P§.
Lemma 4.6 For g € &7,

(4.3) PAU%g(z) = E* { / ) e_o‘tg(Xt)dt} :

T

Proof. By strong Markov property,

PaUg(z) = E* |e*TE*" ( / e‘atg(Xt)dtﬂ
0

— F* / e—a(T+t)f(Xt+T)dt:|
0

_ /T oo f(Xt)dt}.

[]
Lemma 4.7 (1) If f € S®, then P2f < f. (2) If, in addition, T is a hitting time, then
P2(S*) C S“.

Proof. (1) Assume that f(z) < oo. Since t — e *f(X;) is a non-negative super-
martingale, we then apply the Doob’s sampling theorem to get the conclusion.
(2) By Markov property, we have

a pa . pa
PtPT _Pt—|—T00t'

For T is a terminal time, 16, +t > T for all £ > 0 a.s. Hence if f = U%g, it is obvious
that PRU%g is a-super-median. 7' is a hitting time so 70, +t | T as t | 0 and then

Pr(U*&Y) C 8™
Finally the conclusion follows from Lemma 2.6(3) and Lemma 2.5(3). O
Definition 4.8 Let A € &"°. It is polar if P*(Ty < oo) = 0 for all z € E, thin if
P*(T4 > 0) = 1 for all z € E and semi-polar if A is contained in a countable union
of thin sets. A universally measurable subset A is potential zero if U(xz, A) = 0 for

all z € E. The definition may apply to any subset if it is contained in a set with the

respective property.
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Intuitively, almost surely, X never meets a polar set and amount of time in a set of
potential zero has Lebesgue measure zero. Therefore a polar set is potential zero. The

following theorem asserts that semipolar sets are somewhat between.
Theorem 4.9 If A is a semipolar set, then almost surely {t : X; € A} is at most

countable.

Proof. Assume that A is thin. Let 0 < a < 1, and B = {z € A: Pi1(z) < a}. Set
Ty =Tg, Thi1 = T, + Tho0r,. It is enough to show that 7T,, — oo a.s. Since B is thin,
B" = () and X7, € B for T,, < oo by Theorem 4.5. By strong Markov property
E*fe 1] = E*[e " (e )by, ]
= E*[e  T"EXTn (e7T7)]
< BB (o)

< aE*[e7 ],
and hence E®[e™T"] — 0, i.e., T), = o0 a.s. O

Hence it is evident that a semipolar set is potential zero.

Theorem 4.10 If A is nearly optional, then A\ A" is semipolar.

Proof. P}1 is l-excessive and finely continuous. Let
A, ={r e A: Pj1(z) <1-1/n}.

Then A\ A" = |J,, A, and it suffices to verify that A, is thin. For any = € E, if
Pil(z) < 1,then P} 1 < lorxz ¢ A, If Pj1(z) = 1, then z is in the finely open set
{Pil(z) > 1 —1/n}, which is disjoint with A,, and hence = & A!. This means that A,
is thin. O]

Exercise 4.3 If f is a-super-median, define f = lim;jg e~ P, f. Show that f € S, f > f
and {f > f} is potential zero.

Definition 4.11 X or (F,) is called transient if U is proper, i.e., there exists a strictly
positive g € &* such that Ug < oc.

Since O-potential of the semigroup (e~**P;) is U® which is proper when a > 0, (e”**P,)

is always transient when a > 0.

Lemma 4.12 If X is transient, then there exists strictly positive f such that U f < 1.

Proof. Let g be as in the definition. Set

1
An={92£7Ug§n}
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for n > 1. Then A, 1 E. Clearly 14, < ng and A, is contained in a finely closed set
{Ug < n}. By Theorem 4.5, X7, € {Ug < n} for Ty, < co. Now

e¢}

UlAn (ZC) = Em/ 1An (Xt)dt
T

An
= Py, Ula,(2)
< nPy,Ug(z)
< nEx[Ug(XTAn),TAn < oo] < n?
Then write f = 27"n"?1,, which is strictly positive and U f(z) < 1. O

It is shown in the proof that there exists A, € &* such that A, T F and each Ul,, is
bounded.

Theorem 4.13 If X is transient and f € S, then there exist g, € &7 such that Ug, 1 f
and both g, and Ug, are bounded for each n.

Proof. Take A,, as above. Set
hn = nlAna fn = (Uhn) A f? nk = k(fn - Pl/kfn)'

Then Uh, is bounded, Uh,, T +oc and
t t t+4
[ Pansts k([ gaas— [ pgds)
0 0 1

k
: ok
= k(/ P, f,ds — / P, f,ds).
0 ¢

Since P, f, < PUh,, = ftoo Pshyds | 0 ast T oo, Ugyy, increases with both n and k. Hence
Ugnn T fasn?oo. O

5 Symmetric Borel right processes

Let X be a Borel right process on E with transition semigroup (/).

Definition 5.1 Let m be a o-finite measure on (E, & ). The process X is called symmetric

with respect to m if for any non-negative measurable functions f, g and t > 0,

[ s@)Ps@midn) = [ 5 Rgtom(s).
If we write the inner product of f,g € L*(E;m) as (f, g), this means

(Pifs9) = ([, Prg)-

It follows that m is an excessive measure, namely mP; < m for any ¢ > 0.
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Lemma 5.2 If ¢ is an excessive measure and p > 1, then (P;) may be extended to a

contraction semigroup on LF(E;§).

Proof. For f,q € & with f = g &-a.e., since £|Pf — Pogl < RIS — gl < &lf — gl = 0,
P,f = P,g &-a.e. Hence for any f € LP(E;¢) with p > 1, P,f does not depend on any
particular version of f. By Holder’s inequality

|Pof (z)| =

[EPt(x,dy)f(y)‘
< [ Peanlsw) < ( | pie dy)lf(y)V’) "

Hence we have
1P A1 =/ | P f (2)[P€(dx) S/B(Iflp)(x)ﬁ(dw)zﬁﬂ(lflp) < 170
E E

i.e., (P,) is also a contraction semigroup on LP(E;¢§). O
Theorem 5.3 (F,) is a strongly continuous contraction semigroup on L?*(E;m).

Proof. Take o > 0 and set
D={U%: feb&NLY (E;m)} C L*(E;m).

Then D is dense in L*(m). Indeed, it suffices to show that if g € L?(E;m) and (g, U“f) =
0 for all f € b& N L'Y(E;m), then g = 0 a.e. By the resolvent equation, it follows that
(g,UPf) = 0 for all B > 0. Choose h = U'k where k € b& N L}Y(E;m) and strictly
positive. Then for any bounded f € C(E), t — f(X;)h(X}) is right continuous and hence
BUPHL(fh) — fh a.e. as B — oo. However (g, BUPTL(fh)) = 0. Since h is 1-excessive,

Blg - UL (R < BlglUT R < 1 f1clglBUT R < | flLolglh.

It follows from the dominated convergence theorem that
(9. FYm = (g, 1) = lim. (g, BUPTH(fR)) = 0.

Since h - m is a finite measure, C'(F) is dense in L?(E;h - m) and then g = 0 a.e. m.

We now prove the strong continuity. Fix a > 0.Let u =U®f € D. Then
t
u(z) = / e Pyf(x)ds + e " Pu(r)
0
and, as t | 0,

[P~ ul < (1= ) Paul o + e Pau — .
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< (1 =eulge + 1l — 0.
For any u € L*(E;m), take u, € D such that u, — w in L% Then

|Prv = ul 2 < [P = P g2 + | Prun = unll 2 + Jun =l 2

< 2fup — uf e + [ Pon — wn g2
It follows that (P,) is strongly continuous. O

Let (L, D(L)) be the infinitesimal generator of strongly continuous contraction semi-
group (P;) on L?(E;m). By Theorem 5.3, the bilinear form (&, .%#) defined by

(5.1) &(f.9) = (V—Lf,V—Lg), F = D(vV-L),

is a symmetric form on L?*(E;m) and it may be represented by its approximating form

&(f,g) = lim — (f P.f, g>

t10 t

(5.2)
£?={f€L2(E;m) o H(f ~ Pif f><oo}

Recall that we usually write

(7,6) = 147 = Pof.g), 6P(7,0) = BUF — BUPF.g).
Theorem 5.4 (&,.%) is a Dirichlet form on L*(E;m).

Proof. Tt suffices to prove that (&,.%) is Markovian. By symmetry, m(dz)P;(z, dy) is
symmetric and then for f € &%,

EDf. f <ff Bif)
/ 1) (F() — (Bf) () m(de)

_ (f(a: / £ () Pu(a, dy) ) m(dz)
i ([

F()Pu(e, dy) ) m(dz) + 1/ (1= P1)dm

[ f@ () = £) Rl dym(dn) + 5 [ £ - Pa)
5 [ U@ - 1) Rl dgm(dn) + ¢ [ £0- R

If g is a normal contraction of f, it is then obvious that

9(g,9) < EV(S, )
and hence f € .7 implies that g € .7 and &(g,9) < &(f, f)- O
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6 Irreducibility and uniqueness of symmetrizing mea-

sure

When the process X is symmetric with respect to m, m is called a symmetrizing mea-
sure of X. The existence and uniqueness of symmetrizing measures of X are always
interesting to explore. In this section we shall introduce the notion of fine irreducibility
and prove that it implies the uniqueness. The process X is called finely irreducible if
P*(Tp < oo) > 0 for any = € E and any non-empty finely open subset D, where Tp is
the hitting time of D. Intuitively the fine irreducibility means that any point can reach
any non-empty finely open set, while the usual irreducibility means that any point can
reach any non-empty open set. Certainly the fine irreducibility is stronger than the usual
irreducibility. Since the fine irreducibility is hard to be characterized, we shall give a few

equivalent statements which may be useful in some circumstances.

Lemma 6.1 The following statements are equivalent.

(1) X is finely irreducible.

(2) U*1p is positive everywhere on E for any non-empty finely open set D.

(3) U1, is either identically zero or positive everywhere on E for any Borel set A or, in
other words, {U%(z,-) : x € E} are all mutually absolutely continuous.

(4) All non-trivial excessive measures are mutually absolutely continuous.

Proof. The equivalence of (1) and (2) is easy. We shall prove that they are equivalent to
(3). We may assume o = 0. Suppose (1) is true. If U1, is not identically zero, then there
exists 9 > 0 such that D := {Uls > 0} is non-empty. Since Ul, is excessive and thus
finely continuous, D is finely open and the fine closure of D is contained in {U1l4 > §}.
Then by Lemma 4.7,

UlA(CIJ) > PDUlA(.T) =FE” (UlA(XTD)) > 5Px(TD < OO) > 0.

Conversely suppose (3) is true. Then for any finely open set D, by the right continuity of
X, Ulp(z) > 0 for any x € D. Therefore Ulp is positive everywhere on E.

Let & be an excessive measure. Since afU® < £, £(A) = 0 implies that U*(A) = 0.
However ¢ is non-trivial. Thus it follows from (3) that U*14 = 0, i.e., A is potential zero.
Conversely if A is potential zero, then {(A) = 0 for any excessive measure £. Therefore
(3) implies (4).

Assume (4) holds. Since U(x,-) is excessive for all z and hence they are equivalent.
This implies (3). O

Theorem 6.2 Assume that X is finely irreducible. Then the symmetrizing measure of
X is unique up to a constant. More precisely if both 1 and v are non-trivial symmetrizing

measures of X, then v = ¢y with a positive constant c.
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Proof. First of all there exists a measurable set H such that both p(H) and v(H) are
positive and finite, because pu and v are equivalent by Lemma 6.1. This is actually true
when both measures are o-finite and one is absolutely continuous with respect to another.
Indeed, assume that v < p. Since v is non-trivial and o-finite, we may find a measurable
set B such that 0 < v(B) < co. Then p(B) > 0. Since p is o-finite, there exist A, T E
such that 0 < p(A,) < oo. Then v(A, N B) T v(B) and pu(A, N B) 1 u(B). Hence there
exists some n such that v(A, N B) > 0. Take H = A,, N B, which makes both u(H) and
v(H) positive and finite.

Set ¢ = v(H)/u(H). We may assume that ¢ = 1 without loss of generality. Let
m = pu+ v. Then there is fi, fo > 0such p= fi-mand v = fo-m. Let A= {f > fo},
B={fi=fo} and C={f1 < fo}.

We shall show that v = p. Otherwise u(A) > 0 or v(C) > 0. We assume that
p(A) > 0 without loss of generality. Since p is o-finite, there is A, € Z(F) such that
A, C A u(A,) <ocoand A, T A. Let D =BUC. For any integer n and o > 0,

(UalAn7 1D)u S (UalAn7 1D)I/ = (Ua]-D7 1An)u S (UalDa 1An)u~

Since (U%14,,1p), = (U*1p,14,),, it follows that (U%1p,14,), = (U*1p,14,),. Thus
we have

(V1,1 = 2)La)u = (071, L)y = (071, 1), = 0.
1
Since 1 — % > 0 on A, let n go to infinity and by the monotone convergence theorem we

get that (U%1p,14), = 0. The fine irreducibility of X implies that U%1p = 0 identically

or D is of potential zero. Therefore

Consequently,
f
0= n(H) = () = [ (1= Pdn
HNA 1
which leads to that u(H N A) = 0 and also u(H) = 0. The contradiction implies that
V= [. [

The following example shows that the usual irreducibility is not enough to guarantee

the uniqueness of symmetrizing measure, while the fine irreducibility might be too strong.
Example 6.3 Let

J = %(51 +0_1+0,5+0_y5)
defined on R and m = {m}¢~o the corresponding convolution semigroup; i.e., T (z) =

e~ @) with

o(z) = /(1 —coszy)J(dy) = %(1 —cost) + %(1 — cos V2x).
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Let X be the corresponding Lévy process. Then X is symmetric with respect to the
Lebesgue measure. Let N = {n+m+/2 : n,m are integers} and pp = _y ;. Then 1 is
o-finite and also a symmetrizing measure. It is easy to see that any point x can reach any
point in z+ N and cannot reach outside of x+ N. Since x+ N is dense in R, any point can
reach any non-empty open set, namely X is irreducible. However any compound Poisson
process will stay at the starting point for a positive period of time, i.e., any singleton is
finely open. Hence X is not finely irreducible.

Another interesting example is also a compound Poisson process X, where the Lévy
measure J is a probability measure on R with a continuous even density. In this case, we
can show that X has a unique symmetrizing measure, the Lebesgue measure, but X is
still irreducible, while not finely irreducible. Actually any single point can not reach any

other point.

It is known that the fine topology is determined by the process and hard to identify

usually. Hence it is hard to verify sometimes the fine irreducibility defined in the theorem.

Definition 6.4 We say X is LSC or strong Feller, if U%1 5 is lower-semi-continuous or

continuous, respectively, for any Borel subset B of F.
Lemma 6.5 If X is LSC or strong Feller, the fine irreducibility is equivalent to the usual

one.

Proof. 1t suffices to prove that P*(Tp < oo) > 0 for any x € E and non-empty open
subset D C E. In fact, take A € Z(F) with Ul # 0 identically. There is b > 0 such
that G = {U14 > b} # () and is open due to the property LSC. Again by Lemma 4.7, for
any r € F,

Uly(z) > PoUly(x) = PP (Ula(X1,), Te < 00).

But X7, € G on {Tg < oo} by Theorem 4.5 and then Ula(X7,) > b on {Tx < oo}.
Hence by the irreducibility, we have

UlA(iC) > bP* (TG < OO) > 0.

O

Question If X is a Lévy process, what conditions imposed on its Lévy exponent guarantee
that X is irreducible or finely irreducible?
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ON THE CONSTRUCTION OF TORIC VARIETIES

MAasANORI ISHIDA

Introduction

A normal algebraic variety X is called a toric variety if it contains an algebraic torus T
as an open subvariety and the group action of 7' on itself is extended regularly to X.
It is known that the toric variety X is described by a fan of a real space of dimension
r = dim X with a lattice N ~ Z". A fan is a collection of cones in the real space, and
each cone gives a finitely generated subsemigroup of the dual Z-module M = N*. The
coordinate ring of the corresponding affine open set of the toric variety is the semigroup
ring of this semigroup. Omne of the important properties of a toric variety is that it is
compact if and only if the associated fan is complete, i.e., it is finite and the support is
the whole real space. In this note, we will introduce a variation of the construction of
the toric variety from a fan. Namely, we define a topological space based on a topological
commutative semigroup from a fan.

In Oda’s book [O], the affine toric variety over C associated to a cone o is given as the
set Hom(MNoV, C) of semigroup homomorphisms z : MNoY — C with 2(0) = 1, where C
is considered as a multiplicative semigroup (see [O, Proposition 1.2]). In Section 3, we will
replace C by a topological commutative semigroup A with some condition. Considering
the case when A is the closed unit disk in C, we give a new explanation of the completeness
condition of a fan.

Section 4 is on a different topic, which is an application of the theory of toric varieties.
We consider the algebraic surfaces defined by tetrahedra without lattice points on the
boundaries except vertices. Normal and nonsingular complete models of such an algebraic
surface are described by embedding in the toric variety associated to the tetrahedron. By
applying the Riemann-Roch theorem to the nonsingular model, we give a formula of the
geometric genus of the surface which is equal to the number of the lattice points in the

interior of the tetrahedron.

Acknowledgment This note is based on my talk at Fudan University in November
2010 as a course of the exchange program of Tohoku and Fudan Universities. I would like
to express my sincere thanks to Professors Quanshui Wu, Jiaxing Hong and Meng Chen

for giving me a chance to stay at Fudan University.
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1 Cones and fans

Let r be a non-negative integer and N a free Z-module of rank r. We consider cones and
fans in the real space Ng = N ®zR., which contains NV as a lattice. A non-empty subset C'
of Ng is said to be a cone if u € C' and a € Ry imply au € C, where Ry = {c € R ; ¢ > 0}.
A cone C is convex if and only if z,y € C' and a,b € Ry imply az + by € C. For any

subset S C Ng, the minimal convex cone containing .S is
C={au +---+au;ay,...,a € Ro,uy,...,u € S},

and we say that C is generated by S. A rational polyhedral cone is a cone generated
by a finite subset of N. We assume that a cone denoted by a Greek letter, for example
o, is always a strongly convex rational polyhedral cone, where strongly convexr means
oN(—o)={0}.

The dual Z-module of N is denoted by M, which is a lattice of Mr = M ®z R. The
natural pairing (, ) ; M X N — Z is extended to the bilinear map

<,>2MRXNR—>R.

For an element x € Mg, we denote (z =0) = {u € Ng ; (z,u) =0} and (z > 0) ={u €
Nr ; (x,u) > 0}. If  # 0, then (z = 0) is a hyperplane and (z > 0) is a closed half
space of Ng. We use similar notation for u € Ng. Namely, (u = 0) is a hyperplane and
(u > 0) is a closed half space of Mg if u # 0. Although it is not so easy, we can show
that a subset C' C Ng is a rational polyhedral cone if and only if

C=(r;>20)N---N(xs >0)

for a finite subset {x1,..., x5} of the lattice M. A subset p of a cone o is said to be a
face and we denote p < o if there exists x € Mg with 0 C (x > 0) and o N (z =0) = p.

For a cone ¢ in Ng, we define
o' ={x € Mg ;{r,u)>0foraluco}={r€Mg;oC (x>0},

which is a polyhedral cone of dimension r and we call it the dual cone of ¢. The linear
subspace o0+ = {x € Mg ; {x,u) = 0 for all u € ¢} is contained in ¢". In particular, ¥

is not strongly convex if dim o < r. There exists a natural bijection
(the set of faces of o) — (the set of faces of o)

defined by p — oV N pt, where dim(c¥ N pt) = r — dim p.
A nonempty set X of strongly convex rational polyhedral cones is said to be a fan if

it satisfies the following conditions.



167

(1) 0 € X and p < o imply p € X.
(2) If 0,7 € X, then 0 N7 is a common face of o and 7.

Although it is common to denote a fan by a Greek capital, it is my favor to use a
Roman letter so that it can be considered as a kind of scheme. Namely, for each o € X,
the set F(o) of faces of o is an affine piece and X is the union of them. The condition
(2) is the separation condition. The union |J .y o of cones in X is called the support of
X and denoted by | X|. We say X is complete if it is finite and | X| = Ng.

For a cone ¢ in Ngr, we denote by H(o) the linear subspace of Ng generated by o.
Clearly, H(o) is equal to 0 + (—0) = {u — v ; u,v € o}. The relative interior rel. int o
of ¢ is the set of interior points of o as a subset of H(co). Note that rel.int o is always
nonempty and any cone 7 is the disjoint union of rel.int o for ¢ € F(7). Namely, a point
u in 7 belongs to rel. int o for the unique minimal face ¢ of m which contains u. If ¢ is an
element of a fan X, then o is a face of 7 € X if and only if 7 Nrel. int o #£ .

For a cone o, we define also N[o] = N/(N N H(c)) and M[o] = M N o+, which are
mutually dual free Z-modules. If ¢ is a face of another cone 7, we denote by 7[o] the
image of 7 in N[o]g = Ngr/H(0), which is a strongly convex rational polyhedral cone in
the real space N[o]g.

When o is an element of a fan X, we denote X (0<) = {7 € X ;0 <7} and

X[o] ={7lo] ;7€ X(6=<)} .

We can see that X[o] is a fan of N[o|g. For each 7 € X (0<), the semigroup M|[c]N7[c]¥

is equal to M N 7Y N ot. Here recall that 7V N ot is a face of 7.

Proposition 1.1. Let X be a finite fan of Nr, o an element of X. If o intersects the
interior of | X|, then X|o] is a complete fan of N|o]gr.

Proof. Let ¢r : Ngr — N[o|r be the natural surjection. We set
| X (0=<)] = U T and FE:= U T
TEX(0=) TEX\X(0=)

Since F is a closed subset disjoint from the relative interior of o, we know that o intersects
the interior of | X (0<)|. Since ¢gr is an open map, |X[o]| = ¢r(|X(0<)|) contains the
origin of N[o|g as an interior point. Since |X[o]| is a cone, we have |X[o]| = N[o]r and

X|o] is complete. g.e.d.

2 Fan spaces over a semigroup

Let A be a topological commutative semigroup with unity. Namely, A is a commutative

multiplicative semigroup with 1 € A, and is a topological space such that the map AxA —
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A defined by (a,b) — ab is continuous. Also, A might be an additive group with 0 € A.
We will further assume the following conditions.
(a) The set A* of invertible elements in A is open or closed in A and the map A* — A*
defined by z +— 27! is continuous.
(b) There exists an element 0 € A such that ab = 0 if and only if a = 0 or b = 0, and the
one point set {0} is closed in A.
We mainly consider the following examples of A, where the element 0 in (b) is oo for

the additive semigroups (6) and (7).
1) The complex plane C as a multiplicative semigroup.
2) The closed unit disk D = {z € C; |z| < 1} as a multiplicative semigroup.
3) The real line R as a multiplicative semigroup.
4)

)

5) [0,1] as a multiplicative semigroup.

(
(
(
(4) Ry ={a € R;a >0} as a multiplicative semigroup.

( — J—

(6) R = RU {00} as an additive semigroup where a + oo = oo for every a € R. The
subsets (a,00) U {oo} for a € R are fundamental open neighborhoods of co.

(7) Ro = Rg U {oc} as an additive semigroup. This is the one-point compactification of
R,.

Note that there are surjective homomorphisms C — Ry and D — [0, 1] defined by
2 — |2|, and isomorphisms Rg — R and [0, 1] — Ry defined by a — — log a, while there
is the inclusion map R — C.

For a cone o in Ng, we consider the additive semigroup M No" and denote by F'(0)4
the set Homgg, (M N oV, A) of semigroup homomorphisms such that 0 is mapped to the
unity. Let {mq,...,m;} be a set of generators of the semigroup M N¢". Then the map
F(0)a — Al defined by o — (a(my), ..., a(m;)) is an injection. We consider the topology
of F(0), induced from the product topology of A'.

Lemma 2.1. The topology on F(c)a does not depend on the choice of the finite set of
generators {my,...,my}.

Proof. Since any subset of M N ¢ containing a set of generators is also a set of

generators, we should show that {m,...,m;} and {m4,...,m;,my11,...,ms} define the
same topology on F(o)4 for any myiq,...,ms € MNcoV. If we use induction, it suffices to
show the case s =1+ 1. Since {m1,...,m;} is a set of generators, we have an expression
M1 = cimy + -+ +¢my with ¢1,...,¢, > 0.

The induced topologies are the weakest topologies on F'(¢) 4 such that the maps a
a(m;) are continuous for ¢ = 1,...,l and ¢ = 1,...,l + 1, respectively. Since the map
Al — A defined by (z1,...,z;) — 25" - - - x;" is continuous, these conditions are equivalent,

and hence they define a same topology. q.e.d.
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Let p be a face of 0. Then, since M No¥ C M NpY, there exists a map ¢/, : F(p)a —
F(0)4 defined by the restriction x — x|M No". In the proof of the following lemma, we
use the fact that, if we take a point z in the relative interior of ¥ N p*, the face p < o is
defined by z and we have p =0 N (—z > 0) and

p' =(cN(=2>0))" =0"+Ro(—2) .

Lemma 2.2. This map ¢o, is injective. An element y € F(o)a is in the image if and
only if y(m) € A is invertible for every m € M No¥ N pt.

Proof. Take an element mg in MNrel. int(cVNpt). Then, for any element m € MNp",
there exists a positive integer a and m’ € M N o such that m = m’ — amy. Hence for
x € F(p)a, we have z(m’) = z(m)x(mg)?. Since M N pt is a group and my is in it, we
have —mgy € M N p"¥ and z(myg) has the inverse x(—myg). Hence z(m) = x(m')z(mg) .
Since m/,my € M N oV, this means that x is determined by its image in F'(0)a, i.e., this
map is injective. Since my € M Nrel.int(c¥ N pt), the homomorphism y can be extended
to M N p¥ if and only if y(myg) is invertible. For m € M N oY N p*, y(m) is invertible
if so is y(my), since there exists a positive integer a with amg —m € M NoY N pt and

y(mo)® = y(m)y(amy — m). Hence we get the second assertion. q.e.d.

For a cone o in Nr and its face p, we regard F(p)a as a subset of F(0)a by the

injection ¢g/,.

Lemma 2.3. Let p be a face of o. then the topology of F(p)a is equal to the topology
induced from F(o)a. If A* is open (resp. closed) in A, then F(p)a is open (resp. closed)
m F(O‘)A.

Proof. Let {my,...,m} be a set of generators of M N o¢”. We may assume that
mi,...,mg are in M NoY Npt and others are not for some 0 < s < [. By Lemma 2.2, the
topology of F'(p) 4 is the weakest topology such that maps = — z(m;) and x — x(—m;) for
i=1,...,s and x — x(m;) for i = s+ 1,...,[ are continuous. Since x(—m;) = z(m;)~"
for i = 1,...,s, this is equivalent to the condition that x — z(m;) for i = 1,...,1 are
continuous by the condition (a) of A. Hence it is the induced topology of F(0)a. Since
F(p)a is equal to {x € M NaoY ; z(m;) € A* fori = 1,...,s} by Lemma 2.2, we have
F(p)a = F(o)4 N ((A%)* x A=%). Hence, it is open if AX is open, and closed if A% is
SO. q.e.d.

3 Compact toric varieties

Let M and N be mutually dual free Z-modules of rank r > 0 as before. We define the
morphism
pn Ty — Nr
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from Ty = N @ C* to the real space Ng = N @ R by uy = 1y ® (—log|-|). Namely, if
we consider Ty = (C*)" and Ng = R" by fixing a basis of N, then

uN(tla s 7t7") = (_ 10g|t1|7 R _1Og |t7"|) :

This is a continuous surjective homomorphism of groups. We can write also Ty =
Hom,, (M, C*) and Ng = Hom,, (M, R). In this description, yy is the morphism mapping
a € Homy, (M, C*) to —log |a| € Homg, (M, R).

Lemma 3.1. Let 0 be a cone of Nr. For z in Ty, uy(x) is a point of o if and only if
le(m)(z)| <1 for everyme MNa.

Proof.  Since uy(z) € Ng = Homg, (M, R) for z € T, we have

—logle(m)(z)| = (m, un(z)) .

From this equality, |e(m)(z)| < 1 is equivalent to (m, uy(x)) > 0.
If we replace the inequality |e(m)(z)| < 1 in the lemma by (m, uy(z)) > 0, the second
condition is (m, uy(x)) > 0 for every m € M No". Since ¢ is generated by M No" and

oYV = ¢, this is equivalent to the first condition uy(z) € o. q.e.d.

For the closed unit disk D in the complex plane, we get the following lemma.
Lemma 3.2. F(o)p is compact for every cone o.

Proof. Let {my,...,ms} be a set of generators of the semigroup M Nc". Any element

m € M N oY can be expressed as
m=cimy+ -+ CsMg
by non-negative integers ¢y, ..., cs. Then, we have
a(m) = a(m)® - a(ms)

for any @ € F(o)c. Hence, o is in F(o)p if and only if the s complex numbers
a(my),...,a(ms) are of the absolute values at most one. On the other hand, since the
coordinate ring C[M N ¢"] of F(o)c is generated by {e(m1),...,e(ms)}, we can regard
F(0)c an affine algebraic variety defined in C* with this set of coordinate functions.
Then, since

F(o)p = F(o)e N D*,

F(o)c C C* is closed and D* is a bounded closed set, F'(c)p is also a bounded closed

subset, and hence is compact. q.e.d.
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Let X be a fan. We introduce an equivalence relation in [[ .y F(0)a/ ~ as follows.

oeX
For x € F(o)a and y € F(7)a, we define x ~ y if there exists z € F(n)s forn =0nN7
such that © = z|[M NoY and y = z|M N 7Y. It is easy to see that this is an equivalence
relation, and we denote by X4 the quotient space [[ oy F(0)a/ ~.

If A* is open in A, then the natural map F(o)4 — X4 is an open immersion while it
is a closed immersion if A* is closed.

Let p be a face of 0 € X. We define
Vo(p)a={r € F(o)s;2z(m)=0forme Mn(s”\p")}.
We denote by V(p)a the union of V,(p) for o € X(p=<) in X 4. Since
Mlp|nop]Y=Mno'Np-c Mnao”,

each element = € V,(p)4 has an image in F'(o[p])a as the restriction.

For each z € X4, we can find the minimal p € X with z € V(p)4 as follows. Let
o € X be an element with € F(0)4. Since {m € MNa" ; x(m) # 0} is a subsemigroup,
there exists a maximal face o¥ N pt of ¢¥ such that z(m) # 0 for an element m €
M Nrel.int(c¥ N pt). Then x(m') # 0 for every m’ € M NoV N pt by condition (b) since
there exists a > 0 such that am —m’ € M Na¥ Npt and x(m')z(am —m') = z(m)* # 0.
By the maximality of oV N p*, x(m) =0 for m € M N (o \ pt). Namely, z is in V(p)4

and this p is minimal.

Lemma 3.3. Let X be a fan of Nr. For any p € X, the subspace V(p)a C Xy is
homeomorphic to X[p]a.

Proof. The map from V,(p)a to F(c[p])a is injective since every x € V,(p)4 is zero
outside M Na¥ Npt. Since every element y in F(o[p]) is extended by 0 to an element of
Vy(p)a, it is surjective. This is a homeomorphism since both topologies are induced from
those of the products of A.

Since V(p)a is the union of V,(p)a for ¢ € X(p<) and the compatibility of these
homomorphisms with the restriction maps are clear, we get a homeomorphism V' (p)4 —
X|[pla- q.e.d.

By this homeomorphism, we regard X [p]4 as a subset of X 4. If p < o and {my,...,m}
is a set of generators of M N such that my,...,my; € MNoV Nptand meyq,...,m; €
M (aV\ pt), then z € F(o)a is in V,(p)4 if and only if z(m;) =0 for i = s+ 1,...,1.
Hence, by condition (b) of A, the one point {0} is closed in A. Therefore, V,(p)4 is closed
in F(o)a for every o € X (p<), and X|[p]a is a closed subset of X 4.

Theorem 3.4. Let X be a finite fan of Nr. The toric variety X¢ is compact if and only
if the fan X is complete.
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Proof. We assume that X is complete. We prove that X¢ is compact by induction
on r. If r = 0, then X¢ is one point and the assertion is clear. Assume r > 0. Since
F(o)p is compact for each 0 € X by Lemma 3.2, their finite union X is also compact.
Hence, it suffices to show that X¢ = Xp.

Let z be an element of Xc. We take 0 € X with x € F(0)c. If we think z as
the homomorphism M No¥ — C, we find an element p € F(o) such that z(m) # 0
for m € M NoYNpt and x(m) = 0 otherwise. Then x is contained in X[p]c. Here
note that X|[p] is a complete fan of N[p]g by Proposition 1.1. If p # {0}, then we have
X[ple = X|plp € Xp by the assumption of the induction. Assume p = {0}. Then z
is an element of Tly. Since X is complete, uy(z) is contained in some o € X. Then
z € F(o)p C Xp by Lemma 3.1.

Now assume that X is not complete. Then, since Nr \ |X| is a nonempty open set,
there exists a rational point x in it. Let v be the one-dimensional cone generated by .
Since v intersects the cones of X only at the origin of Ng, X' := X U {7} is also a fan of
Ng. If X¢ is compact, the Hausdorff property of X¢ implies that X¢ is a closed subset

of the toric variety X¢. This is a contradiction, since
F ('7)0 N XC = TN

and Ty is not closed in F(y)c =~ C x (C*)"'. Hence, X¢ is not compact if X is not
complete. q.e.d.

Remark 3.5. Let R(()Jr) be Ry as an additive semigroup, which does not satisfy the

R(()+) forc e X ,

Xpgen is the union of cones in X. Although there is natural continuous bijection from
0

condition (b). We consider the space X for a fan X. Since o = F(0)
0

Xp to the support | X|, this is not a homeomorphism if X is infinite. We see that X )
0 0

is homeomorphic to Ng if and only if X is complete.

4 The algebraic surface defined by a tetrahedron

Let M be a free Z-module of finite rank. We regard M as a lattice of the real space
Mg = M ®z R. For a finite subset W = {vy, ..., vs} of M which is not contained in any
(s — 1)-dimensional affine subspace of Mg, we denote by Index(W) the index

[M N (R(vy —wo) + 4+ R(vs — v9)) : Z(vy —vg) + - - + Z(vs — vg)]

Let V = {myo,...,m3} be a set of points of M = Z* which is not contained in any
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plane of Mg = R?. We set

T  : the tetrahedron spanned by V,

n Index(V),

S; the triangle spanned by V' \ {m;} for i =0, 1,2, 3,

b; Index(V '\ {m;}) fori =0,1,2,3,

E;; : the edge with the ends V' \ {m;,m;} for 0 <i < j <3,

o~

;o Index(V'\ {m;,m;}) for 0 <7< j <3.
The classical Pick’s theorem implies that b; is equal to
2I; + B; — 2,

where [; (resp. B;) is the number of lattice points in the interior (resp. on the boundary)
of the triangle S;. Later, we consider the case where each S; has lattice points only at the
vertices. Then b; = 1 since I; = 0 and B; = 3. In this case, we also have [;; = 1 for all
1,7 since each Fj; has no lattice points in the interior.

For each index 7 = 0,...,3, there exists a unique primitive element v; of N =
Homgz(M,Z) which is constant on the triangle S; and satisfying (m;,v;) > (Si,v;). In
other words, v;’s are the inner normal primitive vectors of the faces of the tetrahedron T
In particular, any three of {vy, ...,vs3} are linearly independent. For linearly independent
primitive elements u,v € N, we denote by n(u,v) the index [N N (Ru + Rw) : Zu + Zv].
Then there exists a unique integer ¢ = ¢(u,v) with 0 < ¢ < n and (v + qu)/n € N.
Actually, we can take a coordinate of Ru + Rv such that v = (1,0) and v = (a,n) for
an integer a. Then there exists a unique 0 < ¢ < n such that a + ¢ is a multiple of n.
We can check the equalities n(u,v) = n(v,u) and ¢q(u,v)q(v,u) = 1 (mod n). We set
nij = n(v;,v;) and ¢;; = q(v;,v;) for 0 < i < j < 3. The equality n = [; n;; can be
checked easily. In particular, n;; = nif [; ; = 1.

In this note, a sequence A = [ay, ..., as| of integers at least 2 is called a string of length
s =:len(A). We denote by Str the set of strings, and by Strs the set of strings of length
s.

For a pair of integers (n,¢q) with 0 < ¢ < n and gem(n, ) = 1, we denote by str(n, q)
the string [aq, ..., as] obtained by the continued fractions:

a9—

as—

As—1— —
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If A = str(n,q), then the integers n and ¢ are recovered from the string A by the
continued fractions. We denote the n and the ¢ for A by n(A) and ¢(A), or by n(a,...,as)

and ¢(ayq,...,as), respectively. For the empty sequence A =[], we define n(A) = 1 and
q(A) = 0.
If A=la,...,as), then we have the following results (see [I]).

(1) If s > 1, then
(4.1) (a1 — 1)g(A) < n(A) < aiq(A) .
(2) If we define a n x n matrix (a; ;) by

a; ifi=j

0 otherwise ,

then we have
(4.2) n(A) = det(a;;) .

(3) Let A* be the reverse [as, ..., ai] of A, then

(4.3) n(A) = n(A*) .

(4) Let ¢*(A) := g(A*), then

(4.4) q(A)q"(A) =1 (mod n(A4)) .

For positive integers n, ¢ with 0 < ¢ < n and ged{n, ¢} = 1, we define the integer o(A)
by
o(A)=0(n,q) :=a1+---+as—3s+1

and the rational number A(A) by

q+q
.

AMA)=A(n,q):==a;+ -+ +as—3s+

Where ¢* is the integer with 0 < ¢* < n and ¢¢* = 1 (mod n). We also define o(1,0) =
A(1,0) = 0. If n > 1, then we have the inequalities

(4.5) o(n,q) —1 < An,q) <o(n,g) +1

since 0 < q,q¢* < n.
We call A(n, q) the deviation of the pair (n,q). The equalities

AMn,q) = XMn,q*) = =X(n,n — q) = —=A(n,n — q")
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hold if n > 1 (cf.[T]).

Let ¢ = €*™/" and let Z be the quotient of C? by the cyclic group action generated by
the automorphism (z,y) — (¢%,(y) of order n. Then Z has a cyclic quotient singularity
of type (n,q) at the image of the origin. It is known that the exceptional divisor of the
minimal resolution Z of this normal surface singularity is a chain of nonsingular rational
curves of self-intersection numbers —ay, ..., —as. If X is a compact normal surface with a
cyclic quotient singularity of this type and X is its minimal resolution, then we can show
that ¢ + ¢, of X decreases from that of X by A(n,q) — 2 + 2/n.

We define the genus g(7') of the tetrahedron 7" as the number of the lattice points in
the interior of 7. By Khovanskii [K1], this number is equal to the geometric genus of the
algebraic surface defined by the sum of four monomials corresponding to the four vertices
of T'. A nonsingular model of the surface is obtained as follows.

The dual cones of Ro(T — m;) for @ = 0,...,3 and their faces form a complete fan
A of Ngr, where we write the fan by a Greek capital in this section. We consider the
surface X (f) defined by f = 0 for f = e(mo) + --- + e(m3) in the compact toric variety
Z(A) associated to A. Since the normal compact surface X (f) may have cyclic quotient
singularities, we desingularize them by subdividing the fan. The exceptional curves of
these desingularizations are described by the continued fractions, and this description
helps the calculation of the chern numbers ¢} and ¢, of the desingularization )?(\f/)

Using the fact that X(f) is an abelian covering of degree n of P?(C) ramifying over

a union of four lines, we have ¢ + ¢y of X (f) as

3 3
e(X())+ Ky =2n=3> b+ _b)’/m+ > ly.
i=0 i=0 0<i<j<3
The normal surface X (f) has [;; cyclic quotient singularities of type (n;;, ¢ ;) for each

pair (4,7) with 0 <i < j < 3. Hence this value decreases by

o LA ag) — 24 2/ni5}
0<i<j<3
after the minimal resolution.

The irregularity of this surface is zero since it is birationally a quotient of a Fermat
surface in P3(C). Hence we can calculate the geometric genus by the Riemann-Roch
formula y = (c? +¢)/12 of the arithmetic genus of algebraic surfaces, which is also called
Noether’s formula. Namely we have g(T) = (¢ + ¢y — 12)/12.
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Theorem 4.1 ([I]). The genus g(T) of the tetrahedron T is given by the formula

9(T)
& Y g Q2
2%—3Zb,+ (Zb,) n_l— Z li,j{(a(ni7j,qi,j) —4+M} — 12
_ i=0 i=0 0<i<j<3 Ti.j
B 12
3 3 2 9
2n — 3 Z bl + (Z bl> n_l — Z l@j {()\(ni?j, qm) -3 + } — 12
B i=0 i=0 0<i<j<3 Misj
B 12 ‘

In this note, we consider the special case
IT N M = {mg, my, mg, ms} ,

where 0T is the boundary of the tetrahedron 7. Then, since b; = 1 for all ¢ = 0,...,3
and l;; = 1, n;; = n for all 0 <7 < j < 3 in the formula in Theorem 4.1, the number g

of the lattice points in the interior of the tetrahedron is given by the genus formula

4 i +q i
4. = - iy T 95
(4.6) 12¢ 2n + " Z a(n,qij) Z
0<i<y<3 0<i<y<3
4
(4.7) = m-6+-—— >  Anaqy)
" o<icy<s

We will normalize such tetrahedron so that we can count up all tetrahedra up to
isomorphisms. By a parallel translation of T, we may assume mg = 0. Since the triangle
spanned by {0, m;, ms} contains no other points of M, {ml, ms} is a part of a Z-basis of
M. We take a Z-coordinate of M such that m; = (1,0,0), mgo = (0,1,0) and m3 = (p, ¢, n)
with 0 < p,q < n. Since {my,m3} is also a part of Z-basas, p and n are coprime.
Similarly, ¢ and n are coprime. Since the three points mi, ms, m3 span another face of
T, {my—mq,ms—mi} = {(—=1,1,0),(p — 1,¢,n)} is also a part of Z-basis. This implies
that p+ ¢ — 1 and n are coprime.

The inner normal primitive vectors of T are
Vo = (_n7_n7p+q_ 1) , U1 = (nv()?_p) , Uy = (Ovnv_Q) , U3 = (07071) .
We can calculate the g; ;’s modulo n as follows.

g1 = P+e—1) qo = p(p+qg—1)
G2 = P+g—1)¢ @o = ¢(p+qg-—1)
)*

Q3 = —(p+q—1) o = —(p+qg-—-1)
Gip = —D'q Q21 = —q'p
Q13 = D g1 = p

*

G23 = (4 g2 = ¢
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For example, the equation ¢(vg,v1) = go1 = (p+¢g— 1)*p can be checked as follow. There
exists an integer d with (p+¢— 1)*(p+¢— 1) =dn + 1. Hence

o1+ (p+q—1)"puo
= (n,0,=p)+(=(p+q—1)pn,—(p+q—1)"pn, (dn + 1)p)
= (I=(p+q—1)"p)n,—(p+q—1)"pn,dnp)
= n(l=(p+qg—1)p,~(p+q—1)p,dp).

By the above data, it is easy to check the following equalities.

(1.1.1) ¢ijgj; = 1 (mod n) for all 0 < i < 5 < 3.

(1.1.2) qu =1 (mod n) for all i =0,..., 3.

(1.1.3) cjzé;quqk’i = —1 (mod n) for all triple (i, j, k) of distinct elements of {0, 1,2, 3}.

Note that this set of equalities is invariant under the action of the symmetric group of
the index set {0, 1,2, 3} which is induced by the renumberings of the vertices of T'. Since
the induced action of the symmetric group on the set of pairs (i, 7) is transitive, we can
replace any g; ; by go,1 or other by a renumbering of the vertices.

For any triple (p,q,r) of integers prime to n with 0 < p,¢,7 <nand p+qg+7r =1 (
mod n), we have a tetrahedron with ¢3; = p, ¢s2 = ¢ and g3 = r. Furthermore, the
triple is unique for a tetrahedron if we impose the following conditions.

()p<g<r.

(2) For i = 0,1,2, let p’ < ¢’ < r’ be the ordering of {g;; ; j # i}. Then p < p’ or
p=p and ¢ < .

As we comment later, there are more than 80 million such tetrahedra with g > 1 for the
range 2 < n < 2500 up to isomorphisms.

A simplex P of dimension three in My is said to be terminal if P N M is equal to the
set of the vertices of P.

The following theorem, which is called the Terminal Lemma, is due to White [W].

Theorem 4.2. If P is a terminal simplex, then there exist integers n,p with 0 < p < n
and ged{n,p} = 1 such that the set of vertices of P is

{(0,0,0),(1,0,0),(0,1,0), (p,1,n)}
for an affine Z-coordinate of M.

Note that two vertices of P has the second coordinates 0 and other two has the
coordinates 1. Hence the second coordinate of an interior point is in the open interval
(0,1). In particular, it is not a lattice point.

It is clear that the simplex 7' is terminal if ¢ = ¢30 = 1. If there exists (i,7) with

¢ij = 1, then T is terminal since we may assume gz» = 1 by a permutation of indices.
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Hence, by this theorem, there exists a lattice point in the interior of 7" if and only if none
of g;;’s is 1.

We are interested in the range of genera which actually appear for a fixed n. By
the equality A(n,q) = —A(n,n — q), we know the average of the deviation A(n,q) for a
fixed n is zero. The genus formula indicates that, although the average of ¢g is around
2n — 6+ 4/n, it has a high value if most of A(n, ¢; ;)’s are negative and has a low value if
they are positive. We see easily the maximal value of A(n, q) is n —3+2/n for ¢ = 1 while
the minimal value is —n + 3 — 2/n for ¢ = n — 1. Table 1 is a list of A with relatively

high deviations.

A d q* o A
(1) d] n 1 n—2 n—3+2/n
(2) 2, d] (n+1)/2 2 (n—>5)/2 n/2—3+5/2n
(3) 3, d] (n+1)/3 3 (n—>5)/3 | n/3—T7/3410/3n
(4) | [2,2,d] | (n+2)/3 3 (n—10)/3 | n/3—11/3+10/3n
G) | [4d |(m+1)/4| 4 (n—23)/4 | n/d—3/2+17/4n
©6) |[22,2,d | (n+3)/4| 4 (n—17)/4 | n/4—9/2+17/4n
(7) | [2,d,2] |(n+4)/4 ]| (n+2)/2 | (n—12)/4 n/4—3+2/n
©®) | 2.3.d | (n+2)/5 5 (n—13)/5| n/5—3+26/5n
@ | Bd | (n+1)/5 5 (n+1)/5 | n/5—3/5+26/5n
(10) | [3,2,d] | (n+3)/5 5 (n—12)/5| n/5—3+26/5n
an| 6d |@m+r1me| 6 (n+7)/6 | n/6+1/3+37/6n
(12) | [3,d,2] | (n+5)/6]|(n+3)/2| (n—13)/6| n/6—T/3+4+13/6n
(13) | [2,2,d,2] | (0 +7)/6 | (n+3)/2 | (n—23)/6 | n/6 — 11/3+ 13/6n
(14) | [2,4,d] | (n+2)/7 7 (n—12)/7 | n/7—15/7+50/Tn
(15) | [4,d,2] |(n+6)/8|(n+4)/2| (n—10)/8| n/8—3/2+5/2n
(16) | [3,d,3] | (n+6)/9| (n+3)/3| (n—12)/9| n/9—-5/3+2/n

Table 1: Relatively high deviations

Although the description of the sequence by continued fractions is explicit, the eval-
uation of the value A(n,q) is difficult in general. In order to give a lower bound of the
genus, we need several lemmas. Inside the brackets of n() and ¢(), the elements of Str and
integers greater than one are concatenated by commas. For example, if A = [ay, ..., a4
and B = [by,..., b, then n(A, B) = n(ay,...,as0by,...,b) and n(A,3) = n(ay,...,as 3).

When s > 0, we have the following equalities:

(4.8) qlay, as, ... as_1,as) = nlas, ..., as1,a;)

(49) q*(a’lv A2, ..., 051, Cls) = n(a17 Az, ..., a’s—l) 9
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while n() =1 and ¢() = ¢*() = 0 for the empty sequence.

Lemma 4.3. Let A, B in Str. Then we have the equality
n(A, B) = n(A)n(B) — ¢"(A)q(B) .

Proof. Set A = [ay,...,a5) and B = [by,...,b]. We prove the lemma by induction
on len(A). If len(A) = 0, then we get the equality by n() =1 and ¢() = 0.
If len(A) = 1, then we have

(4.10) n(ar, B) = axn(B) — a(B) = n(ay)n(B) — ¢*(a)a(B)
If len(A) = 2, then

n(ay,as, by, ..., by)
= an(ag,by,...,b) —n(by, ..., b)
= ay(agn(by,...,b) —n(be, ..., b)) —n(by,...,b)
= (ajag — 1)n(by,...,b) —ain(by, ..., by)
= n(A,B) =n(A)n(B) —¢"(A)g(B) .

Assume len(A) > 3. Then, by using the induction assumption, we have

n(ay, ... as,01,...,b)
= an(ag,...,asb1,...,b) —nlag,...,as,b1,...,b)
= ay(nas,...,as)n(by,..., b)) —ay(n(as,...,as_1)n(bg, ..., b))
— n(ag,...,as)n(by, ..., b)) +nlas,...,as_1)n(ba, ... b)
= (ain(ag,...,as) —n(as,...,as)n(by, ..., b)
— (ain(ag,...,as_1) —nlas,...,as_1))n(bs, ..., by)
= n(A)n(B) — ¢ (A)q(B) .
q.e.d.

Let Ay, ..., Ag be elements of Str with n(A;) = --- = n(Ag) = n > 1. We assume that
m(Ay),...,m(Ag) > 2 and the equality

(4.11) 12g=2n—6+%— (M(AL) + -+ + A(4g))

is satisfied for a nonnegative integer g. Here we list some lemmas which are obtained in
this situation.

Lemma 4.4. If either q(Ag) or ¢*(Ag) is equal to n — 1 and n > 5, then we have

n—3

4.12 >
(4.12) 92—
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Lemma 4.5. If n > 5, either q(As) or ¢*(Ag) is equal to n — 2 and at most one of
Ay, ..., Ay satisfies m(A;) = 2, then

n—=_8
4.1 > .
(4.13) 923

Lemma 4.6. If n > 5, m(A4;) = 2, m(As) = 3, m(As), m(As),m(As) > 2 and either
q(Ag) or q*(As) is equal to n — 6, then
n—11
36
Lemma 4.7. If n > 5, q(Ag) =n — 4 and at most two of m(Ay),...,m(As) are 2, then

(4.14) 9=

n— 22
48

(4.15) 9>

By using the these lemmas and by further case-by-case calculation, we can show the
following lower bound of the genus of a non-terminal tetrahedron with respect to the

volume.

Theorem 4.8. Assume that none of g;;’s are 1. Then the number g of lattice points in

the interior of the tetrahedron satisfies the inequality

n— 23
48

(4.16) <g.

However, we may have the following much better bounds.

Conjecture 4.9. Assume that none of q;;’s are 1. Then the number g of lattice points
in the interior of the tetrahedron satisfies the inequalities

n—_§ n—1
<

41 <
(4.17) 2 ~9="73

We can check this conjecture for n < 2500 by a direct calculation using the genus

formula by a computer. The C program for the calculation is uploaded at:
http://www.math.tohoku.ac.jp/%7Eishida/tetra2010wcom. c

By this calculation, we know that there are 82,996,779 tetrahedra up to isomorphisms
with at least one lattice point in the interior for the range 2 < n < 2500, and all of them
satisfy the inequalities of the conjecture. Among them, 1474 tetrahedra have the genus
of the lower bound [(n — 8)/12] and 1673 have that of the upper bound |(n —1)/3]. For
example, for n = 2477, there exist only one tetrahedron with the lower bound g = 206
and only one tetrahedron with the upper bound g = 825 among 255,647 tetrahedra of
this volume.
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