- HOME
- 都築 暢夫 | 教員紹介

都築 暢夫【Nobuo TSUZUKI】教授
研究分野
数論幾何学、整数論
興味をもっている研究対象
数論幾何学とは、有理数体、有限体、または、p進体など比較的小さな体上の代数方程式で定義された図形(数論的多様体)を研究する分野です。 種々の「コホモロジー」を考えることにより、数論的多様体にはガロア表現やFクリスタルと呼ばれるものが伴い、これらを調べることにより、数論的多様体の性質を知ることが出来ます。私は、p進解析の手法を用いて数論的多様体の微分形式に伴うコホモロジーを研究しています。最近、その枠組みがかなり出来上がってきました。今後は、このコホモロジーを利用して数論的多様体の性質を調べたいです。この理論には、有限体上の代数多様体の有理点の個数を計算するアルゴリズム等、実用的応用もあります。
研究指導にあたって
寝ても覚めてもというぐらい、数学が好きになって欲しいです。苦しみも多いかもしれないけど、わかったときの喜びはとても大きいです。勉強する際には、手を動かし、例を作ってみてください。理解が進みます。
最近指導した修士論文の標題から
- 「楕円曲線のモジュラー次数に関する研究」
- 「多重ゼータ値の性質とその関係式に関する研究」
- 「虚2次体の類群の2-partが(4,4)型になる条件」
- 「いろいろな数の無理数度」
- 「Fourier coefficients of Ikeda lifts in degree 4」
- 「素数判定アルゴリズムと動作時間」
最近指導した博士論文の標題から
- 「On Q-simple factors of Jacobian varieties of quotient modular curves」
備考
個人のホームページ | |
研究室 | 合同棟707 |
電 話 | |